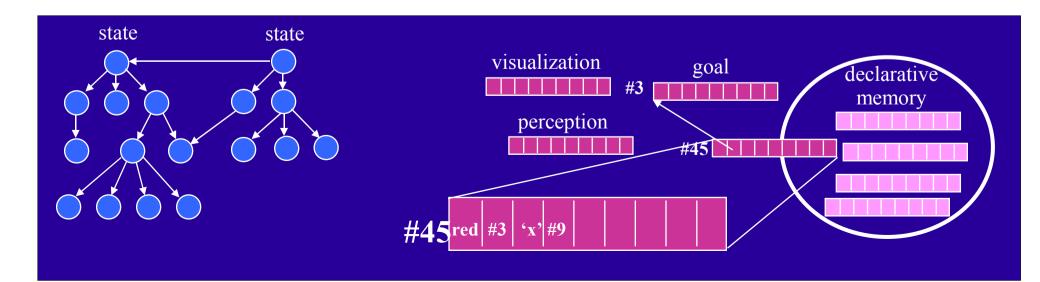
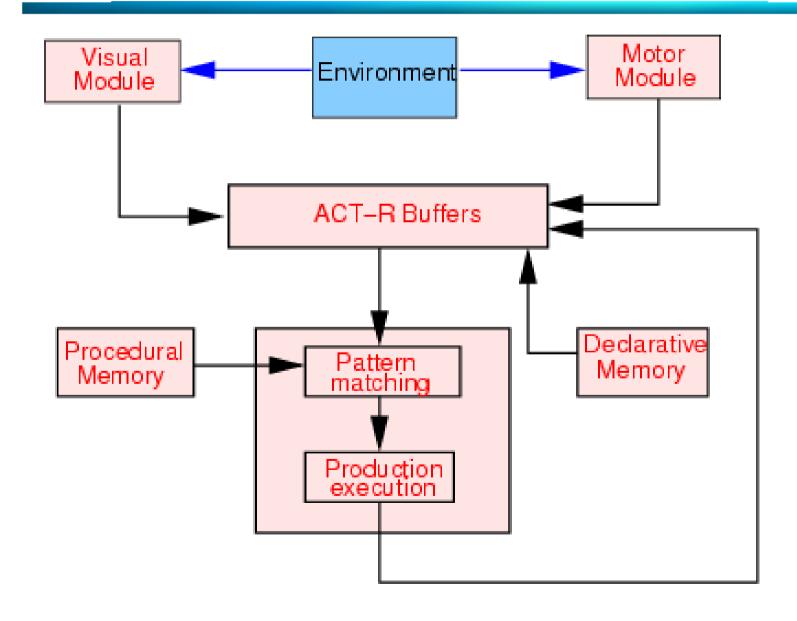

IA889 - Sistemas de Cognição Artificial



AULA 12 ACT-R e SOAR

Arquiteturas Cognitivas Genéricas


- ACT-R
 - Adaptive Control of Thought Rational
 - Anderson and Lebiere
- SOAR
 - State Operator And Result
 - Laird, Newell and Rosemblum

- ACT-R
 - Atomic Components of Thought Rational
 - Adaptive Control of Thought Rational
 - Carnegie Mellon University John R. Anderson
- Arquitetura Híbrida
 - Estruturas Simbólicas
 - sistema de produção
 - Estruturas Sub-simbólicas
 - conjunto massivo de processos paralelos, sumarizados por meio de equações matemáticas
 - podem controlar processos simbólicos
 - funções de utilidade
 - processos de aprendizagem

Histórico do Desenvolvimento

Predecessor	HAM	(Anderson & Bower 1973)
Versões Teóricas	ACT-E ACT* ACT-R ACT-R 4.0 ACT-R 5.0	(Anderson, 1976) (Anderson, 1978) (Anderson, 1993) (Anderson & Lebiere, 1998) (Anderson & Lebiere, 2001)
Implementações	GRAPES PUPS ACT-R 2.0 ACT-R 3.0 ACT-R 4.0 ACT-R/PM ACT-R 5.0 Windows Environment Macintosh Environment	(Sauers & Farrell, 1982) (Anderson & Thompson, 1989) (Lebiere & Kushmerick, 1993) (Lebiere, 1995) (Lebiere, 1998) (Byrne, 1998) (Lebiere, 2001) (Bothell, 2001) (Fincham, 2001)

