
UNIVERSIDADE ESTADUAL DE CAMPINAS

Faculdade de Engenharia Elétrica e de Computação

Vitor Hugo Galhardo Moia

A Study about the Security and Privacy on Cloud Data
Storage

Um Estudo sobre a Segurança e Privacidade no
Armazenamento de Dados em Nuvens

CAMPINAS

2016

Vitor Hugo Galhardo Moia

A Study about the Security and Privacy on Cloud Data
Storage

Um Estudo sobre a Segurança e Privacidade no
Armazenamento de Dados em Nuvens

Dissertation presented to the School of Electrical and
Computer Engineering, University of Campinas, in
partial fulfillment of the requirements for the degree
of Master in Electrical Engineering, area of Computer
Engineering.

Dissertação apresentada à Faculdade de Engenharia
Elétrica e Computação da Universidade Estadual de
Campinas como parte dos requisitos exigidos para a
obtenção do título de Mestre em Engenharia Elétrica, na
área de Engenharia de Computação.

Supervisor: Prof. Dr. Marco Aurélio Amaral Henriques

Este exemplar corresponde à versão
final da dissertação defendida pelo
aluno Vitor Hugo Galhardo Moia,
e orientada pelo Prof. Dr. Marco
Aurélio Amaral Henriques

CAMPINAS

2016

Agência(s) de fomento e nº(s) de processo(s): CNPq, 153392/2014-2

Ficha catalográfica
Universidade Estadual de Campinas

Biblioteca da Área de Engenharia e Arquitetura
Luciana Pietrosanto Milla - CRB 8/8129

 Moia, Vitor Hugo Galhardo, 1990-
 M727s MoiA study about the security and privacy on cloud data storage / Vitor Hugo

Galhardo Moia. – Campinas, SP : [s.n.], 2016.

 MoiOrientador: Marco Aurélio Amaral Henriques.
 MoiDissertação (mestrado) – Universidade Estadual de Campinas, Faculdade

de Engenharia Elétrica e de Computação.

 Moi1. Criptografia. 2. Privacidade. 3. Usabilidade. 4. Computação em nuvem.

5. Computação em nuvem - Medidas de segurança. I. Henriques, Marco
Aurélio Amaral,1963-. II. Universidade Estadual de Campinas. Faculdade de
Engenharia Elétrica e de Computação. III. Título.

Informações para Biblioteca Digital

Título em outro idioma: Um estudo sobre a segurança e privacidade no armazenamento
de dados em nuvens
Palavras-chave em inglês:
Cryptography
Privacy
Usability
Cloud computing
Cloud Computing - Security measures
Área de concentração: Engenharia de Computação
Titulação: Mestre em Engenharia Elétrica
Banca examinadora:
Marco Aurélio Amaral Henriques [Orientador]
Ricardo Dahab
Christian Rodolfo E. Rothenberg
Data de defesa: 16-02-2016
Programa de Pós-Graduação: Engenharia Elétrica

Powered by TCPDF (www.tcpdf.org)

COMISSÃO JULGADORA - DISSERTAÇÃO DE MESTRADO

Candidato: Vitor Hugo Galhardo Moia RA: 153843
Data da Defesa: 16 de fevereiro de 2016
Título da Tese: A Study about the Security and Privacy on Cloud Data Storage
Título da Tese em outro idioma: Um Estudo sobre a Segurança e Privacidade no
Armazenamento de Dados em Nuvens

Prof. Dr. Marco Aurélio Amaral Henriques (Presidente, FEEC/UNICAMP)
Prof. Dr. Ricardo Dahab (IC/UNICAMP) - Membro Titular
Prof. Dr. Christian Rodolfo E. Rothenberg (FEEC/UNICAMP) - Membro Titular

Ata de defesa, com as respectivas assinaturas dos membros da Comissão Julgadora,
encontra-se no processo de vida acadêmica do aluno.

I dedicate this master dissertation to my family and many friends. A special feeling of

gratitude to my loving parents, Marcelo and Maria Lúcia whose support was fundamental in

this journey, as well as for my sister Bianca and my brother Vinicius who have never left my

side. I also dedicate it to my relatives and my goddaughter Lara, for always believing in me

during these two years.

I also dedicate this work to God, for giving me this life-changing opportunity and also the

strength to overcome all the obstacles found in this journey.

Finally, I dedicate this work to my friends from Andradas and also the ones I had the pleasure

to meet during these two years studying at Unicamp, specially the ones from the DCA

department.

Acknowledgements

I would like to thank my supervisor Professor Marco Aurélio Amaral Henriques,
who has guided and helped me during the program. I owe him many thanks for all his patience,
support and dedication.

I also would like to thank the comments on this dissertation from the examination
team: Prof. Christian Rodolfo E. Rothenberg and Prof. Ricardo Dahab. Thank you for taking
the time to read this work and for sharing your experience with me.

I am thankful to all Professors of FEEC who have shared their knowledge with me
during the classes.

I would like to acknowledge and thank my school division for allowing me to con-
duct my research and providing any assistance requested.

I am also grateful for the partial financial support from CNPq (grant number
153392/2014-2).

I am very thankful for all the support that my friends and relatives have given me
during these two years. Thanks for always being on my side.

Finally, I want to thank my parents for always believing in me and supporting each
decision I have made.

“There is no such thing as privacy anymore; there is secrecy”

Rich Hersh

Abstract

Cloud data storage is a service that brings several advantages for its users. However, in public
cloud systems, the risks involved in the outsourcing of data storage can be a barrier to the
adoption of this service by those concerned with privacy. Several cloud service providers that
claim to protect user’s data do not fulfill some requirements considered essential in a secure,
reliable and easy to use service, raising questions about the effective security obtained. We
present here a study related to user’s privacy and data security requirements on public clouds.
The study presents some techniques normally used to fulfill those requirements, along with an
analysis of their relative costs and benefits. Moreover, it makes an evaluation of them in several
public cloud systems. After comparing those systems, we propose a set of requirements and
present a proof of concept application based on them, which improves data security and user
privacy in public clouds. We show that it is possible to protect cloud stored data against third
party (including cloud administrators) access without burdening the user with complex security
protocols or procedures, making the public cloud storage service a more reliable choice to
privacy concerned users.

Keywords: Public Cloud Storage, Security Requirements, Privacy, Cryptography, Usability.

Resumo
Armazenamento de dados na nuvem é um serviço que traz diversas vantagens aos seus usuários.
Contudo, em sistemas de nuvens públicas, os riscos envolvidos na terceirização do armazena-
mento de dados pode ser uma barreira para a adoção deste serviço por aqueles preocupados
com sua privacidade. Vários provedores de serviços em nuvem que afirmam proteger os dados
do usuário não atendem alguns requisitos considerados essenciais em um serviço seguro, con-
fiável e de fácil utilização, levantando questionamentos sobre a segurança efetivamente obtida.
Apresentamos neste trabalho um estudo relacionado aos requisitos de privacidade dos usuários
e de segurança de seus dados em nuvens públicas. O estudo apresenta algumas técnicas nor-
malmente usadas para atender tais requisitos, juntamente com uma análise de seus benefícios
e custos relativos. Além disso, ele faz uma avaliação destes requisitos em vários sistemas de
nuvens públicas. Depois de comparar estes sistemas, propomos um conjunto de requisitos e
apresentamos, como prova de conceito, uma aplicação baseada nos mesmos, a qual melhora
a segurança dos dados e a privacidade dos usuários. Nós mostramos que é possível proteger
os dados armazenados nas nuvens contra o acesso por terceiros (incluindo os administradores
das nuvens) sem sobrecarregar o usuário com protocolos ou procedimentos complexos de se-
gurança, tornando o serviço de armazenamento em nuvens uma escolha mais confiável para
usuários preocupados com sua privacidade.

Palavras-chaves: Armazenamento em Nuvens Públicas, Requisitos de Segurança, Privacidade,
Criptografia, Usabilidade.

