A Conscious-based Mind for an Artificial Creature

Ricardo Capitanio Martins da Silva', Ricardo Ribeiro Gudwin?
'DCA-FEEC-UNICAMP martins @dca.fee.unicamp.br
2DCA-FEEC-UNICAMP gudwin@dca.fee.unicamp.br

Abstract

This work describes the application of the Baars-Franklin
Architecture (BFA), an artificial consciousness approach, to
synthesize a mind (a control system) for an artificial creature.
The BFA was reported in the literature as a successful control
system to different kinds of agents: CMattie, IDA and CTS.
In this paper, BFA is for the first time applied for controlling
an artificial (virtual) creature. Firstly we introduce the the-
oretical foundations of this approach for the development of
a conscious agent. Then we explain the architecture of our
agent and at the end we discuss the results and first impres-
sions of this approach.

Keywords: artificial consciousness, intelligent systems,
autonomous vehicle, multi-agent systems

Introduction

In the last ten years there has been an intensive growth in
the scientific study of consciousness (Atkinson et al., 2000;
Blackmore, 2005). A technological offspring of these stud-
ies is the field of artificial consciousness (Aleksander, 2007,
Bogner, 1999; Cardon, 2006; Chella and Manzotti, 2007;
Gamez, 2008). In this work we concentrate in what we call
here the Baars-Franklin architecture (BFA). The BFA is a
computational architecture being developed by the group of
Stan Franklin, at the University of Memphis (Franklin and
Graesser, 1999; Bogner, 1999; Negatu and Franklin, 2002;
Negatu, 2006), based on the model of consciousness given
by Bernard Baars, called Global Workspace Theory (Baars,
1988).

The BFA has already been applied to many different kinds
of software agents. The first application of BFA was CMat-
tie (Franklin and Graesser, 1999; Bogner, 1999), an agent
developed by the Cognitive Computing Research Group
(CCRQ) at the University of Memphis, whose main activ-
ities were to gather seminar information via email from hu-
mans, compose an announcement of the next week’s semi-
nars, and mail it to members of a mailing list. Through the
interaction with human seminar organizers, CMattie could
realize that there was missing information and ask it via
email.

The overall BFA received major improvements with sub-
sequent developments. One remarkable implementation of it
was IDA (Intelligent Distribution Agent) (Franklin, 2005),
an application developed for the US Navy to automate an
entire set of tasks of human personnel agent who assigns
sailors to new tours of duty. IDA is supposed to communi-
cate with sailors via email and, in natural language, under-
stand the content and produce life-like messages.

The BFA was also used outside of Franklin’s group.
Daniel Dubois from University of Quebec developed CTS
(Conscious Tutoring System) (Dubois, 2007), a BFA-based
autonomous agent to support the training on the manipula-
tion of the International Space Station robotic control system
called Canadarm?2.

Nevertheless, up to our knowledge, BFA was never used
to implement a mind (a control system) for an artificial
virtual creature. Aurtificial Creatures are a special kind of
agents, embodied autonomous agents which exists in a cer-
tain environment, moving itself in this environment and act-
ing on it (Balkenius, 1995). Artificial creatures may be real
or virtual. Examples of real artificial creatures are robots
acting in the real environment. Virtual Artificial Creatures
are software agents living in a virtual world, where they are
able to sense and actuate by means of an avatar (a virtual
body). One example of a virtual artificial creature is an in-
telligent opponent in a computer game, where an intelligent
control system must decide the actions to be performed by
the agent in order to foster a good entertainment to the sys-
tem user, simulating with realism the behavior of a human
opponent. Other examples of virtual artificial creatures in-
clude ethological simulation studies, in artificial life, where
tasks such as foraging and sheltering are very common.

