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Abstract: The discussion on the possibility of machines to 

achieve semiosis (meaning process) is a very controversial debate 
within Artificial Intelligence and Cognitive Science. In this work, 
we define meaning process in an entirely mathematical 
framework. We call the “transposition” of the Peircean theory to 
an abstract mathematical model as “Mathematical Semiosis”. By 
doing this, we aim at growing a more understandable theory for 
explaining what is to mean, in a strictly mathematical sense, 
avoiding complications related to the connection of signs to a real 
world. The main application of such a theory would be in order 
to develop machines with these capabilities. In such a regard, 
what we are calling here "Mathematical Semiosis" would be a 
kind of purely mathematical abstraction for what is "Semiosis" 
in the real world.  
 

Index Terms — Semiosis, Meaning, Mathematical Semiosis. 
 

I. INTRODUCTION 

he creation of (multi) agent systems able to fully 
interpret its environment is one of the big dreams of 

artificial intelligence. This problem proved to be much more 
complicated than could be imagined at once, and to the 
extension this challenge became more acknowledgeable, 
gradually this dream gave rise to more modest claims, paving 
the road for what is currently the technology of Intelligent 
Systems. One of the problems related to achieving the 
aforementioned dream is the lack of good framework (or too 
many inadequate models) for modeling “meaning” and 
“interpretation”. According to Deb Roy, ‘A grand challenge 
for the cognitive sciences is to develop a computational 
framework that simultaneously models referential and 
functional meaning’ (‘Meaning Machines’; available at: 
http://web.media.mit.edu/~dkroy). Some recent efforts, based 
on semiotic considerations, are trying to address this issue in a 
more proper manner [1]. The requirement to involve "reality" 
in this discussion, brings forth a lot of unsolved questions 
regarding the nature of  “reality”.  We understand that a 
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possible solution to this problem would be to use the Peircean 
model of meaning, given by the theory of semiotics from the 
philosopher Charles Sanders Peirce. We have been working 
with Peirce's theory of sign, trying to bring his model into the 
theory of intelligent systems [2-8]. 

The main motivation for this work is to model the Peircean 
concept of “meaning process” in an entirely mathematical 
framework, creating what we call “Mathematical Semiosis”. 
We may understand this strategy as a kind of “transposition” 
of the Peircean model of semiosis to a mathematical model, 
which we consider to be more interesting for the engineering 
point of view. Our goal is to bring a more understandable 
theory for explaining “meaning” in a strictly mathematical 
sense. It is mainly a theoretical work, but with a possible great 
impact in the practical construction of artificial systems able 
to find meaning in its surrounding environment. 

II. MEANING ACCORDING TO PEIRCE 
Peirce identify meaning as a special kind of process which 

he calls “semiosis”.  
 
“... by ‘semiosis’ I mean [...] an action, or influence, which 
is, or involves, a cooperation of three subjects, such as a 
sign, its object, and its interpretant, this tri-relative 
influence not being in any way resolvable into actions 
between pairs”. (CP 5.484) 

Peirce conceives a ‘Sign’ or ‘Representamen’ as a ‘First’ 
which stands in such a genuine triadic relation to a ‘Second’, 
called its ‘Object’, so as to be capable of ‘determining a 
Third’, called its ‘Interpretant’, to assume the same triadic 
relation to its Object in which it stands itself to the same 
Object. To cite him: 

 
“My definition of a sign is: A Sign is a Cognizable that, on 
the one hand, is so determined (i.e., specialized, bestimmt) 
by something other than itself, called its Object, while, on 
the other hand, it so determines some actual or potential 
Mind, the determination whereof I term the Interpretant 
created by the Sign, that that Interpreting Mind is therein 
determined mediately by the Object” (CP 8.177). 

Another important concept is the notion of Peirce's logical-
phenomenological categories. For Peirce, reality can be 
decomposed into processes that should fit into just three 
different categories, which he calls firstness, secondness and 
thirdness. In brief, the categories can be defined as: (1) 
Firstness: what is such as it is, without reference to anything 
else; (2) Secondness: what is such as it is, in relation with 
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something else, but without relation with any third entity; (3) 
Thirdness: what is such as it is, insofar as it is capable of 
bringing a second entity into relation with a first one in the 
same way that it brings itself into relation with the first and 
the second entities. Firstness is the category of vagueness, 
freedom, novelty and originality — ‘firstness is the mode of 
being which consists in its subject’s being positively such as it 
is regardless of anything else. That can only be a possibility’ 
(CP 1.25). Secondness is the category of reaction, opposition, 
differentiation, existence — ‘generally speaking genuine 
secondness consists in one thing acting upon another, — brute 
action’ […] ‘I consider the idea of any dyadic relation not 
involving any third as an idea of secondness’ (CP 8.330). 
Thirdness is the category of mediation, habit, generality, 
growth, and conceptualization or cognition (CP 1.340). In 
another way of putting the categories: Firstness is possibility, 
what might become, Secondness is what is taken to be what is 
within some particular context, and Thirdness is what in all 
probability would be, given a certain set of conditions. 

