
Hybrid Training of Morphological Neural Networks:

A Comparative Study

Clodoaldo Ap. M. Lima, André L. V. Coelho, Mário E. S. Silva,

Ricardo R. Gudwin, Fernando J. Von Zuben

DCA-FEEC-Unicamp

P.O. Box 6101 Campinas/SP 13083-970, Brazil
{moraes,coelho,ernesto,gudwin,vonzuben}@dca.fee.unicamp.br

Abstract. In this paper, we present a hybrid algorithm for training a
morphological neural network, which combines an evolutionary programming
technique with a non-linear optimization method based on gradient
information. The aim behind such fusion of techniques is to properly exploit
the high non-linearity features exhibited by the morphological neuron. The
presented simulation results seek to demonstrate the viability of applying this
new training algorithm to function approximation and classification problems,
comparing its performance with the multi-layer perceptron in complex
functions.

1. Introduction

The multi-layer morphological neural network (hereafter, MLM) [1][2][3] can be
classified as a feedforward neural network whose hidden layer is composed by
morphological neurons and the output layer is designed as a linear combination of
signals. Similarly to a multi-layer perceptron network (MLP), the training of a
morphological network can be placed as an unrestricted optimization problem. The goal
is to minimize a performance index, just as the mean squared error (MSE) J(winp, wout),
with regard to the network parameters (w):

∑∑
= =

−=
N

t

n

i
itit

outinp
out

dy
N

wwJ
1 1

2)(
1

),((1)

where N refers to the amount of training data patterns and yit and dit are, respectively,
the actual and desired network responses at the i-th output for the t-th training pattern.

Several algorithms for training MLP networks are found in the literature.
Amongst them, the backpropagation (BP) [4] is the most deployed in practice. This is a
generalization of the least mean squared algorithm (thus, a gradient descent method) in
which the weights are adjusted with regard to the cost function J(w), adopting the
following learning rule:

kkkk gww η−=+1

where

∂

∂
∂

∂
∂

∂=
nk

nk

k

k

k

k
k w

wJ

w

wJ

w

wJ
g

)()()(

2

2

1

1
L

and ηk is the learning rate at the k-th iteration. Despite its implementation simplicity, BP
sometimes shows both inefficiency and inefficacy problems in the search for optimal
solutions. This fact gives rise to some new extensions (e.g. adaptive backpropagation,
Quickprop, and Rprop [5][12]), aiming at improving the BP performance.

The employment of evolutionary computation (EC) based techniques as an
alternative to gradient-based training of neural nets has received much attention recently
[6]. These techniques can be characterized as stochastic search methods which may be
applied during the learning stage, permitting the iterative process to escape from local
minima and to converge to the cost function global minimum. Yet, for some complex
problems, this convergence turns to be a critical performance factor, calling for the
necessity of combining EC variants with some other gradient-based training algorithms.
Here, following the recent trend towards hybrid learning techniques [7], we focus our
attention on employing an evolutionary programming (EP) [8] based methodology
(proposed by Saranavan and Fogel [9]), combined with error backpropagation rules, for
the training of both MLPs and MLMs to the tasks of 3D benchmarking functions
modeling [10] and pattern classification [11].

2. Morphological Neuron Model

The model underlying the morphological neuron has its origin on the mathematical
morphology theory, comprehending an image algebra whose main operations, dilation
and erosion, are based on transformations derived from sophisticated segmentation and
filtering methods, largely employed in the image processing field. In [1], it is shown
that an image sub-algebra includes the mathematical formalization found in most of the
current neural networks models. This narrow relationship between the mathematical
morphology and neural nets theories has been attracting the researchers’ attention for a
particular and very prominent feature present in both areas: the high level degree of
non-linearity. This property allows a single morphological neuron to have the capability
of resolving some difficult non-linearly separable problems, such as the XOR [6].

