
CERN/IT/ASD/RD45/98/12
Javier Conde

 16 December 1998

Mobile Agents in JAVA

 General Magic ODYSSEY

1 INTRODUCTION..6

2 WHY MOBILE AGENTS...6

3 JAVA AS TECHNOLOGY BASE FOR MOBILE AGENTS..7

4 IBM’S AGLETS...8

5 MITSUBISHI’S CONCORDIA..12

6 GENERAL MAGIC’S ODYSSEY..18

7 OBJECTSPACE’S VOYAGER..20

8 OTHER AGENT SYSTEMS IN JAVA..27

8.1 JAVA AGENT TEMPLATE...27
8.2 NCSA HABANERO...28

9 OTHER TECHNIQUES FOR DISTRIBUTED COMPUTING..28

9.1 THE COMMON OBJECT REQUEST BROKER (CORBA)...29
9.2 RMI...34
9.3 SERVLETS...36

10 AGENT SYSTEMS COMPARISON..38

11 SOME APPLICATIONS OF MOBILE AGENT TECHNOLOGY IN HEP ENVIRONMENTS.....42

1 Introduction

The aim of this paper is to explain how to implement a distributed environment using Java
agents and to provide a comparison between different implementations of agent based
systems and other distributed technologies in Java.

The purpose of this study was to choose one implementation for a distributed agent model,
for controlling and managing the servers involved in an Objectivity/DB federated database,
and for accessing the information stored in the federated database.

First of all, we will discuss the advantages of mobile agents and we will give an overview
of some different implementations of Java agents, and comment the main features of each
one. There are also some other techniques to develop distributed programming that we will
discuss.

The aim of this paper is not to study of all the possibilities of the use of agents, but only to
see the improvements that we will obtain in our applications using agents.

We then discuss different applications using mobile agent systems and Objectivity/DB Java
bindings, for accessing the information locally, instead of using a WAN communication.

For a further discussion of the use of agents see “Computational Media for Mobile
Agents”, Nelson Minar, available at
http://nelson.www.media.mit.edu/people/nelson/research/dc/dc.html.

2 Why mobile agents

The traditional paradigm that ties all distributed object technologies together is a
synchronous message-passing paradigm whereby all objects are distributed, but stationary,
and interact with each other through message-passing.

Mobile agents can provide a single uniform paradigm for distributed object computing,
encompassing synchrony and asynchrony, message-passing and object-passing, and
stationary objects and mobile objects.

Along with mobility, agents have the following unique and important computational
characteristics:

• Object-passing: when a mobile agent moves, the whole object is passed; that is, its
code, data, execution state, and travel itinerary are passed together.

3

http://nelson.www.media.mit.edu/people/nelson/research/dc/dc.html

• Autonomous: the mobile agent contains sufficient information to decide what to
do, where to go, and when to go.

• Asynchronous: the mobile agent has its own thread of execution and can execute
asynchronously.

• Local interaction: The mobile agent interacts with other mobile agents or
stationary objects locally.

• Disconnected operation: the mobile agent can perform its tasks whether the
network connection is open or closed. If the network connection is closed and it
needs to move, it can wait until the connection is reopened.

• Parallel execution: more than one mobile agent can be dispatched to different sites
to perform tasks in parallel.

The technical advantages of mobile agents are many, and there is no single alternative to all
of the functionality they provide.

3 Java as Technology Base for Mobile Agents

There are many technical challenges to implementing mobile agent systems. Most of these
problems are in the structure of the computational medium, the environment the agents
operate in. Servers must be designed, implemented, and deployed that not only allow
mobile agents to run, but allow them to run safely.

The main requirements for mobile agent systems are:
• Portability: mobile agent code must be portable; when an agent arrives at a server

the server needs to be able to execute that agent. Commonly used computer
languages such as C and C++ are not very portable.

• Network communication: Mobile agents that live in the network need to be
written in a language that makes network access simple. It must be easy to transfer
objects across the network and to invoke methods of remote objects.

• Server security: a major concern specific to mobile agents is the protection of the
servers running the agents. Running arbitrary programs on a machine is dangerous.
Server execution environment can be designed to make dangerous operations
difficult or impossible. An approach involves creating a ``sandbox'' for visiting
agents, restricting access to resources and ensuring the agent cannot escape those
restrictions.

No system perfectly meets all the requirements, but the Java system from Sun
Microsystems is the best available system today. The features included in Java, and needed
by mobile agent systems are:

• Portability: Java takes a virtual machine approach to portability. Java programs are
shipped as bytecode; the bytecodes are a simple stack language that is interpreted
by a virtual machine on the compute server.

• Network communication: One of Java's main strengths is that it gives simple
access to Internet communication. Source code for software can be transparently
downloaded from anywhere on the Internet. Custom socket level transmission of
byte streams is easy with existing Java class libraries. Java1.1 includes two standard
facilities to make distributed object easy: object serialisation and remote method
invocation (RMI).

• Server security: A special object, a security manager, defines which resources a
Java program is allowed to access The Java virtual machine also contains a
bytecode verifier that does static checks to prevent forbidden code sequences from
being loaded, thereby ensuring the unbreachability of the sandbox surrounding the
incoming code.

There are some other technologies that also support mobile agents. One of the first agent
systems is Telescript from General Magic. Other implementations are Inferno (a network
operating system based on Plan 9, from Lucent Technologies) and ActiveX from
Microsoft.

4 IBM’s Aglets

The Aglet Workbench is a 100% pure Java mobile agent technology. This package has
been developed at the IBM Tokyo Research Laboratory (http://www.trl.ibm.co.jp/aglets/).

Aglets are Java objects that can move from one host to another. The Java Aglet API (J-
AAPI) is the interface to build aglets and their environment. J-AAPI defines the methods
for aglet creation, message handling, dispatching, retraction, deactivation/activation,
cloning, and disposing of the aglet. This API is platform-independent and needs he JDK1.1
or later to run.

The documentation that comes with the Aglet includes:
• Installation guide: this guide will take you through the initial steps of installing

and setting up the environment.
• Getting started: general introduction to the ASDK (Aglets Software Development

Kit), and how to start Tahiti (the Aglets server).
• Release Notes: features of this release
• Demonstration programs and samples.

There are also three others paper in the Aglets web page: Aglets Specification, Agent
Transfer Protocol (an application level protocol for distributed agent-based systems), and
the FAQ.

As all the agent implementations, the Aglets system has an agent server called Tahiti. By
default, it starts using the port 434 for communications, but it can be modified. For
communicating between the servers, it uses the Agent Transfer Protocol (ATP) that offers a
platform independent protocol for transferring agents between networked computers.

5

The purpose of ATP is to offer a simple and platform independent protocol for transferring
agents between networked computers. ATP also offers the opportunity to handle agent
mobility in a general and uniform way, regardless of the agent implementation language
and vendor specific platform.

ATP defines the following four standard request methods:
• Dispatch: the dispatch method requests a destination agent system to reconstruct an

agent from the content of a request and to start executing the agent. If the request is
successful, the sender must terminate the agent and release any resources consumed
by it.

• Retract: the retract method requests a destination agent system to send a specified
agent back to the sender. The receiver is responsible for reconstructing and
resuming the agent. If the agent is successfully transferred, the receiver must
terminate the agent and release any resources consumed by it.

• Fetch: the fetch method is similar to the GET method in HTTP; it requests a
receiver to retrieve and send any identified information (normally class files).

• Message: the message method is used to pass a message to an agent identified by
an agent-id and to return a reply value in the response. Although the protocol adopts
a request/reply form, it does not lay down any rules for a scheme of communication
between agents.

Tahiti uses a graphical user interface to monitor and control aglets executing on the server.
You can start new aglets, know the aglets that are running on your system at any time,
deploy, retract and kill aglets. Additionally, the user can ask the server to display
information on memory usage, thread state and log messages.

The Aglet abstract class defines the fundamental methods for a mobile agent to control
their mobility and lifecycle. Only classes extending the Aglet class can be moved across the
network. When a new aglet is created some attributes with information about the creator
and the host where it is created are stored in an AgletInfo variable. Once you create an
Aglet class, you can send it to any other host. Agent creation is always local.

When an aglet wants to communicate with other aglets, it has to first obtain the proxy to
the object. This proxy is an interface that acts as a handle of an aglet and provides a
common way of accessing the aglet behind it. Public aglet methods cannot be accessed
directly from other aglets for security reasons. When the AgletProxy is invoked, it
consults the Security Manager to determine whether the current execution context is
permitted to perform the method.

The context of an aglet is a proxy to the runtime environment that it occupies. This context
is used to obtain local information such as addresses of the hosting context, proxies to the
aglets in the same context, and for create a new aglet in the context.

Aglet objects communicate by exchanging objects of the Message class. A message
object has a String object to specify the kind of the message and an arbitrary number of
arguments. An aglet that wants to talk to another aglet first has to create a message object,
then send it to the peer aglet. The receiver aglet has to define its handleMessage method to

handle the incoming messages. In the handleMessage method, a Message object is passed
as argument and can be used to perform the operation according to the kind of message. If
it is handle, the method has to return a boolean true value. If the message cannot be handle,
this method has to return false, and the sender receives a NotHandleException.

There are three different types of messages:
• Now-type: a now-type message is synchronous and blocks until the receiver has

completed the handling of the message.
• Future-type: a future-type message is asynchronous and does not block the current

execution. The method returns a FutureReply object that can be used to obtain
the result or wait for it later.

• Oneway-type: an oneway-type message is asynchronous and does not block the
current execution. It differs from a future-type message in the way it is placed at the
tail of the queue even if it is send to the aglet itself, and does not have return value.

If an aglet send a message to itself, the message is not put at the tail of the queue but at the
head, and it is executed immediately to avoid deadlock.

Behaviour supported in the aglet object model includes creation, cloning, dispatching,
retraction, deactivation, activation, disposal of and messaging.

• The creation of an aglet takes places place in a context. The new aglet is assigned
an identifier, inserted in the context, and initialised. The aglet starts executing as
soon as it has successfully been initialised.

• The cloning of an aglet produces an almost identical copy of the original aglet in
the same context. The only differences are the assigned identifier and that execution
restarts in the new aglet. Execution threads are not cloned.

• Dispatching of an aglet from one context to another will remove it from its current
context and insert it into the destination context, where it will restart execution
(execution threads will not migrate).

• The retraction of an aglet will remove it from its current context and insert it into
the context from which the retraction was requested.

• The deactivation of an aglet is the ability to temporarily remove it from its current
context and store it in secondary storage. Activation of an aglet will restore it in a
context.

• The disposal of an aglet will halt its current execution and remove it from its
current context.

• Messaging between aglets involves sending, receiving and handling messages
synchronously as well as asynchronously.

To specify the aglet behaviour in response of the different events, you can overwrite the
next methods. All these callbacks are also inserted into the message queue. You will not
receive the event until the current message owning the monitor is completed.

7

When Event Object Listener Method called
About to be cloned CloneEvent CloneListener onCloning
Clone is created CloneEvent CloneListener onClone
After the clone was created CloneEvent CloneListener onCloned
About to be dispatched MobilityEvent MobilityListener onDispatching
About to be retracted MobilityEvent MobilityListener onReverting
After arrived at the destination MobilityEvent MobilityListener onArrival
About to be deactivated PersistencyEvent PersistencyListener onDeactivating
After activated PersistencyEvent PersistencyListener onActivation

Security is essential to any mobile agent system, because accepting a hostile agent may lead
to your computer being damaged or your privacy intruded upon. For secure agent
execution, the agent system must provide the following security services:

• Authentication of the Sender, the Manufacturer and the Owner of the Agent.
• Authorization of the Agent (or Its Owner)
• Secure Communication between Agent Systems.
• Non-repudiation and Auditing.