III. RELATED APPROACHES AND BACKGROUND 
Other mathematical tentative approaches were conducted 

e.g. by Marty [9-12], by Goguen [13-15], by Burch [16,17] 
and by ourselves [2,3], but with different purposes.  

Burch [16,17] is concerned mainly on what he calls PAS – 
Peircean Algebraic Logic, which is a relational algebraic 
system of logic formalizing and modifying some of the logical 
ideas of Peirce. His main result is the proof of Peirce's 
Reduction Thesis. This thesis states that relations of adicity 2 
may not in general be constructed from relations exclusively 
of adicity 1, that relations of adicity 3 or greater may not in 
general be constructed from relations exclusively of adicities 1 
and/or 2, and that all relations, regardless of the domain of 
arbitrary (non-negative integers) adicities may be constructed 
from relations exclusively of adicities 1, 2 and 3. The proof of 
this thesis is fundamental in order to sustain Peirce's category 
theory and Burch results are very important ones.  

Goguen [13-15], on the contrary, explicitly claims to be 
developing a mathematically precise theory of semiotics, 
which he calls Algebraic Semiotics. His approach, though, is 
not purelly Peircean, and at the same time he uses some of 
Peirce's notions, he also includes Saussure's notions in a 
mixed framework. His strategy is to build what he calls sign 
systems, which are algebraic theories with extra structure, and 
also semiotic morphisms, which are mappings of algebraic 
theories that preserve the extra structure. Goguen claims to be 
developing his own general theory of meaning. He applies his 
theory mainly in the field of user interface design. Despite the 
complexity of his mathematical definitions, it seems that 
Goguen's theory is not as general and inclusive as Peirce's 
model for semiosis.   

Marty [9-12], on the other side, clearly claims to be giving 
a formal treatment of the semiotic phenomena, extending 
Peirce's works in phenomenology and semiotics. He proposes 
a general methodology for formalizing the functioning of 

every system of signs, using essentially category theory and 
functors. Marty's approach follows the same insight we are 
using here, trying to evolve a formal perception theory, which 
generalizes to a full mathematical description of semiosis. His 
approach is based on typed relational structures, which gives 
rise to be classified under different formal categories. Under 
certain conditions these relational structures are defined as 
phenomenological structures, and based on possible 
morphisms on these, he defines phenomenological morphisms. 
Based on the set of possible phenomenological morphisms, he 
defines a possible set of six fundamental modes of being, 
which he correlates to the Peircean cenopythagorean 
categories and their degenerated forms. He then defines 
formally a phaneron as a diagram in a phenomenological 
category.  Finally, he uses these phanerons in order to model 
the substitution of a phenomenon by another, giving rise to a 
representation, or a semiotic process. Marty's mathematical 
model is sophisticated, and he tries to follow Peirce's theory 
with precision. But his model is very complicated in 
mathematical terms to facilitate the connection between 
semiotics and Artificial Intelligence.  

Our mathematical model of semiosis is actually based on 
some key notions:  

 
z Peircean semiosis 
z Cellular Automata 
z Rosen’s Anticipatory Systems Theory 

A. Cellular Automata 
Cellular Automata [18] comprises a discrete model studied 

in computability theory, mathematics, and theoretical biology, 
consisting of a (potentially) infinite, regular grid of cells, each 
one in a finite number of states. The grid may have any finite 
number of dimensions. Time is also discrete, and the state of a 
cell at time t is a function of the states of a finite number of 
cells (called its neighborhood) at time t-1. These neighbors are 
a selection of cells relative to the specified cell (which may 
include the own cell), and usually do not change. Every cell 
has the same rule for updating, based on the values of states in 
this neighborhood. Each time the rules are applied to the 
whole grid a new generation is created. An example of a 
three-dimensional cellular automaton is given in figure 1. In 
figure 1, we have a three-dimensional grid of states, and the 

 

 
 

Figure 1 – A 3D Cellular Automaton 
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values of these states are correlated in time. In the figure, the 
value of state S in instant t+1 is a function f of the values of 
states in its neighborhood neigh(S) in an instant t.  