(Bothell 2004)

ACT-R 6.0

Conhecimento Declarativo

- coisas que somos consciente de que sabemos e que podemos usualmente descrever para outras pessoas
- representado em termos de chunks
 - configurações de elementos que codificam as diversas coisas que sabemos

Conhecimento Procedural

- conhecimento que exibimos por meio de nosso comportamento, mas do qual não somos conscientes
- regras de produção especificam como buscar e utilizar o conhecimento declarativo para resolver problemas

Memória Declarativa		Memória Procedural	
	Chunks: fatos declarativos	Produções: SE (cond) ENTÃO (ação)	
	Ativação de chunks (probabilidade de seleção)	Utilidade: Resolução de Conflitos (probabilidade de uso)	

Sub-simbólico

Simbólico

Exemplos de Chunks

Definindo tipos de chunks (categorias)

```
(chunk-type name slot-name-1 slot-name-2 ... slot-name-n)
(chunk-type bird species color size)
(chunk-type column row1 row2 row3)
(chunk-type count-order first second)
(chunk-type count-from start end)
```

Definindo chunks

```
(add-dm
  (b ISA count-order first 1 second 2)
  (c ISA count-order first 2 second 3)
  (d ISA count-order first 3 second 4)
  (e ISA count-order first 4 second 5)
  (f ISA count-order first 5 second 6)
  (first-goal ISA count-from start 2 end 4))
```


Buffers

- Interface entre a memória procedural e os outros módulos do sistema
 - Buffer 'goal': interface para o módulo 'goal'
 - Buffer 'retrieval': interface para o módulo 'retrieval'
- Cada buffer só pode ter um único chunk a cada instante de tempo
- Valores dos buffers podem ser alterados por produções

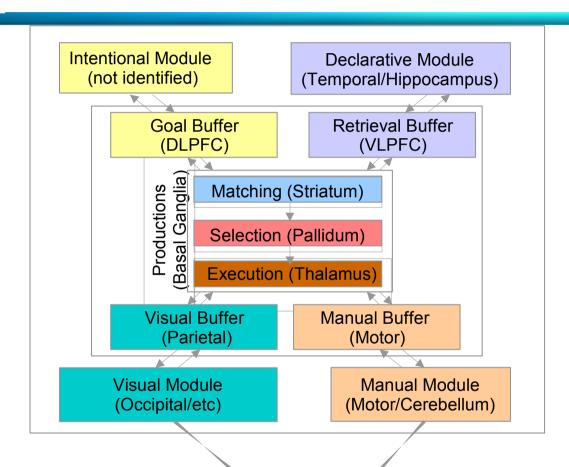
Resolução de Conflitos

- Somente uma produção pode disparar a cada instante
- Escolher a produção é uma resolução de conflitos

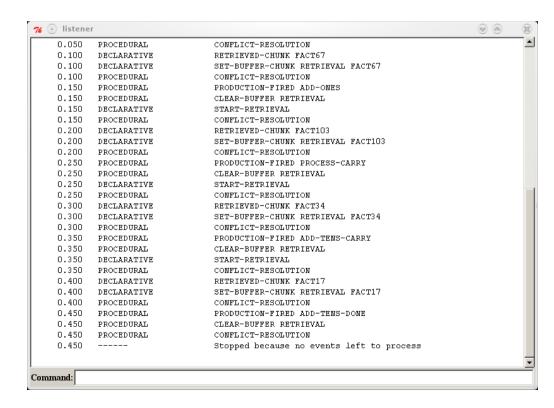
Exemplos de Produções

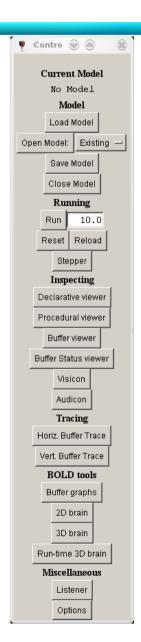
```
(P counting-example
   =qoal>
     isa
                count
                incrementing
     state
   number
             =n_{11}m_{11}
 =retrieval>
     isa
                count-order
   first
             =num1
             =num2
   second
==>
   =qoal>
   number
             =n_{11}m_2
 +retrieval>
     isa
               count-order
   first
            =num2
```