Virtual artificial creatures pose some interesting research
problems when compared to other kinds of software agents
where BFA has already been tested. In the original applica-
tions where BFA was tested, the perception system is based
on the exchange of e-mail messages (the case of CMattie
and IDA), and interactions in a HCI (human-computer in-
terface), in the case of CTS. In a virtual artificial creature,
perception must rely on remote (e.g. visual, sonar, etc)

and/or local (e.g. contact) sensors, capturing properties of
the scenario and interpreting them in order to create a world
model. The behavior generation module is also different, as
the agent must act on itself (its body) and over things on the
environment. The main motivation for the research reported
in this work is though to investigate how the use of BFA
may impact the control of a virtual artificial creature, and
what are the benefits which can be expected.

In the next section, we introduce briefly Baars’ theory of
consciousness, Global Workspace Theory, and then we de-
scribe how we customized BFA in order to deal with virtual
artificial agents. After that, we introduce CAV (Conscious
Autonomous Vehicle), the artificial creature we used in our
study and its environment, and a brief analysis of the results
of our simulations using CAV.

Global Workspace Theory and BFA

Bernard Baars has developed the Global Workspace The-
ory (GWT) (Baars, 1988, 1997) inspired by psychology and
based on empirical tests from cognitive and neural sciences.
GWT is an unifying theory that puts together many previous
hypothesis about the human mind and human consciousness.

Baars postulates that processes such as attention, action
selection, automation, learning, meta-cognition, emotion,
and most cognitive operations are carried out by a multi-
tude of globally distributed unconscious specialized proces-
sors. Each processor is autonomous, efficient, and works
in parallel and high speed. Nevertheless, in order to do
its processing, each processor may need a set of resources
(mostly information of a specific kind), and at the same time,
will generate another set of resources after its processing.
Specialized processors can cooperate to each other forming
coalitions. This cooperation is by means of supplying to
each other, the kinds of resources necessary for their pro-
cessing. They exchange resources by writing in and reading
from specific places in working memory. Coalitions may
form large complex networks, where processors are able to
exchange information to each other. But processors within
a coalition do have only local information. There may be
situations, where the required information is not available
within the coalition. To deal with these situations, and al-
low global communication among all the processors, there
is a global workspace, where processors are able to broad-
cast their requirements to all other processors. Likewise,
there may be situations where some processor would like
to advertise the resource it generates, as there may be other
processors interested in them. They will also be interested
in accessing the global workspace and broadcasting to all
other processors. In the broadcast dynamics, only one coali-
tion is allowed to be within the global workspace in a given
instance of time. In order to decide which coalition will go
to the global workspace in a given instant of time, a whole
competition process is triggered. Each processor has an ac-
tivation level, which expresses its urgency in getting some

information or the importance of the information it gener-
ates. A coalition will also have an activation level which is
the average of activation levels of its participants. At each
time instant, the coalition with the highest activation level
will win the access to the global workspace. Once a coali-
tion is within the global workspace, all its processors will
broadcast their requests and the information they generate.
The broadcast mechanism do allow the formation of new
coalitions, and also some change in working coalitions.

For Baars, consciousness is related to the working of this
global workspace. Processors are usually unconscious, hav-
ing access only to local information, but in some cases they
may require or provide global information, in which case
they request access to consciousness, where they will be
able to broadcast to all other processors. This is the case
when they have unusual, urgent, or particularly relevant in-
formation or demands. This mechanism supports integration
among many independent functions of the brain and uncon-
scious collections of knowledge. In this way, conscious-
ness plays an integrative and mobilizing role. Moreover,
consciousness can be useful too when automatized (uncon-
scious) tasks are not being able to deal with some particular
situation (e.g. they are not working as expected), and so a
special problem solving is required. Executive coalitions,
specialized in problem solving will be recruited then in or-
der to deal with these special situations, delegating trivial
problems to other unconscious coalitions. In this way, con-
sciousness works like a filter, receiving only emergencial or
specially relevant information.

Inspired by Baars description of his theory of conscious-
ness, and also by previous work in the computer science lit-
erature, Franklin proposed a framework for a software agent
which realized Baars theory of consciousness, in terms of a
computational architecture, constituting so what we are call-
ing here the Baars-Franklin architecture. In specifying BFA,
Franklin used the following theories as background, among
others not detailed here: Selfridge’s Pandemonium (Self-
ridge, 1958) and Jackson’s extension to it (Jackson, 1987),
Hofstadter and Mitchell Copycat (Hofstadter and Mitchell,
1994) and Maes’ Behavior Network (Maes, 1989).