In the canonical artificial neural network model, the first step in computing the
next state of a neuron involves the linear operation of multiplying neural values by their
synaptic strengths and adding the results. An activation function (with thresholding)
usually succeeds the linear operation accomplished in the prior step, seeking to provide
the network with non-linearity effects, as shown as follows:

 ∑ −=+

=

inpn

i
jijij wtxftx

1
).()1(θ

In morphological neural networks, addition and maximum (or minimum)
replace the operations of multiplication and addition, respectively. By taking the
maximum (or minimum) of sums instead of the sum of products, the morphological
network computation is non-linear before thresholding. As a consequence, the
properties of this new kind of network are totally different from those of traditional
ones, presenting by this way novel means of being deployed and assessed. The

mathematical model of the morphological neuron [2] is described both by Eq. (2) and
Fig. 1:

()

+= ∨

=
ijiij

n

i
jj wxrpfu

inp

1

 (2)

where ∨ indicates the supremum operation, nînp is the number of incoming signals and pj

and rîj assume values in {-1,1}.

xi ∨,p jrij

rij

rij

x1

inpnx

wij

w1j

jninp
w

Figure 1. Morphological neuron.

As for the MLPs, it is also possible to devise a range of topologies for an MLM.
Fig. 2 brings one of such structures.

+

+

-

-

+

+

x1

x2

∨,pj

∨,pj

∨,pj

∑ y1

Figure 2. An MLM topology.

Traditionally, the morphological neural network has been applied to pattern
recognition and memory association tasks [2][3]. In order to exploit the morphological
neuron’s high non-linearity, one investigates in this paper the MLM performance when
applied to other classes of problems, those relating to function approximations and
pattern classification. Function approximation is the task of learning or representing a
function, by generating approximately the same input-output behavior based on
available training data, while pattern classification deals with the categorization of a
series of input data into one of M distinct, already available, classes [6].

In such context, the appliance of the gradient descent method brings with itself
some particularities, such as to define the derivatives of the maximum and minimum
functions. In [12], a detailed study is presented in this direction, having demonstrated
that such functions are differentiable in almost all points of the explored n-dimensional
space. Let))((max inp

ijiij
i

j wxrh += or))((min inp
ijiij

i
j wxrh += , so it can be stated that:

 =+=

=
∂
∂

otherwise

niwxrhifr

w

h inpinp
ijiijjij

ij

j

,0

,,2,1),(, K (3)

The error backpropagation equation for the morphological neural network is
akin to the one for the MLP, given by Eq. (1). The output of each hidden layer neuron
can be written as

)(jjj hpfu ⋅=

where f(.) refers, in our implementation, to the hyperbolic tangent function.

Finally, the gradient computation can be summarized as follows:

inp
ij

j
N

t

n

k j

out
jkktktinp

ij dw

dh

dh

df
wdy

w

J out

⋅−=
∂

∂ ∑∑
= =1 1

.).(

jj
j

pu
dh

df ⋅−=)1(2 ∑
=

−=
∂

∂ N

t
jktktout

jk

udy
w

J

1

).(

3. EP for MLP/MLM Training

Evolutionary programming [8] comprehends a stochastic optimization strategy similar
to genetic algorithms (GAs), which, instead of seeking to emulate specific genetic
operators as observed in nature, places emphasis on the behavioral linkage between
parents and their offspring. EP is a useful method of optimization when other
techniques such as gradient descent or direct, analytical discovery are not possible.
Combinatorial and real-valued function optimization in which the optimization surface
or fitness landscape is "rugged", possessing many locally optimal solutions, are well
suited for evolutionary programming.

The basic EP algorithm involves a three-step process to be repeated until a
threshold for iteration is exceeded or an adequate solution is obtained: (i) one chooses
an initial population of trial solutions at random; (ii) each solution is then replicated
into a new intermediary population and each of the new offspring solutions are mutated
according to a distribution of mutation types, ranging from a minor to an extreme value
with a continuum of mutation types in between (the severity of mutation is judged on
the basis of the functional change imposed on the parents); (iii) each offspring solution
in an intermediary population is assessed by computing its fitness, which is typically
done by a stochastic tournament, in such a way to determine the N best solutions to be
retained for the next generation.