English Description

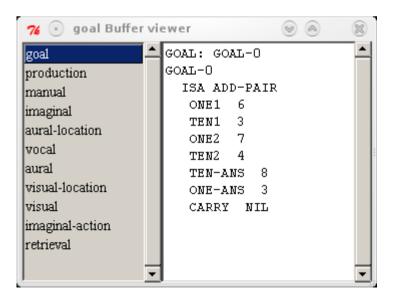

```
If the goal chunk is
    of the type count
    the state slot is incrementing
there is a number we will call =num1
    and the chunk in the retrieval buffer
    is of type count-order
the first slot has the value =num1
and the second slot has a value
    we will call =num2
    Then
    change the goal
to continue counting from =num2
    and request a retrieval
    of a count-order chunk to
find the number that follows =num2
```

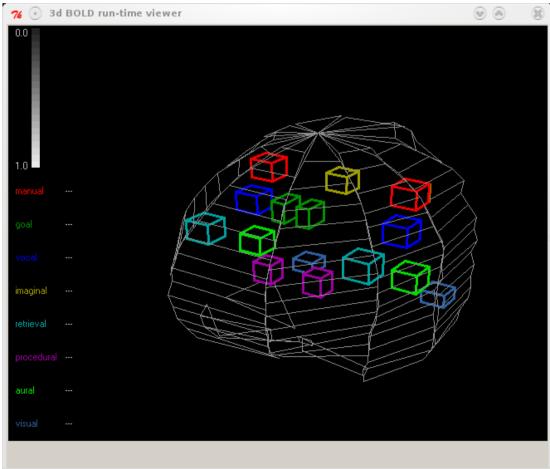

- Ações sobre os buffers
 - =retrieval>
 - Modifica valores dos slots do buffer
 - +retrieval>
 - Faz uma requisição ao módulo em questão
 - -retrieval>
 - Limpa o buffer em questão
 - ?retrieval>
 - Efetua 'queries' ao módulo
- Modelo ACT-R
 - Programa em LISP contendo os comandos ACT-R