From Hofstadter’s Copycat, Franklin borrowed the notion
of a “Codelet” (and also the Slipnet, for perception). He no-
ticed that these codelets were more or less the same thing
as Selfridge’s “demons” in Pandemonium theory and also
a good computational version for Baars processors. Jack-
son’s description of an arena of demons competing for se-
lection will fit as well Baars description of processors com-
peting in a Playing Field for access to consciousness. Using
these similarities, Franklin set up the basis of BFA: cogni-
tive functions are performed by coalitions of codelets work-
ing together unconsciously, reading and writing tagged in-
formation to a Working Memory. Each codelet has an ac-
tivity level and a tagged information. A special mecha-
nism, the Coalition Manager will manage coalitions and

calculate the activity level of each coalition. Another spe-
cial mechanism, the Spotlight Controller, will be evaluating
each coalition activity level, and defining the winning coali-
tion. Also, the Spotlight Controller will be responsible for
performing the broadcast of the tagged information of each
codelet in the winning coalition, to all codelets in the system.
The agent behavior is decided using a Behavior Network,
whose propositions are related to the tagged information in
the Working Memory.

Unfortunately, a full description of BFA is beyond the
space available in this text. We refer the interested reader
to (Bogner, 1999; Negatu, 2006; Dubois, 2007; da Silva,
2009), where a more detailed description of BFA is avail-
able. Some background in the auxiliary theories we men-
tioned above is provided next.

Pandemonium Theory

Selfridge’s Pandemonium Theory is a connectionist archi-
tecture originally used for pattern recognition. Selfridge
(Selfridge, 1958), influenced by the parallelism of human
data processing, suggested a parallel architecture composed
of multiple independent processes called demons. Each de-
mon works simultaneously recognizing specific conditions
(or a set of them). Demons have links that allows them to
“call” other demons.

John Jackson extended the original Pandemonium theory
of perception by creating the stadium metaphor, organizing
demons in two different locations, the equivalent of stands
and arena of a stadium. Jackson (Jackson, 1987) proposed a
system consisted of a crowd of usually dormant demons lo-
cated at the stands, from where a few demons could go down
to the arena and start exciting the crowd. Some demons in
the crowd gets more excited and starts to yell louder. If
the activity of demons in the arena drops below a thresh-
old they may return to the stands and the loudest demons in
the crowd replace them. Besides the crowd getting excited
watching the demons in the arena, the last ones can spread
activation to the former through links. These connections
between demons are created or strengthened according to
the time they are together on the arena, following a Hebbian
learning scheme.

Copycat Architecture

Copycat is a hybrid symbolic-connnectionist architecture
that is intended to model analogy making along with recog-
nition and categorization. It was developed by Hofs-
tadter and Mitchell (Hofstadter and Mitchell, 1994) with the
premise that analogy making is a process of high-level per-
ception. Copycat makes and interprets analogies between
situations in a predefined and fixed domain like letter-string
analogy problems.

Those analogies emerge from the activity of many in-
dependent processes, called codelets, running in parallel,
sometimes cooperating, sometimes competing with each

other. Copycat starts with a fixed number of codelets in a
codehack, predetermined by the designer.

Codelets count with an associative network (the Slipnet)
that contains interrelated concept types (nodes) and links be-
tween them. Codelets look for specific words or parts of
words and if they find them they activate some nodes of the
Slipnet. Nodes can vary in their level of activation which
is a measure of relevance to the current situation. They
spread some activation to neighbors and lose activation by
decay. The Slipnet is a long-term memory and represents
what Copycat knows. It does not learn anything during exe-
cution.

Finally, Copycat has a working memory where percep-
tual structures are built and modified. At each moment the
content of the working memory represents Copycat’s current
perception of the situation it is facing.

