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2 DSIF/FEEC/UNICAMPP.O. Box 6101, Campinas-SP,Brazil, 13083-970mauromiskulin�terra.om.brAbstrat. Arti�ial Creatures are embodied autonomous agents livingin a virtual world, like e.g. in a omputer game or in ethologial simula-tion studies. Usually, these arti�ial reatures may have general high-levelgoals, like survival, killing opponents, feeding, mating, disoverying theworld, et. These general high-level goals must be turned into low-levelgoals in time and spae in order for the agent to generate its �nal behav-ior within environment. This paper presents an emotional-evolutionarytehnique whih enodes eah high-level goal into a partiular emotion,and using a blend of suh emotions as a �tness funtion in a genetialgorithm, evolves partiular goals in time and spae in order to drivethe reature's behavior.1 IntrodutionThe researh �eld of autonomous intelligent agents omprehends a powerful ab-stration for many kinds of pratial appliations, from mobile robotis to om-puter games. One of the lassial problems in this ontext is the problem ofautonomous navigation in omplex environments. This problem appears e.g. inthe ase of mobile robotis, where a mobile robot needs to deide a trajetory,sine an initial point up to a target, without olliding with obstales (possiblyminimizing the distane overed and/or the time of travelling). Another exam-ple of the same problem would be the development of intelligent opponents inomputer games, where an intelligent ontrol system must deide the ations tobe provided by an agent in order to foster a good entertainment to the systemuser, simulating with realism the behavior of a human opponent.Several alternative frameworks are possible in order to deal with this problem,depending on the aspets we want to emphasize. One possible form to systemizethe problem is to onsider it in the sense of an arti�ial reature whih exists ina ertain environment, moving itself in this environment and ating on it [1℄.