The security architecture implements the security model by providing a set of components
and their interfaces. Any useful mobile agent system must implement general and flexible
security policies. The Aglet Workbench security model simplifies the administration of
these policies by introducing the notion of roles, namely, the manufacturer, owner and
master. There is a language for defining policies that provides named groups, composite
principals (a set of principal or entity whose identity can be authenticated by a system) and
hierarchical resources with associated permissions that allow the definition of high-level
authorisation policies. For more information, see article about the “Security Model for
Aglets” in IEEE July-august 1997.

Although it should be possible to directly edit the policy file to specify permissions, Tahiti
provides you with the GUI that make easy to define the security group and set permissions.

The Aglets Workbench does provide a reasonable level of security to make it safe to use
mobile agent applications. The following security features are supported in the latest
Aglets runtime:

• Authentication of users and domains.
• Integrity checked communication between servers within a domain.
• Fine-grained authorization similar to the JDK1.2 security model.

The Aglets runtime itself has no communication mechanism for transferring the serialized
data of an aglet to destinations. Instead, the Aglets runtime uses the communication API
that abstracts the communication between agent systems. This API defines methods for
creating and transferring agents, tracking agents, and managing agents in an agent-system-
and protocol-independent way.

The current Aglets uses the Agent Transfer Protocol (ATP) as the default implementation
of the communication layer. ATP is modeled on the HTTP protocol, and is an application-

level protocol for transmission of mobile agents. To enable remote communication
between agents, ATP also supports message passing.

The communication API used by Aglets runtime is derived from the OMG standard,
MASIF (Mobile Agent System Interoperability Facility), which allows various agent
systems to interoperate. This interface abstracts the communication layer by defining
interfaces and providing a common representation in Java that conforms to the IDL defined
in the MASIF standard.

Although MASIF interfaces are intended for CORBA objects, the interfaces actually
defined in Aglets are not CORBA-based. In fact, they are defined as normal Java classes,
interfaces or abstract classes that act as common wrappers for the protocols actually being
used.

Unlike normal Java objects, aglets are never garbage-collected automatically, because an
aglet is active and has its own threads of control. An aglet programmer needs to explicitly
dispose of an aglet.

When an aglet has been dispatched, deactivated, or disposed of, the AgletRef object is
removed from the reference table. In addition, the internal reference to that aglet and
associated components such as MessageManager object or properties are set to null so that
the garbage collector can sweep up these dangling objects. This means that if you have a
live reference to this aglet elsewhere, it will not be Garbage Collected.

5 Mitsubishi’s Concordia

Concordia is a full-featured framework for the development and management of network-
efficient mobile agent applications that extend to any device supporting Java. Concordia
consists of multiple components, all written wholly in Java, which combine together to
provide a complete, robust environment for applications.

A Concordia System, at its simplest, is made up of a Java Virtual Machine (VM), a
Concordia Server, and at least one mobile agent on 1 network node. Usually, there are
many Concordia Servers, one on each of the various nodes of a network, both user and
server nodes. The Concordia Servers are aware of one another and connect on demand to
transfer agents in a secure and reliable fashion. The agent initiates the transfer by invoking
the Concordia Server’s methods. This signals the Concordia Server to suspend the agent
and to create a persistent image of it to be transferred. The Concordia Server inspects an
object called the Itinerary, created and owned by each agent, to determine the appropriate
destination. That destination is contacted and the agent’s image is transferred, where it is
again stored persistently before being acknowledged. In this way the agent is given a
reliable guarantee of transfer.

9

After being transferred, the agent is queued for execution on the receiving node. This
happens promptly but possibly subject to certain administrative constraints. When the
agent again begins executing, it is restarted on the new node according to the method
specified in its itinerary, and it carries with it those objects which the programmer
requested. Its security credentials are transferred with it automatically and its access to
services is under local administrative control at all times.

The Concordia Server is a Java program which runs in the Java VM on machines in the
network where mobile agents may need to travel. The Concordia Server is responsible for
providing all Concordia functionality on a given machine. The Concordia Server manages
the life cycle of the agent. It provides for agent creation and destruction, and provides an
environment in which the mobile agent executes.

The Concordia components are:

• The Agent Manager provides the communications infrastructure that allows for
agents to travel. It abstracts the network interface so that agent programmers do not
need network specifics or programming interfaces.

• The Security Manager protects resources and ensures the security and integrity of
mobile agents and their data. Concordia security can be configured via a graphical
user interface.

• The Persistence Manager maintains the state of mobile agents and objects in transit
around the network. It makes it possible to restart mobile agents in the event of a
server failure and restart.

• The Inter-Agent Communication Manager handles the registration, posting and
notification of events to and from mobile agents. It provides for multicast events
(send events to multiple recipients) and is distributed such that the sender and
receiver of an event need not be on the same machine. Also, the Inter-Agent
Communication Manager provides an infrastructure which allows the mobile agents
to collaborate (i.e. synchronise and share data with each other).

• The Queue Manager is responsible for the scheduling and guaranteed delivery of
mobile agents between Concordia servers. It provides for reliable transmission in an
unreliable network.

• The Directory Manager provides a name service for applications and agents. It
allows agents to find services in the network.

• The Administration Manager provides remote administration of Concordia. Only
one

• Administration Manager is required in the Concordia System. The Administration
Manager supports simultaneous, central administration of multiple servers. The
Administration Manager has a user interface component that is its primary means of
use.

• The Agent Tool Library is the set of development tools provided by Concordia.
This includes all Concordia APIs (Administration APIs, Lightweight Agent
Transport APIs, Service Bridge API, etc.) and agent classes needed to develop
Concordia mobile agents.

As one might expect from the names of its various components, the Concordia system
provides some features that are completely absent from the other agent systems. The
Administration Manager provides a user interface for administering all the services
provided by Concordia, including security, event handling and agent migration. Only one
administrator is required per Concordia network.

Following are some of the features provided by Concordia.

• Concordia employs existing TCP/IP communications services. Concordia does not
impose a protocol or distributed computing service of its own.

• Advanced management functions allows thousands of mobile agents to run on a
single workstation. Concordia administration can start, stop, suspend, and resume
Concordia Servers; view, stop, suspend, and resume agents at a Concordia Server;
create, modify, delete users and/or permissions; upgrade and install Concordia
Servers, monitor Concordia Server performance, and manage the components.

• Collaboration provides a number of benefits, such as enabling parallel operation
over multiple servers or multiple networks. Using collaboration, an application can
divide a task into subtask, the subtask can be carried out in the most appropriate
places. The results of these sub-tasks are then assembled by the collaboration
framework. A decision is made based upon the results, which can be used to
determine destination, action, or other appropriate behaviour.

• The Service Bridge allows a developer to add services to a Concordia Server.
Service Bridges may be managed remotely via the Concordia Administration
Manager. For example, you can provide access to an application-specific service so
the service does not need to travel with the mobile agent

• The Service Bridge also provides a way out of the Virtual Machine to the outside
world.

• Persistence and Queuing provides for automatic retries of agent transmission and
queue storage recovery in case of server and/or network failures. These 2 features
also provide for load balancing when machines in a network provide different
response time and the order of execution is important.

• The Itinerary specifies where a mobile agent travels. It provides a method to allow
destinations to be added or removed either by the application, mobile agent or the
Concordia Administration.

• Service Naming is a name service for applications and agents. In an environment
where information is dynamic (i.e. the Internet), this provides an easy way to
establish a list of locations where services reside.

• The Concordia Security Structure unlike most agent systems provides security
based on the rights of the user of the applications - not the permissions given by the
developer of the application. This provides for more control of which files,
databases, resources, etc., are available to a specific end user. In addition, the
security system protects resources from access by unauthorised mobile agents and
protects mobile agents from being tampered with by unauthorised users.

• The Lightweight Agent Transporter API allows the developer to embed within a
client application the ability to receive, execute, and launch Concordia Agents. The
application can receive notifications from the mobile agent and can directly interact
with mobile agent.

11

• Encryption is not technically a part of the Security. Concordia can provide
Encryption as a security measure or the developer can plug in their own encryption
scheme.

Concordia has recently finished the version 1.1.1 of the system, and we analyse a demo
version without the security features. Concordia system comes with some utilities for:

• Concordia Administrator: a graphical user interface from which you can
configure the Concordia network. You can obtain performances of the different
services and managers

• Concordia Agent Launch Wizard: with this utility, you can send an agent to any
Concordia server, specifying the method that must be executed when the agent
arrives to the destination. You can also specify an itinerary for the agent.

• Concordia Persistent Store Browser: a graphical tool to see the objects stored in
one server, with information about the memory occupied by the object, when it was
stored, the OID and the result of applying the method toString() to the Object. It is a
simple tool that makes it possible to look at and manipulate the contents of
persistent store files. Persistent Store files are created and maintained by various
Concordia components using the
COM.meitca.concordia.persist.PersistentStoreManager API.

• Concordia Queue File Browser: is a tool for viewing and editing the contents of
Incoming and Outgoing queue storage files. Queue files are created and used by the
QueueManager component of the Concordia Server (if Queuing is enabled) to
provide for reliable agent transmission.

• Concordia Server Control Panel: on 32-bit Windows platforms, the Concordia
Server may be controlled and configured using the Concordia Server Control Panel.
After installation of the Concordia kit, the Control Panel will start automatically
each time a user logs in to the system. It may also be started manually using the
Concordia Server Control Panel icon in the Start menu. The Concordia Server
Control Panel requires Administrator privilege on Windows NT. It will not start
automatically for a non-privileged user, and if a non-privileged user attempts to
start it using the Start menu, an error message will be displayed and the Control
Panel will exit. This behaviour is required to prevent non-privileged users from
affecting the Server in a secure environment.

The Concordia Security management can be illustrate with the following diagram:

Under normal circumstances, each Concordia Server maintains its own local copy of the
Security Passwords and Security Permissions databases. The Administrator runs in a
separate process using a separate Java Virtual Machine than the Concordia Servers. The
Administrator uses RMI to control all Concordia Servers, using a private remote
Administration method interface. The Administrator itself accesses the Security Passwords
and Security Permissions file of the Concordia Server to which it is "logged in".

Normally, the Administrator is logged into the local host, in which case the security files
are read and written directly using normal file I/O. However, the Administrator may be
logged into a remote server, in which case the security tables are accessed via a special

13

RMI method interface to the remote Server. In order to login to a remote Server, the
Concordia Server must be running on the remote machine.

Each time the Administrator requests a remote operation, it sends the security ID of the
user who logged into the Administrator to the remote Server. If the security ID is not valid
or does not have sufficient privilege to perform the requested operation, an exception is
thrown and the Administrator will report the error. The implication of this design is that in
order for a user to use the Administrator to affect remote Servers, the User ID (including
the password) must be identical on all Servers, and must have sufficient permissions define
on it to enable the operation.

Concordia provides a complete set of resource permissions to govern access to the remote
administration capabilities of Concordia. This makes it possible, for example, to set up an
environment where some users are permitted to monitor the Concordia network, but not to
change anything, while other users may be granted complete access to control all features
of the system.

The list of security resources that can be controlled is:
• AgentAdmin.Monitor: this resource permission may be used to grant or deny the

ability of an Administrator user to monitor agents on a Concordia Server using the
Performance Monitor on the Agent Manager.

• AgentAdmin.Manage: this resource permission grants (or denies) the ability for a
user to affect the execution of an agent on the Server using the AgentAdmin panel
of the Performance Monitor.

• PropertyAdmin.View: this resource grants or denies the user access to examine
the properties of the Concordia Server or any of its installed Services. These
properties normally are displayed in the right pane of the Administrator window
when the Server or a Service are selected.

• PropertyAdmin.Modify: this resource grants or denies the user the ability to
modify the properties of the Concordia Server or any of its installed Services.

• SecurityAdmin.Modify: this resource grants or denies permission for the user to
modify the password or permissions files on the Server or on the local host.