Behavior Network

Pattie Maes (Maes, 1989) developed a behavior-based action
selection mechanism, built as a society of behaviors or com-
petence modules in a distributed, recurrent, non-hierarchical
network. This network is formed by four kinds of nodes.
The first kind of node (and the most important) represents a
low level behavior (e. g. approach food, drink water, walk
around). The second kind of node represents propositions
(or predicates e.g. glass-on-hand, glass-with-water-inside,
glass-empty), which can be true or false. The third kind of
node represents goals (or motivations). The fourth kind of
node represents sensors from the environment.

Sensor nodes are linked to proposition nodes. Behav-
ior nodes are input linked from preconditions propositions
which must be true for the behavior to be executable. In its
output, they are linked to two possible kinds of propositions:
add propositions, which are expected to become true af-
ter the behavior is executed, and delete propositions, which
should be set to false after the behavior is executed. For ex-
ample, a behavior “drink water” could have the precondi-
tions glass-on-hand and glass-with-water-inside. Its add list
could contain glass-empty and the delete list would contain
glass-with-water-inside. Goal nodes are linked to proposi-
tion nodes, which are backward linked to behavior nodes.
See figures 3 and 4, further, for an example of the connec-
tion among links. In these figures, triangles are proposition
nodes, ovals are behavior nodes, round squares are sensor
nodes and pentagons are goal nodes.

The network executes as follows. Each behavior has an
activation level, which is changed by two waves of spread-
ing activation: one from sensor nodes forward and the other
from goal nodes backwards. The first one spreads activation
forward from sensor nodes to propositions which are evalu-
ated (true or false) according to the environmental situation
and from them forwards to behavior nodes which need these
predicates to be true to be fired. The second spreads ac-
tivation backwards from goal nodes to predicate nodes and

Visual Scan Contact

4

O

Angle Length O @/O

@)

Figure 1: Sensory-motor structure of the creature

then to behaviors which can satisfy these goals. More details
on the spreading mechanism can be found in (Maes, 1989;
Negatu, 2006). At the end, after all the energy is spread-up,
the behavior which remains with the highest activation level
is chosen to be executed. Only one behavior is chosen to be
executed at each operational cycle.

Our implementation of BFA

In our experiment, we developed an artificial mind (a con-
trol system), which we call CAV - Conscious Autonomous
Vehicle, to control an artificial creature in a virtual environ-
ment (see figure 1). The creature and its environment were
originally presented in (Gudwin, 1996) (where more details
on its characteristics can be obtained) and were adapted for
our current studies. In this environment, the creature is
equipped with sensors and actuators, which enable it to nav-
igate through an environment full of objects with different
characteristics. An object can vary in its “color” and each
color is linked to: a measure of “hardness” which is used
in the dynamic model as a friction coefficient that can slow
down the creature’s movement (or completely block it), a
“taste” which can be bad or good, and a feature related with
“energy” which indicates that the object drains/supplies en-
ergy from/to the creature’s internal rechargeable battery.

The creature connects to its mind through sockets. In this
sense, the artificial mind is a completely separate process,
which can be run even in a different machine. So, different
minds can be attached to the creature and tested for the exact
same situation.

When the simulation is started, the creature builds an in-
cremental map of the environment based on the sensorial
information. Our agent adds landmarks to this map and uses
them to generate movement plans. It has two main motiva-
tions: it should navigate from an initial point up to a target
point, avoiding collisions with objects; and it should keep
its energetic balance, taking care of the energy level in the
internal batteries.

Our architecture (see figure 2) is essentially rooted in the

Perception ’ l
Codelets

> ¢———— Consciousness
(s}
£
=
Communication Attention
Codelets g‘! " Codelets ﬁ
=
=
2

|

Behavior Network
A ¢ t

;» Behavior Expectation
Codelets Codelets

Figure 2: CAV’s Architecture

BFA implementation as in (Bogner, 1999) (consciousness)
and (Negatu, 2006) (behavior network). CAV brings some
modifications in the implementation related with the appli-
cation domain, and the interaction among consciousness and
behavior network. The following sections contain a brief de-
scription of CAV’s modules.