Classial solutions for this problem are well known in the �eld of arti�ialintelligene [14℄ usually involving state mahines, searh algorithms and, even-tually, logi programming. More advaned algorithms may use neural networks,fuzzy logi or evolutionary omputation.More reently, the onept of emotion, as brought from ognitive psyhologyand philosophy, was suggested in the literature, as an alternative way of dealingwith this problem [2, 3, 13, 12, 19, 5, 6, 20, 15, 16, 4, 10℄.There is no onsensus, though, on what exatly are emotions. Di�erent ap-proahes have di�erent views for what it is and how to model them. For example,Ortony [11℄ views emotions as �valened reations to events, agents, or objets,with their partiular nature being determined by the way in whih the eliitingsituation is onstrued�. Sloman [17, 18℄ understand emotions as internal �alarms�whih give a momentary emphasis to ertain groups of signals. Damasio [7, 8℄make a distintion between �emotions�, whih a�et the body and �feelings�,whih are a ognitive introspetion of an emotion. Other authors may have fur-ther di�erent views for what emotions are. For some of them, emotions work like�ampli�ers� for motivations. For others they are homeostati proesses relatedto physiologial variables [5℄. Some authors, instead of a single onept of emo-tion, develop a omplex �emotional system�, where many di�erent onepts like�motivations�, �drives�, �impulses�, �a�etions�, �needs� and other terms are usedto represent di�erent aspets of this emotional system.In arti�ial reatures [3℄, emotions are usually employed in order to drivebehavior, being used as a riteria for ation-seletion mehanisms. A problem,though remains to be solved. In a multi-purpose arti�ial reature (e.g. a hara-ter in a omputer game), there are many di�erent higher-level goals whih needto be satis�ed, like survival, killing opponents, feeding, mating, disoverying theworld, et. The reature needs to deide, at eah point in time and spae, what todo next, and so deide the next lower-level goals, like where to move to, ationsto be performed, et.In this artile, mixing ideas from emotion-based ontrol systems and evolu-tionary omputation, we present a tehnique for higher level goal de�nition inthe ase of a multi-purpose arti�ial reature.The arhiteture in whih this work is based on, was suggested originally in[9℄, whih de�nes an autonomous reature equiped with a sensorial and motorapparatus apable to navigate through an environment full of objets with di�er-ent harateristis. Objets do have �olors", suh that eah �olor� is assoiatedto: a degree of �hardness� (varying from 0 to 1), whih works like a frition o-e�ient in order to slow down the reature movement (or totally blok it) overplaes where there are objets of this olor; a �taste�, whih an be bad or good(varying from -1 to 1); and an ability to drain or supply �energy� (whih also mayvary from -1 to 1). The reature owns an internal battery whih is rehargeable.Touhing an objet whih supplies or drains energy would hange the harge ofthis battery. The reature an navigate in this environment, and many goals maybe presribed. An elementary goal will be to navigate from an initial point upto a target point, avoiding ollision with some undesirable objets at the envi-
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(x, y) (x, y) Point to be reahed (target)Diret ControlVirtualEnvironmentSensors Atuators Arhiteture asproposed by[9℄Fig. 1. Arti�ial Creature Arhitetureronment. There may be, however, some ases in whih this ollision is desirable(as in the ase of objets that work as energy suppliers). The general goal wouldbe to generate the agent behavior aording to the di�erent purposes that maybe attributed to it.Two levels of ontrol have been onsidered: a lower level of diret ontrol anda hierarhially superior level, of target deision-making (see Figure 1). At thelevel of diret ontrol, the input is a target point to be reahed by the reature.The reature must move from its urrent position up to this target point, withoutollisions with obstales. At the level of target deision-making, the system mustde�ne the target points to where the reature must move itself, onsidering a setof higher level general purposes for the reature's existene. Together, the levelsof diret ontrol and target deision-making generate a omplex behavior for thereature. The level of diret ontrol was extensively addressed in [9℄, by meansof a reative/deliberative strategy whih is responsible for the generation andexeution of plans for the navigation to the target point. In this work, we extendthe work of [9℄ by developing the superior level of target-deision-making.The level of diret ontrol only deals with the low-level goal of safe movingthe reature along a set of obstales. The level of target deision-making, allowsfor the onsideration of a higher levels set of general purposes for the existeneof the reature. Examples of higher level purposes in our ase are: to explorethe environment, taking are of the reature's energy balane and to learn anoptimal poliy regarding the distane to maintain to obstales in order to havea safe navigation. To generate a behavior whih onsiders together all thosepurposes, we made use of three emotional metaphors: uriosity, hunger and fear.Curiosity will be responsible for the reature's exploratory behavior. Hunger willbe responsible for the maintenane of the reature's energy level. And fear must�ne-tune the ollision avoidane behavior.2 Experiments and proeduresA sketh of the reature's sensory-motor struture an be seen at Figure 2. Thereature does not have an �a priori" map of the environment. Based on the sen-



Fig. 2. Sensory-Motor Struture of the Creaturesorial information, the reature builds an inremental map of the environment,whih is used to generate movement plans. A more detailed aount of the rea-ture struture and dynami model used in the simulator and the internals of thelow level diret ontrol an be found in [9℄.In this work, extending the work in [9℄, we deal with the higher level targetdeision-making sub-system, whih de�nes at eah moment, the next point towhere the reature should move. Aording to [1℄, an arti�ial reature mayhave four types of standard behavior: (i) appetitive: behavior is direted towardsan attrative objet or situation; (ii) aversive: behavior is direted away fromnegative situations; (iii) exploratory: behavior is direted toward stimuli that arenovel in the environment and, �nally, (iv) neutral behaviors relating to objetsthat are neither appetitive nor aversive. It is interesting to note that our hoieof �hunger�, �fear� and �uriosity� orresponds to the hoie of an appetitive, anaversive and an exploratory behavior. In this experiment, we do not ontemplatethe �neutral� behavior.The level of diret ontrol (as in [9℄), already inorporates the emotion �fear"during the generation of a plan. This plan only onsiders the objets it alreadyknows to exist at the environment. However, in [9℄ this fear was de�nided byheuristi means, enoded by a given (hard-oded) utility funtion. Here, we de-veloped a more �exible mehanism, where this fear an inrease or diminish, assuh as the reature enters in ontat with objets that represent obstales. Or,in other words, the reature learns to have �fear" while interating (olliding)to unpleasant objets. Moreover, this fear is also used at the determination ofthe reature's next target. The determination of the next target is not a simpletask. Depending on the situation, di�erent behaviors an be desirable. In thease whih the reature's energy level is high, we would expet the reature todevelop an exploratory behavior, going to parts of the environment whih arenot already known. However, in the ase whih the energy level is low, we would



