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Abstract

Artificial intelligence research has foundered on the issue of representation. When intelligence is approacimedemamntalmanner,with
strict reliance on interfacing to the real world through perceptionaatidn, reliance on representatiordisappearsin this paperwe outline
our approachto incrementallybuilding completeintelligent Creatures.The fundamentaldecompositiorof the intelligent systemis not into
independentinformation processingunits which must interface with each other via representationsinstead, the intelligent system is
decomposed into independent and parallel activity produgbish all interface directly to the world through perceptionand action, rather
than interface to each other particularly much. The notions of central and peripheral systemsevaporateeverythings both central and

peripheral. Based on these principles we have built a very successful series of mobile robots which operate without supervision as Creatures in

standard office environments.

1. Introduction

Artificial intelligencestartedas a field whosegoal
was to replicate human level intelligence in a
machine.

Early hopes diminished as the magnitude and
difficulty of that goal wasappreciatedSlow progress
was made over the next 25 yearsin demonstrating
isolated aspectsof intelligence. Recent work has
tendedto concentrateon commercializableaspectof
"intelligent assistants" for human workers.

No onetalks about replicating the full gamut of
human intelligence any more. Instead sexa retreat
into specialized subproblems, such as ways to
represenknowledge,naturallanguageunderstanding,
vision or even more specializedareassuch as truth
maintenancesystemsor plan verification. All the
work IN thesesubareass benchmarkedagainstthe
sorts of tasks humans do within those areas.
Amongstthe dreamersstill in the field of Al (those

not dreaming about dollars, that is), there is a feeling.

that oneday all thesepieceswill all fall into place
and we will see "truly" intelligent systems emerge.

However,l, andothers, believe that humanlevel
intelligence is too complex and little understood to be
correctly decomposedhto the right subpiecesat the
momentandthat evenif we knew the subpieceswe
still wouldn't know the right interfaces between
them. Furthermore, weill neverunderstanchow to
decompose human level intelligence until we've &dad
lot of practice with simpler level intelligences.

In this paper | therefore argue for a different
approach to creating artificial intelligence:

» We must incrementallybuild up the capabilitiesof
intelligent systems, having complete systemsat
each step of thevay andthus automaticallyensure
that the pieces and their interfaces are valid.

» At eachstepwe should build completeintelligent
systems that we let loose in the real world with real
sensingandreal action. Anything less providesa
candidate with which we can delude ourselves.

We have been following this approaahd havebuilt
a seriesof autonomousmobile robots. We have
reachedan unexpectedconclusion (C) and have a
rather radical hypothesis (H).

(C) When we examine very simple levatelligence
we find that explicit representationand models
of the world simply get irthe way. It turns out
to be better to use the world as its own model.

(H) Representatioiis the wrong unit of abstraction
in building the bulkiest parts of intelligent
systems.

Representation has bethre centralissuein artificial
intelligence work over the ladt5 yearsonly because

it has provided an interface between otherwise isolated
modules and conference papers.

2. The evolution of intelligence

We already have an existence proof of, the
possibility of intelligent entities: human beings.
Additionally, many animals are intelligent to some
degree. (Thiss a subjectof intensedebatemuch of
which really centers around a definition of



intelligence.) They havevolvedover the 4.6 billion
year history of the earth.

It is instructive to reflect on the way in which
earth-basedbiological evolution spent its time.
Single-cellentitiesaroseout of the primordial soup
roughly 3.5 billion years ag@ billion yearspassed
before photosyntheticplants appeared After almost
anotherbillion anda half years,around550 million
yearsago, the first fish and Vertebratesarrived, and
then insects 450 million years ago. Then things
started moving fast. Reptiles arrived 370 million
years ago, followed by dinosaurs at 330 and
mammals at 250 million years ago. The first
primates appeared120 million yearsago and the
immediatepredecessor® the greatapesa mere 18
million years ago. Man arrived in roughly tpsesent
form 2.5 million years ago. He inventedyriculturea
mere 10,000 yearago, writing lessthan 5000 years
agoand "expert" knowledgeonly over the last few
hundred years,

This suggeststhat problem solving behavior,
language, expert knowledge and application, and
reason, are all pretty simple once the essence of being
and reacting aravailable. That essencés the ability
to move aroundin a dynamic environment,sensing
the surroundings ta degreesufficientto achievethe
necessarynaintenancef life andreproduction.This
part of intelligence is where evolution has
concentrated its time—it is much harder.

| believe that mobility, acute vision and thbility
to carry out survivalrelated tasks in a dynamic
environment provide a necessary basis for the
development of true intelligence. Moravec [11] argues
this same case rather eloquently.

Humanlevel intelligencehas providedus with an
existenceproof but we must be careful about what
the lessons are to be gained from it.

2. 1. A story

Supposeit is the 1890s. Artificial flight is the
glamorsubjectin science,engineering,and venture
capital circles. A bunch of AF researchers are
miraculously transportedby a time machineto the
1980s for a few hours. They spend thigole time in
the passengercabin of a commercial passenger
Boeing 747 on a medium duration flight.

Returned to the 1890s they feel vigorated, knowing
that AF is possible on a grand scale. They
immediatelysetto work duplicatingwhat they have
seen.They makegreatprogressn designingpitched
seats,doublepanewindows, and know that if only
they canfigure out those weird "plastics” they will

have their grail within their grasp. (A few
connectionists amongst them cauglglimpse of an
enginewith its cover off andthey are preoccupied
with inspirations from that experience.)