• ServerAdmin.Monitor: this resource grants or denies permission to view the
performance statistics of a Concordia Server or any of its Services.

• ServerAdmin.Manage: this resource grants or denies permission to affect the
execution or state of any of the installed Services on a Concordia Server.

• ServerManagerAdmin.Monitor: this resource grants or denies permission for a
user to query a Concordia Server to determine which Services are installed on the
Server, and their current state.

• ServerManagerAdmin.Manage: this resource grants or denies permission to
modify the state of the Concordia Server or any of its Services, and also grants or
denies permission to install or remove Services from the Server.

I was not able to examine the security issues, because I only could obtain a demonstration
program, with all the features except the security part.

To develop mobile Concordia agents, you have several possibilities. Normally, you will
extend the Agent class, which has all the methods need for an agent to be executed and to
travel through a computer network. An Agent's travels are specified by its Itinerary, which
is composed of a list of Destinations. Each Destination indicates the name of a machine on
the network to which the Agent should travel, and the name of a method of the Agent that
should be executed when the agent arrives at that host.

An AgentTransporter provides a lightweight infrastructure for launching, receiving, and
executing Concordia Agents, without the use of a full Concordia Server. Typically, a Java
application will create an instance of AgentTransporter, instead of starting a Concordia
Server, to enable Concordia Agents to travel to/from itself and to provide and execution
context for the agents. After creating an AgentTransporter, a Concordia Agent can travel
into the application or applet, have one of its methods invoked by the AgentTransporter as
specified by the Itinerary, and then continue travelling to other hosts. New agents can now
also be created and launched.

From an applet, you cannot start an AgentTransporter. You have then a ConcordiaApplet
that provides lightweight infrastructure for sending/receiving/executing Concordia Agents
from within a Java applet.

A CollaboratorAgent is a subclass of Agent that enables collaboration among agents in a
group. Agents wishing to collaborate must extend this class to do some useful work. They
must also belong to at least on agent coordination group (AgentGroup). Generally, an
application first creates an AgentGroup. Subsequently, it creates new CollaboratorAgents
and populates the group with them.

A Secure Concordia Agent must be created extending the SecureAgent class. This class
allows an agent to properly identify itself to the ConcordiaSecurityManager. SecureAgents
carry three additional pieces of information with them.

• Identification: the SecureAgents Identification is the identity of the person using
the SercureAgent. The SecureAgents Identification is used by the
ConcordiaSecurityManager to determine what resource permissions the
SecureAgent has access to on the Concordia Server.

• ClientRestrictions: prevent a SecureAgent from accessing resources on a
Concordia Server. ClientRestrictions will prevent resource access regardless of the
permissions assigned to the user of the SecureAgent. ClientRestrictions may be
used by a developer to ensure that SecureAgents, derived from some SecureAgent
the developer creates, can not access a certain resource. It may be that access to this
resource will cause the developers Agent to behave improperly.

• SecurityPermits: they are used by the Concordia Server to temporarily assign a
SecureAgent access to resource permissions required by the Concordia Server.
Server Permits provide a way for the Concordia Server code to ensure that a
SecureAgent has permission to access a particular resource.

There is also the SecureCollaboratingAgent to create secure agents that collaborate within
an AgentGroup.

15

6 General Magic’s Odyssey

With the advent of Java, General Magic began developing Odyssey, a new agent system
implemented solely in Java that incorporates some of the concepts previously developed
for Telescript. Actually, they are in the beta 2 release.

Odyssey uses Java RMI. It also supports CORBA and DCOM protocols for agent transport.
A rmiregistry process must be started in every machine on which an Odyssey agent server
will run. Odyssey will attempt to start a rmiregistry process if one is not running when it is
needed. A limition with the Odyssey server is that only one can run per machine because
the name scheme it uses for agent contexts.

Odyssey is an agent system implemented as a set of Java class libraries that provide
support for developing distributed mobile applications. Odyssey provides Java classes for
agents and places. Odyssey agents are Java threads. They are created by subclassing the
Odyssey agent class or the Odyssey worker class.

The Odyssey Worker class is a subclass of the Odyssey Agent class. A worker is structured
as a set of tasks and a set of destinations. At each destination, the worker executes to
completion the next task on its task list.

An Odyssey worker may manipulate its task list at any point during its travels. For
example, a worker could go to a Yellow Pages place, find the top suppliers of rare books,
and add these places as new destinations and tasks in the task list.

The Odyssey agent system consists of a set of Java classes to support Odyssey agents and
Odyssey places.

A place is a context within an agent system in which agents execute. A mobile agent
travels between places. This context can provide functions such as access control. A place
is the stationary part of the application you write. Because agents execute only within
places, you add an instance of one or more places to each host running your application.

In Odyssey, the initial place created when the system is started is distinct from all other
places. This place is derived from the class BootPlace. When the BootPlace exits, the
Odyssey agent system shuts down, terminating all agents and places currently existing
within that agent system.

The place provides the interface to the functionality that is local at each host running your
application. This local functionality might include, the user interface code, and access to
the local databases. In general, a place is the gateway between agents visiting a host and the
host’s resources.

The Odyssey class hierarchy contains the classes that implement the Odyssey paradigm.
There are two classes for constructing mobile agents: Agent and Worker. There is also a
class, called Place, for the agent execution environments.

The hierarchy also includes classes that support agents, workers, and places. These classes
include Ticket (specifies how and where an agent travels), Means (specifies how an agent
travels), Petition (identifies who an agent wants to communicate with), and ProcessName
(used to generate the unique names of all processes, including agents and places).

The class hierarchy also includes three interfaces: genmagic.odyssey.AgentSystem,
genmagic.odyssey.Finder, and genmagic.odyssey.Transport. These interfaces allow a
developer to customize the implementation of an Odyssey agent system.

7 Objectspace’s Voyager

ObjectSpace Voyager is 100% Java and is designed to use the Java language object model.
Voyager allows you to use regular message syntax to construct remote objects, send them
messages, and move them between programs. The root of the Voyager product line is the
ObjectSpace Voyager Core Technology. This product contains the core features and
architecture of the platform, including a full-featured, intuitive object request broker (ORB)
with support for mobile objects and autonomous agents. Also in the core package are
services for persistence, scalable group communication, and basic directory services.
Voyager Core Technology is actually for free. There is another version, Voyager Pro, that
will be available by the end of 1998, which implements for security control and many other
features.

You can download the Voyager Core Technology for its web site:
http://www.objectspace.com/products/voyager/core/index.html

In the installation package there are the voyager utilities (voyager, igen and cgen), the
documentation files, examples and the Voyager jar file. The documentation included
contains the Voyager API guide (html) and the Voyager Core Technology User Guide
(pdf).

In the Objectspace web site, there is some other extra information about voyager:

• ObjectSpace Voyager™ Version 2.0.0 User Guide
• Voyager 2.0.0 Production API Documentation
• Voyager JDBC Activation Example
• Voyager PSE Activation Example
• Secure Java Applications Using Voyager and SSL
• ObjectSpace Voyager Technical Overview
• ObjectSpace Voyager and RMI Comparison

17

• ObjectSpace Voyager Agents Comparison
• ObjectSpace Voyager CORBA Integration Technical Overview
• ObjectSpace Voyager Transaction Service Technical Overview

Here is the list of Voyager features:
• Remote-Enabling a Class: Java classes are remote-enabled classes at

runtime. A class does not have to be modified in any way, and no additional files
are created.

• Construction: you can create a remote instance of any class and obtain a proxy
to the newly created object. The proxy implements the same interfaces as the
created object, and the proxy class is generated dynamically if it doesn’t already
exist.

• Dynamic Class Loading: classes can be dynamically loaded from one or
more locations when necessary. This allows you to easily set up class repositories
that serve your corporate Java applications.

• Remote Messaging: method calls made to a proxy are forwarded to its
object. If the object is in a remote program, the arguments are serialized using the
standard Java serialization mechanism and deserialized at the destination. The
morphology of the arguments is maintained. By default, parameters are passed by
value. However, if an object’s class implements IRemote or java.rmi.Remote, the
object is passed by reference instead.

• Exception Handling: if a remote exception occurs, it is caught at the remote
site and rethrown locally.

• Distributed Garbage Collection: The distributed garbage collector
reclaims objects when there are no more local or remote references to them. It uses
an efficient “delta pinging” algorithm that keeps the traffic required for garbage
collection to a minimum.

• Dynamic Aggregation™: This feature allows you to add secondary objects
(termed facets) to a primary object at runtime. For example, you can dynamically
add hobbies to an employee, a repair history to a car, or a payment record to a
customer. Dynamic aggregation represents a fundamental step forward for object
modelling and complements the traditional mechanisms of inheritance and
polymorphism.

• CORBA: There is full native support for IDL, IIOP, and bidirectional IDL<->Java
translation. No stub generators or helper classes are required.

• Mobility: You can move any serializable object between programs at runtime. If
a message is sent from a proxy to an object’s old location, the proxy is
automatically updated with the new location and the message is resent. Mobility is
often useful when optimizing message traffic in a distributed system.

• Autonomous Mobile Agents: you can create mobile autonomous agents
that move themselves between programs and continue to execute upon arrival. It is
easy to build agents that use movement to more efficiently satisfy their goals.

• Activation: the activation framework allows objects to be persisted to any kind
of database and automatically re-activated in the case that the program is restarted.
An object does not have to be modified in any way to be activable.

• Applets and Servlets: it is easy to create Voyager-enabled applets and
servlets. Because applets cannot open network connections to any machine except
their server, Voyager allows you to set up a server-side hub that can perform
message routing and dynamic proxy generation on the applet’s behalf.

• Naming Service: the naming service provides a single, simple interface that
unifies the many commercially available naming services. New naming services can
be dynamically plugged into Voyager’s naming service.

• Multicast: you can multicast a Java message to a distributed group of objects
without requiring the sender or receiver to be modified in any way.

• Publish-Subscribe: you can publish a Java event on a specified topic to a
distributed group of subscribers. The publish-subscribe facility supports server-side
filtering and wildcard matching of topics.

• RMI: the semantics of RMI’s Remote interface and RemoteException class are
supported. This means that you can easily use classes in Voyager that were
originally designed for use with RMI.

• Timers: a Stopwatch and Timer class facilitate common timing chores. Timer
events can be distributed and multicast if necessary.

• Thread Pooling: a thread pool is used when allocating and deallocating
threads, resulting in higher performance.

• Advanced Messaging: you can send oneway, sync, and future messages.
Oneway messages return immediately and discard the return value. Future messages
immediately return a placeholder to the result, which may then be polled or read in
a blocking fashion.

• Security: an enhanced security manager is included, as well as hooks for
installing custom sockets such as SSL.

Voyager Server

There are several ways to start a voyager server. Included with the installation package,
there is an executable program that starts a voyager server from the command line. This
utility creates an empty Voyager program that accepts objects and messages from other
Voyager programs.

On Windows NT it is also possible to install the server as a system Service, using the tool
JService, that can be found at http://www.bmobile.com/JService.

From a program, if you want to use any Voyager feature you have before to start the server
using the Voyager.startup() method. There are different methods to start the server:

• Voyager.startup(): startup as a client
• Voyager.startup(null): startup as a server on a random unassigned port
• Voyager.startup("8000"): startup as a server on port 8000
• Voyager.startup("//dallas:7000"): startup as server on port dallas:7000

To shutdown the server, invoke the method Voyager.shutdown().

19

By default, when you start a Voyager server, you don’t install any security manager. You
have to explicitly install a Java Security Manager using the System.setSecurityManager()
method. The security in Voyager will be explained later.

Agents and Remote Objects

Having objects that can move from one machine to another for exchanging a large number
of messages closer to the other objects reduces network traffic and increase throughput.
Local messages are often 1000 times faster than its remote equivalent. Also, having local
communication between objects, hosts don’t need to be connected to the network.