expet the reature to searh within its map for a known power soure and goto there. After being re-energized, the reature may return to the exploratorybehavior. To implement this hybrid behavior, we developed two distint strate-gies, one whih is hard-oded, expliitly reating some rules of priorities amongthe emotions, and another one that makes an automati blend of all emotionsand derives a �nal deision, based on a geneti algorithm.2.1 Desription of the Hard-oded AlgorithmIn our �rst experiment, emotions are onsidered in a hard-oded way, givingexpliity priority on some emotions before others.In this algorithm, if the energy level is higher than a ertain level, a randompoint is hosen to be the next target. If the uriosity funtion assoiated to thispoint is below a ertain level, than another random point is generated, until aquali�ed point is reahed. The algorithm uses then the diret ontrol de�nedin [9℄ to develop a plan whih the reature puts into exeution until the targetis met. This step implements only impliitly the emotions of fear and uriosity.Fear is just a metaphor for the utility funtion whih is used to derive theplan by diret ontrol. Curiosity is also just a metaphor for the utility funtionwhih omputes the degree of "awareness" of a given point. This is the standardbehavior for the reature.However, in the ase whih the energy level is below a ertain limit, a newbehavior starts to run. The reature stops seeking its standard target, saving itto resume in the future, and start looking for the nearest point (in its map) whereit knows there is an energy supplier loated. It uses than the diret ontrol tobuild a plan to reah this point. After getting in ontat with the energy supplier,the reature waits until its energy level inreases up to the maximum, and afterthat, it restores the original target bak, with a new plan given by the diretontrol.It may be observed that the hard-oded algorithm imposes expliitly a �xedway of interation among the emotions, leading to a �xed set of behaviors, a-ording to the following rules:� Fear (to ollide with obstales): the algorithm normally searh to preventollisions. If a ollision happens, the agent inreases its �aution fator�;� Curiosity (searh for unknown points at the environment): Curiosity mea-sures whether a given point is already known by the agent;� Hunger (to keep energy balane): Hunger leads to an exeption behavior,where uriosity is disonsidered in order to generate the next target.The hard-oded algorithm has many limitations. Perhaps, the most obviousone is that the emotional metaphor, although useful in order to inspire thealgorithm development, does not allow for a generalized way to deal with di�erentsituations. The interation among emotions need to be treated ase by ase.When it is desirable to inlude new emotions within the system, these newemotions shall require an extended spei�ation on how it will interat with allthe other already implemented emotions. The treatment of on�iting emotions