3. Abstraction as a dangerous weapon

Artificial intelligence researchers afend of pointing
out that Al is often denieds rightful successeslhe
popularstory goesthat when nobody has any good
idea of how to solve a particular sort of problésrg.
playing chessjt is known asan Al problem.When
an algorithm developed by Al researchsugcessfully
tackles such a problerhpwever,Al detractorsclaim
that since the problem was solvabledyyalgorithm,
it wasn'treally an Al problem after all. Thus Al
neverhasany successesBut haveyou everheardof
an Al failure?

| claim that Al researcherareguilty of the same
(self) deception.They partition the problems they
work on into two components.The Al component,
which they solveandthe non-Al componentwhich,
they don't solve. Typically, Al "succeeds" by defining
the parts of the problerthat are unsolvedas not Al.
The principal mechanismfor this partitioning is
abstractionlts applicationis usually considerecpart
of good science, not, asis in fact usedin Al, asa
mechanismfor self-delusion.In Al, abstractionis
usually usedto factor out all aspectsof perception
and motor skills. | argue below that these arehired
problemssolvedby intelligent systems,and further
that the shape of solutions to these problems
constrainggreatly the correctsolutions of the small
pieces of intelligence which remain.

Early work in Al concentrated on games,
geometrical problems, symbolic algebra, theorem
proving, and other formal systems(e.g. [6, 9]). In
eachcasethe semanticsof the domainswere fairly
simple.

In the late sixties and early seventiesthe blocks
world became a popular domain for Al research. It had
a uniformandsimple semanticsThe key to success
was to represent the state of the world complednty
explicitly. Searchtechniquescould then be usedfor
planning within this well-understoodrorld. Learning
could also be donewithin the blocks world; there
wereonly a few simple conceptsworth learningand
they could be capturedby enumeratingthe set of
subexpressionsvhich must be containedin any
formal description of a world including anstanceof
the concept.The blocks world was even used for
vision researchand mobile robotics, as it provided
strong constraints on the perceptual processing
necessary [12].



Eventually criticism surfaced th#te blocks world
was a "toy world" and that within it there were
simple specialpurposesolutionsto what should be
considered morgeneralproblems.At the sametime
there was a funding crisisithin Al (bothin the US
and the UK, the two most active places for Al
research at the time). Al researchfensnd themselves
forced to becomerelevant. They moved into more
complexdomains,suchastrip planning,goingto a
restaurant, medical diagnosis, etc.

Soon there was a new slogan: "Good representation

is the key to AI" (e.g. conceptually efficient
programsin [2]). The idea was that by representing
only the pertinent facts explicithithe semanticof a
world (which on the surfaceras quite complex)were
reducedto a simple closed system once again.
Abstraction to only the relevant details thus
simplified the problems.

Consider a chair foexample.While the following
two characterizations are true:

(CAN (SIT-ON PERSON CHAIR)), (CAN
(STAND-ON PERSON CHAIRY)),

thereis much more tdhe conceptof a chair. Chairs
have some flaimaybe)sitting place,with perhapsa
back support. They have a rangeof possiblesizes,
requirements on strength, and- a rangpassibilities
in shape.They often have some sort of covering
material, unlessthey are made of wood, metal or
plastic. They sometimes aseft in particularplaces.
They cancomefrom a rangeof possiblestyles. In
particularthe conceptof what is a chair is hard to
characterizesimply. Thereis certainly no Al vision
programwhich can find arbitrary chairsin arbitrary
images;they canat bestfind one particular type of
chair in carefully selected images.

This characterization,however, is perhaps the
correct Al representation of solvirggrtainproblems;
e.g., a person sitting aachairin a roomis hungry
andcan seea bananahanging from the ceiling just
out of reach.Such problemsare never posedto Al
systemsby showingthema photo of the scene.A
person (even a young child) can make the right
interpretationof the photo and suggesta plan of
action. For Al planning systems however, the
experimenter is required @bstractaway most of the
details to form a simple description in terms of
atomic conceptssuch as PERSON, CHAIR and
BANANAS.

But this abstractionis the essenceof intelligence
and the hard part of the problems besudved. Under
the current schemethe abstractionis done by the
researcherteavinglittle for the Al programsto do

but search A truly intelligent programwould study
the photograph, perform the abstraction antVe the
problem.

The only input to most Al progranis a restricted
set of simple assertions deduced fridra real databy
humans. The problems of recognition, spatial
understanding,dealing with sensor noise, partial
models, etc. are all ignored. These problems are
relegated to the realm of input black boxes.
Psychophysical evidence suggests they are all
intimately tied up with the representationof the
world used by an intelligent system.

There is no clean division between perception
(abstraction)and reasoningin the real. world. The
brittlenessof currentAl systemsatteststo this fact.
For example, MYCIN13] is anexpertat diagnosing
human bacterial infections, but it really hasmodel
of whata human(or any living creature)is or how
they work, or what arglausiblethings to happento
a human.If told that the aortais rupturedand the
patientis losing blood at the rate of a pint every
minute, MYCIN will try to find a bacterialcauseof
the problem.

Thus, because we stiplerformall the abstractions
for our programs,most Al work is still donein the
blocks world. Nowthe blocks haveslightly different
shapesand colors, but their underlying semantics
have not changed greatly.