List of Figures

1 Cryptographic process in the client . 25
2 Data fragmentation and storage in different clouds 27
3 Data name encryption process . 28
4 Establishing a new TOR communication . 30
5 VPN-Proxy communication . 30
6 Using a identity provider to access data in the cloud 31
7 Relative cost and privacy for different combinations 39
8 Short messages sent during a communication process 41
9 Long messages used to transfer data between the peers 42
10 Messages used in TOR between nodes . 42
11 Messages exchanged in content encryption technique 43
12 Messages exchanged in the fragmentation technique 44
13 Messages exchanged in TOR - Circuit creation 45
14 Messages exchanged in TOR - Circuit creation (cont.) 45
15 Messages exchanged in TOR - Accessing time 46
16 Messages exchanged in TOR - Accessing time (cont.) 46
17 Messages exchanged in TOR - Downloading 46
18 Messages exchanged in access the cloud through VPN-Proxy technique . . . 47
19 Messages exchanged in the federated identity scheme 48
20 Messages exchanged in Metadata encryption technique 48
21 Relative cost and privacy for each possible combination (1 MiB file storage).

The circle area is proportional to the cost/benefit ratio. 57
22 Relative cost and privacy for each possible combination (10 MiB file storage).

The circle area is proportional to the cost/benefit ratio. 59
23 Relative cost and privacy for each possible combination (100 MiB file storage).

The circle area is proportional to the cost/benefit ratio. 59
24 Relative cost and privacy for each possible combination (1 kiB file storage). . 60
25 Relative cost and privacy for each possible combination (10 kiB file storage). 61
26 Relative cost and privacy for each possible combination (100 kiB file storage). 61
27 Key states and transitions (Adaptation from (BARKER W. BARKER, 2006) . 65
28 Data is sent to the cloud through an encrypted channel 68
29 Data is recovered from the cloud through an encrypted channel 68
30 Storing data in the cloud . 69
31 Recovering data from the cloud . 69
32 Storing encrypted data in the cloud . 71
33 Recovering and decrypting data from the cloud 71

34 Encrypting file attributes . 73
35 Code signing process . 74
36 Code signing verification process . 74
37 Encryption process on PGP . 84
38 Decryption process on PGP . 84
39 Encrypting data with TrueCrypt . 85
40 Decrypting data with TrueCrypt . 86
41 Authentication 2FA . 92
42 CPG icon on the system tray . 93
43 CPG configuration window . 93
44 Drag and Drop model - How it works. 94
45 CPG working process . 95
46 Keys encryption process on CPG . 97
47 Files encryption process on CPG . 97
48 Keys decryption process on CPG . 97
49 Files decryption process on CPG . 98
50 CPG Metadata structure . 102
51 CPG simplified class diagram . 104
A.1 Data Fragmentation technique votes . 124
A.2 Data encryption technique votes . 124
A.3 Metadata encryption technique votes . 124
A.4 TOR technique votes . 125
A.5 VPN-Proxy technique votes . 125
A.6 Federated Identity technique votes . 125
B.1 Encrypting data with ownCloud Encryption App 128
B.2 Decrypting data with ownCloud Encryption App 128
B.3 Password recovery feature - ownCloud key generation 129
B.4 Password recovery feature - ownCloud key recovery 129
B.5 Sharing files through links - key generation 130
B.6 Sharing files through links - key recovery 130
B.7 ownCloud key generation . 131
B.8 ownCloud key recovery . 131
B.9 Encryption process on SpiderOak . 132
B.10 Decryption process on SpiderOak . 133
B.11 Storing users data in BoxCryptor: Encryption 133
B.12 Accessing users data in BoxCryptor: Decryption 134
B.13 Encryption process on Credeon . 134
B.14 Decryption process on Credeon . 135
B.15 Encrypting and sending messages - ProntonMail users 135

B.16 Receiving and decrypting messages - ProntonMail users 136
B.17 Encrypting and sending messages from ProntonMail to another provider . . . 136
B.18 Receiving and decrypting messages from another provider to ProntonMail . . 136
B.19 Cyphertite - Sending files encrypted to the cloud 137
B.20 Cyphertite - Encryption model . 138
B.21 Cyphertite - Decryption model . 138
B.22 Encrypting data with Wuala . 139
B.23 Decrypting data with Wuala . 139
B.24 Data encryption process on arXshare . 140
B.25 Sharing data in arXshare . 141
B.26 Encrypting data in BackBlaze . 142
B.27 Decrypting data in BackBlaze . 142
B.28 Carbonite: Protecting files . 143
B.29 Carbonite: Accessing encrypted files . 143
B.30 Encrypting files with Mega . 144
B.31 Decrypting files with Mega . 145
C.1 User authentication window . 148
C.2 Activating CPG settings option . 149
C.3 Settings . 149
C.4 Folder of files to be encrypted . 150
C.5 Sending a file to be encrypted and stored in the cloud 150
C.6 File encryption . 151
C.7 Encrypted Files folder . 151
C.8 Sharing files . 152
C.9 Confirmation message . 154
C.10 Encrypted file structure . 157

List of Tables

1 Threats to cloud data storage mapped according to the type of infrastructure . 24
2 Comparison of literature solution in cloud data storage 36
3 First analyses of the relative cost and privacy of the techniques used to provide

privacy in the cloud . 39
4 Time costs for all combinations of techniques 49
5 Parameters to calculate the time costs . 50
6 Relative costs: parameters and values . 52
7 Relative cost and privacy of techniques used to provide privacy in the cloud

with 1 MiB files . 56
8 Relative cost and privacy of the techniques used to provide privacy in the

cloud with 10 MiB files . 58
9 Relative cost and privacy of the techniques used to provide privacy in the

cloud with 100 MiB files . 59
10 Relative cost and privacy of the techniques used to provide privacy in the

cloud with 1 kiB files . 60
11 Relative cost and privacy of the techniques used to provide privacy in the

cloud with 10 kiB files . 60
12 Relative cost and privacy of the techniques used to provide privacy in the

cloud with 100 kiB files . 61
13 Comparison of main CSPs features . 82
14 Comparison of CPG and other solutions for storing data securely in the cloud 99
A.1 Values attributed by the participants for each technique 121
A.2 Statistical results derived from the survey 126
C.1 Events of CPG basic flow . 147

Contents

1 Introduction . 18
2 Main concerns on cloud data storage and some solutions 21

2.1 Threats to cloud data storage . 21
2.2 Privacy on cloud data storage . 24

2.2.1 Data confidentiality . 24
2.2.1.1 Cryptography . 25
2.2.1.2 Data fragmentation . 26

2.2.2 Metadata confidentiality . 27
2.2.3 Data access confidentiality . 28

2.2.3.1 TOR . 29
2.2.3.2 VPN-Proxy . 29

2.2.4 Data possession confidentiality . 30
2.3 Related work . 31

2.3.0.1 Cryptography . 32
2.3.0.2 Data fragmentation . 33
2.3.0.3 Cryptography and data fragmentation 34
2.3.0.4 Discussion . 35

2.4 Conclusions . 37
3 Analysis of techniques to provide privacy in clouds 38

3.1 Relative costs and benefits of the techniques 38
3.1.1 Preliminary analysis . 38
3.1.2 Improved analysis of relative costs and benefits 40

3.1.2.1 Calculating the Relative Cost 40
3.1.2.2 Calculating the Relative Privacy 54
3.1.2.3 Discussion . 56

3.2 Conclusions . 62
4 Requirements for secure cloud data

storage . 64
4.1 Requirements . 64

4.1.1 Security requirements . 64
4.1.1.1 Cryptographic keys security 64
4.1.1.2 Secure deduplication . 65
4.1.1.3 High level of data secrecy 67
4.1.1.4 Trust no one . 72
4.1.1.5 Confidentiality of file attributes 73
4.1.1.6 Open Source . 73

4.1.1.7 Software authenticity . 74
4.1.1.8 Multi-factor authentication 75

4.1.2 Usability . 76
4.2 Related work . 77

4.2.1 Commercial solutions . 77
4.2.1.1 Cloud service providers with cryptography protection 77
4.2.1.2 Comparison of CSPs . 81

4.2.2 Other solutions . 82
4.2.2.1 PGP . 83
4.2.2.2 TrueCrypt . 83
4.2.2.3 Operating System’s Built-in Encryption 86
4.2.2.4 Discussion . 86

4.3 Conclusions . 87
5 Cloud Privacy Guard (CPG) . 88

5.1 Introduction . 88
5.2 Objectives . 88
5.3 Requirements to be met by CPG . 89

5.3.1 Cryptographic keys security . 89
5.3.2 Secure deduplication . 90
5.3.3 High level of data secrecy . 90
5.3.4 Trust no one . 90
5.3.5 Confidentiality of file attributes . 90
5.3.6 Open Source . 90
5.3.7 Software authenticity . 91
5.3.8 Two-factor authentication . 91
5.3.9 Usability in cryptography applications 91