PSfrag replaements
x1

x2

x3

y1

y2

y3

{

x3 = αx1 + (1 − α)x2

y3 = αy1 + (1 − α) y2Population Size = 1000 individualsCrossover Prob.= 0,5Mutation Prob.= 0.1Fig. 3. Geneti Algorithm Parameters and Operatorsmay require the generation of exeptional behavior, whih may require a speialtreatment nearly ase by ase. To solve these restritions, we tried to develop analgorithm whih ould be generalized in an uniform way, not requiring speialbehaviors, and allowing for the addition of new emotions without too muhe�ort. The result is the following algorithm.2.2 Desription of the Geneti AlgorithmIn order to solve the aforementioned problems, a geneti algorithm (Figure 4)was oneived, where a population of possible target points shall evolve, using asa �tness funtion a ombination of all the utility funtions, one for eah designedemotion. This ombination results in a funtion of �desirability�, that will mixfear, hunger and uriosity.Initially this population of �potential targets� is generated randomly. At eahevolutive step, these �potential targets� start to evolve, beoming on�ned tosome regions of spae where the �desirability� is higher. For the geneti algorithm,eah target is enoded in the form of a hromosome ontaining a position (x,y)in the two-dimensional spae. The rossover between two hromosomes is madeby means of a linear ombination between the two points represented by eahhromosome, resulting in a point that is loated somewhere in the straight linewhih bounds the two points (see Figure 3). A mutation operator translates agiven point somewhere into its near neighborhood. All the possible goals areevaluated regarding its �desirability�, and a proess of elitist seletion only keepsin the population the potential targets with greater �desirability�.Figures 5, 6 and 7 present the details for an example of simulation using thegeneti algorithm. Figure 5 shows the environment where the reature developsits navigation. Figures 6 and 7 represent the internal map onstruted by thereature, in di�erent instants of the simulation. Figure 6 shows a situation in the
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Fig. 5. A Plain View of the Environ-ment Fig. 6. Representation of the Emo-tional Fator Curiosity (di�erent levelsof gray). Green spots are the possibletargets
Fig. 7. Optimized Situation: reaturewith a higher knowledge of the environ-ment Fig. 8. Situation where the energy levelis low: Targets are onentrated aroundenergy suppliersbeginning of the simulation, where the dark areas represent unknown parts ofthe environment, implying in great uriosity and so great desirability for possibletargets. Please pay attention to the distribution of light-green points inside theseareas. They represent the population of possible targets being evolved by thegeneti algorithm. Figure 7 shows a further time in simulation, where the reaturealready had the hane to know other areas. Observe that in this ase, thenumber of dark areas is lower, and the possible targets are onentrated in asmaller range of loations.Figure 8 shows another simulation (in a di�erent environment), in a situationwhile the reatures's energy resoures are too low. Notie that, in this ase,the loations where there are objets with energy supply do attrat a biggerdesirability. Pay attention to the onentration of possible targets under theseobjets.3 Simulation ResultsIn order to evaluate the simulation results, we generated some measurings, whihwe present in the following. Figures 9 and 10 show the variability of the reature's



Fig. 9. Variation of Creature's EnergyLevel over time: Hard-oded Algorithm Fig. 10.Variation of Creature's EnergyLevel over time: Geneti Algorithm

Fig. 11. Variation of Creature's Fearover time: Hard-oded Algorithm Fig. 12. Variation of Creature's Fearover time: Geneti Algorithmenergy level over time. Figure 9 shows the results for the hard-oded algorithmand Figures 10 shows the result for the geneti algorithms with populationsof 1000, 3000 and 5000 individuals. Observe the behavior in both ases. Thereature starts will full power and have the energy dereasing until it reahesthe level of around 30 or 40 % when it then get refueled. The behavior is moreor less the same both for the hard-oded algorithm and the geneti algorithm.Figures 11 and 12 show the variability of the reature's fear over time. Fear isomputed as a funtion whih alulates the distane to the losest undesirableobjet at eah time. We ould not get any kind of orrelation between thesegraphis, showing that ompletely di�erent solutions where performed by eahase of the algorithms.Figures 13 and 14 show the variability of the unknown parts of the worldover time. Figure 13 shows the ase for the hard-oded algorithm and Figure 14shows the ase for the geneti algorithms, with populations of possible targetsof 1000, 3000 and 5000 individuals.We an see that in both ases, the reature inreases its knowledge of theenvironment up to 100% after some time. In this ase, we deteted a smalldi�erene in e�ieny among the many algorithms we simulated. The hard-