It could be arguedthat performingthis abstraction
(perception)for Al programsis merely the normal
reductionistuseof abstractioncommonin all good
science. The abstraction reduces the input siathat
the program experienceshe sameperceptualworld
(Merkwelt in [15]) as humans. Other (vision)
researchersvill independentlyfill in the details at
someothertime andplace.l objectto this on two
grounds.First, as Uexkill and others have pointed
out, each animal species,and clearly each robot
specieswith their own distinctly non-humansensor
suites, will have their own different Merkwelt.
Second, the Merkwelt we humans provide our
programs is based on oawn introspection.It is by
no means clear that suctMerkwelt isanything like
what we actually use internally—it could just as
easily be an output coding for communication
purposege.g., most humansgo through life never
realizing,they havea large blind spot almostin the
center of their visual fields).

The first objection warns of the danger that
reasoning strategies developed for hoenan-assumed
Merkwelt may not be valid when real sensorsand
perceptionprocessings used. The secondobjection
says that even with human sensors and percetiteon



Merkwelt may not be anything like that used by
humans. In fact, it may be the case that our
introspective descriptions of our internal
representationsire completely misleadingand quite
different from what we really use.

3.1. A continuing story

Meanwhile our friends in the 1890s are busy at
work on their AF machine. Thelyavecometo agree
that the project is too big to be worked on asrale
entity and that they will need to become specialists in
different areas After all, they had askedquestionsof
fellow passengersn their flight and discoveredthat
the BoeingCo. employedover 6000 peopleto build
such an airplane.

Everyoneis busy but there is not a lot of
communication between the groups. The people
making the passenger seats ugeafinest solid steel
available as the framework. There was some
muttering that perhapshey shouldusetubular steel
to save weight, but the gene@nsensusvasthat if
suchan obviously big and heavy airplane could fly
then clearly there was no problem with weight.

On their observationflight none of the original
group managedo get a glimpse of the driver'sseat,
but they have done some hard thinking and think they
have established the major constraints on what should
be thereand how it should work. The pilot, as he
will be called,sits in a seatabovea glassfloor so
that he canseethe ground below so he will know
where to land. There asomeside mirrors so he can
watch behind for other approachingairplanes.His
controls consist of a fogtedalto control speed(just
asin thesenewfangledautomobilesthat are starting
to appear), and a steering wheel to tigfih and right.
In addition, the wheel stem can be pushed forveact
back to makehe airplanego up anddown. A clever
arrangementof pipes measures airspeed of the
airplaneanddisplaysit on a dial. What more could
one want? Oh yes. There'sa rather nice setup of
louversin the windows so that the driver can get
fresh air without getting the fublast of the wind in
his face.

An interestingsidelightis that all the researchers
haveby now abandonedhe study of aerodynamics.
Someof them hadintensely questionedtheir fellow
passengers on this subject and oo of the modern
flyers hadknown a thing aboutit. Clearly the AF
researchers had previously beeastingtheir time in
its pursuit.

4. Incremental intelligence

| wish to build completely autonomousmobile
agentsthat co-existin the world with humans,and
are seenby those humansas intelligent beings in
their own right. | will call such agentsCreatures.
This is my intellectual motivation. 1 have no
particular interest in demonstratinghow human
beingswork, although humans,like other animals,
are interestingobjects of study in this endeavoras
they are successfulautonomousagents.| have no
particularinterestin applications it seemsclear to
me that if my goals can be met then the range of
applicationsfor suchCreatureswill be limited only
by our (or their) imagination.l have no particular
interest in the philosophical implications of
Creaturesalthoughclearly there will be significant
implications.

Given the caveats of the previotvgo sectionsand
consideringthe parableof the AF researchersl, am
convinced that | mudreadcarefully in this endeavor
to avoid some nasty pitfalls.

For the moment then, consider the problem of
building Creaturesas an engineeringproblem. We
will develop arengineering methodolodgr building
Creatures.

First, let us consider some of the requirements for our
Creatures.

* A Creature must copappropriatelyandin a timely
fashion with changes in its dynamic environment.

» A Creatureshould be robust with respectto its
environment;minor changesin the properties of
the world shouldnot leadto total collapseof the
Creature's behavior; rather one should expect only a
gradual change in capabilities of the Creaturthas
environment changes more and more.

* A Creatureshould be able to maintain multiple
goalsand, dependingon the circumstance# finds
itself in, change which particular goals it is
actively pursuing; thus it can both adapt to
surroundings and capitalize on fortuitous
circumstances.

* A Creatureshould do somethingin the world; it
should have some purpose in being.

Now, let us consider sonma the valid engineering
approaches to achieving these requiremexgsn all
engineering endeavorsi# necessaryo decompose
complex systeminto parts, build the parts, then
interface them into a complete system.

4. 1. Decomposition by function.



Perhaps the strongest, traditional notion of
intelligent systems(at least implicitly among Al
workers) has been of a central system, with
perceptuamodulesasinputs and action modulesas
outputs. The perceptuaimodulesdeliver a symbolic

description of the world and the action modules t@ake

symbolic description of desired actions andkesure
they happen in the world@he centralsystemthenis
a symbolic information processor.