This concept is useful here because we will use it in order 
to define our mathematical reality as a kind of cellular 
automata.  

B. Anticipatory Systems 
An anticipatory system is a system whose current state is 

determined by a future state, or, according to Robert Rosen 
[19]:  

 
“A system containing a predictive model of itself and/or its 
environment, which allows it to change state at an instant 
in accordance with the model's predictions pertaining to a 
latter instant.” 

These predictions can be goals, plans or simply estimations 
of future states.  

Acording to Mihai Nadin [20,21]: 
 
“Anticipation is a recursive process described through the 
functioning of a mechanism whose past, present, and future 
states allow it to evolve from an initial to a final state that 
is implicitly embedded in the mechanism”. 

Anticipatory systems are very different from the standard 
kind of systems we are used to find in engineering and 
systems sciences, and have many interesting properties that 
make them more than pure mechanical deterministic systems. 
Rosen argues that their behavior is what make living systems 
different from non-living systems. Living systems would be 
anticipatory systems. Anticipatory systems may provide also 
the kind of teleological behavior that is particularly related to 
the property we use to call “intelligence” in human beings.  

This teleological behavior situate anticipatory systems as a 
natural candidate to instantiate the Peircean notion of 
“thirdness”. Peirce argues that all that can be known must fit 
into three different categories: firstnesses, secondnesses and 
thirdnesses. This is in the kernel of Peircean philosophy. But 
how to understand Peirce's claims if we assume very simple 
systems as our reality ? 

A simple system like 

 ( ) ( )Random=+tS 1  (1) 

will be a system of pure firstness. Supposing that 1+t  is 
equivalent to the present time, we have a system where the 
present is completely random.  

A system like 

 ( ) ( )( )tSf=+tS 1  (2) 

will be a purely deterministic, or mechanical system. This is 
a system where there is only secondness. It is a system where 
the present is completely determined by the past.  

A system like  

 ( ) ( )( ) ( )Random+tSf=+tS 1  (3) 

will be a system where there is firstness and secondness. 
A candidate for a system with thirdness will be something 

like: 

 ( ) ( )( )τ+tSf=+tS 1  (4) 

or, in other words, a system where the present depends on 
the future. But, if time evolves from the past to present, this 
seems to be impossible. How can this be possible ? To 
understand that, we need to make a change in the equation: 

 ( ) ( )( )( )( )tτ+tSEf=+tS 1  (5) 

In this case, (.)E  is the estimation in time t of a future state 
( )τ+tS . This system is perfectly feasible. But, 

( )( )( )( )tτ+tSEf  can be rewritten to ( )( )tSf 2 , and then it 
simply reduces again to a deterministic system. So, this is 
clearly not the answer. How to still have a true anticipatory 
system ? The solution is to provide an open system instead of 
a closed one: 

 ( ) ( )( ) ( )( )tUg+tSf=tS 1+  (6) 

where ( ) ( )τ+tS=tU  is an external input.  
But, if ( )tS  is our reality, requiring an external input out of 

this reality to explain its states, someone would argue that to 
assume the existence of ( )tU  is equivalent to accept a dualist 
position (in cognitive science). But, if we accept that the ( )tS  
is just our sensorial reality (and not the whole physical 
reality), there may be something else in physical reality that is 
not in sensorial reality, and we may argue that this something 
else is responsible for the anticipatory component of the 
system, so both a dualist and a non-dualist explanation are 
possible. Our only claim is that the anticipatory behavior is 
due to something out of sensorial reality, just this. At this 
point, though, we are not making further assumptions on how 
this anticipatory behavior is possible.  

With this brief introductory background, we are now 
prepared to our definitions. 

IV. A MATHEMATICAL MODEL OF SEMIOSIS 
We define in this session a general mathematical 

framework for Peircean semiosis. Nevertheless, our intention 
with this is to allow a better appreciation by the engineering 
community of the potentialities of the Peircean model of 
representation in order to build agents able to perform 
semiosis.  

In our general framework, we define a Mathematical 
Universe U which is composed of a Mathematical Reality R 
and a set of agents A = {Ai}. 