In the last release of Voyager, you don’t need to extend the Agent class to create a new
Agent. Any class will be converted in agent by calling the method Agent.of(<class>),
which return an interface object that contains the methods to work with agents (getHome(),
isAutonomous(), moveTo() and setAutonomous()).

Any serializable object can become a mobile agent using the Voyager dynamic aggregation
feature (explained below). When you first call the Agent.of() method, you create a new
facet in the object, which is the IAgent interface that contains the methods to enable the
object to be mobile.

Voyager also offers the possibility of remote object creation. To create an object at a
specific location, you have to use the Factory.create() method. This method returns a proxy
to the newly created object, and creates the proxy class dynamically if it does not already
exist.

There are several variations of create(), depending on whether the object is to be created
locally and whether the class’s constructor takes arguments. The name of the class must
always be fully qualified. To create a class locally in the program, you only need to specify
the fully qualified name of the class (e.g. java.util.Vector). To create the class remotely,
you also have to specify the name of the remote machine and the port. If the constructor of
the class takes any argument, you can also pass them when you call to the create() method.

You can move an object to a new location using the Mobility.of() method to obtain a
object’s mobility facet, and then using the moveTo() method defined in IMobility.

When you call the moveTo() method, any message that the object is currently processing is
allowed to complete and any new messages that arrive at the object are suspended. The
code that does this can only detect method calls that are synchronized, so if you must take
care of do not move an object that is executing non-synchronized methods. The object and
all of its non-transient parts are copied to the new location using Java serialization. To
avoid copying a particular part, you must declare it as a proxy.

In the system where the object resides, Voyager keep a reference to the new location, and
any message received in its old location will be forwarded to the new one, and the proxy
that references to the old address will be update for news messages.

An object can be notified before been moved. If the object or any of its parts implements
the IMobility interface, then it will receive callbacks during a move in the following order:

• PreDeparture(): this method is executed on the original object at the source. If the
method throws a MobilityException, the move is aborted.

• PreArrival(): this method is executed on the copy of the object at the destination. If
the method throws a MobilityException, the move is aborted.

• PortArrival(): at this point, the copy of the object has become the real object, the
object at the source has become the stale object, and the move is deemed successful
and cannot be aborted. postArrival() is executed on the copy of object at the
destination immediately prior to the user-supplied callback, and is typically defined
to perform activities such as adding the new object into persistent storage.

• PostDeparture(): this method is executed on the original stale object at the source,
and is typically defined to perform activities such as removing the stale object from
persistence. Messages sent to the stale object via a proxy will be redirected to the
new object, so postDeparture() should not utilise proxies to the original object or
any of its facets.

Sending Messages and handling Exceptions

You can send synchronous messages in Voyager using regular Java syntax. For other types
of messages, Voyager provides a message abstraction layer. You can dynamically construct
messages and send them to any remote object or agent. There are three different kind of
messages:

• Synchronous: using regular Java syntax or Sync (dynamically).
• Asynchronously: using Oneway or Future messages.

A message sent via a proxy is executed according to the following rules:
• If the destination object is in the same program, the message is delivered just like a

regular Java message. The arguments are not serialized or copied, resulting in very
high performance.

• If the destination object is in a different program, the arguments and return value
must be sent across the network. If an argument implements
com.objectspace.voyager.Iremote or java.rmi.Remote, a proxy to the argument is
sent (pass by reference), otherwise a copy of the argument is sent using standard
Java serialization (pass by value). Morphology of the arguments is maintained: an
object that is an argument or part of an argument is copied exactly once, and an
argument or part of an argument that shares an object in the local program will also
share a copy of the object in the remote program. The rules described for an
argument also apply to a return value.

By default, Voyager messages are synchronous. When a caller sends a synchronous
message, the caller blocks until the message completes. Synchronous messages can be sent
using regular Java syntax, but you can also send synchronous messages dynamically using
the Sync.invoke() method, which returns a Result object. This method has three arguments:

21

• The target object
• The name of the method you want to call on the target object. If there are more than

one method with the same name, you can also specify the argument typed using the
syntax method(type1, type2) .

• The parameters to the invoked method in an object array.

You can query the Result object using the following methods:
• isAvailable(): return true if the Result object has received its return value.
• readXXX(), where XXX = Boolean, Byte, Char, Short, Int, Long, Float, Double,

Object: return the value of the result object, blocking until either the value is
received or the timeout period elapses. If you attempt to call the read method and a
remote exception was thrown, it will be automatically rethrown.

• isException(): wait for a reply and return true if Result contains an exception.
• getException(): return the exception contained in Result, or null if no exception

occurred.

A One-Way message is a message that does not return a result. When the caller sends a
one-way message, it doesn’t block while the message completes.

If a remote method throws an exception, it is caught and re-thrown in the local program. If
a Voyager-related exception occurs and the interface method explicitly throws
java.rmi.RemoteException, the exception is thrown wrapped in a RemoteException,
otherwise it is thrown wrapped in a com.objectspace.voyager.RuntimeRemoteException. In
both cases, the public detail field contains the original exception.

Also, Voyager has a Console class that allows you to log information, including traces of
remote exceptions, to the console. There are three different logging levels:

• Silent: display no output in console.
• Exceptions: display stack traces of remote exceptions and unhandled exception in

the console.
• Verbose: display stack traces of remote exceptions, unhandled exceptions and

internal debug information in the console.

Multicast and Publish/Subscribe feature

Most traditional systems use a single repeater object to replicate a message or event to each
object of a group. This approach works fine with a small number of objects, but does not
scale well when large numbers of objects are involved. Voyager uses a scalable
architecture for message/event replication called Space.

A Space is a distributed container of objects and can span multiple programs. A Space is
created by linking together one or more Subspaces. A Subspace is a local container of
objects.

A message/event sent via multicast proxy into a Subspace is cloned to each of its
neighbouring Subspaces before being delivered to every object in the local Subspace. As

the message propagates, it leaves a marker unique to that message that is remembered for a
period of five minutes. If a clone of that message arrives to the Subspace, the clone detects
the marker and self-destructs. Subspaces can be connected using an arbitrary topology, so
the Space becomes more fault-tolerant in the face of individual network failures.

In a Subspace, you can use the method connect() to connect the Subspace with any other
Subspace (connections are symmetrics), and add() to add objects to a Subspace. You also
have methods to disconnect, get a list of the neighbours, remove object from a Subspace,
get a list of the objects contained in a Subspace and check if an object is contained in a
Subspace.

Voyager allows you to multicast a Java message to a group of objects in a Space. There are
to methods that allow you to do that:

• Multicast.invoke(String methodName, Object[] args, String classname): send a
one-way message to every object in the Space that is an instance of the specified
class or interface.

• Subspace.getMulticastProxy(String classname): return a multicast proxy that is
type compatible with the specified class or interface. Messages sent to this proxy
are sent to all the objects in the Space that are an instance or implement the
specified class or interface.

If you wants to publish an event associated with a topic to every object that implements
PublishedEventListener in a Space, use Subspace.publish(event, topic).

PublishedEventListener defines a single method publishedEvent(event, topic) that
receives every published event in the Space. It is up to the listener to
handle the event in the appropriate manner.

Naming Service

A naming service allows names to be associated with an object for later lookup. There are
many different implementations of naming services: Voyager federated directory service,
CORBA naming service, JNDI, Microsoft Active Directory, RMI registry.

Each naming service adds a prefix for later identification (vdir for Voyager federated
directory, IOR for CORBA).

8 Other agent systems in Java

8.1 Java Agent Template

The JAT provides a fully functional template, written entirely in the Java language, for
constructing software agents that communicate peer-to-peer with a community of other

23

agents distributed over the Internet. Although portions of the code that define each agent
are portable, JAT agents are not migratory but rather have a static existance on a single
host. This behavior is in contrast to many other "agent" technologies. All agent messages
use KQML as a top-level protocol or message wrapper. You can find the current KQML
standard at http://www.cs.umbc.edu/kqml/.

JAT agents can be executed as either standalone applications or as applets via the
appletviewer. Coordination is provided by an Agent Name Server. The architecture of the
JAT was specially designed to allow for the replacement and specialization of major
functional components including the GUI, low-level messaging, message interpretation and
resource handling.

The JAT package is in the version 0.3, and will no longer be supported by the creators
(University of Standford). They have now a new package called JATLite (Java Agent
Template, Lite).

JATLite provides a template for building agents that utilise a common high-level language
and protocol. This template provides the user with numerous predefined Java classes that
facilitate agent construction. Furthermore, the classes are provided in layers, so that the
developer can easily decide what classes are needed for a given system. For instance, if the
developer decides not to use KQML, the classes in the KQML layer are simply omitted.

It does provide a robust substrate for building such intelligent agents. The JATLite
packaged infrastructure allows agents to be portable (e.g., on a laptop computer), to move
from one machine to another, and to connect and disconnect from the Internet with
automatic queuing and buffering of incoming messages. These features, found to be
necessary for robust agent behaviour in projects where software agents occasionally fail or
migrate, are provided by the Agent Message Router (AMR) infrastructure.

The architecture of JATLite is organised as a hierarchy of increasingly specialised layers,
so that developers can select the appropriate layer from which to start building their
systems. Thus, a developer who wants to utilise TCP/IP communications but does not want
to use KQML can use only the Abstract and Base layers as described below.

JATLite can be found at http://java.stanford.edu/. Actually there is a beta version for
download, and also, some examples of how to use JATLite and documentation about the
package.

8.2 NCSA Habanero

NCSA Habanero is a collaborative framework and set of applications. Using Habanero you
can create and work in shared applications from remote locations over the Internet. The
Habanero framework, or API, enables developers of groupware applications to build
powerful collaborative software in a reduced amount of time. The Habanero framework
provides the necessary methods developers can use to create or convert existing
applications into collaborative applications. Habanero is written in Java, it will run under
any operating system that supports JDK 1.1.6. The Habanero environment consist of a
client, a server and a variety of tools

Habanero works by replicating applications across clients and then sharing all state changes
in those clients. When a new client joins a session, it is sent information about which
applications are running in that session. Each application is then sent enough information
to completely replicate the important state being shared by the existing copies of that
application. Habanero also ensures that all clients see the same state changing events in the
same order, which results in applications appearing the same to all clients.

The NCSA Habanero can be found at http://www.ncsa.uiuc.edu/SDG/Software/Habanero/.

9 Other techniques for distributed computing

There are some other techniques that can be used instead of/with the agent paradigm. All of
them are implemented in Java, but can also be used from C++, or from the web. Four
different methods are explained here, but there are many others. As Java is a recent
technology, and there are a lot of people working around, new features, extensions and
updates keep going out very often.

9.1 The Common Object Request Broker (CORBA)

The Common Object Request Broker Architecture is an emerging open distributed object
computing infrastructure being standardized by the Object Management Group (OMG).
CORBA automates many common network programming tasks such as object registration,
location, and activation; framing and error handling; and operation dispatching. See the
OMG Web site (http://www.omg.org/) for more overview material on CORBA.

25

The following figure illustrates the primary components in the OMG Reference Model
architecture.

• Object Services: these are domain-independent interfaces that are used by many
distributed object programs. For example, a service providing for the discovery of
other available services is almost always necessary regardless of the application
domain. Two examples of Object Services that fulfil this role are:

• The Naming Service: allows clients to find objects based on names.
• The Trading Service: allows clients to find objects based on their properties.

There are also Object Service specifications for lifecycle management, security,
transactions, and event notification, as well as many others.

• Common Facilities: like Object Service interfaces, these interfaces are also
horizontally oriented, but unlike Object Services they are oriented towards end-user
applications. An example of such a facility is the Distributed Document Component
Facility (DDCF), a compound document Common Facility based on OpenDoc.
DDCF allows for the presentation and interchange of objects based on a document
model, for example, facilitating the linking of a spreadsheet object into a report
document.