Traditionally, work in perception (and visiontise

most commonly studied form of perception) and work

in central systems has been done by different

researchersand even totally different research
laboratories. Vision workers are not immune to

earlier criticisms of Al workers. Mostision research
is presentedas a transformationfrom one image
representation(e.g., a raw grey scale image) to

anotherregisteredmage (e.g., an edgeimage). Each
group, Al andvision, makesassumptionsbout the

shapeof the symbolic interfaces.Hardly anyonehas
ever connecteda vision system to an intelligent

central system. Thus the assumptionsindependent
researchersnakearenot forcedto be realistic. There
is a real danger frormpressureso neatly circumscribe
the particular piece of research being done.

The centralsystemmust also be decomposedhto
smaller pieces. We see subfields of artificial
intelligence such as "knowledge representation”,
"learning”, "planning”, "qualitative reasoning",etc.
The interfaces between these modulesatse subject

to intellectual abuse.

Whenresearchersvorking on a particular module
getto chooseboth the inputs and the outputs that
specify the module requirementsl believe there is
little chance the work they do will fit into @omplete
intelligent system.

This bug in the functional decompositiapproach
is hard to fix.One needsa long chainof modulesto
connectperceptionto action. In orderto test any of
themthey all mustfirst be built. But until realistic
modulesarebuilt it is highly unlikely that we can
predictexactly what moduleswill be needecor what
interfaces they will need.

4.2. Decomposition by activity

An alternative decomposition makese distinction
between peripheral systems, such as vision, and
central systems. Rather the fundamental slicipgf
anintelligent systemis in the orthogonaldirection
dividing it into activity producingsubsystemsEach
activity, or behaviorproducingsystem individually
connect s sensingto action. We referto an activity
producing system aslayer. An activity is a pattern

of interactions with thevorld. Another namefor our
activities might wellbe skill, emphasizinghat each
activity can at least post facto be rationalized as
pursuing some purpose.We have chosenthe word
activity, however, becauseour layers must decide
whento act for themselvesnot be somesubroutine
to be invoked at the beck and call of some other
layer.

The advantageof this approachs thatit gives an
incremental path from very simple systems to
complex autonomousintelligent systems.At each
step of the way it is only necessaryto build one
small piece, andhterfaceit to an existing, working,
complete intelligence.

Theideais to first build a very simple complete
autonomous systenandtestit in the real world.

Our favourite example of such a system is a Creature,

actually a mobile robot, whichvoidshitting things.
It senses objects in its immediatieinity and moves
away from them, halting if it senses somethingtén
path. It is still necessanto build this system by
decomposing it into partut thereneedbe no clear
distinction between a "perception subsystem", a

"central system" and an "action system". In fact, there

may well be two independentchannelsconnecting
sensing to action (on#@r initiating motion, andone
for emergencyhalts), so there is no single place
where "perception"delivers a representatiorof the
world in the traditional sense.

Next we build anincrementalayer of intelligence
which operatesn parallel to the first system.lIt is
pasted on tahe existing debuggedsystemandtested
again in the real world. This new layeright directly

access the sensors and run a different algorithm on the

delivered data. The first-level autonomoussystem
continuesto run in parallel, and unaware of the
existence of the second level. Ferample,in [3] we
reported on building a firdayer of control which let
the Creatureavoid objectsand then adding a layer
which instilled an activity of trying to visit distant

visible places. The second layer injected commands to

the motorcontrol part of the first layer directingthe
robot towardsthe goal, but independentlythe first
layer would causethe robot to veer away from
previously unseen obstacles. The second layer
monitored the progressof the Creature and sent
updatedmotor commands,thus achievingits goal
without being explicitly awareof obstacles,which
had been handled by the lower level of control.

5. Who has the representations?



With multiple layers, the notion of perception
delivering a description of the world gdikirred even
more asthe part of the systemdoing perceptionis
spread out over many pieces which are not
particularly connectedby data paths or related by
function. Certainly there is no identifiable place
where the "output" of perceptioncan be found.
Furthermoretotally different sorts of processingof
the sensodataproceedndependentlyandin parallel,
each affecting the overall system activity through
quite different channels of control.

In fact, not by design, but rather by observatien
note that a common theme tine waysin which our
layeredand distributed approachhelps our Creatures
meet our goals is that there is no central
representation.

*» Low-level simple activities caninstill the Creature
with reactionsto dangerousor important changes
in its  environment. Without complex
representationsand the need to maintain those
representationsand reason about them, these
reactions can easily be mageick enoughto serve
their purpose. The key idea is to sensethe
environmentoften, and so havean up-to-dateidea
of what is happening in the world.

* By having multiple parallel activities, and by
removing the ideaf a centralrepresentationthere
is less chance that any given chang&mclassof
propertiesenjoyed by the world can causetotal
collapseof the system.Ratherone might expect
that a given change wiit most incapacitatesome
but not allof the levels of control. Graduallyasa
more alien world ientered(alien in the sensethat
the propertiesit holds are different from the
propertiesof the world in which the individual
layers were debugged),the performanceof the
Creaturemight continueto degradeBy not trying
to have an analogous mod#l the world, centrally
locatedin the system,we are less likely to have
built in a dependenceon that model being
completely accurate. Rather, individual layers
extractonly thoseaspectg[1] of the world which
they find relevant-projectionsof a representation
into a simple subspace, if you like. Changethim
fundamental structure of the world haess chance
of being reflected in evergne of thoseprojections
than they would have of showing ag a difficulty
in matchingsomequeryto a central single world
model.