Fig. 13. Variation of Unknown Partsof the Environment over time: Hard-oded Algorithm Fig. 14. Variation of Unknown Parts ofthe Environment over time: Geneti Al-gorithmoded algorithms is less e�ient, gaining total knowledge of the environment onlyaround 430s. The geneti algorithm with population size of 5000 individuals getthe same 100% with around 380s. The geneti algorithm with population sizes of3000 and 1000 individuals also performed better than the hard-oded algorithmAs a general evaluation, we may onlude that both the hard-oded and thegeneti algorithm do have a similar behavior, ahieving their main generi goalsof exploring the environment, maintaining their energy level and avoiding olli-sions with obstales, with a slight di�erene to the geneti algorithm. But, onthe other side, the geneti algorithm has a great advantage in terms of sala-bility. For the hard-oded algorithm, for eah new emotion that we would liketo inlude, all the algorithm needs to be redesigned. In the ase of the genetialgorithm, only a small hange in the desirability funtion is required, if we in-tend to inlude a newer emotion. As a onlusion, we may reah that the genetialgorithm is more advantageous than the hard-oded one.4 ConlusionsIn this paper, we presented an emotional-evolutionary tehnique for higher levelgoal de�nition in a multi-purpose arti�ial reature. This tehnique enodes eahhigher level goal into a separate emotion, and then a geneti algorithm is usedto evolve a population of andidate lower-level goals, in order to drive the �nalreature behavior. This strategy, up to a ertain point, would be omparableto how lower-level human goals are hosen amongst a population of andidateideas. Eah idea is evaluated by means of the emotional value it is able to arouse,and the most prominent idea, in emotional terms, is hosen to be performed.There is a random omponent, brought by geneti algorithm, and also somekind of intelligent behavior, as the emotions are higher-level goals enoded in anormalized form. We understand that the urrent experiments only suggest thisinsight, being still not de�nitive. But the present study shows the viability ofsuh tehnique, and motivates us to ontinue this line of investigation.



5 AknowledgmentsPatríia de Toro is thankful to the CAPES for the �nanial support in the form offellowship. Riardo Gudwin would like to thank the Brazilian National ResearhCounil (CNPq) for grant #304649/2004-0Referenes1. C. Balkenius. Natural Intelligene in Arti�ial Creatures. Lund Univ. CognitiveStudies 37, 1995.2. J. Bates. The role of emotion in believable agents. Communiations of the ACM,37(7):122�125, 1994.3. B. M. Blumberg. Old Triks, New Dogs: Ethology and Interative Creatures. PhDthesis, MIT Media Lab, Cambridge, MA, 1996.4. D. Budakova and L. Dakovski. Computer Model of Emotional Agents, volume 4133.Springer Berlin / Heidelberg, 2006.5. L. Cañamero. A hormonal model of emotions for behavior ontrol. In Pro. of the4th ECAL (ECAL'97), 1997.6. L. Cañamero. Issues in the design of emotional agents. In A. Press, editor, In:Pro. of Emotional and Intelligent: The Tangled Knot of Cognition. AAAI FallSymposium, pages 49�54, Menlo Park, CA, 1998.7. A. R. Damásio. O Erro de Desartes: Emoção, Razão e Cérebro Humano. Europa-Améria, 1994.8. A. R. Damásio. The Feeling of What Happens: Body and Emotion in the Makingof Consiousness. New York: Harourt, 1999.9. R. R. Gudwin. Contribuições ao Estudo Matemátio de Sistemas Inteligentes. PhDthesis, DCA-FEEC-UNICAMP, 1996.10. J. J. C. Meyer. Reasoning about emotional agents. Int. J. Intell. Syst, 21(6):601�619, 2006.11. A. Ortony, G. Clore, and A. Collins. The Cognitive Struture of Emotions. Cam-bridge Univ. Press, 1998.12. R. W. Piard. A�etive Computing. MIT Press, Cambridge, 1997.13. W. S. N. Reilly. Believable Soial and Emotional Agents. PhD thesis, CarnegieMellon University, Pittsburgh, PA, 1996.14. S. J. Russell and P. Norvig. Arti�ial Intelligene: A Modern Approah. PrentieHall, Englewood Cli�s, NJ, 1995.15. L. M. Sarmento. An emotion-based agent arhiteture. Master's thesis, FC Uni-versity of Porto, 2004.16. C. Septseault and A. Nédéle. A model of an embodied emotional agent. In IVA,page 498, 2005.17. A. Sloman. Damasio, desartes, alarms, and meta-management. In In Pro. of theIEEE International Conf. on Systems, Man, and Cybernetis, pages 2652�2657,1998.18. A. Sloman. Beyond shallow models of emotion. In Cognitive Proessing, volume 2,pages 177�198, 2001.19. J. Velásquez. A omputational framework for emotion-based ontrol. In In Pro. ofthe Grounding Emotions in Adaptive Systems - workshop SAB'98, Zurih, Switzer-land, 1998.20. R. Ventura. Emotion-based agents. Master's thesis, Inst.Sup.Te.-Lisboa,Portugal,2000.


