
An Emotional-Evolutionary Te
hnique for HigherLevel Goal De�nition in a Multi-PurposeArti�
ial CreaturePatrí
ia de Toro1, Ri
ardo Gudwin1, and Mauro Miskulin2

1 DCA/FEEC/UNICAMPP.O. Box 6101 Campinas,Brazil, 13083-970{patbgi,gudwin}�d
a.fee.uni
amp.br
2 DSIF/FEEC/UNICAMPP.O. Box 6101, Campinas-SP,Brazil, 13083-970mauromiskulin�terra.
om.brAbstra
t. Arti�
ial Creatures are embodied autonomous agents livingin a virtual world, like e.g. in a 
omputer game or in ethologi
al simula-tion studies. Usually, these arti�
ial 
reatures may have general high-levelgoals, like survival, killing opponents, feeding, mating, dis
overying theworld, et
. These general high-level goals must be turned into low-levelgoals in time and spa
e in order for the agent to generate its �nal behav-ior within environment. This paper presents an emotional-evolutionaryte
hnique whi
h en
odes ea
h high-level goal into a parti
ular emotion,and using a blend of su
h emotions as a �tness fun
tion in a geneti
algorithm, evolves parti
ular goals in time and spa
e in order to drivethe 
reature's behavior.1 Introdu
tionThe resear
h �eld of autonomous intelligent agents 
omprehends a powerful ab-stra
tion for many kinds of pra
ti
al appli
ations, from mobile roboti
s to 
om-puter games. One of the 
lassi
al problems in this 
ontext is the problem ofautonomous navigation in 
omplex environments. This problem appears e.g. inthe 
ase of mobile roboti
s, where a mobile robot needs to de
ide a traje
tory,sin
e an initial point up to a target, without 
olliding with obsta
les (possiblyminimizing the distan
e 
overed and/or the time of travelling). Another exam-ple of the same problem would be the development of intelligent opponents in
omputer games, where an intelligent 
ontrol system must de
ide the a
tions tobe provided by an agent in order to foster a good entertainment to the systemuser, simulating with realism the behavior of a human opponent.Several alternative frameworks are possible in order to deal with this problem,depending on the aspe
ts we want to emphasize. One possible form to systemizethe problem is to 
onsider it in the sense of an arti�
ial 
reature whi
h exists ina 
ertain environment, moving itself in this environment and a
ting on it [1℄.