* Each layer of control can be thought of as having its

own implicit purpose (or goal ifou insist). Since
they areactivelayers, runningn parallelandwith
access to sensors, they can monitor the
environmentand decideon the appropriatenessf

their goals. Sometimesgoals can be abandoned
when circumstanceseemunpromising, and other
times fortuitous circumstancescan be taken
advantage ofThe key ideahereis to be using the
world as its own modedndto continuouslymatch
the preconditionsof each goal against the real
world. Becausedhereis separatehardwarefor each
layer we can matchas many goalsas canexist in
parallel, and do not pay any price for higher
numbersof goalsaswe would if we tried to add

more and more sophistication to a single processor,

or even some multiprocessor with a
capacity-bounded network.

* The purposeof the Creatureis implicit in its
higher-levelpurposesgoalsor layers. There need
be no explicit representatiorof goals that some
central (or distributed) process selects from to
decide what. is most appropriate for theeatureto
do next.

5.1. No representation versus no central
representation

Just as there is no central representation there is not

evena centralsystem.Eachactivity producinglayer
connectsperceptionto actiondirectly. It is only the
observer of the Creature who imputes a central
representatioor centralcontrol. The Creatureitself
hasnone;it is a collectionof competingbehaviors.
Out of the local chaosof their interactionsthere
emerges, in the eye of an obsenacpoherentpattern
of behavior.Thereis no centralpurposefullocus of
control. Minsky [10] givesa similar accountof how
human behavior is generated.

Note carefully thatve arenot claiming that chaos
is a necessaryingredient of intelligent behavior.
Indeed, we advocatecareful engineeringof all the
interactionswithin the system (evolution had the
luxury of incredibly long time scalesand enormous
numbersof individual experimentsand thus perhaps
was able to do without this careful engineering).

We do claim however, that there need be no
explicit representatiorof either the world or the
intentions of the system to generate intelligent
behaviors for a Creature. Without such explicit
representations,and when viewed locally, the
interactionsmay indeed seem chaotic and without
purpose.

| claim there is more than this, however. Exara
local, level we do not have traditional Al
representations. We never use tokeséch haveany
semantics that can be attachedhtem. The bestthat
can be said in our implementation is that owenber
is passed from a process to another. Big @nly by



looking at the state of both the first and second
processesthat that number can be given any
interpretation at allAn extremistmight say that we
really do haverepresentationdyut that they are just
implicit. With an appropriate mapping of the
complete system antk stateto anotherdomain,we
could define a representatiothat thesenumbersand
topological connectiondbetweenprocessesomehow
encode.

However we are not happy with calling such
things a representationThey differ from standard
representations in too many ways.

There are no variables (e.g. see[1] for a more
thorough treatment dhis) that needinstantiationin
reasoning processes. There are no rules wheedto
be selectedthrough pattern matching. There are no
choices to be made. To a largetentthe stateof the
world determineghe action of the Creature.Simon
[14] noted that the complexity of behavior of a
system was not necessarily inherent in the
complexity of the creature, but Perhapsin the
complexity of the environment. He made this
analysisin his descriptionof an Ant wanderingthe
beach, but ignored its implications in the next
paragraph when he talked about humans. We
hypothesize (following Agre and Chapman) that
much of evenhumanlevel activity is similarly a
reflection of the world through very simple
mechanisms without detailed representations.

6. The methodology, in practice

In order to build systemsbasedon an activity
decomposition so thahey aretruly robustwe must
rigorously follow a careful methodology.

6. 1. Methodological maxims

First, it is vitally importantto test the Creatures
we build in the real world; i.e., in the sameworld
that we humansinhabit. It is disastrougo fall into
the temptatiorof testingthemin a simplified world
first, even with the best intentions of later
transferring activity to an unsimplifiedorld. With a
simplified world (matte painted walls, rectangular
vertices everywhere, colored blocks as the only
obstacles)it is very easyto accidentally build a
submoduleof the systemwhich happensto rely on
some of those simplified properties. This reliacaa
then easily be reflectedin the requirementson the
interfacesbetweenthat submoduleand others. The
disease spreads and tt@mpletesystemdependsn a
subtle way on the simplified world. When it comes
time to move to the, unsimplified world, we
gradually and painfully realizthat every pieceof the

system must be rebuilt. Worse than that we may need
to rethink the total designas the issuesmay change
completely. We are not so concerned thanight be
dangerougo test simplified Creaturesfirst and later

add more sophisticatedlayers of control because
evolution has been successful using this approach.

Second,as eachlayer is built it must be tested
extensivelyin the real world. The system must
interact with the realvorld over extendedperiods.Its
behavior must be observedand be carefully and
thoroughly debugged. When a second layer is atinled
an existing layer thereare three potential sourcesof
bugs: the first layer, the second layer, or the
interaction of the two layer&liminating the first of
thesesourceof bugsasa possibility makesfinding
bugs much easier.Furthermore,there is only one
thing possibleto vary in orderto fix the bugs—the
second layer.