 U = (R,A) (7) 

The Mathematical Reality R is defined as 

 R: P × T → V  (8) 

where R is a function which returns a value v ∈V to each 
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place p ∈P (p is a coordinate in an n-dimensional grid) and 
time t ∈ T. At this point of the formalization, we will not 
impose any restriction on set V. V can be regarded as a set of 
possible states which each part of reality R can assume. For 
the sake of an example, we may assume (e.g.) that V = [0,1]. 
Another example may be V = [0,1]n where n is the number of 
different measurings that someone is able to perform at a 
particular place and time. To avoid any limitation on the 
formalism, we will leave V generic by this time.  

The definition of R is quite open, and serves our purpose of 
generality for the framework. To allow us a better 
understanding of a potential use of R, let us compare it to a 
cellular automaton. In order for the function R to be a cellular 
automaton, this function should be written as: 

 R(p,t+1) = f(R(q1,t), ... , R(qm,t)) (9) 

where 
qi ∈ Neigh(p) and Neigh(p) is a set of places which 

comprises the neighborhood of place p. But this will make R a 
purely deterministic system. In our case, we want our 
mathematical reality to be composed of firstness, secondness 
and thirdness processes, and so our definition for R will be a 
little bit different. In our case our mathematical reality will be 
defined as: 

 ( ) 321 R+R+R=+tp,R 1  (10) 

where 

 ( )Random=R1  

 ( ) ( )( ) ( )pNeighq,t,qR,,tqRf=R im ∈...1,2  

 ( )tp,,AAct=R i
i

∑3  

( )tp,,AAct i  is the contribution of Agent Ai to the state on 
place p in time t. This component is equivalent to U(t) in 
equation (6). Component 1R  is a component of firstness. 
Component 2R  is a component of secondness and component 

3R  is a component of thirdness. With this, our mathematical 
reality fully instantiates the Peircean notion of reality. The 
defined mathematical reality is illustrated in figure 2. 

The other component of our mathematical universe U is a 
set of Agents A. Each agent iA in A is able to sense and 
actuate on mathematical reality R (see figure 2). This means 
that it will be able to contribute to the new values of states 
within reality R, according to equation (10). This contribution 
may be a function of some states in reality R. But each agent 
is limited to just a limited subset of places in P, for sensing, 
and another subset of P for actuation. These subsets may 
change in time. Let us define then the function Π : 

 PTA:Π 2→×  (11) 

which we call the Perceptive Scope function, which defines 
for each iA  and time t a set of places which can be measured 
by the agent. As a complement, let us define the function Γ : 

 PTA:Γ 2→×  (12) 

which we call the Actuative Scope function, which defines 
for each iA  and time t a set of places which can be actuated 
over by the agent.  

Let us now make some simplifications in order to give 
some  ground for the next development. Let us imagine that P 
is given by: 

 Z=P
n

×  (13) 

where Z  is the set of integer numbers and P is the cartesian 
product of it n times. In this case, each ( )np,,p=p ...1  will be 
a place in an n-dimensional grid.  

In this case, we will define a region G to be any subset of P: 

 PG ⊂  (14) 

We will then define an Attention Window SG , to be a 
region generated by a given place and a set of rules for 
including other places into the region: 

 ( )pS=G S  (15) 

where PP:S 2→  and S is a function which for a given 
place p, determines a set of other places relative to p, which 
may be a part of the region which is said to be located in place 
p. Usually S can be given by a script which given p, generates 
the other places member of the region SG . 

We may now restrict our framework, such that every 
Perceptive Scope and Actuative Scope of every agent in our 
mathematical universe are Attention Windows. This means 
that the sources and sinks of information processed by agents 
will always have the same structure all around the 
mathematical reality.   

Now, let us make some generalizations. Even though R is a 
function of single places p in time t, we will use the same 
notation to denote a function of a region G in time t. So, let us 
understand ( )tG,R  as the set ( ){ } Gp,tp,R ∈∀ .  

We will then call the tuple 

 
Figure 2 – Mathematical Reality Actuated by Agents 
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 ( ) ( ) ( )( )( )t,pGR,pG=tp,σ SS   (16) 

as being a Signal located in place p.  
Given these premises, we may now proceed to define a 

Mathematical Semiosis. Mathematical Semiosis is a process 
where a signal ( )sss t,pσ  is said to represent another signal 

( )ooo t,pσ . The process consolidates when ( )sss t,pσ is used 
to generate another signal, ( )iii t,pσ , for si t>t . In this case, 

( )sss t,pσ is said to be a Sign of ( )ooo t,pσ , which is called to 
be its Object, and ( )iii t,pσ  is said to be the Interpretant of 
the sign. But this is not enough that ( )iii t,pσ to be generated 
by ( )sss t,pσ . In order for this to be a semiosis, there is a 
further condition. And this condition is that ( )iii t,pσ should 
maintain the relation that ( )sss t,pσ had to ( )ooo t,pσ . In 
other words, it should be able to generate a further 
interpretant, that should also maintain this relation to the 
object. This is the way we guarantee that ( )sss t,pσ really 
“represents” ( )ooo t,pσ . 