5.4 How CPG works . 92
5.4.1 First use . 92
5.4.2 Configuration settings . 93
5.4.3 Drag and Drop model . 93
5.4.4 How to send encrypted files to the cloud 94
5.4.5 How to decrypt files . 95
5.4.6 How to share files . 95

5.5 Cryptographic process . 96
5.6 Comparison . 98
5.7 Limitations . 99
5.8 Proof of concept . 100

5.8.1 Implementation model . 100
5.8.2 CPG class diagram . 103

5.9 Future steps in CPG development . 105
5.10 Conclusions . 105

6 Conclusions . 107
6.1 Contributions . 108
6.2 Future work . 108

Bibliography . 110

Appendix 117
APPENDIX A Survey: Privacy . 118

A.1 Introduction . 118
A.2 Description . 118
A.3 Questions . 119
A.4 Results . 121

APPENDIX B Analysis of CSP’s key management 127
B.1 Introduction . 127

B.1.1 Encryption App - ownCloud . 127
B.1.2 SpiderOak . 132
B.1.3 BoxCryptor . 133
B.1.4 Credeon . 134
B.1.5 ProtonMail . 135
B.1.6 Cyphertite . 137
B.1.7 Wuala . 138
B.1.8 arxShare . 140
B.1.9 BackBlaze . 141
B.1.10 Carbonite . 142
B.1.11 Mega . 144

APPENDIX C CPG Use Cases . 146
C.1 Introduction . 146

C.1.1 Services provided . 146
C.1.2 Requirements demanded by CPG . 146
C.1.3 Actors and components . 146

C.2 Basic events on CPG . 147
C.2.0.1 Authentication . 147
C.2.0.2 CPG Configuration settings 148
C.2.0.3 Storing encrypted files . 149
C.2.0.4 Recovering encrypted files from the cloud 150
C.2.0.5 Sharing files . 151

C.2.0.6 Erasing files . 153
C.2.0.7 Closing CPG . 153
C.2.0.8 Starting CPG . 154
C.2.0.9 Creating the cryptographic keys 154
C.2.0.10 Validating users’ passphrase 155
C.2.0.11 Encrypting files . 155
C.2.0.12 Decrypting files . 156

APPENDIX D Publications derived from this work 159

18

1 Introduction

Cloud computing is a well-known and consolidated technology nowadays, which
can bring many advantages for users. It refers to a model that delivers services over the inter-
net, allowing its customers to access them through any device with internet connection. Most
companies understood the potential of this service and started moving their business to clouds.
Users can demand computer resources in an elastic, scalable and configurable way, avoiding
costs associated to infrastructure and local maintenance, paying only for what they consume
(pay-as-you-go model).

There are several ways to provide cloud services, and the most known and used are:
software as a service (SaaS), platform as a service (PaaS) and infrastructure as a service (IaaS).
According to Mather T et al. (MATHER et al., 2009), there are also a few deployment ways to
implement cloud services by providers, which can be:

∙ Public: The cloud infrastructure is managed and belongs to a third party vendor, the Cloud
Service Provider (CSP). It is placed outside the establishment, in a controlled area by the
CSP. Users data is out of their control and are protected by someone they do not know
and cannot trust (normally).

∙ Private: The cloud infrastructure is managed by and belongs to users. It is placed inside
the organization, in an user controlled area. Data access is only granted to reliable parts.

∙ Hybrid: This model consists of two or more cloud deployment models. Part of the ser-
vices could run in one infrastructure and the other part in another. For example, compa-
nies could run non sensitive applications in a public cloud and sensitive applications in a
private infrastructure.

There are still more deployment models of cloud computing: Community cloud,
Multi-cloud and Federated cloud. However, they will not be discussed here since they are be-
yond the scope of this study.

Among all types of services provided by CSPs, the cloud data storage is one of
the most used and popular. Users can have access to their data from anywhere at any time,
avoid costs of building and maintaining a storage infrastructure, pay only for what they use (the
storage space they consume) and avoid the troubles related to backups.

However, after start using the cloud technology, users begin to wonder about the
safety of their information. Gradually, they realized how valuable their privacy is, making it one
of their main concerns in recent times. News related to attacks and threats surrounding users on
the Internet made them more concerned about the lack of control on the data stored in public

Chapter 1. Introduction 19

clouds (ALLIANCE, 2013), where they do not know where their data is located, if their CSP
is learning something about it, if there is any modification on it and so on. They just store their
data in clear form, without any extra protection and rely on the security provided by their CSP’s
protocols. They must trust in these entities.

Besides, there is a risk related to the CSPs sharing users data with marketing com-
panies or use them in a harmful way. Security breaches are also another problem faced in these
environments, which allow intruders to get users data. Data life cycle is yet another concern,
since its destruction is a complicated matter in the cloud environment, where data replicas are
spread over several servers in order to achieve fault tolerance and better performance. These
and other concerns create a barrier on those who care about their privacy and the security of
their data.

Techniques that can minimize the potential damages caused by unwilling disclosure
of sensitive data are necessary and cryptography is being used to this end. Some CSPs realized
the potential risks on users privacy and started offering cryptography options on the data storage
services to minimize users’ concerns. However, providing cryptography services is not trivial.
There are obstacles to overcome and sometimes they are just put away by providers who prefer
easy solutions or prefer to focus on usability over security. Besides, other factors can increase
or decrease the security level of a system, and must be considered in order to create a secure
and reliable model, where users can get the desired privacy and security. For users, the main
obstacle in this environment might be their lack of expertise on cryptography. They do not know
exactly what it is, how this technique can protect them and the importance of managing well
the cryptographic keys.

In this scenario, this work raises some problems and concerns related to the security
and privacy of users when storing their data on public clouds. We discuss some techniques
to mitigate these issues, along with an analysis of their costs and benefits. We also present
some requirements considered indispensable for a secure, reliable and easy to use cloud system.
Finally, we propose a new cryptographic application to mitigate the risks in public cloud data
storage. This application, called Cloud Privacy Guard (CPG), addresses users’ concerns about
privacy while maintaining a good level of usability to avoid the burden of dealing with complex
cryptographic protocols and procedures.

The remainder of the text is structured as follows:

∙ Chapter II: Presents some problems related to the security and privacy on cloud data
services, focusing on data storage. It also discusses some major concerns and techniques
used to mitigate them, and an analysis of academic solutions;

∙ Chapter III: Proposes a method for evaluating the relative costs and benefits of the tech-
niques used to improve users’ privacy;

Chapter 1. Introduction 20

∙ Chapter IV: Proposes a set of requirements that should be adopted by a CSP in order to
improve the data security and the privacy offered to users. It also presents an analysis of
existing CSPs according to these requirements;

∙ Chapter V: Proposes an application to give users more control over the security of their
data without having to deal with complex cryptographic procedures;

∙ Chapter VI: Gives the conclusions and some directions for future works.

21

2 Main concerns on cloud data storage and
some solutions

In this chapter we will discuss some threats in the cloud data storage environment
to which stored data is exposed. We will also describe some concerns about the users’ privacy
in the cloud, considering a more wider approach from a privacy point of view. Some techniques
used to address these concerns will also be presented and discussed. Finally, we will present
and discuss academic solutions and architecture proposed to mitigate the current problems and
to improve the security and privacy in cloud data storage.

2.1 Threats to cloud data storage

The main threats described below are subject of study by several researchers as
(BESSANI et al., 2013), (ASHKTORAB; TAGHIZADEH, 2012), (ZISSIS; LEKKAS, 2012),
(SUBASHINI; KAVITHA, 2011), (KHALIL et al., 2014) and (ZHOU et al., 2010) and some
of them appear in the list of major threats in the cloud environment appointed by the Cloud Se-
curity Alliance (CSA), an entity specialized in computing and security technologies for clouds
(ALLIANCE, 2013) (HUBBARD; SUTTON, 2010).

∙ Data leakage: Most users store their data in the cloud without any additional protection,
mainly trusting in the protocols adopted by their Cloud Service Provider (CSP). Data
confidentiality is an important matter since critical, personal and confidential information
could be obtained from certain files, and used to attack or blackmail users. If a server is
compromised for some reason, the privacy of its users is compromised as well. Another
concern related to confidentiality is the fact that users data may be monitored without
their knowledge when stored in public clouds. Some CPSs could learn something from
users’ files, and do advertising based on that, for instance.