6.2. An instantiation of the methodology

We have built aseriesof four robotsbasedon the
methodology of task decomposition. Thaly operate
in an unconstraineddynamic world (laboratory and
office areas in the MIT Artificial Intelligence
Laboratory). They successfullyoperatewith people
walking by, people deliberatelytrying to confuse
them, and peoplejust standingby watching them.
All four robots are Creaturesin the sensethat on
power-up they exist in the worlahdinteractwith it,
pursuingmultiple goalsdeterminedby their control
layers implementingdifferent activities. This is in
contrastto other mobile robots that are given
programs or plans to follow for a specific mission,

The four robots are shown in Fig. 1. Two are
identical, sotherearereally three,designs.One uses
an offboard LISP machine for most of its
computations, two use onboard combinational
networks, and one uses a custom onboard parallel
processor. All the robots implement the same
abstractarchitecturewhich we call the subsumption
architecture which embodiesthe fundamentalideas
of decompositioninto layers of task achieving
behaviors, and incremental composition through
debugging in the real world. Details of these
implementations can be found in [3].

Each layer in the subsumption architecture is
composedof a fixed-topology network of simple
finite state machines. Each finiggatemachinehasa
handful of states, one or two internal registers, @ane
two internal timers, and access to simple
computationaimachineswhich can computethings
suchasvectorsums. The finite state machinesrun
asynchronouslysendingand receiving fixed length
messages$l-bit messagesn the two small robots,



and 24-bit messagesn the larger ones) over wires.
On our first robot thesewere virtual wires; on our
later robots we haveusedphysical wires to connect
computational components.

There is no central locus of control. Rather, finge
statemachinesare data-drivenby the messageshey
receive.The arrival of messagesr the expirationof
designated time periods cause the finite state
machinego changestate.The finite state machines
have accessto the contentsof the messagesand
might output them, test them with a predicateand
conditionally branch to a different stats, passthem
to simple computation elements. There is no
possibility of access to global data, nor of
dynamically established communications linkkere
is thus no possibility of global control. All finite
statemachinesare equal,yet at the sametime they
are prisoners of their fixed topology connections.

Layersare combinedthroughmechanismswe call
suppression (whence the name subsumption
architecture)andinhibition. In both casesas a new
layer is added,one of the new wires is side-tapped
into an existing wire. A pre-definedtime constantis
associated with each side-tap. In the case of
suppression the side-tapping occarsthe input side
of afinite state machindf a messagearriveson the
netwire it is directedto the input port of the finite
state machine as though it had arrivedlomexisting
wire. Additionally, any new messages on thésting
wire are suppressedi.e., rejected)for the specified

time period. For inhibition the side-tapping occurs on

the outputside of a finite statemachine.A message
on the new wire simply inhibits messageseing
emitted on the existing wire for the specifiedtime
period. Unlike suppressiorthe new messagds not
delivered in their place.

As an example,considerthe three layers of Fig. 2.
These are three layers abntrol that we haverun on
our first mobile robot for well over gear. The robot
has aring of twelve ultrasonicsonarsasits primary
sensors.Every secondthesesonarsare run to give
twelve radial depth measurements. Sonaxisemely
noisy due to many objectsbeing mirrors to sonar.
Therearethus problemswith specularreflectionand
return paths following multiple reflections due to
surface skimmingyith low anglesof incidence(less
than thirty degrees).

In more detail the three layers work as follows:

Fig. 1. The four MIT Al laboratory Mobotd.eft-mostis the first
built Allen, which relies on an offboard LISP machine for
computation support. The right-most one is Herbert, shown avith
24 node CMOS parallel processorsurroundingits girth. New
sensorsand fast early vision processorsare still to be built and
installed. In the middle are Tom and Jerry, based on a
commercial toy chassisyith single PALs (ProgrammableArray

of Logic) as their controllers.

(1) The lowest-levellayer implementsa behavior
which makesthe robot (the physicalembodimeniof
the Creature)avoid hitting objects. It both avoids
static objects and moving objects, even thibee are
actively attacking it. The finite state machilabelled
sonarsimply runs the sonar devicasd every second
emits an instantaneousmap with the readings
converted to polar coordinates. This mapassedn
to thecollide andfeelforcefinite statemachine.The
first of thesesimply watchesto see if there is
anything dead ahead, and if so senHalbmessageo
the finite state machinein chargeof running the
robot forwards—if thafinite statemachineis not in
the correct state the messagemay well be ignored.
Simultaneously, the other finite state machine
computes a repulsive force time robot, basedon an
inverse square law, where each sonar return is
consideredto indicate the presenceof a repulsive

object. The contributions from each sonar are added to

producean overall force acting on the robot. The
output is passedto the runaway machine which
thresholdsit and passest on to the turn machine
which orients the robot directly away from the
summed repulsive force. Finally, the forward
machine drives the robot forward. Whenever this
machinereceivesa halt messagewhile the robot is
driving forward, it commands the robot to halt.

This network of finite state machinesgenerates
behaviorswhich let the robot avoid objects. If it
starts in the middlef an empty room it simply sits
there.If someonewalks up to it, the robot moves
away. If it moves in the direction of other obstacles it
halts. Overall, it managesto exist in a dynamic
environment without hitting or being hit by objects.



The next layemakesthe robot wanderabout,
when not busy avoiding objects. The wander finite
state machine generatesa random heading for the
robot every ten secondsor so. The avoid machine
treatsthat headingas an attractiveforce and sums it
with the repulsive force computed fratime sonars.It
usesthe resultto suppresghe lower-level behavior,
forcing the robot to move in a direction closenbat
wander decidedbut at the same time avoid any
obstaclesNote that if the. turn and forward finite
statemachinesare busy running the robot the new
impulse to wander will be ignored.