ACT-R 5.0

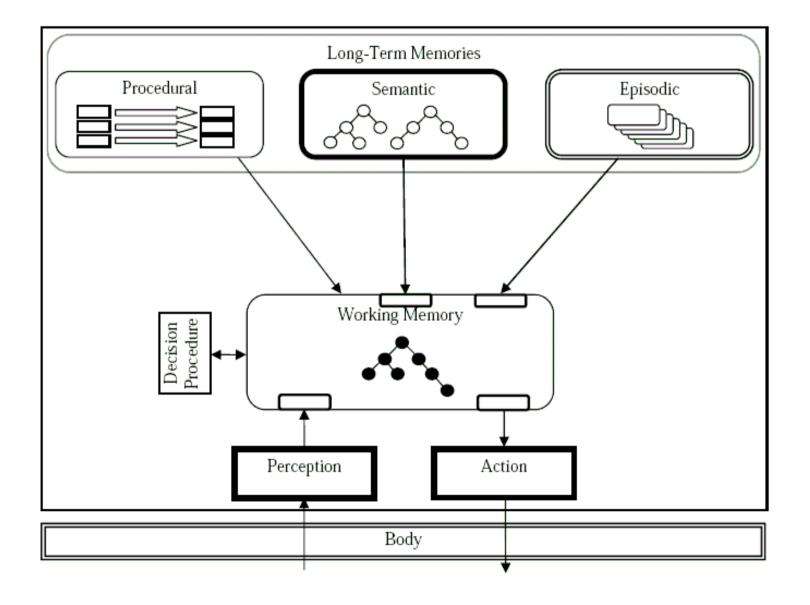


Environment

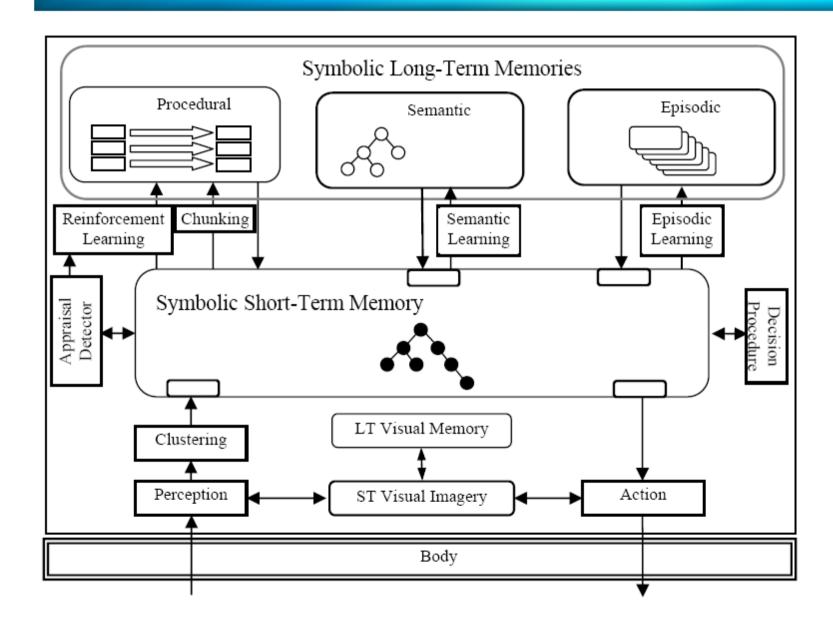

- ACT-R 6.0
 - Ambiente ACT-R
 - Ferramentas de depuração e teste de modelos



- Versão 6.0
 - Novos módulos
 - Novos buffers



- Integração com Software
 - Versão Original
 - Lisp
 - Dificuldade de integração com outras linguagens
 - jactr.org (versão em Java)
 - Não tão atualizada
- Para saber mais ...
 - Download do software no site
 - http://act-r.psy.cmu.edu/
 - Tutoriais
 - Explicando o uso dos diferentes modules
 - Manual de Referência



- SOAR (State, Operator And Result)
 - John Laird, Allen Newell, Paul Rosenbloom (1987)
 - Carnegie-Mellon University
 - University of Michigan
- Arquitetura cognitiva
 - Sistema de Símbolos Físicos
 - Sistemas de Produção
 - Busca em espaços de problemas
 - estrutura de controle automática/deliberativa em dois níveis
 - Aprendizagem contínua, determinada por impasses

Estados e Operadores

- estruturas básicas suportadas pela arquitetura
- Estados: toda informação sobre a situação corrente, incluindo a percepção e a descrição de metas correntes e espaços de problemas
- Operadores: ocasionam passos no espaço de problemas

Memória de Trabalho

- percepções e hierarquia de estados e seus operadores associados
- conteúdo pode acionar a memória de longo prazo ou ações motoras

- Memória de Longo Prazo
 - Repositório do conteúdo processado pela arquitetura capaz de produzir comportamento
 - Memória Procedural: Regras
 - acessada automaticamente durante os ciclos de decisão
 - Memória Semântica: Estruturas Declarativas
 - Memória Episódica: Episódios
 - Memórias de longo prazo são impenetráveis
 - não podem ser examinadas diretamente
 - certos procedimentos recuperam informações nas memórias de longo prazo e armazenam na memória de trabalho

Interface Perceptiva/Motora

- Mapeamentos do mundo externo para representações internas na memória de trabalho e de representações internas para o mundo externo
- Percepção e Ação podem acontecer em paralelo com o processo de cognição

Ciclo de Decisão

- Processo arquitetural básico suportando a cognição
- Seleção e Aplicação de Operadores
- Três fases
 - Elaboração, Decisão, Aplicação