∙ Unknown data physical location: When users send their data to be stored in the cloud,
they do not know where their files will be located. Some CSPs have their servers spread
around the world, and will store users data according to their needs and to economic fac-
tors. Therefore, data could be stored in different countries, which may have different laws
with respect to privacy. This could be harmful to users, since their data is in possession
of a third party (the CSP) spread over different countries and government agencies could

Chapter 2. Main concerns on cloud data storage and some solutions 22

easily get users data from the provider.

∙ Lack of guarantee of total data destruction: When users make a request to delete a
certain file stored in the cloud, they do not have a guarantee that all copies of this file
were indeed deleted by the provider in their servers. If a CSP has access to user data, it
normally uses them for data mining, research and/or advertisement purposes and it will
not be willing to remove immediately the data from its servers when the user deletes
them. Therefore the user’s data may stay available to the CSP much longer than the user
expects. Backups are also a reason for keeping excluded data for a while, in cases where
users want to recover them.

∙ Insecure Applications: Users data security also depends on the safety of the applications
used with them. For this reason, before using any software developed by an unknown
source, users have to certify that this software is really secure and reliable, doing indeed
what it promises (ASHKTORAB; TAGHIZADEH, 2012).

∙ Account or service hijacking: Attackers will attempt to get access to users’ credentials
and hence to their accounts. The attack could be executed by brute force, phishing, fraud,
exploiting software vulnerabilities or by other means. Usually, the reuse of credentials
(login/password) by users makes this threat easier to be explored.

Users’ credentials can also be obtained by malicious codes running on the machine, as
Trojans and Keyloggers, among others. Once attackers have access to users’ account, they
can have access to all their data, including those kept in the cloud. Even those that use
cryptography to protect users data, but rely on the authentication password to protect all
the stored information, will not be able to protect anything, in such case.

∙ Inability to access data: One of the major characteristics of cloud data storage service is
data availability, where users can access their data any time from any place, just using a
device with Internet connection. Usually, CSPs have technology to protect them against
flaws and being out of service. However, it is inevitable that users data get unavailable
due to Internet connection problems. There is also the possibility of outages or attacks,
like denial-of-service (DOS) or similar that could interrupt data access (BESSANI et al.,
2013).

∙ Data lock-in: Most users rely just on a single CSP to store their data. As all CSPs of-
fer redundancy in their systems, users usually do not worry about this issue and put all
their information in just one place. However, they become dependent on their providers

Chapter 2. Main concerns on cloud data storage and some solutions 23

in such case. This dependency, when related to data storage, is called data lock-in (ABU-
LIBDEH et al., 2010) and present several disadvantages for users, mostly the risk of a
single point of failure. Once users send their files to be stored in the cloud, if their CSP
raises the prices charged for their storage services, goes out of business or even reduces
the provided service quality, it is too expensive to move all data to a new provider. Be-
sides, they would have to download all their data and then upload everything in the new
CSP. This becomes an issue when users have too many files stored. This mostly happens
because there is no easy way to move data from one CSP to another directly, since there
are no standards for APIs in the cloud environment, limiting the portability of data and
application between CSPs. (SCHNJAKIN et al., 2011).

∙ Malicious insiders: This is a big threat to users, where the attackers are the employees
at the CSP. Former or current unhappy employees who seek ways to cause damage or
to blackmail users or the CSP, are examples of such attackers. The great advantage they
have over external attackers is the knowledge about the cloud’s infrastructure and the
privileged access to it.

∙ Common shared infrastructure: Sharing infrastructure is a common practice in cloud
environments and most CSPs adopt this concept as a way to reduce costs. Although users
are usually separated at a virtual level, hardware is not at most times. Multiple users will
have their data placed in the same hardware in the cloud. Because of this, some risks
for an user may appear if the account of another user is compromised and the separation
among users is not well implemented at the software level (SUBASHINI; KAVITHA,
2011).

∙ Data loss: There is always a concern about data being lost or corrupted while they are
being sent to the cloud, recovered or at rest in the CSP (BESSANI et al., 2013).

∙ Sniffer attacks: Some applications are designed to capture packets travelling in the net-
work. If users data is sent to the cloud in a unencrypted way, attackers using these appli-
cations will capture and have access to such data (ASHKTORAB; TAGHIZADEH, 2012).

It is important to highlight that some of these threats are only a concern when using
a public infrastructure. In a private cloud environment, the threats faced are those from external
sources. Problems as unknown data physical location, lack of guarantee of total data destruction,
insecure applications, vendor lock-in and common shared infrastructure are not threats since in

Chapter 2. Main concerns on cloud data storage and some solutions 24

a private cloud the data owner also owns the infrastructure that will hold the data. Table 1
summarizes all the problems discussed in this section and maps them according to the type of
infrastructure.

Table 1 – Threats to cloud data storage mapped according to the type of infrastructure

Problems Public Cloud Private Cloud
Data leakage X X
Unknown data physical location X
Lack of guarantee of total data destruction X
Insecure Applications X
Account or service hijacking X X
Inability to access data X X
Data lock-in X
Malicious insiders X X
Common shared infrastructure X
Data loss/Leakage X X
Sniffer attacks X X

2.2 Privacy on cloud data storage

Nowadays, due to a lack of knowledge or to the complexity involved, most users
just send their data to the cloud and trust to the CPS the protection of their information. As
a way to avoid this almost blind trust, several researchers have proposed solutions to improve
users’ privacy in this environment. In this section, we will present some concerns related to
users’ privacy in the process of storing data in the cloud. We will detail each concern and
discuss some techniques that can be used to mitigate it. In our work, we focused on four privacy
characteristics (BIRRELL; SCHNEIDER, 2012) (PFITZMANN; HANSEN, 2010), which are:

1. Confidentiality: Capability of controlling who can access the data.

2. Undetectability: There is no way to tell if an item of interest exists or not.

3. Anonymity: Users can not be identified from data.

4. Pseudonymous: Users identification using different names from their real ones.

2.2.1 Data confidentiality

One of the greatest concerns related to the privacy in the cloud data storage environ-
ment is the data confidentiality, a very active research topic. This concern is related to the lack
of control over data stored in the cloud by its owners. Also, data is usually stored in plaintext,
with no additional protection on it, allowing the CSPs or intruders to learn something about it

Chapter 2. Main concerns on cloud data storage and some solutions 25

or even to get some information related to its owner. Having control on who are able to have
access to their data, users will not have to trust blindly in their providers and their data will be
safer against attacks. The main techniques used to provide this control and give more safety
to users are cryptography and data fragmentation. Both techniques are explained bellow, along
with a discussion about their benefits and limitations.

2.2.1.1 Cryptography

Cryptography is a technique used to keep an information confidential and accessible
only for those who know a secret (a key), used in the codification process. The secrecy is
achieved by a codification based on the key, which will generate an unintelligible information.
Despite being one of the most important techniques employed nowadays to keep information
secret, there are some disadvantages, or difficulties, related to the use of cryptography. Some of
the obstacles are the lower performance in general (extra time for encryption and decryption),
the difficulty in sharing data with other users and the difficulty in finding and indexing encrypted
data. Moreover, there is a complex key management process that the users will have to deal with.

Cryptography could be used in cloud data storage to protect data at rest or in transit.
Regarding the protection of data at rest, data could be encrypted before going to the cloud
(client side) or after (server side). With respect to the protection of data in transit, data can be
encrypted when sent from users’ device to the cloud or vice versa. A combination of this two
models is also possible. Fig. 27 illustrates a case where data is encrypted before it is sent to the
cloud.

Figure 1 – Cryptographic process in the client

Chapter 2. Main concerns on cloud data storage and some solutions 26

2.2.1.2 Data fragmentation

Other technique that could be used to minimize some concerns about users privacy
in cloud data storage is data fragmentation. This concept is similar to the RAID (Redundant
Array of Independent Disks) technology (PATTERSON et al., 1988), but when it is used in
the cloud environment, data is broken in many small fragments which are spread over several
CSPs belonging to different companies. Normally, the main reason to use this technique is
to provide fault tolerance and/or performance. But here, the objective of spreading data into
different clouds is to avoid that CSPs or any attackers get the whole data in case of security
breaches in some of them. To reconstruct the original data, normally all fragments are necessary,
but, depending on the method used in the fragmentation process, only part of them is sufficient.

There are two ways to use data fragmentation: with or without redundancy. The
fragmentation without redundancy consists in splitting the data into n parts, which are all nec-
essary in order to recover the original information. There is no advantages in using this mode in
cloud storage, since all data fragments will be necessary in the recovery process, and any failure
in getting one of the them could preclude users from reconstructing the original data.