Codelets

CAV is heavily dependent on small pieces of code run-
ning as separate threads called codelets (BFA borrows this
name from Hofstadter’s Copycat). Those codelets corre-
spond pretty well to the specialized processors of global
workspace theory or demons of Jackson and Selfridge.

BFA prescribes different kinds of codelets such as atten-
tion codelets, information codelets, perceptual codelets and
behavior codelets. In addition to that, it is possible to cre-
ate new types of codelets depending on the problem domain.
CAV’s domain does not require string processing as do most
other BFA applications. Instead of that, the creature state is
well divided in registers at the working memory. It is pos-
sible to have access to all variables anytime. Because of
this, CAV does not use information codelets which in BFA
are used to represent and transfer information. We have two
kinds of behavioral codelets: the behavior codelets, linked
with the nodes of the Behavior Network and responsible for
“what to do”, and motor codelets, which know “how to act”
on the environment. With this in mind CAV has the taxon-
omy of codelets presented at Table 1.

Working Memory

The working memory consists of a set of registers which are
responsible for keeping temporary information. The major
part of the working memory is related to the creature status.
The communication codelet constantly overwrites the reg-
isters like speed, wheel degree, sensorial information and
creature position. CAV’s working memory works also as an
interface among modules, for example, between conscious-
ness and the behavior network. Some codelets, including at-
tention codelets watch what is written in the working mem-
ory in order to find relevant, insistent or urgent situations.

Table 1: CAV’s Codelets Taxonomy

Type Role

Communication

Perform the communication with the simulator, bringing

novel simulation information

Perception Give an interpretation to what the agent senses from its
environment

Attention Monitor the working memory for relevant situations and
bias information selection

Expectation Check that expected results do happen

Behavior Alter the parameter of the motor codelet

Motor Act on the environment

When they find something, they react in order to compete
for consciousness. Whenever one of then reaches conscious-
ness, its information will influence the agent’s actions.

Consciousness mechanism

The consciousness mechanism consists of a Coalition Man-
ager, a Spotlight Controller, a Broadcast Manager and at-
tention codelets which are responsible for bringing appropri-
ate contents to “consciousness” (Bogner, 1999). In most of
the cases, codelets are observing the working memory, look-
ing for some relevant external situation (e.g. a low level of
energy). But some codelets keep a watchful eye on the state
of the behavior network for some particular occurrence, like
having no plan to reach a target. More than one attention
codelet can be excited due to a certain situation, causing a
competition for the spotlight of consciousness. If a codelet
is the winner of this competition, its content is then broad-
cast to the registered codelets in the broadcast manager. We
have three main differences between standard BFA and CAYV,
related to this module. The first one is that we don’t use in-
formation codelets. The second is that not all of the codelets
are notified like in BFA, just the registered ones. Finally,
some codelets can be active outside of the playing field. In
this case their contents will never reach consciousness.

Behavior Network

CAV’s behavior network is based on a version of Maes’ ar-
chitecture (Maes, 1989) modified by Negatu (Negatu, 2006).
Negatu adapted Maes’ behavior network so each behavior
is performed by a collection of codelets. Negatu’s imple-
mentation also divided the behavior network in streams of
behavior nodes.

The behavior network works like a long-term procedu-
ral memory, a decision structure and a planning mecha-
nism. It coordinates the behavior actions through an “un-
conscious” decision-making process. Even so it relies on
conscious broadcasts to keep up-to-date about the current
situation. This is called “consciously mediated action selec-
tion” (Negatu, 2006).

CAV uses two main behavioral streams, the Target stream
and the Energy stream, as in figures 3 and 4.

Reach
Target

//larget—taken N

Approach e —

Target

Energy
‘ Target Balance
Plan Checker
Generator

Collision
detected

‘ \

‘ \
Collision
Detector None

Figure 3: Behavior Network - Target Stream

has-target
safe-path

stopped

Cognitive Cycle

In GWT, all codelets and the consciousness mechanism are
asynchronous and parallel processes. In the first implemen-
tations of BFA, these were all implemented by completely
asynchronous threads. Nevertheless, due to many synchro-
nism problems among codelets, further implementations of
BFA prescribed the creation of a Cognitive Cycle. This cy-
cle imposes some synchronism points on codelets threads,
and organizes the interaction among BFA’s components in
the form of an operational cycle. This solved synchronism
issues of the multi-thread environment and made less diffi-
cult the computational implementation without detriment of
the main ideas in GWT.