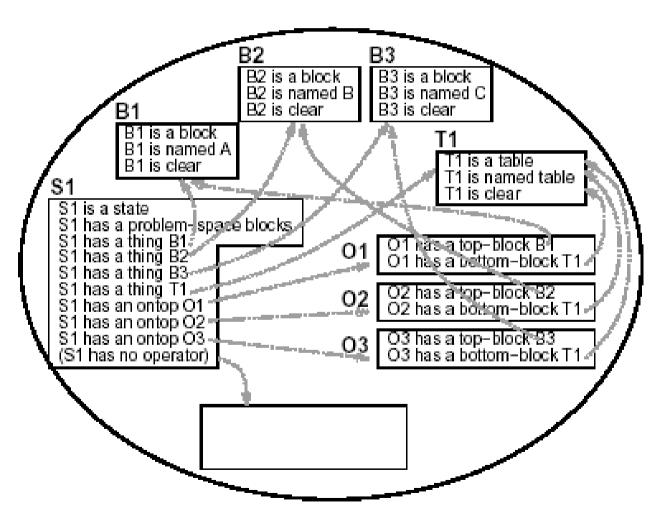
- Fase de Elaboração
 - Acesso paralelo à Memória de Longo Prazo para elaborar o estado
 - Sugestão de novos operadores
 - Avaliação dos operadores
- Fase de Decisão
 - Procedimento de Decisão
 - Linguagem de Preferência por operadores
 - Resultado
 - Operador selecionado
 - Impasse
 - Preferências incompletas ou conflito

Fase de Aplicação

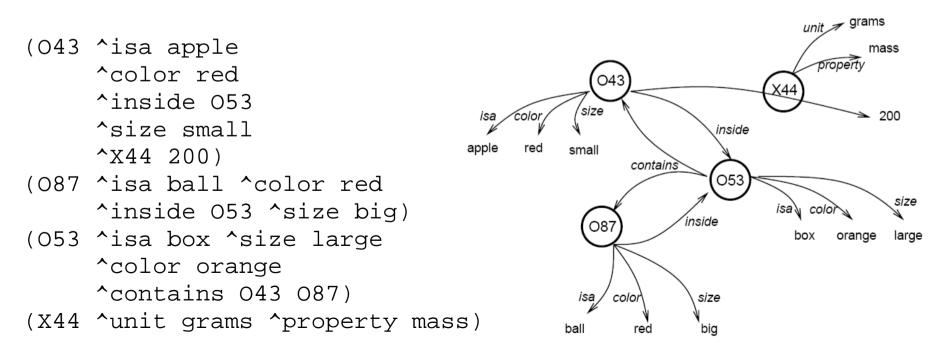
- regras são disparadas de forma a modificar os estados
- Seleção de um único operador por ciclo de decisão impõe um gargalo cognitivo à arquitetura
 - limite no trabalho cognitivo por ciclo

Impasses

- sinalizam uma falta de conhecimento
 - oportunidade para aprendizagem
- Acontecem automaticamente quando o conhecimento elicitado pelo estado corrente não é suficiente para o procedimento de decisão selecionar um operador