• Domain Interfaces: these interfaces fill roles similar to Object Services and
Common Facilities but are oriented towards specific application domains. For
example, one of the firsts OMG RFPs issued for Domain Interfaces is for Product
Data Management (PDM) Enablers for the manufacturing domain. Other OMG
RFPs will soon be issued in the telecommunications, medical, and financial
domains.

• Application Interfaces: these are interfaces developed specifically for a given
application. Because they are application-specific, and because the OMG does not
develop applications (only specifications), these interfaces are not standardised.
However, if over time it appears that certain broadly useful services emerge out of a

particular application domain, they might become candidates for future OMG
standardisation.

CORBA ORB Architecture

The following figure illustrates the primary components in the CORBA ORB architecture:

• Object implementation: this defines operations that implement a CORBA IDL
interface. Object implementations can be written in a variety of languages including
C, C++, Java, Smalltalk, and Ada.

• Client: this is the program that invokes an operation on an object implementation.
Accessing the services of a remote object should be transparent to the caller.
Ideally, it should be as simple as calling a method on an object, i.e., obj->op(args).

• Object Request Broker (ORB): the ORB provides a mechanism for transparently
communicating client requests to target object implementations. The ORB
simplifies distributed programming by decoupling the client from the details of the
method invocations. This makes client requests appear to be local procedure calls.
When a client invokes an operation, the ORB is responsible for finding the object
implementation, transparently activating it if necessary, delivering the request to the
object, and returning any response to the caller.

• ORB Interface: an ORB is a logical entity that may be implemented in various
ways (such as one or more processes or a set of libraries). To decouple applications
from implementation details, the CORBA specification defines an abstract interface
for an ORB. This interface provides various helper functions such as converting

27

object references to strings and vice versa, and creating argument lists for requests
made through the dynamic invocation interface described below.

• CORBA IDL stubs and skeletons: CORBA IDL stubs and skeletons serve as the
“glue” between the client and server applications, respectively, and the ORB. The
transformation between CORBA IDL definitions and the target programming
language is automated by a CORBA IDL compiler.

• Dynamic Invocation Interface (DII): this interface allows a client to directly
access the underlying request mechanisms provided by an ORB. Applications use
the DII to dynamically issue requests to objects without requiring IDL interface-
specific stubs to be linked in. Unlike IDL stubs (which only allow RPC-style
requests), the DII also allows clients to make non-blocking deferred synchronous
(separate send and receive operations) and oneway (send-only) calls.

• Dynamic Skeleton Interface (DSI): this is the server side's analogue to the client
side's DII. The DSI allows an ORB to deliver requests to an object implementation
that does not have compile-time knowledge of the type of the object it is
implementing. The client making the request has no idea whether the
implementation is using the type-specific IDL skeletons or is using the dynamic
skeletons.

• Object Adapter: this assists the ORB with delivering requests to the object and
with activating the object. An object adapter associates object implementations with
the ORB. Object adapters can be specialised to provide support for certain object
implementation styles (such as OODB object adapters for persistence and library
object adapters for non-remote objects).

Voyager CORBA

Voyager includes CORBA integration. Due to its powerful Java-centric architecture,
Voyager provides in many ways a better solution for CORBA-enabling a Java program
than any other CORBA solution available today.

• Voyager can take any IDL file and automatically create its equivalent Java interface
and Voyager virtual reference class. It can also take any Java interface or .class file
and automatically create its equivalent IDL file, allowing a Java class to be
CORBA-enabled without modification.

• Voyager can obtain a virtual reference to a CORBA object, and CORBA can obtain
a remote reference to a Voyager object.

• A Voyager developer can send messages to an object via a virtual reference without
knowing whether the object is a CORBA object or a Voyager object. If the object is
in a CORBA ORB, Voyager automatically uses IIOP to communicate with the
CORBA object.

• Virtual references to Voyager objects are automatically converted to CORBA
references when sent to a CORBA ORB, and CORBA references are automatically
converted to virtual references when sent to Voyager.

• Voyager supports in, inout, and out parameters via the standard holder mechanism.
• Because virtual references hide the details of the underlying ORB, Voyager’s

advanced services, such as Space™, multicast messaging, futures, and dynamic
invocation, can be used with CORBA objects, Voyager objects, or a mixture of
both CORBA and Voyager objects.

Many existing classes can be used directly in a CORBA program without modification.
As usual, proxy classes are generated at runtime, so no stub generator is required.
However, there are four limitations of CORBA that affect the classes that can be used
within a CORBA program.

• CORBA does not allow two or more methods in an interface to have the same
name. If an existing Java class has duplicate method names, you must rename the
methods so that they do not clash.

• CORBA does not support pass-by-value. When you pass an argument to a CORBA
method, it is always sent as a proxy. If the argument is not already a proxy, Voyager
automatically converts it into a proxy using Proxy.of().

• CORBA does not support distributed garbage collection. If you pass a proxy to a
remote CORBA program, the remote proxy will not prevent the garbage collection
of the original object. By default, Voyager disables the garbage collection of objects
that are automatically converted into CORBA proxies by anchoring them to the
local VM. Anchored objects are never garbage collected. To change this setting,
you can use Corba.setAnchoring().

• CORBA does not support inheritance of exceptions. All exceptions that are
intended for use with CORBA should directly extend java.lang.Exception, declare
all their data members as public, and include a public constructor whose first
argument is the exception message and the remaining arguments match each of the
public data members. The exception constructor should propagate the exception
message argument up to the Exception class.

The simplest way to import/export a CORBA object is by using IORs (Interoperable Object
References). An IOR is a string that encodes the host name, port number, type, and key of a
single CORBA object.

To obtain an object's IOR, pass the object or a proxy to Corba.asIOR(). If the argument is
not already a proxy, Voyager automatically converts it into a proxy using Proxy.of() and
anchors the original object into the local VM to prevent garbage collection.

A server can export an object to a client by writing its IOR to a file so that the client can
read the IOR and bind to it. A client can obtain a proxy to a CORBA object by passing its
IOR to Namespace.lookup().

Another way to import/export CORBA objects is via a CORBA naming service. Once you
have obtained an IOR to a CORBA naming service and bound to it, you can use the
standard CORBA naming service API to add and obtain references to CORBA objects.

Any message sent to a remote CORBA object is transmitted using IIOP. If an ORB-related
exception occurs at any time during the remote method call, a runtime

29

CorbaSystemException is thrown. If a regular exception is thrown by the remote object, it
is caught and then rethrown on the client side.

Voyager support the full range of IDL types:
• struct: pass a collection of data fields by value.
• union: pass a single field by value.
• enum: denote one of a small range of values symbolically.
• array: pass a statically-sized list of elements.
• sequence: pass a dynamically-sized list of elements.
• any: pass a single object of any IDL type.
• typecode: encode information about a particular IDL type.

You cannot create Java classes for these types directly. Instead, you must define the types
in IDL and then use cgen to create their Java equivalents automatically. Use of these types
closely follows the standard IDL to Java specification. Voyager supports recursive
typecodes so that types may directly or indirectly refer to themselves.

The following table lists the mappings for primitives and strings between IDL and Java:

IDL JAVA
boolean boolean
char char
wchar char
octet byte
short short
unsigned short short
long int
unsigned long int
long long long
unsigned long long long
float float
double double
long double not supported
fixed not supported
string java.lang.String
wstring java.lang.String

Voyager offers an utility to convert IDL files to and from Java. For more information about
the Java to IDL or IDL to Java mapping, consult the appendix B of the Voyager
documentation, or the “Java Language to IDL mapping” document from OMG.

9.2 RMI

Introduced in JDK 1.1 as one of the "Enterprise APIs," Remote Method Invocation (RMI)
provides a communication transport mechanism between a Java client and a Java server.

RMI provides the mechanism by which the server and the client communicate and pass
information back and forth. Distributed object applications need to:

• Locate remote objects: applications can use two different mechanisms to obtain
references to remote objects. It can register its remote objects with RMI's simple
naming facility, the rmiregistry. Or the application can pass and return remote
object references as part of its normal operation.

• Communicate with remote objects: details of communication between remote
objects are handled by RMI; to the programmer, remote communication looks like a
standard Java method invocation.

• Load class bytecodes for objects that are passed around: because RMI allows a
caller to pass pure Java objects to remote objects, RMI provides the necessary
mechanisms for loading an object's code as well as transmitting its data.

RMI uses a standard mechanism (employed in RPC systems) for communicating with
remote objects: stubs and skeletons. A stub for a remote object acts as a client’s local
representative or proxy for the remote object. The caller invokes a method on the local stub
that is responsible for carrying out the method call on the remote object. In RMI, a stub for
a remote object implement the same set of remote interfaces that a remote object
implement.

When a stub’s method is invoked, it does the following:
• initiates a connection with the remote VM containing the remote object.
• marshals (writes and transmits) the parameters to the remote VM
• waits for the result of the method invocation
• unmarshals (reads) the return value or exception returned
• returns the value to the caller

The stub hides the serialisation of parameters and the network-level communication in
order to present a simple invocation mechanism to the caller.

In the remote VM, each remote object may have a corresponding skeleton. The skeleton is
responsible for dispatching the call to the actual remote object implementation. When a
skeleton receives an incoming method invocation it does the following:

• unmarshals (reads) the parameters for the remote method
• invokes the method on the actual remote object implementation
• marshals (writes and transmits) the result (return value or exception) to the caller

31

RMI allows parameters, return values and exceptions passed in RMI calls to be any object
that is serializable. RMI uses the object serialization mechanism to transmit data from one
virtual machine to another and also annotates the call stream with the appropriate location
information so that the class definition files can be loaded at the receiver.

For the garbage collector, the RMI runtime keeps track of all live references within each
Java virtual machine. When a live reference enters a Java virtual machine, its reference
count is incremented. When a remote object is not referenced by any client, the RMI
runtime refers to it using a weak reference. The weak reference allows the Java virtual
machine's garbage collector to discard the object if no other local references to the object
exist. The distributed garbage collection algorithm interacts with the local Java virtual
machine's garbage collector in the usual ways by holding normal or weak references to
objects.

The RMI transport layer normally attempts to open direct sockets to hosts on the Internet.
Many Intranets, however, have firewalls that do not allow this. The default RMI transport,
therefore, provides two alternate HTTP-based mechanisms that enable a client behind a
firewall to invoke a method on a remote object which resides outside the firewall.

The RMI also implements a Naming service. The java.rmi.Naming class provides methods
for storing and obtaining references to remote objects in the remote object registry. The
Naming class's methods take, as one of their arguments, a name that is formatted of the
form: “//host:port/name”. Binding a name for a remote object is associating or registering a
name for a remote object that can be used at a later time to look up that remote object. A
remote object can be associated with a name using the Naming class's bind or rebind
methods.