Classi
al solutions for this problem are well known in the �eld of arti�
ialintelligen
e [14℄ usually involving state ma
hines, sear
h algorithms and, even-tually, logi
 programming. More advan
ed algorithms may use neural networks,fuzzy logi
 or evolutionary 
omputation.More re
ently, the 
on
ept of emotion, as brought from 
ognitive psy
hologyand philosophy, was suggested in the literature, as an alternative way of dealingwith this problem [2, 3, 13, 12, 19, 5, 6, 20, 15, 16, 4, 10℄.There is no 
onsensus, though, on what exa
tly are emotions. Di�erent ap-proa
hes have di�erent views for what it is and how to model them. For example,Ortony [11℄ views emotions as �valen
ed rea
tions to events, agents, or obje
ts,with their parti
ular nature being determined by the way in whi
h the eli
itingsituation is 
onstrued�. Sloman [17, 18℄ understand emotions as internal �alarms�whi
h give a momentary emphasis to 
ertain groups of signals. Damasio [7, 8℄make a distin
tion between �emotions�, whi
h a�e
t the body and �feelings�,whi
h are a 
ognitive introspe
tion of an emotion. Other authors may have fur-ther di�erent views for what emotions are. For some of them, emotions work like�ampli�ers� for motivations. For others they are homeostati
 pro
esses relatedto physiologi
al variables [5℄. Some authors, instead of a single 
on
ept of emo-tion, develop a 
omplex �emotional system�, where many di�erent 
on
epts like�motivations�, �drives�, �impulses�, �a�e
tions�, �needs� and other terms are usedto represent di�erent aspe
ts of this emotional system.In arti�
ial 
reatures [3℄, emotions are usually employed in order to drivebehavior, being used as a 
riteria for a
tion-sele
tion me
hanisms. A problem,though remains to be solved. In a multi-purpose arti�
ial 
reature (e.g. a 
hara
-ter in a 
omputer game), there are many di�erent higher-level goals whi
h needto be satis�ed, like survival, killing opponents, feeding, mating, dis
overying theworld, et
. The 
reature needs to de
ide, at ea
h point in time and spa
e, what todo next, and so de
ide the next lower-level goals, like where to move to, a
tionsto be performed, et
.In this arti
le, mixing ideas from emotion-based 
ontrol systems and evolu-tionary 
omputation, we present a te
hnique for higher level goal de�nition inthe 
ase of a multi-purpose arti�
ial 
reature.The ar
hite
ture in whi
h this work is based on, was suggested originally in[9℄, whi
h de�nes an autonomous 
reature equiped with a sensorial and motorapparatus 
apable to navigate through an environment full of obje
ts with di�er-ent 
hara
teristi
s. Obje
ts do have �
olors", su
h that ea
h �
olor� is asso
iatedto: a degree of �hardness� (varying from 0 to 1), whi
h works like a fri
tion 
o-e�
ient in order to slow down the 
reature movement (or totally blo
k it) overpla
es where there are obje
ts of this 
olor; a �taste�, whi
h 
an be bad or good(varying from -1 to 1); and an ability to drain or supply �energy� (whi
h also mayvary from -1 to 1). The 
reature owns an internal battery whi
h is re
hargeable.Tou
hing an obje
t whi
h supplies or drains energy would 
hange the 
harge ofthis battery. The 
reature 
an navigate in this environment, and many goals maybe pres
ribed. An elementary goal will be to navigate from an initial point upto a target point, avoiding 
ollision with some undesirable obje
ts at the envi-
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hite
tureronment. There may be, however, some 
ases in whi
h this 
ollision is desirable(as in the 
ase of obje
ts that work as energy suppliers). The general goal wouldbe to generate the agent behavior a

ording to the di�erent purposes that maybe attributed to it.Two levels of 
ontrol have been 
onsidered: a lower level of dire
t 
ontrol anda hierar
hi
ally superior level, of target de
ision-making (see Figure 1). At thelevel of dire
t 
ontrol, the input is a target point to be rea
hed by the 
reature.The 
reature must move from its 
urrent position up to this target point, without
ollisions with obsta
les. At the level of target de
ision-making, the system mustde�ne the target points to where the 
reature must move itself, 
onsidering a setof higher level general purposes for the 
reature's existen
e. Together, the levelsof dire
t 
ontrol and target de
ision-making generate a 
omplex behavior for the
reature. The level of dire
t 
ontrol was extensively addressed in [9℄, by meansof a rea
tive/deliberative strategy whi
h is responsible for the generation andexe
ution of plans for the navigation to the target point. In this work, we extendthe work of [9℄ by developing the superior level of target-de
ision-making.The level of dire
t 
ontrol only deals with the low-level goal of safe movingthe 
reature along a set of obsta
les. The level of target de
ision-making, allowsfor the 
onsideration of a higher levels set of general purposes for the existen
eof the 
reature. Examples of higher level purposes in our 
ase are: to explorethe environment, taking 
are of the 
reature's energy balan
e and to learn anoptimal poli
y regarding the distan
e to maintain to obsta
les in order to havea safe navigation. To generate a behavior whi
h 
onsiders together all thosepurposes, we made use of three emotional metaphors: 
uriosity, hunger and fear.Curiosity will be responsible for the 
reature's exploratory behavior. Hunger willbe responsible for the maintenan
e of the 
reature's energy level. And fear must�ne-tune the 
ollision avoidan
e behavior.2 Experiments and pro
eduresA sket
h of the 
reature's sensory-motor stru
ture 
an be seen at Figure 2. The
reature does not have an �a priori" map of the environment. Based on the sen-