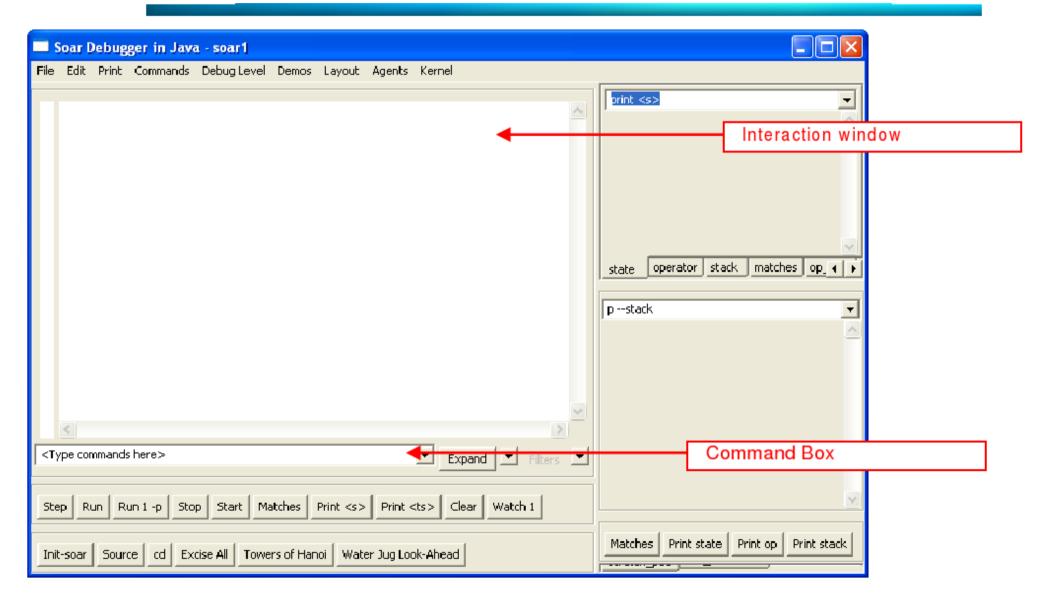

- Linguagem de Impasses
 - Independente de domínio
- Quando ocorre um Impasse
 - arquitetura automaticamente inicia a criação de um novo sub-estado cuja meta é resolver o impasse
 - impõe uma hierarquia de metas/sub-estados no contexto da memória de trabalho
- Quatro Mecanismos de Aprendizagem
 - Chunking, Aprendizagem por Reforço, Aprendizagem Episódica, Aprendizagem Semântica

Chunking


- cria automaticamente novas regras na memória de longo prazo utilizando-se dos resutados gerados de um impasse
- previnem que um impasse ocorra em situações similares no futuro
- Aprendizagem por Reforço
 - ajusta os valores das preferências por operadores
- Aprendizagem Episódica
 - armazena a história das experiências
- Aprendizagem Semântica
 - captura asserções declarativas mais abstratas

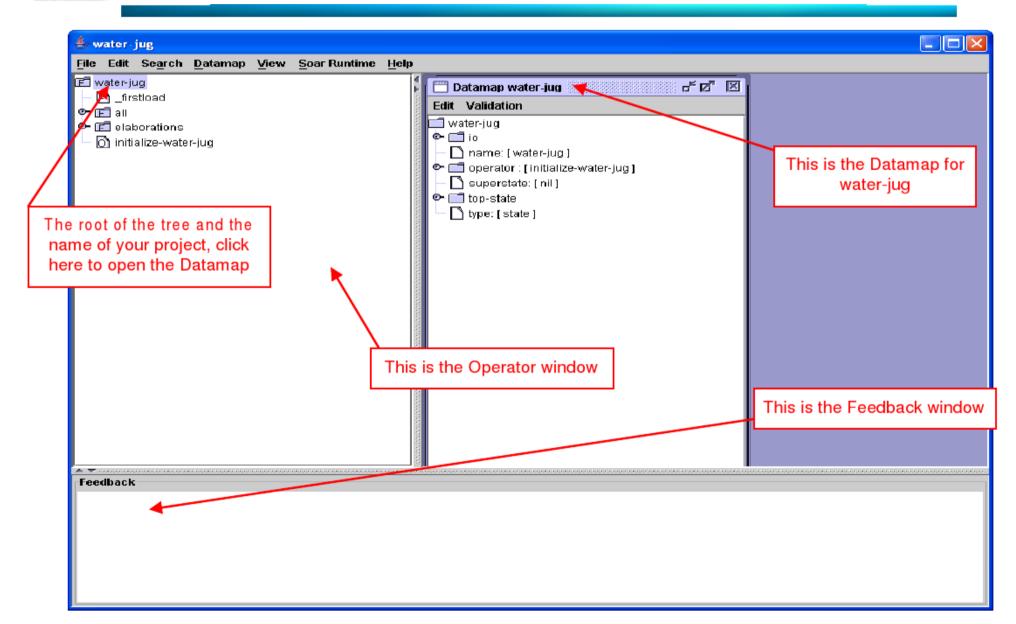
An Abstract View of Working Memory

Working Memory Elements (WME)


Preferências

```
(S1 ^operator 03 +)
(S1 ^operator 03 > 04)
```

Produções



SOAR Debugger

Visual SOAR

- Integração com Software
 - Bindings para C++, Java, Tcl
 - Conexão via Sockets (outras linguagens)
 - SML: Soar Markup Language
- Para saber mais ...
 - Download do software no site
 - http://sitemaker.umich.edu/soar/home
 - Tutoriais
 - Explicando o uso do SOAR em diferentes situações
 - SOAR Manual
 - SOAR-RL Manual
 - Outros documentos