RMI and Voyager

The following table shows a comparison between Voyager and RMI:

Feature Voyager RMI
Constructing a remote object Supported via regular Java syntax Not supported
Remote-enabling a class Requires on step Requires five steps
Exporting a named object Seamlessly integrated Requires external registry
Connecting to a named object Seamlessly integrated Requires external registry
Exception handling Explicit or run-time exceptions

allowed
Only explicit exceptions allowed

Executing a remote static method Supported via regular Java syntax Not supported
Object mobility Fully supported Not supported
Agents Can execute as they move and can

move themselves
Not supported

Distributed persistence Supported in Voyager 2.0 beta 2,
and will be supported in
Voyager2.1 (not supported in
Voyager 2.0)

Not supported

Scalability Distributed computing supported
with Space architecture

Not similar feature

Multicast messaging Fully supported, 100% non
intrusive

Not supported

Distributed events Compliant with JavaBeans Not supported
Publish/subscribe Messages and events supported Not supported
Message types Synchronous, one-way, future Only synchronous messages
Evolution of classes Supported Not supported
Garbage collection Lease- and time-based GC Only lease-based GC
Applet connectivity Unrestricted Restricted
Network class loading Built-in Requires Web server

The table below lists a few benchmarks that compare RMI and Voyager performance on
remote method calls between objects on the same virtual machine and between objects on
different virtual machines. Each function was defined to take a specific kind of argument
and to perform no operation. The benchmarks were performed on a 150Mhz Tecra laptop
with 80MB of RAM. Times are in milliseconds per function call. The following interface
definition was used.

package benchmarks;
import java.util.Vector;
import java.rmi.*;
public interface IServer extends Remote {
public void noArguments() throws RemoteException;
public int twoInts(int a, int b) throws RemoteException;
public int vectorIntegers(Vector integers) throws RemoteException;
public int vectorStrings(Vector strings) throws RemoteException;
}

No
Arguments

Two
Integers

Vector of
100 Integers

Vector of
100 Strings

Same virtual machine
RMI
Voyager

2.1
0.2

2.3
0.5

437.83
0.3

193.48
0.4

Different virtual machines
RMI
Voyager

2.1
3.0

3.01
3.21

436.02
117.87

190.28
193.98

33

9.3 Servlets

The original standard for server-side scripts is CGI or Common Gateway Interface. CGI is
simple and widely supported. The main problem with CGIs is that is not very efficient
because the server launches one copy of the script per request and the overhead can be
significant. Vendors have developed proprietary alternatives such ISAPI (Microsoft) and
NSAPI (Netscape) to address the performance issue. JavaSoft proposed the Java servlets as
a standard efficient alternative to CGI.

Servlets are server-side Java programs that provide a means of generating dynamic Web
content. They are not standalone applications that can be executed from the command line;
instead, they run within Web servers. In order to run servlets inside a Web server the server
must have a Java Virtual Machine running within itself. Unlike applets, servlets are not
constrained by security restrictions. They have the capabilities of a full-fledged Java
program and can access files for reading and writing, load classes, change system
properties, etc. They are restricted only by the file system permissions, just like other Java
application programs.

A servlet is loaded the first time it is used, and it remains in memory for later requests. It
has an init method, where you can initialise the state of the servlet, and different methods
for the different calls (doGet, doPost, doPut, doDelete). There is also a destroy method to
manage the resources that are held by the servlet.

You can use a servlet to perform typical server-side processing. The servlet can
communicate with the client computer and it can also communicate with other remote,
networked computers.

An intelligent agent can be implemented as a servlet to monitor the health of your
computer network. The servlets can poll host machines on your network at given intervals
and ensure that some services are operating. The results can be stored in a database or
displayed in a real-time graphical applet. In the event of an emergency, the servlet could
send e-mail to the system administrator.

Java servlets have full access to Java's networking features. The servlets can connect with
other networked computers using sockets or Remote Method Invocation (RMI). Also, the
servlet can easily connect to an Objectivity/DB using the Objectivity Java bindings. The
main restriction using Objectivity federated databases is that you can only work with one
federated database. As the Java bindings from Objectivity/DB uses static methods keep the
information about the federated database currently opened, only one federated database can
be opened per virtual machine. But the servlets are all executed in the same VM, so you
can only have one federation per server.

One possible solution for this restriction can be done with the help of agents. As said
before, a servlet has no special restrictions, so it can begin a new VM, and start there an

agent server. Then the servlet can send there an agent that will open the federated database,
and work with it. This solution let you open more than a federation using the same servlet,
but you will have the same performance problem than using CGIs: start a new shell (in our
case, a new VM) per request.

Here is an example of a servlet that shows the database information of a federated
database. When you first call the servlet, it shows you a form and asks for the boot file of
the federation. Then, the servlet try to open the federated database, and retrieve the
information concerning the autonomous partitions, databases and containers of the
federation. Once you specify a boot file, it will always show the information of the same
federated database, even if you specify a different boot file later.

10 Agent systems comparison

This chapter makes a comparison of all the agent products presented until now: Aglets,
Concordia, Odyssey and Voyager.

All the agent platforms presented here have a common set of features. The greatest
differences are in the way of creating new agents, the communication between agents and
the way of managing the servers. The two systems that offer more features and that are
easier to learn and use are Objectspace’s Voyager and IBM’s Aglets.

The table shows the features offered by the agent platforms.

35

Feature Aglets Concordia Odyssey Voyager
Create agent Locally Locally Locally Locally and

remote
Sending Java
messages
remotely

Not allowed Not allowed Not allowed

Sending
messages to
mobile
agents

Using the
Message class

Inter-Agent
Communication
Manager using

events

Petition class Regular Java
syntax

Message
modes
between
agents

Synchronous
Future

One-way

Synchronous
Multicast

Synchronous Synchronous
Future

One-way
One-way
multicast

Life spans Explicit
deletion

Explicit
deletion

Explicit
deletion

When no more
references
(locals and
remotes)

Directory
service

Not included Directory
Manager

ProcessName Naming service

Object
Mobility

Not supported Not supported Not supported Serialisable
objects without

any code
modification

Agent
Mobility

Between
servers

Between
servers

Between server Between
servers,

programs and
objects

Itineraries Special API
needed

Special API
needed

Special API
needed

No special API
needed

Persistency Not possible Proprietary
database only

Not possible Will be included
in VCT 2.1 and

VoyagerPro
Scalability Non Agents

Collaboration
Non Possible using

Space
Multicast
Messaging

Non Yes Non Yes

Publish/Subsc
ribe

Non Non Non Yes

Apple
connectivity

Restricted Restricted Restricted Full

Security
Manager

Yes Yes ? Yes

In all the systems an agent must extend the system Agent class, except in Voyager, where
an agent must only implement the Agent Interface.

Creating new agents

To create a new agent, you must call a system method (Aglets.createAglet() if you are
working with IBM Aglets, or Factory.create() with Voyager). Once created, you get a proxy

to the remote object. This proxy is used to handle all the communication with the agent.
You can also obtain new proxies to remote agents later. When the new object is created, a
method of the object is called to let the agent initialised correctly.

With Aglets, you can define an onCreation() method, and put there the required actions that
the agent must do when it is created. On Voyager, the method called is the constructor of
the class.

Sending Java messages to remote agents

In the agent, you can have the methods that you desire. The difference is in how to call
those methods from another agent.

In an Aglet, you must implement a message handle that will receive all the messages, and
call the referred method. This message handle method will take the message, sees the kind
of the message, does the operations defined for this message, and sends back a return
value. The message is a class that contains the information about the kind of the messages
and the arguments for the referred kind of message. When you want to send a message to
an aglet, you must create a message object, and then send it to the aglet.

Voyager uses regular Java syntax for calling agent’s methods. If your agent defines a
method called sayHello(), you just write a normal call to this method, as if it was local:
myAgent.sayHello(). If the method receives an argument, then it is automatically serialised
and sent to the remote agent. There is also the possibility of sending only a reference to the
argument. Then the object is not serialised, and the remote agent will get a proxy to the
object. It is possible to do the same with the returned objects. You can specify to the agent
to send back only a proxy to the object, instead of the whole object.

Aglets and Voyager have synchronous, future and one-way messages. Voyager also offers
the possibility to send a message to a group of agents. These messages are always
asynchronous and do not return any value.

Mobility

Only classes extending the Aglet class can be moved from one host to another. With
Voyager, an agent is not different from any other class. You can move any serialisable
class at runtime, without any preprocess. Voyager has added a new feature called Facet,
with which you can add information to an existing class at runtime, without modifying the
code. This is the way voyager allows you to move any serialisable class. You only need to
obtain a Mobility facet for the object, and then, you can send it anywhere.

Both systems include some methods to obtain the agents that are running in one host. This
can be used to obtain a proxy to these agents, and for security control. Tahiti (the IBM
Aglet server) has a visual interface where you can see the messages sent by the agents to
the server console, and a trace of the agents that have been in the server.

Voyager does not offer this interface. It also has a server program that can be call from the
command line with the same properties than Tahiti, except the visual interface. Voyager

37

also offers the possibility to start a server inside a program. This can be used to personalise
the server behaviour, and for specifying the security restrictions that should be used.

Security

Both systems come with a security system. In voyager, you must specify that you want to
install it. It’s not the default. You can extend this security class to set up your own security
restrictions for the system, and specifically for the agents and host that will interact with
the server.

Although IBM’s Aglet is a good agent system, actually Voyager offers more facilities for
creating agents and working with them. You don’t need to learn any special syntax to
work with it. Voyager uses the interface to create proxies for remote objects, and the Facets
to add new information and behaviour for any class (even without the source code) at
runtime.

Both of them offer similar security options. IBM Aglets has its own security system, while
Voyager uses the default one that came with the Java Virtual Machine. It also have a
security class that can be installed using the default JDK command to install a security
manager: System.setSecurityManager().

In the next release of Voyager (VoyagerPro), there will be a new security system that will
include:

• Tunnel through popular firewalls via SOCKS protocol
• Authenticate and securely transmit reliable data between Internet clients and servers

over the SSL protocol
• Protect against unauthorised use by authenticating and/or verifying credentials of

permissions against Access Control List or third party services.

Voyager includes the possibility of accessing to other servers, like CORBA servers,
DCOM, or RMI. The Voyager server can also be used as a CORBA server, and receive
CORBA calls, or RMI calls.

It is also possible to combine Voyager agents with servlets. I did not test with Aglets, but it
should be possible too.

There is a similar thing with applets. A Java applet can create and send agents to any host
(it is not restricted to only the web server). There must be a voyager server running in the
same host than the web server, and it will be used as router for all the messages. With this
addition, an applet can open a database or access to files in the server, with the same
restriction than a normal agent.

11 Some Applications of Mobile Agent Technology in HEP
Environments

The aim of this paper is not to study all the possibilities that agents may have in HEP
environments but to study some of the many applications that this new communication
paradigm can offer to the physics community.

RD45 project at CERN has been working to solve the data management problems posed by
the LHC experiments, where data volumes of up to 100 PetaBytes and data rates of up to
1.5 GigaBytes/second are expected. RD45 proposes the use of an ODMG compliant Object
Database (ODBMS), Objectivity/DB, together with a thin layer of HEP-specific code, plus
a coupling to a Mass Storage System, as a solution to the object-persistency problem. This
solution for persistency has been adopted by many experiments at CERN, new methods for
accessing and configuring the data is being studied, one of them is based on agent
technology. This chapter will explain the two applications based on agents that we have
developed in 1998.

Before presenting the applications we just introduce very shortly Objectivity/DB for those
who do not know it yet. Objectivity/DB is an object oriented and distributed database
management system. The highest logical level in the storage hierarchy is the Federated
Database. This FDB can be divided in several autonomous partitions; each of them is
formed by one or more data servers (called AMS), a lock server, and databases and
replicas of databases which map to files. The objects are contained in the databases and
can be accessed directly from an application. One of the objectives of LHC experiments is
to distribute data world wide, allowing remote institutes to access data locally without
having to access the WAN.

One application of agent technology in such a distributed environment is the management
of the federated database. We started building a tool that was for configuration such a
complex and large federated database. Later on we decided to introduce on it agents which
would control the status of the several database servers and help in an automatic way the
database administrator.

Another interesting application of the agent technology is to retrieve information from the
ODBMS. Wide area networks have a lower bandwidth than local networks. When you
have a distributed database across a WAN, the access to the information can suffer delays
due to the network load.

Using a multi-agent system that moves to the remote host containing the requested
information avoids the communication across a WAN. The agent can access the
information locally, with an important communication improvement. If the agent is sent to
the host that contains the database, then no network is required. The agent can analyse the
retrieved information before send it back, compute the data and send only the results.