CAV’s cognitive cycle (CCC) brings significant differ-

Energy
Balance

Recharge

near
_~recharge point

Approach
Energy

.

.

Energy
Checker

has-plan

e
_~safe-path

Plan
Generator

7

e
_~Collision
__detected

AN

/ N
/ N
-~ stopped ™\
o pped

Collision
Detector

Figure 4: Behavior Network - Energy Stream

\\\
PN
/no»plan\\\
N

/
P

ences when compared to standard BFA’s one. For a detailed
account on how CCC is modified compared to the standard
BFA cycle, see (da Silva, 2009).

For the standard BFA’s cognitive cycle see (Baars and
Franklin, 2003).

We removed the first three original steps: perception
(interpretation of sensory stimuli), percept to preconscious
buffer (the percept is stored in working memory), local asso-
ciations (retrieve local associations from transient episodic
memory (TEM) and long term associative memory (LTM)).
This last one is quite obvious as CAV does not have an im-
plementation of TEM or LTM. In the other cases, the re-
moval of the two first steps is related to the problem do-
main. CAV does not process streams of characters like IDA.
So CAV does not need a Slipnet. Moreover, the input data
of CAV is well structured, as working memory’s registers
can be updated anytime. It guarantees that all codelets will
handle the most possible up-to-date input data. The “recruit-
ment of resources” step has also been removed, because the
“answer” of all listening codelets happens in parallel with
the cycle, not inside it.

The remaining CCC five steps are summarized below
(adapted from (Baars and Franklin, 2003). We will indi-
cate major accordances with standard BFA with sentences
written in italics):

Competition for consciousness Artention codelets, whose
job is to bring relevant, urgent, or insistent events to con-
sciousness, access working memory and the behavior net-
work state. Some of them gather information and actively
compete for access to consciousness. The competition may
also include attention codelets from recent previous cycle.

Conscious broadcast A coalition of codelets (possibly
with just a single codelet) gains access to the global
workspace and has its contents broadcasted. This broadcast
is hypothesized to correspond to phenomenal consciousness.
Not all CAV’s codelets are registered at the Broadcast Man-
ager (e.g. the behavior codelets). So the information be-
tween Behavior Network and consciousness pass through
attention codelets when those codelets gain consciousness
access (see figure 2). In doing so, the propositions added
to the behavior network state by behavior codelets can be
known by all registered codelets.

Setting goal context hierarchy At this stage CAV updates
all the new propositions which were added since the last cy-
cle and incorporates new and more accurate information to
the behavior network. The goals are checked and updated. It
is also possible to add or remove a goal following the current
situation.

Action chosen The behavior net chooses a single behav-
ior. This choice is heavily affected by the update of the past
stage. It is also affected by the current situation, external
and internal conditions, by the relationship among behav-
iors and by the residual activation values of various behav-
iors.

Action taken The execution of a behavior results in the
behavior codelets performing their specialized tasks, which
may have external or internal consequences. The acting
codelets also include an expectation codelet whose task is to
monitor the action and bring to consciousness any failure in
the expected results. CCC does not wait for the running end
of a behavior codelet. CAV keeps a list of active behavior
codelets and, if some particular codelet is already running,
it does not start another instance of it. But it can abort a
running behavior codelet, if it is necessary. For example, if
a new perception makes a plan unfeasible, during the exe-
cution of a behavior codelet (let’s say the vehicle is going
from a point A to a point B and a new obstacle is detected),
then the behavior codelet is aborted, as a new plan must be
generated.