This process is basically performed by the agents in the 
mathematical universe, and do have its realization within its  
mathematical reality, in possible different places and times.  

So, Mathematical Semiosis is a process by which an agent 
reads a signal from a Mathematical Reality, and generates 
output to this same Mathematical Reality in a future time. The 
effect produced by the Agent is the Interpretant of the sign.  

The most simple kind of semiosis is the copy. In this case, 
the signal ( )sss t,pσ  is an exact copy of ( )ooo t,pσ , for a 
possible different place and time. In being a copy, we may 
assure that it is always possible to generate another copy 

( )iii t,pσ in a different place and time in the future. So, an 
exact copy is the most simple representation of something. 
But there may be more sophisticated kinds of representation. 
This copy should not be an exact copy, but just share a partial 
set of attributes. Both the copy and a partial copy will be 
called “icons”. But there may be the case that ( )sss t,pσ  and 

( )ooo t,pσ do not share any kind of attribute in common. But 
even in this case, they may give rise to a process of semiosis. 
By using the mathematical reality in which ( )sss t,pσ  is 
realized in order to obtain either ( )ooo t,pσ  or a copy of it. In 
this case, proximity in space (place) and time could be used to 
create the interpretant. This kind of signs are called indexes. 
But there may be a more radical kind of sign, where there may 
be no sharing of attributes nor a space-time connection 
between sign and object. This kind of sign is called a symbol 
by Peirce. To understand how symbols are possible is a very 
challenging exercise in the interpretation of Peirce's work. A 
symbol, according to Peirce, is a lawfull or conventional 
connection between a sign and an object. But, if it is 
conventional, how can an agent generate an interpretant, that 
is still related to this same object ? We don't have an answer to 
this challenge, in a strict Peircean view. But we have some 

hypothesis on how to solve this puzzle. A possible way of 
solving this, is to allow the agents in the mathematical 
universe to have inner mathematical realities. An inner 
mathematical reality is just like a mathematical reality in the 
mathematical universe, but instead of being a shared space 
and time, (i.e. Places where all the agents are able to perceive 
and actuate) are internal, private instances where only the own 
agents are able to perceive and act. So, if we consider this 
inner mathematical reality, in addition to the standard 
mathematical reality, we may have a clue on how symbols are 
possible. When Peirce says that a symbol is a convention, i.e., 
that there may be no sharing of attributes and no physical 
connection (in space and time) between the sign and the 
object, he may be considering this statement related only to 
the standard reality, the one which in our case is shared by all 
the agents – the mathematical reality of our mathematical 
universe. So, considering just this mathematical reality, there 
is no sharing of attributes neither a physical connection in 
terms of space and time. But, there may be either a sharing of 
attributes or a physical connection in terms of space and time, 
considering this inner mathematical reality that each agent 
should possess. This may solve the puzzle and may allow for 
the construction of symbol-processing capabilities by our 
agents. 

V. CONCLUSION 
This paper was written with the aim of putting forward a 

first sketch of a mathematical framework which should allow 
us to discuss the possibility of artificial agents to be fully 
capable of making meaning of their surrounding world. In 
order to obtain this, we recommend the use of Peircean 
semiotics as the main theory to ground the concepts of 
representation and meaning, and provided a mathematical 
abstraction of this theory with the aim of making viable the 
creation of such meaning machines.   

Despite the existence of other mathematical models for the 
semiotic phenomena, we felt they were not adequate in order 
to build artificial agents fully capable of being  meaning 
machines. Burch's model is more concerned with some 
particular aspects of Peirce's theory, and not in modelling the 
process of semiosis. Goguen's model is not strictly Peircean, 
and more suitable to be used in applications of user interface 
design than in artificial intelligence. Marty's model, despite 
being very precise in its correlation to Peirce's theory is too 
much complex to be easily used in order to generate an 
architecture for an artificial agent capable of performing 
meaning processes.  

The model proposed here is at the same time quite simple, 
strict to the most basic Peircean principles, and up to our 
judgment, very suitable to be used for the construction of 
prototypes of simple meaning machines.  
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