Saravanan and Fogel have devised an EP-based neurocontrol methodology [9]
which was adopted here as our EC strategy to both MLP and MLM training. In such
proposal, a population of neural nets is randomly initialized, each one assigned to a pair
of real-valued vectors, here depicted as (wi, σi), whose dimensions correspond to the
number of weights (including the bias) in the fixed net structure that ought to be
adjusted (n). wi is, thus, an n-dimensional real-valued vector corresponding to object
variables (weights), whereas σi is an n-dimensional real-valued vector corresponding to
what Saravanan and Fogel called “strategy parameters”, referring to the adaptable
standard deviations that determine the iterated step size updates for each connection.

Each member of the population is, in each generation, evaluated in accordance with a
pre-established objective function, which, in our case, is given by Eq. (4).

∑ ∑ −=
= =

N

t

outn

i
ititj dy

N
fitness

1 1

2)(
1 (4)

The generation of an offspring (chromgmut, σgmut) from each parent is given by the
following perturbation operations (mutation):

)1,0().()()(lggggmut Nllchromlchrom σ+= (5)

))1,0(.)1,0(.exp().()(21
ll ggggmut NNll ττσσ += (6)

∀ l∈{1,...,N}, where chromgmut(l), chromg(l), σgmut (l), and σg(l) denote the g-th
component (parameter) of the vectors chrommut, chrom, σmut, and σ, respectively, and
N(0,1) refers to a unidimensional Gaussian random variable with mean zero and
variance one. The authors employed the tournament process for deciding among
genitors and their offspring those that best satisfies the error optimization criterion. The
number of individuals (among genitors and offspring) taking part into the tournament
for the evaluation of each new individual j in the population should be given (tm).

In this paper, for MLM training purposes, the p and r parameters are also
evolved through the EP process. Besides this, we propose a variation to the
aforementioned methodology, by following the same philosophy of the work of
McLoone et al. [7]: To combine different, complementary techniques for improving the
optimization process. Thus, the mutation operators given by Eqs. (5),(6) are enhanced
with a fine-tuning process, which is done by applying a backpropagation-based
correction of the weights of a new offspring for a limited, typically few, number of
iterations (q). The idea is to introduce a refinement method (performed by the BP) into
a global search technique, EP.

4. Simulation Results

In this section, some comparative results regarding the performance of MLPs and
MLMs are shown, assessing their capabilities in dealing with function approximation
and pattern classification problems. These results encompass BP, EP, and BP-EP
(hybrid) training. For the purpose of function approximation, we use two complex
tridimensional curves extracted from [10] (depicted in Fig. 3 and Table 1), whereas for
pattern classification assessment, we employ the “two intertwined spirals” problem
addressed by Lang and Witbrock [11] (Fig. 4). In the simulations, the number of
neurons of the hidden layer was set to 5 to function approximation and 15 to pattern
classification, the parameter q discussed in Section 3 was set to 5, the number of
iterations of the backpropagation, for both MLP and MLM simulations, was 2000, the
number of generations for the EP and BP-EP (for both MLP and MLM) was 1000, and
the number of simulations realized for each configuration was 15. In EP and BP-EP, the
tournament parameter tm was set to 10. The squashing function used in the MLP was
the hyperbolic tangent and the weights, for both types of networks, are initialized
randomly via a uniform distribution.

Figure 3. Benchmarking functions for the function approximation problem.

4.1. Function Approximation

The functions gk are assumed unknown in such a way that it is only possible to obtain
samples of their values for input vectors x defined to adequately cover the
approximation space. Following the procedure adopted by Hwang and others [10] to
produce a training data set with dimension Ntrain = 225, we generated input vectors xl

(l=1,...,225) by means of a uniform distribution of values in the range [0,1]. We repeat
the same procedure for generating the test data set with dimension Ntest = 2500.

Function Analytic Expression

g1
]36,0)6,0()4,0[(391,10),(2121

)1(+−⋅−⋅= xxxxg

g2 2
2

2
1

222
21

)2()5,0()5,0()],75,0([234,24),(−+−=−⋅= xxrrrxxg

Table 1. Analytical expressions of the benchmarking functions.