The other mode of data fragmentation is the adoption of a method that creates re-
dundancy in the system. This is very important in cloud environment since it tolerates possible
faults. There will be several clouds storing users data, and if one of them gets unavailable for
any reason, this fault tolerant model allows users to recover their files using the remaining
fragments. There are several methods to implement this technique. One of them is the FRS
(Fragmentation-Redundancy-Scattering) (SILVA; RODRIGUES, 1998). This method is very
costly in term of storage space, as data is divided and the parts duplicated and scattered in a way
that satisfies users fault tolerance needs. Another method used is the Secret Sharing (SHAMIR,
1979), also very costly in terms of storage, since each fragment generated will have the size
of the original file. However, this algorithm also provides secrecy in the parts itself, since each
of them is a result from a special codification. This is one of the reasons why this method is
popular, as most fragmentation algorithms create fragments which can revel some information
about the original data (FU; SUN, 2012).

Another option is using a method called Erasure Codes (SCHNJAKIN et al., 2013b),
a family of codes used in the cloud data storage environment to solve the storage overload pro-
duced by the two previous methods. In particular when Reed-Solomon code is used, data is
broken into k fragments of equal size that hold the original data and m additional parts of cod-
ing information, calculated from the k fragments, resulting in a total of n = k+m parts. The
original fragments can be recovered from any k fragments of n. The Reed-Solomon method in-
creases the storage costs by a factor of m/k. Fig. 2 illustrates the process of fragmentation and
storage in different clouds.

It is important to highlight that some factors can increase or decrease the level of

Chapter 2. Main concerns on cloud data storage and some solutions 27

Figure 2 – Data fragmentation and storage in different clouds

privacy got from the use of this technique. One of these factors is geopolitics. When users spread
their data into different CSPs whose servers are located in the same country or in geopolitically
related ones, it is easier for governors or agencies to get access to all the data fragments (by
means of warrants) than in cases where they are located in geopolitically conflicted countries.
The latter case can increase users’ privacy since one country will not collaborate with another
due to their conflicts. On the other hand, users’ privacy can decrease when countries have a
good relationship and collaborate with each other, making it easier to get all data fragments.

2.2.2 Metadata confidentiality

The metadata confidentiality is also related to users’ privacy, providing undetectabi-
lity for the data stored. It deserves attention because some attributes, as filename, size, creation
and modification dates etc, can compromise users’ privacy, even if all possible precautions were
taken with respect to the content protection using the techniques described above. Let us take
the data denomination as an example. Usually, users name their files with content-related words.
In this case, the file will be identified and this could be enough to cause some problems to its
owner. A compromising situation could be where an user has a text file containing information
about his income tax, for example, and the filename would be the word tax followed by his
social security number and the file format. In order to keep the content of this file secret, he
encrypts and stores it in the cloud. However, if the filename and extension are not encrypted,
even though its content is, an attacker would have a hint to figure out what information is inside
of that file. In the example above, user’s social security number would also be revealed. The file
format could also suggest something about it.

Another issue comes up when the fragmentation technique is used, since all frag-
mented data may be renamed as file.part1, file.part2, ..., file.partN, revealing that this file was
fragmented in, at least, N parts. This situation should be avoided, because even though it is hard

Chapter 2. Main concerns on cloud data storage and some solutions 28

to guess how many parts a certain file was broken into, the simple knowledge that the frag-
mentation occurred could lead to questions about where are those fragments or what is the total
number of them.

The example above makes clear that only file content encryption is not enough.
A secure way to protect the metadata in the cloud is necessary. A possible solution could be
through the metadata encryption, as shown in the Fig. 3. The same key used to encrypt the data
content could be applied to encrypt the metadata, without having an extra burden imposed by
the use of a different key. This solution would prevent a possible disclosure of the data and
add a barrier to attackers, who will have a hard time figuring out which files are important and
worth stealing. The fragmentation problem would also be avoided, since the name of a fragment
file.part1 would be illegible and totally different from the name of other fragments, as file.part2,

file.part3, ..., file.partN, due to the characteristics of cryptographic algorithms.

Another solution that could be used with cryptography is the division of a file into
fragments of different sizes, which would improve its security once the parts would be more
similar to random files in terms of their size.

Encrypting metadata can also be very useful in the context of Content-Centric Net-
working (CCN) (JACOBSON et al., 2009).

Figure 3 – Data name encryption process

2.2.3 Data access confidentiality

This concern is related to the users’ privacy on accessing their data in the cloud. In
this case, the privacy is about their location, which they wish to keep in secret from the CSPs
(anonymity). There are many resources to this end as, for example, the TOR (MURDOCH;
DANEZIS, 2005) network and VPN-Proxy (DUFFIELD et al., 2005). These technologies can
protect users from surveillance of governments, service providers that sells statistic data about
these accesses to marketing companies and also against possible attackers. Also, some Internet
web services use access location to provide specific and customized services to its users. How-
ever, these users usually do not have control over these services; tools to mask their location
could protect them and offer a higher privacy. In the next subsections, we will explain how TOR
and VPN-Proxy can provide anonymity to its users.

Chapter 2. Main concerns on cloud data storage and some solutions 29

2.2.3.1 TOR

TOR (The Onion Router) is an open source project that offers protection against
surveillance, and once installed, can mask users’ location while surfing on the Internet. This
benefit is achieved through a complex mechanism that uses data transmission over multiples
machines. According to Murdoch and Danezis (MURDOCH; DANEZIS, 2005), there are sev-
eral TOR nodes on the network and each of them tries to ensure that the corresponding incoming
and outgoing flows are obscured to an attacker. The initiator of the flow creates a circuit through
a connection to random TOR nodes, negotiating secret keys and setting up a secure channel be-
tween them. The following communication is done through this secure channel, and for each
new TOR node connection, new secret keys are exchanged in order to protect the information
by multiples encryption layers.

A message is encrypted using all the encryption keys established among the nodes
and forwarded to each node, in the reverse order that the encryption occurred. Each node will
receive the encrypted message, and it only has to decrypt its corresponding encryption layer
and forward the message to the next node. After a series of steps (three by default), the last
node connects to a port in the destination node and delivers the message. As the secret keys are
erased after the circuit ends, the nodes can not decrypt old messages, and also they do not know
who started the communication, since they only know who sent them the message and who it
should be delivered to, providing the anonymity to users. All of this is executed on client-side
and do not need a trusted third party to get the anonymity in network traffic.

Fig. 4 illustrates a basic communication using TOR. A circuit is created with three
TOR nodes, and after the message leaves the origin, it goes through the three selected nodes,
where it is decrypted and then delivered to the next. In the third and last node, the message is
decrypted and sent to the destination. All messages that should be delivered to the initial node
do the opposite way back. The destination send a message to the final node, which encrypts it
and send it back to the second TOR node. The message is encrypted and sent to the first one,
responsible for putting the third encryption layer and forwarding it to the initial node. After
receiving the message, this node decrypts it with the secret keys belonging to each node, and
then reads the message.

2.2.3.2 VPN-Proxy

Another tool that can be used to protect users’ location is a VPN (Virtual Private
Network) service combined with a proxy server. The use of this technology creates a commu-
nication tunnel (with the use of cryptographic protocols, such as TLS) between users’ device
and a VPN-Proxy server (VPNBook.com, frootvpn.com, hide.me, torvpn.com and freevpn.me
for example). The main function of this server is to receive, decrypt and forward users’ packets
to the cloud, but using as the source address its own IP in place of the original one, providing
IP (localization) anonymity (DUFFIELD et al., 2005). Although all communication between

Chapter 2. Main concerns on cloud data storage and some solutions 30

Figure 4 – Establishing a new TOR communication

users’ device and the VPN-Proxy servers goes through a secure communication channel, those
between VPN-Proxy and cloud are not necessarily encrypted. However, using this technology
requires a trusted third party which will have access to all user information, and could be com-
promised. To protect users’ privacy it is recommended that no information related to their ac-
cesses is stored in VPN-Proxy servers. The use of this technology is presented in Fig. 5.