Fig. 2. Sensory-Motor Stru
ture of the Creaturesorial information, the 
reature builds an in
remental map of the environment,whi
h is used to generate movement plans. A more detailed a

ount of the 
rea-ture stru
ture and dynami
 model used in the simulator and the internals of thelow level dire
t 
ontrol 
an be found in [9℄.In this work, extending the work in [9℄, we deal with the higher level targetde
ision-making sub-system, whi
h de�nes at ea
h moment, the next point towhere the 
reature should move. A

ording to [1℄, an arti�
ial 
reature mayhave four types of standard behavior: (i) appetitive: behavior is dire
ted towardsan attra
tive obje
t or situation; (ii) aversive: behavior is dire
ted away fromnegative situations; (iii) exploratory: behavior is dire
ted toward stimuli that arenovel in the environment and, �nally, (iv) neutral behaviors relating to obje
tsthat are neither appetitive nor aversive. It is interesting to note that our 
hoi
eof �hunger�, �fear� and �
uriosity� 
orresponds to the 
hoi
e of an appetitive, anaversive and an exploratory behavior. In this experiment, we do not 
ontemplatethe �neutral� behavior.The level of dire
t 
ontrol (as in [9℄), already in
orporates the emotion �fear"during the generation of a plan. This plan only 
onsiders the obje
ts it alreadyknows to exist at the environment. However, in [9℄ this fear was de�nided byheuristi
 means, en
oded by a given (hard-
oded) utility fun
tion. Here, we de-veloped a more �exible me
hanism, where this fear 
an in
rease or diminish, assu
h as the 
reature enters in 
onta
t with obje
ts that represent obsta
les. Or,in other words, the 
reature learns to have �fear" while intera
ting (
olliding)to unpleasant obje
ts. Moreover, this fear is also used at the determination ofthe 
reature's next target. The determination of the next target is not a simpletask. Depending on the situation, di�erent behaviors 
an be desirable. In the
ase whi
h the 
reature's energy level is high, we would expe
t the 
reature todevelop an exploratory behavior, going to parts of the environment whi
h arenot already known. However, in the 
ase whi
h the energy level is low, we would