(3) The third layemakesthe robot try to explore.
It looks for distantplacesthentriesto reachthem.
This layer suppressethe wanderlayer, and observes
how the bottom layer diverts the robot due. to
obstacles, (perhaps dynamic). It corrects for any
divergences and the robot achieves the goal.

explore

feelforce runaway turn
force

avoid
g
g
g

o heading | forward
£ encoders

collide

Fig. 2. We wire, finite state machinestogetherinto layers of
control. Each layer is built on topf existing layers. Lower level
layers never rely on the existence of higher level layers.

The whenlookfinite state machine notices when
the robot is not busynoving, andstartsup, the free
spacefinder (labelled stereoin the diagram) finite
state machine. At the same time it inhibits wandering
behaviorso that the observationwill remain valid.
Whena pathis observedt is sentto the pathplan
finite state machine, which injects a commanded
direction to the avoid finite state machine.In this
way, lower-level obstacle avoidance continues to
function. This may cause the robot to go in a
direction different to that desiredby pathplan. For
that reasorthe actualpath of the robot is monitored
by the integrate finite state machine, which sends
updatedestimatesto the pathplan machine. This
machinethen actsas a difference engine forcing the
robot in the desireddirection and compensatingor
the actual path of the robot as it avoids obstacles.

Theseparticular layers were implementedon our
first robot. See [3] for more details. Brooks and
Connell [5] report on another three layers
implemented on that particular robot.

7. What this is not

The subsumptionarchitecturewith its network of
simple machiness reminiscent,at the surfacelevel
at least, with aaumberof mechanisticapproacheso
intelligence, such as connectionism and neural
networks.But it is different in many respectsfor
theseendeavorsand also quite different from many
other post-Dartmouth traditions in artificial
intelligence. We very briefly explain thosi#ferences
in the following sections.

7.1. It isn't connectionism

Connectioniststry to make networks of simple
processorslin that regard,the things they build (in
simulation only—no connectionisthaseverdriven a
real robot in a real environment,no matter how
simple) aresimilar to the subsumptionnetworkswe
build. However, their processingnodestend to be
uniform and they are looking (as their name suggests)
for revelationsfrom understandinghow to connect
them correctly (which is usually assumedo mean
richly at least).Our nodesareall unique finite state
machines and the density of connections is very much
lower, certainly not uniform, and very low indeed
betweenlayers. Additionally, connectionistseemto
be looking for explicit distributed representationso
spontaneousharisefrom their networks. We harbor
no such hopes because believerepresentationare
not necessanandappearonly in the eyeor mind of
the observer.

7.2. It isn't neural networks

Neural networksis the parentdiscipline of which
connectionismis a recent incarnation. Workers in
neuralnetworksclaim that thereis some biological
significanceto their network nodes, as models of
neurons. Most of the, models seem wildly
implausible given the paucity of modeled connections
relativeto the thousandgound in real neurons.We
claim no biological significancein our choice of
finite state machines as network nodes.

7.3. It isn't production rules

Each individual activity producing layer of our
architecture could be viewess an implementationof
a production ruleWhenthe right conditionsare met
in the environment a certain action will be performed.



We feel that analogyis a little like saying that any
FORTRAN program with IF statements is
implementinga productionrule system.A standard
production system really is more—hasa rule base,
from which a rule is selectedbasedon matching
preconditionsof all the rulesto some databaseThe
preconditionsmay include variableswhich must be
matched to individuals in theéatabasebut layersrun
in parallel and have no variables or need for
matching.Instead,aspectf the world are extracted
and thesalirectly trigger or modify certainbehaviors
of the layer.

7.4. It isn't a blackboard

If one, really wanted,one could make an analogy
of our networks taa blackboardcontrol architecture.
Some of the finitestatemachineswould be localized
knowledge sources. Others woldd processescting
on theseknowledgesourcedby finding them on the
blackboard.There is a simplifying point in our,
architecturehowever:all the processe&now exactly
where to  look on the blackboard as they are
hard-wiredto the correctplace. | think this forced
analogy indicatesits own weakness.There is no
flexibility at all on where a processcan gather
appropriate knowledge. Most advanced blackboard
architecturesnake heavyuse of the generalsharing
and availability of almost all knowledge.
Furthermore,in spirit at least, blackboard systems
tend tohide from a consumerof knowledgewho the
particularproducer was. This is the primary means
of abstractionn blackboardsystems.In our system
we make such connections explicit and permanent.

7.5. It isn't German philosophy

In some circles much credenceis given to
Heideggeras one who understoodthe dynamics of
existence.Our approachhas certain similarities to
work inspiredby this Germanphilosopher(e.g. [1])
but ourwork wasnot so inspired.It is basedpurely
on engineering considerations. That does preclude
it from being usedin philosophical debateas an
example on any side of any fence, however.

8. Limits to growth

Sinceour approachis a performance-baseohne, it
is the performanceof the systemswe build which
must be usedto measurdts usefulnessandto point
to its limitations.