39

ODBMS Management and Configuration

In this chapter we present briefly a tool for configuration management of the whole
Objectivity federated database. For more detailed information of DRO_TOOL see white
paper at
http://wwwinfo.cern.ch/asd/cernlib/rd45/whitepapers/9809/DatabaseAdministrationTool.ht
ml.
Agents can be used for many purposes. In the DRO TOOL, agents are in charge of
collecting information about the servers involved in an Objectivity/DB federation. The
tasks that agents can do are:

• Status of the AMS and Lock Server: DRO TOOL agents can watch the status of
the lock server and AMS server. If one of the servers stop, the agent can send an
email to the specified address, try to restart it, or just ask to the user for an action.

• Start/Stop an AMS server: Objectivity/DB tools are only able to start and stop the
AMS server locally: agents extend this functionality to allow the user to start the
server remotely. An agent can be moved to the specified host, and start or stop there
the server.

• Check the status of the network: agents located in remote hosts can send
messages between them, to test the network bandwidth. They can save the status of
the network in the time to display statistics. This can be used to find the best
moment to do some operations, like replicas of databases or updates.

Figure 1 Screen shot of main window DRO_TOOL

Access to remote databases

Another use of agents is to access to an Objectivity/DB from the web but it is not possible
to do this directly from an applet,
The other type of agent we have developed is to access to Objectivity/DB federated
databases from the web. From a Java Applet, you cannot open a federated database and
work with it due to security restrictions in the browser, but using agents it is possible!

The structure of an application using agents would be the following one:

You could force your application to communicate with the federation only using the AMS
server, but even in this case, you will get a security exception in the browser.

In this case, the agent implements all the methods for accessing the database. The Java
applet starts a voyager server, and sends an agent to the host where the database resides. An
applet can only communicate with the server in which the web page resides. To avoid this
limitation, voyager implements a router service. All the messages sent to any agent will
pass through this server. With it, you can create a voyager server in the same host as the
web server, and use it as a router. Agents created in applets will have no address limitation,
and can be sent and communicate with any host without any special restriction.

As the applet need to have access to the Objectivity for Java bindings, the agent must
implement all those methods. Objectivity/DB for Java binding must be installed in the host
where the agent will be sent (but it is not needed in the host where the applet is running or
even in the web server host).

41

WWW Server

OBJY Lock
Server
Agent Server

OBJY
Server
Agent Server

OBJY
Server
Agent server

Agent checking for Lock Server status

Agent checking AMS Server Status

Agent checking AMS Server Status

Agent doing local data analysis

Agent doing local data analysis

Figure 2 Querying database information from the Web

With Objectspace’s Voyager 2.0, the Java classes that will be used as agents don’t need to
specify any special voyager code. Once you create a class, you must create an interface for
this class. To do that, you can use the ‘igen’ program that comes with voyager. It will
automatically generate the interface. In the applet, once you have created the agent with the
Factory.create() method, you can access to the remote class as if it was local.

The clients need only a Java capable browser, where they execute an applet. In the client
side, you don’t need any special software to access to Objectivity Databases, or any agent
packages. All the classes required by the applet will be loaded from the web server.

The main steps of the application are:
1. Applet bytecodes are loaded from the web server into the browser.
2. The applet starts an agent, and send it to a remote host.
3. Depending of the agent task, it will check for the status of one of the servers or both, or

to retrieve the data of a database locally and perform some analysis to this data.

While the agent is doing a task, the client doesn’t need to stay connected to the network.
The client can connect later to monitor the task, or to retrieve the final result, once the task
is done.

Code Examples

In appendix B you will find commented code examples of an agent and an applet which
perform this task. In appendix A you will find an example of servlet (servlets where
explained in section 9.3). They are based on Objectivity 5.0, Voyager 2.0.0 and jdk1.1.7.

Glossary of terms

• ASDK: Aglets Software Development Kit from IBM.
• ATP: the Agent Transfer Protocol is the one used by IBM’s Aglets for the

communication and collaboration between agents.
• CGI: Common Gateway Interface is a standard way for a Web server to pass a Web

user's request to an application program and to receive data back to forward to the user.
• CORBA: Common Object Requested Broker Architecture is an architecture and

specification for creating, distributing, and managing distributed program objects in a
network. It allows programs at different locations and developed by different vendors
to communicate in a network through an “interface broker”.

• DCOM: Distributed Component Object Model is a set of Microsoft concepts and
program interfaces in which client program objects can request services from server
program objects on other computers in a network.

• Federated database: is a highest logical view of an Objectivity/DB federation. It
contains the autonomous partitions and databases.

• IDL: Interface Definition Language is a generic term for a language that lets a program
or object written in one language communicate with another program written in an
unknown language.

• IIOP: Internet Inter-ORB Protocol is an object-oriented protocol that makes it possible
for distributed programs written in different programming languages to communicate
over the Internet.

• JDBC: Java Database Connectivity is an API for accessing to a database using the
ODBMS.

• KQML: Knowledge Query and Manipulation Language is a language and protocol for
exchanging information and knowledge. It is used in Artificial Intelligence.

• MASIF: Mobile Agent System Interoperability Facility; OMG standard for the
communication between agents, used by IBM Aglets.

• Objectivity/DB: an object oriented and distributed database.
• OMG: Object Management Group.
• RMI: Remote Method Invocation is the Java equivalence to the RPC protocol.
• RPC: Remote Procedure Call is a protocol that one program can use to request a

service from a program located in another computer in a network without having to
understand network details.

• SOCKS: is a protocol that a proxy server can use to accept requests from client users in
a company's network so that it can forward them across the Internet.

• SSL: Secure Sockets Layer is a program layer created by Netscape for managing the
security of message transmissions in a network.

43

APPENDIX A: A servlet that retrieves information from the federated
database

/* ** */
/* */
/* RetrieveInfo.java */
/* Shows the information of a federated database */
/* @ Javier.Conde@cern.ch, 12/1998 */
/* */
/* ** */

import java.util.*;
import java.io.*;
// Servlet packages
import javax.servlet.*;
import javax.servlet.http.*;
// OBJY packages
import COM.objy.db.*;
import COM.objy.db.app.*;

public class RetrieveInfo extends HttpServlet
{

// Session object and FD object (common for all the connection)
Connection connection = null;
Session tx;
ooFDObj fd;
String bf = null;

public void init(ServletConfig config) throws ServletException {
super.init(config);

}

/** Present the form to fill up with the boot file */
protected void doGet(HttpServletRequest req, HttpServletResponse res)

throws ServletException, IOException {
res.setContentType("text/html");
PrintWriter out = res.getWriter();
out.println("<HTML><HEAD><TITLE>Display OBJY Federated “ +

 “Database information</TITLE></HEAD>");
out.println("</HEAD><BODY>");
out.println("<H1>Display OBJY Federated database information</H1>");
out.println("<HR><FORM METHOD=POST>");
out.println("Enter the boot file address: <INPUT TYPE=text NAME=bootfile>");
out.println("<INPUT TYPE=SUBMIT NAME=action VALUE=\"Display” +

 “ Information\">");
out.println("</FORM>
<HR>”

 + “Javier Conde
");
out.println(new Date().toString() + "
</BODY></HTML>");
out.close();

}

/** Post method that retrieve the bootfile info and use it to open
 the Federated database and shows all the information about the Database */
protected void doPost(HttpServletRequest req, HttpServletResponse res)

throws ServletException, IOException {

 res.setContentType("text/html");

 // Obtains the bootfile parameter
 String bootfile = req.getParameter("bootfile");
 String msg = "No info";

 // If bootfile is null, return error message
 if(bootfile == null) {

res.sendError(res.SC_BAD_REQUEST, "No bootfile address specified.");
return;

 }
 // Retrieve the info from the federated database
 if(req.getParameter("action").equals("Display Information")) {

msg = retrieveInfo(bootfile);
 }
 // Creates the output HTML file with the information obtained
 PrintWriter out = res.getWriter();
 out.println("<HTML><HEAD><TITLE>Display information for " + bootfile +

 "</TITLE></HEAD><BODY>");
 out.println(msg);
 out.println("<HR>" +

 "Javier Conde
\n");
 out.println("Generated at " + new Date().toString() + "
\n");
 out.println("Request from: " + req.getRemoteHost() + " (" +

 req.getRemoteAddr() + ")
\n</BODY></HTML>");
 out.close();
 System.out.println("doPost() finished");
}

/** Present the Servlet info when requested */
public String getServletInfo() {

return "Retrieve Information of Federated databases, " +
"by Javier Conde. 11/1998";

}

/** Return the federated database info in HTML format */
private synchronized String retrieveInfo(String bootfile) {
 StringBuffer sb = new StringBuffer();

 // Opens a connection to the federated database
 try {

if (bf == null) {
bf = bootfile;
if ((connection != null) && (connection.isOpen())) {

connection.close();
}
// the connection is opened as read-only
connection = Connection.open(bootfile, oo.openReadOnly);

} else {
connection = Connection.current();
System.out.println(connection);
connection.setOpenMode(oo.openReadOnly);
connection.reopen();

}
// Creates a new Session object
tx = new Session();
// obtains the federated database object from this connection.
fd = tx.getFD();

// begins a new transaction to obtain the Federated database name
tx.join();
tx.setOpenMode(oo.openReadOnly);
tx.begin();
sb.append("<H2>Information from the FDB " + fd.getName() +

 "</H2>
");
tx.commit();

} catch (DatabaseNotFoundException e1) {
return new String("<H2>Error opening the federated" +

" database</H2>
\nThe federated database cannot be" +
" found
" + e1.getMessage());

} catch (DatabaseOpenException e) {
return new String("<H2>Error opening the federated" +

" database</H2>
\nOnly one Federated Database can be open" +
e.getMessage());

} catch (Exception e2) {
return new String("<H2>Error opening the federated" +

" database</H2>
\n" + e2.getMessage());
}

// Call to the local functions to get information about the Fdb, APs and DBs
sb.append(this.getFdbInfo());
sb.append(this.getAPInfo());
sb.append(this.getDBInfo());
// Once finished, it closes the connection
tx = null;

45

fd = null;
try {

connection.close();
connection = null;

} catch (Exception e) {
System.out.println(e.toString());

}

// And return the HTML formated text with the information
return sb.toString();

 }

 /** Get the properties of the Federated Database */
 public synchronized String getFdbInfo() {
 StringBuffer info = new StringBuffer();

tx.join();
tx.setOpenMode(oo.openReadOnly);
tx.begin();
try {

info.append("FDB Name = " + fd.getName() + "
\n");
info.append("FDB ID = " + fd.getNumber() + "
\n");
info.append("FDB LockServer = " + fd.getLockServerName() + "
\n");
info.append("FDB Boot File = " + connection.getBootFilePath() +

 "
\n");
info.append("Page Size = " + fd.getPageSize() + "
\n");

} catch (Exception e) {
tx.abort();
info.append("<H2>Error getting information of the Federated" +

" Database</H2>
\n" + e.getMessage() + "

\n");
return info.toString();

}
tx.commit();
info.append("
\n");
return info.toString();

 }

 /** Get the properties of the Autonomous Partitions contained in the current federation */
public String getAPInfo() {

StringBuffer info = new StringBuffer();
ooAPObj ap;

tx.join();
tx.setOpenMode(oo.openReadOnly);
tx.begin();
try {

Iterator apItr = fd.containedAPs();
while (apItr.hasMoreElements()) {

info.append("
<TABLE BORDER=3>\n");
ap = (ooAPObj) apItr.nextElement();
info.append("<TH>AP Name: " + ap.getName() + "</TH>\n");
info.append("<TR><TD>AP ID</TD><TD>" + ap.getOid().getStoreString() +

 "</TD></TR>\n");
if (ap.isOnline())
 info.append("<TR><TD>AP Status</TD><TD>ON-LINE</TD></TR>\n");
else
 info.append("<TR><TD>AP Status</TD><TD>OFF-LINE</TD></TR>\n");
 info.append("<TR><TD>AP File</TD><TD>" + ap.getSystemDBFileHost()