expe
t the 
reature to sear
h within its map for a known power sour
e and goto there. After being re-energized, the 
reature may return to the exploratorybehavior. To implement this hybrid behavior, we developed two distin
t strate-gies, one whi
h is hard-
oded, expli
itly 
reating some rules of priorities amongthe emotions, and another one that makes an automati
 blend of all emotionsand derives a �nal de
ision, based on a geneti
 algorithm.2.1 Des
ription of the Hard-
oded AlgorithmIn our �rst experiment, emotions are 
onsidered in a hard-
oded way, givingexpli
ity priority on some emotions before others.In this algorithm, if the energy level is higher than a 
ertain level, a randompoint is 
hosen to be the next target. If the 
uriosity fun
tion asso
iated to thispoint is below a 
ertain level, than another random point is generated, until aquali�ed point is rea
hed. The algorithm uses then the dire
t 
ontrol de�nedin [9℄ to develop a plan whi
h the 
reature puts into exe
ution until the targetis met. This step implements only impli
itly the emotions of fear and 
uriosity.Fear is just a metaphor for the utility fun
tion whi
h is used to derive theplan by dire
t 
ontrol. Curiosity is also just a metaphor for the utility fun
tionwhi
h 
omputes the degree of "awareness" of a given point. This is the standardbehavior for the 
reature.However, in the 
ase whi
h the energy level is below a 
ertain limit, a newbehavior starts to run. The 
reature stops seeking its standard target, saving itto resume in the future, and start looking for the nearest point (in its map) whereit knows there is an energy supplier lo
ated. It uses than the dire
t 
ontrol tobuild a plan to rea
h this point. After getting in 
onta
t with the energy supplier,the 
reature waits until its energy level in
reases up to the maximum, and afterthat, it restores the original target ba
k, with a new plan given by the dire
t
ontrol.It may be observed that the hard-
oded algorithm imposes expli
itly a �xedway of intera
tion among the emotions, leading to a �xed set of behaviors, a
-
ording to the following rules:� Fear (to 
ollide with obsta
les): the algorithm normally sear
h to prevent
ollisions. If a 
ollision happens, the agent in
reases its �
aution fa
tor�;� Curiosity (sear
h for unknown points at the environment): Curiosity mea-sures whether a given point is already known by the agent;� Hunger (to keep energy balan
e): Hunger leads to an ex
eption behavior,where 
uriosity is dis
onsidered in order to generate the next target.The hard-
oded algorithm has many limitations. Perhaps, the most obviousone is that the emotional metaphor, although useful in order to inspire thealgorithm development, does not allow for a generalized way to deal with di�erentsituations. The intera
tion among emotions need to be treated 
ase by 
ase.When it is desirable to in
lude new emotions within the system, these newemotions shall require an extended spe
i�
ation on how it will intera
t with allthe other already implemented emotions. The treatment of 
on�i
ting emotions
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 Algorithm Parameters and Operatorsmay require the generation of ex
eptional behavior, whi
h may require a spe
ialtreatment nearly 
ase by 
ase. To solve these restri
tions, we tried to develop analgorithm whi
h 
ould be generalized in an uniform way, not requiring spe
ialbehaviors, and allowing for the addition of new emotions without too mu
he�ort. The result is the following algorithm.2.2 Des
ription of the Geneti
 AlgorithmIn order to solve the aforementioned problems, a geneti
 algorithm (Figure 4)was 
on
eived, where a population of possible target points shall evolve, using asa �tness fun
tion a 
ombination of all the utility fun
tions, one for ea
h designedemotion. This 
ombination results in a fun
tion of �desirability�, that will mixfear, hunger and 
uriosity.Initially this population of �potential targets� is generated randomly. At ea
hevolutive step, these �potential targets� start to evolve, be
oming 
on�ned tosome regions of spa
e where the �desirability� is higher. For the geneti
 algorithm,ea
h target is en
oded in the form of a 
hromosome 
ontaining a position (x,y)in the two-dimensional spa
e. The 
rossover between two 
hromosomes is madeby means of a linear 
ombination between the two points represented by ea
h
hromosome, resulting in a point that is lo
ated somewhere in the straight linewhi
h bounds the two points (see Figure 3). A mutation operator translates agiven point somewhere into its near neighborhood. All the possible goals areevaluated regarding its �desirability�, and a pro
ess of elitist sele
tion only keepsin the population the potential targets with greater �desirability�.Figures 5, 6 and 7 present the details for an example of simulation using thegeneti
 algorithm. Figure 5 shows the environment where the 
reature developsits navigation. Figures 6 and 7 represent the internal map 
onstru
ted by the
reature, in di�erent instants of the simulation. Figure 6 shows a situation in the
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Fig. 5. A Plain View of the Environ-ment Fig. 6. Representation of the Emo-tional Fa
tor Curiosity (di�erent levelsof gray). Green spots are the possibletargets
Fig. 7. Optimized Situation: 
reaturewith a higher knowledge of the environ-ment Fig. 8. Situation where the energy levelis low: Targets are 
on
entrated aroundenergy suppliersbeginning of the simulation, where the dark areas represent unknown parts ofthe environment, implying in great 
uriosity and so great desirability for possibletargets. Please pay attention to the distribution of light-green points inside theseareas. They represent the population of possible targets being evolved by thegeneti
 algorithm. Figure 7 shows a further time in simulation, where the 
reaturealready had the 
han
e to know other areas. Observe that in this 
ase, thenumber of dark areas is lower, and the possible targets are 
on
entrated in asmaller range of lo
ations.Figure 8 shows another simulation (in a di�erent environment), in a situationwhile the 
reatures's energy resour
es are too low. Noti
e that, in this 
ase,the lo
ations where there are obje
ts with energy supply do attra
t a biggerdesirability. Pay attention to the 
on
entration of possible targets under theseobje
ts.3 Simulation ResultsIn order to evaluate the simulation results, we generated some measurings, whi
hwe present in the following. Figures 9 and 10 show the variability of the 
reature's