Figure 5 – VPN-Proxy communication

2.2.4 Data possession confidentiality

Data possession confidentiality is another point of concern. A CSP could easily link
the data stored in their servers to its respective owner, which could bring some privacy prob-
lems to users. One way to solve this matter is through the anonymity, masking the possession
of a certain file by an user. To this end, the CSPs could adopt the concept of federated identity
(CHADWICK, 2009) in their solutions. It refers to the delegation of users’ authentication pro-
cess to a trusted third party, the Identity Provider (IdP). Besides the authentication, this third

Chapter 2. Main concerns on cloud data storage and some solutions 31

party needs to keep user attributes and sometimes pass them to the Service Providers (SP), the
CSPs. With the federated identity adoption, users only need to authenticate once to get access
to several services in different places. When accessing cloud services, users authenticate with
an IdP, which creates tickets (pseudonyms) for them. They may be therefore known to that CSP
only by these pseudonyms and the access to their files in the cloud is done without the CSP
linking the data stored to the owners’ true names. In order to provide a higher privacy level, the
IdP would not keep any information related to users’ access to the CSP neither forward their
real attributes, but only those related to the pseudonyms. Fig. 6 illustrates a basic scheme where
users authenticate themselves in an IdP and receive a token containing the pseudonym, which
is delivered to the CSP to allow them to have access to their data.

Figure 6 – Using a identity provider to access data in the cloud

2.3 Related work

In this section we describe the solutions and proposals found in the literature to
mitigate some problems available in cloud data storage in order to improve users’ privacy and
the security of their data. Most of work focus on data confidentiality concerns, using techniques
as cryptography at data at rest, data fragmentation or a combination of these two approaches. For
each one, we present in the next subsections some related work and a brief discussion about the
benefits and obstacles in their use. However, solutions employing the other techniques discussed
previously for the specific purpose of providing privacy in the cloud storage were not found.
Only a similar idea to the use Federated Identity technique to improve anonymity was found
in Wang’s work [Wang et al. 2009]. The basic principle of his proposal is to use an algorithm
before data is sent to the cloud to make it anonymous, yet allowing it to be easily recovered
later. Data is sent to the cloud with auxiliary information (external knowledge derived from
other sources, as web, public domains etc.). In this way, it will not be possible to claim that
certain data belongs or not to a certain user. This solution is client-side and does not need a
trusted third party to keep the anonymity.

Chapter 2. Main concerns on cloud data storage and some solutions 32

2.3.0.1 Cryptography

The most common way to achieve security and privacy on cloud data storage is
through cryptography. Several proposals use this approach to avoid CSPs and intruders learning
any sensitive information. This is one of the oldest techniques and, among its benefits, the
greater is confidentiality. However, there are a few obstacles regarding the use of this technique
in the cloud environment, which are the low performance and the difficulty of sharing, indexing
and searching encrypted data. Another obstacle is the cryptographic key management which
could be a great burden for system administrators or users, since the whole security rely on the
protection of such keys.

The cryptography is adopted in several ways to improve users’ privacy in the cloud.
Some works prefer to stick with classical solutions using RSA, as those proposed by Kalpana
(KALPANA; SINGARAJU, 2012) and Padmaja (PADMAJA; KODURU, 2013). In these pro-
posals, all data is first encrypted and then sent to the cloud (client-side), but the authors do not
describe how to manage users’ keys and how to allow data sharing, since there is no protocol for
these features described. A similar proposal is presented by Yin (YIN et al., 2014) and Kumar
(KUMAR et al., 2012), where the authors use Elliptic Curve Cryptography (ECC) instead of
the RSA for performance issues, arguing that it provides comparable security with small key-
length, requiring less computation and being more efficient. In their proposal they allow users
to share data through certificates, where users have to store the data intended to be shared in a
public area. However, every user once authenticated in the system can access all data stored in
the public area, since data is encrypted using user’s private key. Data not intended to be shared
is stored in private areas accessible only by their owners.

Kamara and Lauter (KAMARA; LAUTER, 2010) propose an architecture aimed to
be open-source and allow secure data sharing through tokens created by data owners. In their
model, also client-side, they use symmetric cryptography (AES) to encrypt users data and a
searchable encryption scheme to create and encrypt indexes on data. Moreover, they propose an
attribute-based encryption scheme to encrypt the symmetric keys based on appropriate policy,
where only the ones who meet this policy can decrypt them. There is also a test to verify data
integrity through a proof of storage technique. Access to shared data can not be revoked.

Another proposal using a client-side approach is presented by Xu et al (XU et al.,
2012b) with focus on data sharing, eliminating the key escrow problem and the need for certifi-
cates. The proposed scheme uses a re-encryption algorithm. Data is sent already encrypted to
the cloud along with the DEK (Data Encryption Key) encrypted with the owner’s public key and
a list of the users that can have access to this data. Data is shared through a re-encryption key
for each record, generated from data owner’s private key and the recipient’s public key. When
an user requests this data, a proxy server in the cloud will use a re-encryption algorithm and the
re-encryption key provided by the owner to transfer the encrypted DEK into a format that the
recipient could decrypt using its private key. Neither the cloud nor the proxy (presented in the

Chapter 2. Main concerns on cloud data storage and some solutions 33

cloud) have access to the DEK in unencrypted format.

A different approach is proposed by Gasti et al (GASTI et al., 2010). It adopts
client-side encryption and also allows users to share their data. A deniable cryptography scheme
is used aiming to protect users’ privacy even under coercion. With the use of this technique,
users can decrypt their data and the resulting plaintext could be something completely different
from the original data content if users use a second key. This is helpful in cases where they are
coerced to decrypt sensitive information and did not want to reveal the original content. Using
the right key they can get the original content. In this approach they use RSA (OAEP padding)
for asymmetric algorithm and AES (CTR mode) for symmetric.

Phuong et al (PHUONG et al., 2012) present a server-side model, where it requires
a trusted third party responsible for the key management. In their model, data is encrypted
by ElGamal asymmetric algorithm and could be shared with other users. Their focus is on
retrieving encrypted data from the cloud and, as its name is also encrypted, they use a multi-
user searchable encrypted data scheme, which allow a third party to look for encrypted data
using encrypted keywords.

2.3.0.2 Data fragmentation

Another technique used to improve users’ privacy in cloud data storage is through
data fragmentation. Some benefits could be achieved by the use of this technique, such as the
non-dependence on a single CSP (vendor lock-in), redundancy and greater data availability.
Some authors say that splitting data into several small pieces could also achieve confidentiality,
since the fragments would be small enough to reveal almost nothing about the original data.
Also, to get the original data, attackers would need to recover all the fragments spread and re-
built them in the correct way. There are several ways to split data, each one with its own benefits.
However, this technique also presents some drawbacks, such as the ones related to confidentia-
lity, since sensitive information could be obtained from the fragments, the complexity involved
in using several clouds to store the data and also the sharing of data spread at multiple places.

Jaatun et al (JAATUN et al., 2011a) present a solution using data fragmentation
technique. In their proposal, there is a cloud service C&C (Control and Command) responsible
for receiving users data and splitting them in several pieces to be stored in different CSPs. The
authors highlighted that if the fragments were small enough and only its owner could recover all
of them, data confidentiality could be achieved without cryptography. However, the fragments
could still have some sensitive information and this is not handled by the authors. Also, data
redundancy and data sharing are not a concern in their work, and are not dealt with.

Aiming to protect electronic medical records (EMR), Pao-Ching C.. et al (CHEN
et al., 2010) use data fragmentation in their solution, based on a model similar to RAID-3
technology (PATTERSON et al., 1988). They use three different places to store the EMR: two
CSPs and a local site. To ensure data confidentiality, they break each file at a byte level, where

Chapter 2. Main concerns on cloud data storage and some solutions 34

a stream of data is stored byte by byte in a round-robin way in those places. However, they do
not discuss the redundancy and data sharing in their solution.

RACS, another work using data fragmentation technique in the context of cloud
data storage, is a system proposed by Abu-Libdeh et al (ABU-LIBDEH et al., 2010). In their
solution, a proxy interposed between users’ application and a set of n CSPs, has to work as
the RAID-5 technology, splitting users data into several fragments and storing them among
the available providers, mostly to avoid vendor lock-in and reduce costs associated to cloud
shifting. Erasure codes are used in their proposal to split data in an efficient way and also to
allow redundancy in the system. However, data sharing it is not treated.

2.3.0.3 Cryptography and data fragmentation

The third way discussed in this work to protect users in cloud data storage environ-
ment is the combination of the two previous techniques: cryptography and data fragmentation.
With the use of these two methods, users gain in terms of protection because of the advantages
of the cryptography confidentiality and the redundancy and availability achieved by the frag-
mentation. However, as a drawback, some problems presented in these methods are added, as
the key management in cryptography and data sharing in fragmentation.