We claim that as of mid-1987 our robots, using
the subsumptiorarchitectureto implementcomplete
Creatures,are the most reactive real-time mobile
robots in existence.Most other mobile robots are

still at the stageof individual "experimentalruns”in

static environments, or at bdast completelymapped
static environments. Ours, on théherhand,operate
completely autonomously in complex dynamic
environmentsat the flick of their on switches,and
continueuntil their batteriesare drained.We believe
they operateat a level closerto simple insect level

intelligencethan to bacterialevel intelligence. Our
goal (worth nothing if we don't deliver) is simple
insect levelintelligencewithin two years.Evolution
took 3 billion yearsto get from single cells to

insects,and only another500 million years from

there to humansThis statemenis not intendedas a
prediction of our future performance,but rather to

indicate the nontrivial nature of insect level
intelligence.

Despitethis good performancdo date,thereare a
number of seriougjuestionsaboutour approachWe
have beliefs and hopes about how these questions
will  be resolved, but under our criteria only
performanceruly counts. Experimentsand building
more complex systems takiene, so with the caveat
that the experimentsdescribedbelow have not yet
been performedve outline how we currently seeour
endeavor progressing. Our intent in discussing is
to indicate that there is at least a plausible path
forward to more intelligent machines from our current
situation.

Our belief is that the sorts of activity producing
layers of control weare developing(mobility, vision
andsurvival relatedtasks)are necessaryprerequisites
for higher-levelintelligencein the style we attribute
to human beings.

The most naturahnd seriousguestionsconcerning
limits of our approach are:

* How many layerscanbe built in the subsumption
architecturebefore the interactions between layers
become too complex to continue?

 How complex can the behaviors be that are
developed without the aid of central representations?

* Can higher-level functions such as learning odour
thesefixed topology networksof simple finite state
machines?

We outline our current thoughts on these questions.
8.1. How many layers?

The highest number of layers we have run on a
physical robot is three. In simulation we have run six
parallel layers. The technique of completely
debugging the robot on all existing activity



producinglayersbefore designingand adding a new
one seems to have been practical till now at least.

8.2. How complex?

We are currently working towards a complex
behavior pattern on our fourth robot which will
require approximately fourteen individual activity
producing layers.

The robot hasinfrared proximity sensorgor local
obstacleavoidance.It has an onboard manipulator
which can grasp objects at ground and table-top
levels, and also determinetheir rough weight. The
hand has depth sensors
mountedon it so that homingin on a target object
in order to grasp itanbe controlleddirectly. We are
currentlyworking on a structuredight laser scanner

to determine rough depth maps in the forward looking

direction from
the robot.

The high-level behaviowe aretrying to instill in
this Creatureis to wanderaroundthe office areasof
our laboratory,find openoffice doors,enter, retrieve
empty soda cans from cluttered desks in crowded
offices and return them to a central repository.

In orderto achievethis overall behaviora number
of simpler task achieving behaviorsare necessary
They include: avoiding objects, following walls,
recognizing doorways and going through them,
aligning on learned landmarks, heading in a
homewarddirection, learning homewardbearings at
landmarksand following them, locating table-like
objects, approachingsuch objects, scanning table
tops for cylindrical objects of roughly theeight of a
sodacan, servingthe manipulatorarm, moving the
handabovesensedbjects,using the handsensorto
look for objectsof sodacansize sticking up from a
background, grasping objects if they are light
enough, and depositing objects.

The individual tasks neednot be coordinated by
any centralcontroller. Insteadthey can index off of

the state of the world. For instance the grasp behavior

can cause thmanipulatorto graspany objectof the
appropriate sizeeenby the handsensorsThe robot
will not randomly grasp just any object however,
becauseit will only be when other layers or
behaviors have noticed an objeftroughly the right
shapeon top of a table-like objectthat the grasping
behavior will find itself in a position where its
sensing of the worldells it to react.If, from above,
the object no longelooks like a sodacan,the grasp

reflex will not happen and other lower-level behaviors

will causethe robot to look elsewherefor new
candidates.

8.3. Is learning and such possible?

Someinsectsdemonstrate simple type of learning
that hasbeendubbed"learning by instinct" [7]. It is
hypothesizedthat honey bees for example are
pre-wired tolearnhow to. distinguishcertainclasses
of flowers, andto learnroutesto and from a home
hive andsourcesof nectar.Otherinsects,butterflies,
havebeenshownto be able to learnto distinguish
flowers, but in an information limited way [8]. If
they are forced to learn abouseacondsort of flower,
they forget what they already knew abdtiu first, in
a manner that suggests the total amount of
information which they know, remains constant.

We have found a way to build fixed topology
networks of our finite state machineswhich can
perform learningas an isolatedsubsystemat levels
comparableto theseexamples.At the moment of
course we are in the very position we lambastexdt
Al workersfor earlier in this paper. We have an
isolated module o& systemworking, andthe inputs
and outputs have been left dangling.

We are working to remedy this situation, but
experimentalwork with physical Creaturesis a
nontrivial and time consumingctivity. We find that
almost any pre-designedpiece of equipment or
software has so many preconceptions of liogy are
to be used builinto them, that they are not flexible
enough tobe a part of our completesystems.Thus,
asof mid-1987,our work in learningis held up by
the needto build a new sort of video cameraand

high-speed low-power processing box to run specially

developed vision algorithms &0 framesper second.
Each of these steps is a significant engineering
endeavor which we are undertaking as fast as
resources permit.

Of course, talk is cheap.

8.4. The future

Only experiments with real Creatures in real worlds

can answerthe natural doubtsabout our approach.
Time will tell.
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