Fig. 9. Variation of Creature's EnergyLevel over time: Hard-
oded Algorithm Fig. 10.Variation of Creature's EnergyLevel over time: Geneti
 Algorithm

Fig. 11. Variation of Creature's Fearover time: Hard-
oded Algorithm Fig. 12. Variation of Creature's Fearover time: Geneti
 Algorithmenergy level over time. Figure 9 shows the results for the hard-
oded algorithmand Figures 10 shows the result for the geneti
 algorithms with populationsof 1000, 3000 and 5000 individuals. Observe the behavior in both 
ases. The
reature starts will full power and have the energy de
reasing until it rea
hesthe level of around 30 or 40 % when it then get refueled. The behavior is moreor less the same both for the hard-
oded algorithm and the geneti
 algorithm.Figures 11 and 12 show the variability of the 
reature's fear over time. Fear is
omputed as a fun
tion whi
h 
al
ulates the distan
e to the 
losest undesirableobje
t at ea
h time. We 
ould not get any kind of 
orrelation between thesegraphi
s, showing that 
ompletely di�erent solutions where performed by ea
h
ase of the algorithms.Figures 13 and 14 show the variability of the unknown parts of the worldover time. Figure 13 shows the 
ase for the hard-
oded algorithm and Figure 14shows the 
ase for the geneti
 algorithms, with populations of possible targetsof 1000, 3000 and 5000 individuals.We 
an see that in both 
ases, the 
reature in
reases its knowledge of theenvironment up to 100% after some time. In this 
ase, we dete
ted a smalldi�eren
e in e�
ien
y among the many algorithms we simulated. The hard-



Fig. 13. Variation of Unknown Partsof the Environment over time: Hard-
oded Algorithm Fig. 14. Variation of Unknown Parts ofthe Environment over time: Geneti
 Al-gorithm
oded algorithms is less e�
ient, gaining total knowledge of the environment onlyaround 430s. The geneti
 algorithm with population size of 5000 individuals getthe same 100% with around 380s. The geneti
 algorithm with population sizes of3000 and 1000 individuals also performed better than the hard-
oded algorithmAs a general evaluation, we may 
on
lude that both the hard-
oded and thegeneti
 algorithm do have a similar behavior, a
hieving their main generi
 goalsof exploring the environment, maintaining their energy level and avoiding 
olli-sions with obsta
les, with a slight di�eren
e to the geneti
 algorithm. But, onthe other side, the geneti
 algorithm has a great advantage in terms of s
ala-bility. For the hard-
oded algorithm, for ea
h new emotion that we would liketo in
lude, all the algorithm needs to be redesigned. In the 
ase of the geneti
algorithm, only a small 
hange in the desirability fun
tion is required, if we in-tend to in
lude a newer emotion. As a 
on
lusion, we may rea
h that the geneti
algorithm is more advantageous than the hard-
oded one.4 Con
lusionsIn this paper, we presented an emotional-evolutionary te
hnique for higher levelgoal de�nition in a multi-purpose arti�
ial 
reature. This te
hnique en
odes ea
hhigher level goal into a separate emotion, and then a geneti
 algorithm is usedto evolve a population of 
andidate lower-level goals, in order to drive the �nal
reature behavior. This strategy, up to a 
ertain point, would be 
omparableto how lower-level human goals are 
hosen amongst a population of 
andidateideas. Ea
h idea is evaluated by means of the emotional value it is able to arouse,and the most prominent idea, in emotional terms, is 
hosen to be performed.There is a random 
omponent, brought by geneti
 algorithm, and also somekind of intelligent behavior, as the emotions are higher-level goals en
oded in anormalized form. We understand that the 
urrent experiments only suggest thisinsight, being still not de�nitive. But the present study shows the viability ofsu
h te
hnique, and motivates us to 
ontinue this line of investigation.
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