The first discussed proposal using the two methods is due to Kumar M.S. and Kumar
M. (KUMAR; KUMAR, 2013). They use a technique called Storage Efficient Secret Sharing
(SESS) which uses the algorithm SSS (Shamir’s Secret Sharing) to split data in several parts
and requiring just some of them to recover the original data. The main purpose of this technique
is to mitigate the computational complexity of SSS, reducing the high storage cost, which is
a function of S = n ·W , where S is the total space required for all fragments, n the number of
fragments resulting from the splitting process and W is the original data size. The SESS method
reduces the storage overload to S = W · (1+ n)/2. Basically, this method splits data into two
parts, where the first one is encrypted (RC4 algorithm - 160-bit key) using a key derived from
the hash of the second one. The second part is the one which is applied to the SSS method to be
split. All the parts are sent to different CSPs. There is no redundancy for the first part and data
sharing is not allowed. Their approach use client-side encryption.

Ermakova and Fabian (ERMAKOVA; FABIAN, 2013) also describe an architecture
using multiple clouds to store users data in order to improve the availability, confidentiality and
integrity of medical records. The secret sharing is used for this end combined with an attribute-
based encryption method (ABE), used to encrypt users data according to a certain policy. Data
is also digitally signed. Firstly, it is encrypted and then broken in several pieces to be stored in
different CSPs (client-side). To recover the original data, users only need part of the fragments.
The method allows data sharing, but the details about the protocol are not provided.

Schnjakin et al (SCHNJAKIN et al., 2013a) describe an architecture similar to
RAID-5 technology. They split users data in several fragments and store them in different CSPs,

Chapter 2. Main concerns on cloud data storage and some solutions 35

using Erasure Codes. They choose the providers which will store users data according to users’
expectations, such as geographic location, quality of service, reputation and also budget pre-
ference. They also encrypt data before leaving users’ computer (client-side), using symmetric
encryption (AES algorithm).

2.3.0.4 Discussion

All proposals presented so far aims to mitigate some problems found in the cloud
data storage. Table 2 presents the solutions along with the main techniques used by them to
address each problem. Also, the proposals are classified as server-side or client-side. The later
is the most privacy-friendly one and will be the only one considered as secure, as the operations
and control of data are restricted only to users. The meaning of the letters is: V stands for
problem solved; X indicates that the technique does not solve the particular problem and P

shows that the technique provides a partial solution.

Chapter 2. Main concerns on cloud data storage and some solutions 36

Ta
bl

e
2

–
C

om
pa

ri
so

n
of

lit
er

at
ur

e
so

lu
tio

n
in

cl
ou

d
da

ta
st

or
ag

e

T
hr

ea
ts

Fe
at

ur
es

Pa
pe

rs
D

at
a

le
ak

ag
e

U
nk

no
w

n
da

ta
ph

ys
ic

al
lo

ca
tio

n

L
ac

k
of

gu
ar

an
te

e
of

to
ta

l
da

ta
de

st
ru

ct
io

n

In
se

cu
re

A
pp

A
cc

ou
nt

/
se

rv
ic

e
hi

ja
ck

in
g

In
ab

ili
ty

to
ac

ce
ss

da
ta

D
at

a
lo

ck
-in

M
al

ic
iu

s
in

si
de

rs

C
om

m
on

sh
ar

ed
in

fr
as

tr
uc

tu
re

Sh
a-

ri
ng

da
ta

C
lie

nt
-

si
de

en
cr

yp
-

tio
n

A
lg

or
ith

m

(K
A

L
PA

N
A

;
SI

N
G

A
R

A
JU

,2
01

2)
V

V
V

X
X

X
X

V
V

X
V

R
SA

/S
ym

m
et

ri
c

no
tm

en
tio

ne
d

(P
A

D
M

A
JA

;K
O

D
U

R
U

,
20

13
)

V
V

V
X

X
X

X
V

V
X

V
R

SA
/S

ym
m

et
ri

c
no

tm
en

tio
ne

d

(Y
IN

et
al

.,
20

14
)

V
V

V
X

X
X

X
V

V
V

V
E

C
C

(K
U

M
A

R
et

al
.,

20
12

)
V

V
V

X
X

X
X

V
V

V
V

E
C

C

(K
A

M
A

R
A

;L
A

U
T

E
R

,
20

10
)

V
V

V
P

X
X

X
V

V
V

V
A

E
S

/A
ttr

ib
ut

e-
ba

se
d

en
cr

yp
tio

n
/

Se
ar

ch
ab

le
E

nc
ry

pt
io

n

(P
H

U
O

N
G

et
al

.,
20

12
)

V
V

V
X

X
X

X
V

V
V

X
E

lG
am

al

(X
U

et
al

.,
20

12
b)

V
V

V
X

X
X

X
V

V
V

V
A

sy
m

m
et

ri
c

/S
ym

m
et

ri
c

/
R

e-
en

cr
yp

tio
n

(G
A

ST
Ie

ta
l.,

20
10

)
V

V
V

X
X

X
X

V
V

V
V

R
SA

-O
A

E
P

/A
E

S-
C

T
R

/D
en

ia
bl

e
en

cr
yp

tio
n

(K
U

M
A

R
;K

U
M

A
R

,
20

13
)

V
V

V
X

X
V

V
V

V
X

V
R

C
4

/S
ec

re
tS

ha
ri

ng

(E
R

M
A

K
O

VA
;

FA
B

IA
N

,2
01

3)
V

V
V

X
X

V
V

V
V

V
V

A
ttr

ib
ut

e-
ba

se
d

en
cr

yp
tio

n
/S

ec
re

t
Sh

ar
in

g

(S
C

H
N

JA
K

IN
et

al
.,

20
13

a)
V

V
V

X
X

V
V

V
V

X
V

A
E

S
/E

ra
su

re
C

od
es

(J
A

A
T

U
N

et
al

.,
20

11
b)

P
P

P
X

X
X

X
P

P
X

X
N

ot
m

en
tio

ne
d

(A
B

U
-L

IB
D

E
H

et
al

.,
20

10
)

P
P

P
P

X
V

V
P

P
X

X
E

ra
su

re
C

od
es

(C
H

E
N

et
al

.,
20

10
)

V
V

V
X

X
X

X
V

V
X

X
N

ot
m

en
tio

ne
d

Chapter 2. Main concerns on cloud data storage and some solutions 37

Some of these proposals are also not practical and still need some development
until they can be used. According to the table, none of the solutions fulfil entirely all the threats
discussed. Most of the work in this area is conceived aiming to address data leakage, malicious
insiders, and others just with the adoption of cryptography. On the other hand, the insecure
applications and account or service hijacking threats are not addressed by none of the proposals.
The former it is addressed partially in only two cases. This indicates a necessity for further
studies. The inability to access data and data lock-in are also addressed, but only by a few
providers which use fragmentation techniques. These two threats and the data fragmentation
technique will not be further studied in this work and will be left for future work.

2.4 Conclusions

In this chapter we presented and discussed some threats that users may face while
using cloud data storage services. We also focused on users’ privacy and detailed some concerns
regarding it. Some techniques to mitigate these concerns were also presented and discussed.
Finally, we presented solutions from the literature aimed to mitigate these threats, in order to
improve the security and privacy in the cloud environment. These approaches were classified ac-
cording to the technique used in their solutions. Cryptography, the first one discussed, improves
users’ confidentiality but brings problems with data sharing and with indexing and searching of
encrypted files. Data fragmentation was the other technique presented to improve data availabi-
lity, using methods that create data redundancy. The last technique discussed was a combination
of the two previous ones to address most problems in data storage environments. However, in
this combination the problems of both techniques are summed up, bringing new challenges.

Even though the academic solutions propose the most advanced solutions, they fo-
cus on specific problems and for this reason are insufficient for real world implementation.
Moreover, some techniques used still require studies due to performance issues. Also, the pro-
posals do not address some important threats to keep users protected in the cloud environment,
requiring further studies.

38

3 Analysis of techniques to provide privacy
in clouds

In this chapter we present a methodology to evaluate the techniques described in
Chapter 2 to address users’ privacy. In our analysis, we calculate the relative costs and benefits
of each technique and their combinations, with the purpose of finding the best solutions to
improve users’ privacy.