In the following, we present the results achieved for each type of network, MLP
and MLM, trained with supervised, evolutionary and hybrid approaches, considering
the above benchmarking functions. Table 2 and Table 3 bring the results for the best
MSE achieved during the training an test phases.

MLP-BP MLP-EP MLP-H MLM-BP MLM-EP MLM-H

g1 0.0172 0.0413 0.0010 0.0277 0.0643 0.0212

g2 0.0129 0.0372 0.0118 0.0512 0.0819 0.0389

Table 2. Best MSE results achieved in the training phase for simulations using
different learning approaches over MLP/MLM configurations.

MLP-BP MLP-EP MLP-H MLM-BP MLM-EP MLM-H

g1 0.0243 0.0438 0.0082 0.0286 0.0685 0.0308

g2 0.0202 0.0433 0.0221 0.0532 0.0942 0.0395

Table 3. Best MSE results achieved in the test phase for simulations using
different learning approaches over MLP/MLM configurations.

4.2. Pattern Classification

For the task of classification, we used the “two-spirals” problem depicted in Fig. 4,
which consists of two intertwined rings whose equations are given below:

Spiral #1

x = 1 + (r +0.1) * cos(t)

y = 1+ (r+0.1) * sin(t)

Spiral #2

x = 1 - (r +0.2) * cos(t)

y = 1- (r+0.2) * sin(t)

where r is defined in the range [0-1] and t�LV�GHILQHG�LQ�WKH�UDQJH�>��� @��7KH�LGHD�LV�WR
categorize input patterns into one of two classes (50% of patterns should belong to each
class). For simulation purposes, we followed the same procedure as applied to the
function approximation problem for the generation of training (Ntrain = 194) and test (Ntest

= 1024) data sets.

Figure 4. The “two intertwined spirals” problem.

In the sequence, we present the results achieved for each type of network, MLP and
MLM, trained with supervised, evolutionary and hybrid approaches, considering the
above benchmarking functions. Table 4 and Table 5 bring the best percentage of correct
classification results (PCC) achieved during the training an test phases.

MLP-BP MLP-EP MLP-H MLM-BP MLM-EP MLM-H

86,15 84,30 97,15 84,12 82,15 96,65

Table 4. Best PCC results achieved in the tra ining ph ase for simulat ions using
different lear ning approaches o ver MLP/MLM conf igurations.

MLP-BP MLP-EP MLP-H MLM-BP MLM-EP MLM-H

85,43 83,90 91,80 83,18 80,78 90,49

Table 5. Best PCC results achieved in the test phase for simulat ions using
different lear ning approaches o ver MLP/MLM conf igurations.

4.3. Discussion

Assessing the results, we can see that employing only supervised training for MLMs in
function approximation problems shows relatively poor efficiency if the equations
presented in [1][2] are maintained. Perhaps, this inefficiency owes to the fact that the
values of r and p, as defined for the appliance of BP, are not updated through the
synaptic weights adjustment, in view of the restriction that they can only assume integer
values. Besides this, as there exists a maximum/minimum operator before the
application of a non-linear function (turning the error surface more complex), in order
to backpropagate the error up to the input weights, only a component of the weight
vector is updated for each presented pattern sample. Another possible limitation factor
was the simple modeling of the derivative operator applied over maximum/minimum
operators (see Eq. (3)) in the BP case; future work should concentrate on comparing
such modeling with others available in literature [12]. In the attempt to solve such
deficiencies of supervised training, the application of an EC algorithm was investigated
as a complementary technique for MLMs.

Moreover, the strategy of employing only the EP algorithm as the learning
procedure was hampered by the inefficiency behind the convergence process, which, for
several times, surpassed the allowed number of search epochs. In order to hasten this
convergence rate, supervised training was employed (in a second phase) over the new
individuals generated by the application of the mutation operators, tuning, by this
manner, their features according to the problem in hand.