A Brief Analysis of CAV’s implementation

A running simulation of CAV’s performance is illustrated in
figure 5. The main experiment worked as expected. The
creature was able to pursue its main objectives: to avoid col-
lision with obstacles while exploring the environment, and

Figure 5: Example of Simulation

at the same time maintaining an energy balance. While ex-
ploring the environment, if the energy level decreased to a
critic limit, CAV correctly postponed its exploratory behav-
ior, looked for the closest source of energy and traced a route
to it to feed itself. After refreshing its batteries, it returned
to its exploratory behavior. As we said before, though, our
main goal was not simply related to the achievement of these
tasks (something which could be achieved by more tradi-
tional methods, as e.g. in (Gudwin, 1996)), but understand-
ing how “consciousness” could be used in such an applica-
tion.

By applying BFA to this application, we would like to
evaluate the value of “consciousness” (as in BFA) to the con-
struction of a new generation of cognitive architectures to
control artificial creatures. Pragmatically, we would like to
understand what exactly it is this “consciousness” technol-
ogy, and what the benefits to expect while applying it as a
mind to an artificial creature. This goal was also achieved
while we had the experience of studying BFA and applying
it to the current application. Our findings are summarized in
the next subsections.

A Qualitative Analysis

Two important findings of our investigation are the qualita-
tive understanding of what is “‘consciousness” (in BFA) and
an abstraction of what may be its main benefits as a tech-
nology. The philosopher Daniel Dennet has already stated
that: ”Human consciousness (...) can best be understood
as the operation of a “Von Neumannesque” virtual machine
implemented in the parallel architecture of a brain”. Even
though Baars and Franklin do not explicitly point this out,
this is what BFA provides. It implements a (virtual) serial
machine on top of a parallel machine. The overall structure
of codelets reading and writing on the Working Memory con-
figures a fully parallel multi-agent system. The constraints
of the SpotlightController and the broadcast mechanism im-

plements on top of it the emergence of a serial stream which
is the consciousness. But this serial stream is not just any se-
rial stream. It focuses attention on the most important kind
of information in each time step. It builds what Koch called
an executive summary of information (Koch, 2004). This is
one of the main advantages of this technology: to focus at-
tention on what is most important and spreading this to all
agents in the multi-agent system. Now, this interplay be-
tween a serial and parallel components opens a large set of
opportunities to future research. Among other things, we
envisision the opportunity of new learning schemes (using
the broadcast to form new connections among codelets) and
many other enhancements.

A Quantitative Analysis

Some data related to the experiment can be viewed in figures
6,7 and 8.

Figure 6 shows the number of active threads at each in-
stant of time. We can see that an average of 8 threads are
working at the same time. Figure 7 shows the number of
codelets running at the same time at the playing field. An
average of 1 or 2 codelets were at the playing field at the
same time. The maximum of codelets at the playing field at
the same time was 3. Finally, figure 8 shows the different
types of codelets accessing the consciousness at each time.
We can see that most of the time the codelet ObstacleRe-
corder was at consciousness. The second more frequent was

Number of Active Threads in Time

10+
1133%1 }:mm.t l"l”‘l}
o 65 &8 Se 44 & &

0.00 020 0.40 0.60 0.80 1.00 120
Time (minutes)

Active Threads

Figure 6: Number of Active Threads in Time
Number of Codelets in the Playing Field

Codelets

0.00 .20 0 X 0.80 00 120
Time (minutes)

Figure 7: Number of Codelets in the Playing Field

Codelets in Consciousness

Codelet Type

0.00 0.20 0.40 0.60 0.80 1.00 120
Time (Minutes)

1- PlanGenerator 2-
4- CollisionDetector 5-

ObstacleRecorder 3 - TargetCarrier
PathChecker

Figure 8: Types of Codelets in Consciousness

PlanGenerator. The other three, TargetCarrier, Collision-
Detector and PathChecker were less frequently at the con-
sciousness.

These data refer to 1 minute of simulation. The subse-
quent instants of time show more or less the same behavior.
Other codelets, like e.g. LowEnergy, also appear from time
to time, but they didn’t appear in the time-frame shown in
the figure.