 + "::" + ap.getSystemDBFilePath() + "</TD></TR>\n");
 info.append("<TR><TD>Boot File</TD><TD>" + ap.getBootFileHost() +

 "::" + ap.getBootFilePath() + "</TD></TR>\n");
 info.append("<TR><TD>Jnl Dir</TD><TD>" + ap.getJournalDirHost() +

 "::" + ap.getJournalDirPath() + "</TD></TR>\n");
 info.append("<TR><TD>Lock Host</TD><TD>" + ap.getLockServerHost()

 + "</TD></TR>\n");
 info.append("</TABLE>\n");

}
} catch (Exception e) {

tx.abort();
info.append("</TABLE>\n
<HR><H2>Error getting information of an" +

" Autonomous Partition</H2>
\n" + e.getMessage() +
"
<HR>
\n");

return info.toString();
}
tx.commit();
return info.toString();

}

/** Get information about the DBs contained in the federation */
public String getDBInfo() {

StringBuffer info = new StringBuffer();
ooDBObj db = null;
ooAPObj ap;

tx.join();
tx.setOpenMode(oo.openReadOnly);
tx.begin();
try {

tx.setOfflineMode(oo.IGNORE);
Iterator dbItr = fd.containedDBs();
while (dbItr.hasMoreElements()) {

info.append("
<TABLE BORDER=3>\n");
db = (ooDBObj) dbItr.nextElement();
db.lock(oo.READ);
info.append("<TH>DB Name: " + db.getName() + "</TH>\n");
info.append("<TR><TD>DB ID</TD><TD>" + db.getOid().getStoreString() +

 "\n");
if (!db.isReplicated()) {

info.append("<TR><TD>DB File</TD><TD>" + db.getHostName() +
 "::" + db.getFileName() + "\n");

info.append("<TR><TD>Contained in</TD><TD>" +
 db.getContainingPartition().getName() + "</TD></TR>\n");

} else {
info.append("<TR><TD>Number of replicas</TD><TD>" +

 db.getImageCount() + "</TD></TR>\n");
Iterator itr = db.containingImage();
while (itr.hasMoreElements()) {

ap = (ooAPObj) itr.nextElement();
info.append("<TR><TD>Contained in " + ap.getName()
 + "</TD></TR>\n");
if (db.getTieBreaker() != null) {
 info.append("<TR><TD>Tie-breaker</TD><TD>" +
 db.getTieBreaker().getName() + "</TD></TR>\n");
}
info.append("<TR><TD>DB Image Weight</TD><TD>" +

 db.getImageWeight(ap) + "</TD></TR>\n");
info.append("<TR><TD>DB Image File</TD><TD>" +

 db.getImageHostName(ap) + "::" +
 db.getImageFileName(ap) + "</TD></TR>\n");

}
}
info.append("<TR><TD>Number of containers</TD><TD>" +

 db.getContainerCount() + "</TD></TR>\n");
Iterator it = db.contains();
if (it != null) {

while (it.hasMoreElements()) {
info.append("<TR>\n");
ooContObj cont = (ooContObj) it.nextElement();
info.append("<TR><TD>Container " + cont.getName() +

 ":</TD></TR>\n");
info.append("<TR><TD>ID</TD><TD>" + cont.getOid() +

"</TD></TR>\n");
info.append("<TR><TD>Page count</TD><TD>" +

 cont.getPageCount() + "</TD></TR>\n");
info.append("<TR><TD>Growth factor</TD><TD>" +

 cont.getGrowthFactor() + "</TD></TR>\n");
if (cont.getControlledBy() != null) {

 info.append("<TR><TD>Controlled by</TD><TD>"
 + cont.getControlledBy().getName() +

 "</TD></TR>\n");
}
info.append("</TR>\n");

}
}

47

info.append("</TABLE>\n");
}
tx.setOfflineMode(oo.ENFORCE);

} catch (Exception e) {
tx.abort();
info.append("</TABLE>
<HR><H2>Error getting information of a" +

" database</H2>
\n" + e.getMessage() + "<HR>
");
return info.toString();

}
tx.commit();
return info.toString();

 }

}

APPENDIX B: An applet that creates an agent, send it to a remote host,
and retrieve the information of a federated database.

/* ***/
/* */
/* RetrieveInfoApplet.java */
/* Shows the information of a federated database */
/* @ Javier.Conde@cern.ch, 12/1998 */
/* */
/* ***/

import java.util.*;
import java.io.*;
// Applet package
import java.applet.Applet;
// Voyager packages
import

public class RetrieveInfoApplet extends Applet
{

TextArea text;
IOBJYAgent agent;

public void init() {
 this.setLayout(new BorderLayout());

text = new TextArea(80, 25);
this.add("Center", text);

}

public void start() {
try {

// initialize voyager using the current security sandbox boundaries
Voyager.startup(this, null);

// Send agent to the remote host
agent = (IOBJYAgent) Factory.create("remote.host", "OBJYAgent");

// Get information from the federated database
// and display the result in the Text Area
text.setText(agent.retrieveInfo());

}
catch(Exception exception) {

System.err.println(exception);
}

 }

public void stop() {
try {

Voyager.shutdown();
}
catch(Exception exception) {
}

 }
}

public class OBJYAgent implements Serializable {

// Session object and FD object (common for all the connection)
Connection connection = null;
Session tx;
ooFDObj fd;
String bf = null;

/** Return the federated database information */
private String retrieveInfo(String bootfile) {

StringBuffer sb = new StringBuffer();

49

// Opens a connection to the federated database
try {

if (bf == null) {
bf = bootfile;
if ((connection != null) && (connection.isOpen())) {

connection.close();
}
// the connection is opened as read-only
connection = Connection.open(bootfile, oo.openReadOnly);

} else {
connection = Connection.current();
System.out.println(connection);
connection.setOpenMode(oo.openReadOnly);
connection.reopen();

}
// Creates a new Session object
tx = new Session();
// obtains the federated database object from this connection.
fd = tx.getFD();

// begins a new transaction to obtain the Federated database name
tx.join();
tx.setOpenMode(oo.openReadOnly);
tx.begin();
sb.append("Information from the FDB " + fd.getName() + "\n");
tx.commit();

} catch (DatabaseNotFoundException e1) {
return new String("Error opening the federated database\nThe federated " +

"database cannot be found\n" + e1.getMessage());
} catch (DatabaseOpenException e) {

return new String("Error opening the federated database\Only one " +
"Federated Database can be open\n" + e.getMessage());

} catch (Exception e2) {
return new String("Error opening the federated database\n" + e2.getMessage());

}

// Call to the local functions to get information about the Fdb, APs and DBs
sb.append(this.getFdbInfo());
sb.append(this.getAPInfo());
sb.append(this.getDBInfo());
// Once finished, it closes the connection
tx = null;
fd = null;
try {

connection.close();
connection = null;

} catch (Exception e) {
System.out.println(e.toString());

}

// And return the HTML formated text with the information
return sb.toString();

}

/** Get the properties of the Federated Database */
public String getFdbInfo() {
 StringBuffer info = new StringBuffer();

tx.join();
tx.setOpenMode(oo.openReadOnly);
tx.begin();
try {

info.append("FDB Name = " + fd.getName() + "\n");
info.append("FDB ID = " + fd.getNumber() + "\n");
info.append("FDB LockServer = " + fd.getLockServerName() + "\n");
info.append("FDB Boot File = " + connection.getBootFilePath() + "\n");
info.append("Page Size = " + fd.getPageSize() + "\n");

} catch (Exception e) {
tx.abort();
info.append("Error getting information of the Federated Database\n" +

 e.getMessage() + "\n");
return info.toString();

}
tx.commit();
info.append("\n");
return info.toString();

}

/** Get the properties of the Autonomous Partitions contained in the current federation
 */
public String getAPInfo() {

StringBuffer info = new StringBuffer();
ooAPObj ap;

tx.join();
tx.setOpenMode(oo.openReadOnly);
tx.begin();
try {

Iterator apItr = fd.containedAPs();
while (apItr.hasMoreElements()) {

info.append("\n");
ap = (ooAPObj) apItr.nextElement();
info.append("AP Name:" + ap.getName() + "\n");
info.append("AP ID : " + ap.getOid().getStoreString() + "\n");
if (ap.isOnline())

info.append("AP Status: ON-LINE\n");
else

info.append("AP Status: OFF-LINE\n");
info.append("AP File :" + ap.getSystemDBFileHost() + "::" +

 ap.getSystemDBFilePath() + "\n");
info.append("Boot File:" + ap.getBootFileHost() + "::" +

 ap.getBootFilePath() + "\n");
info.append("Jnl Dir :" + ap.getJournalDirHost() + "::" +

 ap.getJournalDirPath() + "\n");
info.append("Lock Host:" + ap.getLockServerHost() + "\n");
info.append("\n");

}
} catch (Exception e) {

tx.abort();
info.append("\nError getting information of an Autonomous Partition\n" +

 e.getMessage() + "\n");
return info.toString();

}
tx.commit();
return info.toString();

}

/** Get information about the DBs contained in the federation */
public String getDBInfo() {

StringBuffer info = new StringBuffer();
ooDBObj db = null;
ooAPObj ap;

tx.join();
tx.setOpenMode(oo.openReadOnly);
tx.begin();
try {

tx.setOfflineMode(oo.IGNORE);
Iterator dbItr = fd.containedDBs();
while (dbItr.hasMoreElements()) {

info.append("\n");
db = (ooDBObj) dbItr.nextElement();
db.lock(oo.READ);
info.append("DB Name: " + db.getName() + "\n");
info.append("DB ID : " + db.getOid().getStoreString() + "\n");
if (!db.isReplicated()) {

info.append("DB File : " + db.getHostName() + "::" +
db.getFileName() + "\n");

info.append("Contained in: " + db.getContainingPartition().getName() +
 "\n");

} else {
info.append("Number of replicas: " + db.getImageCount() + "\n");
Iterator itr = db.containingImage();
while (itr.hasMoreElements()) {

51

ap = (ooAPObj) itr.nextElement();
info.append("Contained in: " + ap.getName() + "\n");
if (db.getTieBreaker() != null) {

info.append("Tie-breaker: " + db.getTieBreaker().getName() + "\n");
}
info.append("DB Image Weight: " + db.getImageWeight(ap) + "\n");
info.append("DB Image File : " + db.getImageHostName(ap) + "::" +

 db.getImageFileName(ap) + "\n");
}

}
info.append("Number of containers: " + db.getContainerCount() + "\n");
Iterator it = db.contains();
if (it != null) {

while (it.hasMoreElements()) {
info.append("\n");
ooContObj cont = (ooContObj) it.nextElement();
info.append("Container " + cont.getName() + ": \n");
info.append("\tID : " + cont.getOid() + "\n");
info.append("\tPage count: " + cont.getPageCount() + "\n");
info.append("\tGrowth factor: " + cont.getGrowthFactor() + "\n");
if (cont.getControlledBy() != null) {

info.append("Controlled by: " + cont.getControlledBy().getName() +
 "\n");

}
info.append("\n");

}
}
info.append("\n");

}
tx.setOfflineMode(oo.ENFORCE);

} catch (Exception e) {
tx.abort();
info.append("\nError getting information of a database\n" +

e.getMessage() + "\n");
return info.toString();

}
tx.commit();
return info.toString();

}

}

	1	Introduction
	2	Why mobile agents
	3	Java as Technology Base for Mobile Agents
	4	IBM’s Aglets
	5	Mitsubishi’s Concordia
	6	General Magic’s Odyssey
	7	Objectspace’s Voyager
	8	Other agent systems in Java
	8.1	Java Agent Template
	8.2	NCSA Habanero

	9	Other techniques for distributed computing
	9.1	The Common Object Request Broker (CORBA)
	9.2	RMI
	9.3	Servlets

	10	Agent systems comparison
	11	Some Applications of Mobile Agent Technology in HEP Environments