Through the presented simulations, it can be observed that the hybrid technique
has produced far better results in the g1 and g2 cases, both for MLP and MLM
configurations. MLP has shown better performance than MLM maybe because those
curves have few non-smooth features, the case in which MLM is more apropos to be
applied to. Nevertheless, the results already point to the viability of applying MLMs for
the mapping of complex functions, mainly those combining min, max, or modular
operations. For the classification problem, MLM has shown results equivalent to those
provided by the MLP, and the employment of the hybrid approach has improved both
network configurations as well.

5. Final Remarks

In this work, we present a hybrid algorithm for training morphological and multi-layer
perceptron neural networks, which combines an evolutionary programming technique
with a non-linear optimization method based on gradient information. The aim behind
such fusion of techniques is to properly exploit the high non-linearity features exhibited
by the morphological neuron as well as to improve the convergence of MLPs.

As future work, it would be interesting to evaluate the possibility of employing
real values for the r and p parameters, which could lead to a better understanding of the
dynamics of these variables in the MLM learning process. As well, in order to avoid the
cases where low xi values are precluded by high wij values, Eq. (2) might be expanded to
incorporate new pondering factors (such as a below) whose values could also be fixed
by the evolutionary process:

()

+=+ ∨

=
ijiijij

n

i
jj wtxarpftx

inp

)()1(
1

Finally, as a direct result of the analysis presented here, it is necessary to
highlight that, despite the high modeling power behind the non-linear characteristics of
the morphological neuron (in relation to the traditional Perceptron), the process of
training an MLM is extremely complex, requiring much computational effort. This
justifies the development of alternate training approaches, such as the hybrid one
proposed here.

6. References

[1] G.X. Ritter and P. Sussner: "An Introduction to Morphological Neural Networks",
Procs. of the 13th International Conference on Pattern Recognition, Vol. IV,
Track D, pp. 709-717, Austria, April 1996.

[2] P. Sussner, “Morphological Perceptron Learning”, Procs. of the 1998 IEE
ISIC/CIRA/ISAS Joint Conference, Gaithersburg, MD, September, 1998.

[3] G.X. Ritter and P. Sussner, “Morphological Associative Memories”, IEEE
Transactions on Neural Networks, Vol. 9, No. 2, pp. 281-293, March 1998.

[4] Y. Chauvin and D.E. Rumelhart (eds.), “Backpropagation: Theory, Architecture,
and Applications”, Lawrence Erbaum Associates Publishers, 1995.

[5] S. Fahlman, “Fast Learning Variations on the Backpropagation: An Empirical
Study”, Procs. 1988 Connectionist Models Summer School, D. S. Touretzky, G.
Hinton, T. Sejnowski, pp. 38-51, 1988.

[6] K. Mehrotra, C. Mohan, and S. Ranka, “Elements of Artificial Neural Networks”,
MIT Press, 1997.

[7] S. McLoone, M.D. Brown, and G. Irvin, “A Hybrid Linear/Nonlinear Training
Algorithm for Feedforward Neural Networks”, IEEE Transactions on Neural
Networks, Vol. 9, No. 4, pp. 669-684, July 1998.

[8] D.B. Fogel and L. J. Fogel, “An Introduction to Evolutionary Programming”,
LNCS Vol. 1063, pp. 21-33, 1996.

[9] N. Saravanan and D.B. Fogel, “Evolving Neural Control Systems”, IEEE Expert,
Vol. 10, No. 3, pp. 23-27, June 1995.

[10] J.-N. Hwang, S.R. Lay, M. Maechler, R.D. Martin, and J. Schimert, “Regression
Modeling in Back-propagation and Projection Pursuit Learning”, IEEE
Transactions on Neural Networks, Vol. 5, No. 3, pp. 342-353, 1994.

[11] K.J. Lang and M. J. Witbrock, “Learning to Tell Two Spirals Apart”, Procs. of
the 1988 Connectionist Models Summer School, pp. 52-59, Morgan Kaufmann,
June 17-26, 1988.

[12] X. Zhang, C.-C. Hang, “ The Min-Max Function Differentiation and Training of
Fuzzy Neural Networks” . IEEE Transactions on Neural Networks, Vol. 7, No. 5,
pp. 1139-1150, September 1996.