Conclusion

BFA is shown to be a very flexible and scalable architecture,
due to its consciousness and behavior network mechanisms
implemented through independent codelets. Newer features
can be easily included by means of newer codelets perform-
ing new roles. Consciousness mechanism makes possible
a deliberation process that enables the perception of most
relevant information for the current situation, building what
Koch called an executive summary of perception. Much
work remains to be done, especially related to a better model
formalization and a better understanding of the overall role
of coalitions. However, seen as an embryo of a conscious
artificial creature, the first results of this study show the fea-
sibility of such techniques, motivating our group to continue
on this line of investigation.

References

Aleksander, 1. (2007). Modeling consciousness in Vvir-
tual computational machines. Synthesis Philosophica,
44(2):447-454.

Atkinson, A. P., Thomas, M. S. C., and Cleeremans, A.
(2000). Consciousness: mapping the theoretical land-
scape. Trends in Cognitive Sciences, 4(10):372-382.

Baars, B. J. (1988). A cognitive theory of consciousness.
Cambridge University Press.

Baars, B. J. (1997). In the Theater of Consciousness: The
Workspace of the Mind. Oxford University Press.

Baars, B. J. and Franklin, S. (2003). How conscious experi-
ence and working memory interact. Trends in Cognitive
Sciences, 7(4):166—-172.

Balkenius, C. (1995). Natural Intelligence in Artificial Crea-
tures. Lund Univ. Cognitive Studies 37.

Blackmore, S. (2005). Consciousness - A very short intro-
duction. Oxford University Press.

Bogner, M. B. (1999). Realizing “Consciousness” in Soft-
ware Agents. PhD thesis, The University of Memphis.

Cardon, A. (2006). Artificial consciousness, artificial emo-
tions, and autonomous robots. Cognition Process,
7:245-267.

Chella, A. and Manzotti, R. (2007). Artificial Conscious-
ness. Imprint Academic.

da Silva, R. C. M. (2009). Andlise da Arquitetura
Baars-Franklin de Consciéncia Artificial Aplicada a
uma Criatura Virtual. Master’s thesis, DCA-FEEC-
UNICAMP.

Dubois, D. (2007). Constructing an agent equipped with an
artificial consciousness: application to an intelligent
tutoring system. PhD thesis, Université du Québec a
Montréal.

Franklin, S. (2005). A “consciousness” based architecture
for a functioning mind. In Davis, D. N, editor, Visions
of Mind: Architecture for Cognition and Affect, chap-
ter 8, pages 149-175. Idea Group Inc (IGI).

Franklin, S. and Graesser, A. (1999). A software agent
model of consciousness. Consciousness and Cognition,
8:285-301.

Gamez, D. (2008). Progress in machine consciousness. Con-
sciousness and Cognition, 17:887-910.

Gudwin, R. R. (1996). Contribuicdes ao Estudo Matemdtico
de Sistemas Inteligentes. PhD thesis, Faculdade de En-
genharia Elétrica e de Computagdo da Universidade Es-
tadual de Campinas.

Hofstadter, D. R. and Mitchell, M. (1994). The copy-
cat project: A model of mental fluidity and analogy-
making. In Holyoak, K.J & Barnden, J.A. (Eds.). Ad-
vances in connectionist and neural computation theory,
2:31-112.

Jackson, J. V. (1987). Idea for a mind. ACM SIGART Bul-
letin, xx(101):23-26.

Koch, C. (2004). The Quest for Consciousness - A Neurobi-
ological Approach. Roberts & Company Publishers.

Maes, P. (1989). How to do the right thing. Connection
Science Journal, 1:3.

Negatu, A. S. (2006). Cognitively Inspired Decision Making
for Software Agents: Integrated Mechanisms for Ac-
tion Selection, Expectation, Automatization and Non-
Routine Problem Solving. PhD thesis, The University
of Memphis.

Negatu, A. S. and Franklin, S. (2002). An action selection
mechanism for “conscious” software agents. Cognitive
Science Quarterly, 2:363-386.

Selfridge, O. G. (1958). Pandemonium: a paradigm for
learning. In Mechanism of Thought Processes: Pro-
ceedings of a Symposium Held at the National Physical
Laboratory, pages 513-526, London: HMSO.