3.1 Relative costs and benefits of the techniques

In this section, we will analyze the techniques introduced in chapter 2, evaluating
their relative costs and benefits regarding to users’ privacy. There are several ways to combine
these techniques and it is important to highlight that these combinations will bring different
costs and benefits to users. First, we will present a preliminary analysis of the techniques and
discuss the initial results obtained. Then, we will present an improved analysis where we eval-
uate in detail each technique and some combinations. The main objective of both analysis is to
find the combinations that produce the lowest cost/benefit ratios.

3.1.1 Preliminary analysis

For each technique or combination we establish a Relative Cost (RC) according to
a subjective estimative of time and space costs in relation to the others. The necessary infras-
tructure for using each tool is considered to be already installed and ready for use, not incurring
in extra costs. We also establish a subjective degree of Relative Privacy (RP) according to the
estimated level obtained with each technique in relation to the others. We choose the simplest
and less effective technique according to our point of view and expertise on the filed, and es-
tablished a relative cost of one for it. For the other techniques, we assined weights to them
according to how many times we consider they are more effective in protecting users’ privacy.
It is a completely subjective measure, but we consider it sufficient for our first comparative
analysis, which is based not on the absolute values of each parameter, but on the relative values
among them. The ratio R (cost/benefit ratio), is obtained from the division of RC by RP.

The techniques were named individually t0, t1, t2, t3, t4 and t5 as shown in Table 3,
along with their RC and RP values. All of them can be combined except for TOR and VPN-
Proxy since there is no reason for using them in the same solution because they have the same
purpose (hide users’ location) and this would only increase the costs with no further benefits
for users. As a result, there are 48 different possible combinations, numbered from 1 to 59.

Chapter 3. Analysis of techniques to provide privacy in clouds 39

Table 3 – First analyses of the relative cost and privacy of the techniques used to provide privacy
in the cloud

Symbol Technique RC RP
t5 Content encryption 4,0 3,5
t4 Fragmentation with redundancy 10,0 2,5
t3 Hide access via TOR 20,0 1,5
t2 Hide access via VPN-Proxy 8,0 1,0
t1 Hide data possession (Federated identity) 2,0 1,5
t0 Metadata encryption 1,0 1,0

We considered files with the same size to estimate the costs, once some techniques
(t5, t4, t3, t2) are directly affect by it. In order to identify all possible solutions, we proposed
a code for each combination based on a binary weight given by each technique symbol. The
0 represents the absence of a given technique, while 1 indicates its use. Each one occupies a
position in a 6 bits word, whose order is: t5, t4, t3, t2, t1, t0. Finally, this binary value is converted
to a decimal one, which is used to represent the combination. An example of denomination for
a solution that uses the Content Encryption (t5), Fragmentation with redundancy (t4) and TOR
(t3), would be (111000)2 or (56)10. It is considered that the RCi and RPi of a combination i are
given by the sum of the RCs and RPs of component techniques.

Figure 7 – Relative cost and privacy for different combinations

Fig. 7 illustrates all possible solutions with their respective relative costs and privacy
(RCixRPi) and also the value of Ri = RCi/RPi of each combination i represented by the size of
the circles. Notice that the most interesting combinations are the smallest ones located in the
bottom (the numbers indicate the combinations).

Consider the combination number 59, having all techniques, except t2. We can cal-
culate R59 and then see how it changes when we remove each technique, one by one. This
change gives us an idea about the weight of each in the formation of R59. Then, removing t0, t1,
t3, t4 and t5 from combination 59 results in changes of +8%, +11%, −46%, −3% and +37%,

Chapter 3. Analysis of techniques to provide privacy in clouds 40

respectively, in the value of R59. We can see that techniques t3 and t4 are, individually, worsen-
ing R, as we get better values for it when they are removed individually. Although many other
scenarios could be exercised here, the point is that the addition of another security technique
may have an effect opposite to the desired one. Fig. 7 also indicates the impact of the adoption
or not of t5 (content encryption) in R. t5 is inactive in A zone and active out of it (the bit related
to t5 is 0 on combinations 1 to 31). The inclusion of t5 contributes significantly to the reduction
of R. This kind of behaviour must be considered in the choice of this and other techniques. The
preliminary analysis showed that the adoption of one or another security technique may have
impacts in the overall cost-benefit ratio that are difficult to estimate. Although a precise value
for the perceived privacy may be difficult to derive, we can do a more precise evaluation of the
cost incurred by each technique.

3.1.2 Improved analysis of relative costs and benefits

In this subsection, we do an improved analysis of the techniques and their combina-
tions to provide privacy in the clouds. The objectives are the same: finding the best solutions to
improve users’ privacy, and also point out the ones which are ineffective or even prohibited to
use due to the elevated costs and low benefits. We will also analyse the RC and RP of each solu-
tion, but with a different approach. The RC is calculated based on the time needed to exchange
messages between clients and CSPs (authentication phase), encryption/decryption times, data
fragmentation time and so on. Then, it is divided by the shortest time (less costly technique)
giving the RC value. As before, RP is estimated according to the level of privacy perceived
from the use of each technique relative to the simplest one. The ratio R (cost/benefit ratio), is
obtained in the same way as before, by the division of RC by RP.

In this improved analysis we also discuss the impact of file size in the results. In the
next sections, we will show how RC and RP were calculated in detail, followed by a discussion
about the new results found.

3.1.2.1 Calculating the Relative Cost

To calculate each technique cost, we considered a scenario where users want to
download a file already stored in the cloud. Then, we analyzed all the messages exchanged
between users’ device and the CSPs using a given solution, and considered that the minimal
number of messages are exchanged in order to complete the file transfer (i.e., there is no errors
nor retransmissions). For all techniques and combinations we used the same context. The nec-
essary infrastructure for using each tool is considered to be already installed and ready for use,
not incurring in extra costs.

The first interaction between users and CSPs is related to the authentication process.
Users send their credentials in the first message to the cloud in order to get access to their
account and hence to their data. The CSP responds with an acceptance/refusal reply, which is

Chapter 3. Analysis of techniques to provide privacy in clouds 41

always considered to be acceptance in this calculation. The next step is a file request made by
users, which is replied by the CSP with data, piece by piece until all the content is transferred
(download phase).

Some techniques/solutions also need a secure communication channel, since private
information may be sent on it. For this reason, extra messages are exchanged and after the pro-
cess is finished, all the following messages are encrypted. In our analysis, we considered three
types of standard messages: short,long and TOR messages. Fig. 8 illustrates the transmission of
short messages, which can be sent through the network in plaintext or ciphertext. The same is
valid for long messages, presented in Fig. 9. TOR messages are illustrated in Fig. 10. A short
message (50 bytes) is characterized for being small and containing only the header and a little
piece of information, used in the communication for exchanging parameters, credentials etc.
The long messages (1500 bytes) contain the header and the largest possible chunk area, used
mostly to send file pieces in the download phase. TOR uses special messages for communi-
cation within its network, with a fixed size of 512 bytes, containing specific fields (i.e. circuit
identifiers, commands etc.).

Figure 8 – Short messages sent during a communication process

As highlighted by Kurose J. F and Ross K. W. (KUROSE; ROSS, 2007), during the
packets travel from one host to another there are some delays on the network along the path
until they reach the destination. A packet passes through a series of routers during this journey,
and the most important delays are the nodal processing, queuing, transmission, and propagation
delays. Basically, they are defined as:

∙ Processing delay: Time to examine the packet’s header. It may include factors as deter-
mining its next destination or error checking.

Chapter 3. Analysis of techniques to provide privacy in clouds 42

Figure 9 – Long messages used to transfer data between the peers

Figure 10 – Messages used in TOR between nodes

∙ Queueing delay: Time the packets have to wait to be transmitted. This time depends on
the number of packets in the queue waiting to be transmitted, and it will be zero when
there is no packets in the queue.

∙ Transmission delay: Time to put all the packet’s bits into de link. This time is obtained
from the division of the packet’s length (l) by the transmission rate of the link (transrate).

∙ Propagation delay: Time a bit takes to propagates from the source to the destination.
This time is obtained from the division of the distance between the nodes (d) by the
propagation speed of the physical medium of the link (propspeed).

In this work we will only consider the transmission and propagation delays in order
to simplify the calculation. We also disregarded the presence of intermediary nodes along the
network. In our approach, a packet leaves the source and goes directly to the destination. Also,
we consider that there is no further packets to be processed in the queue and no error checking

Chapter 3. Analysis of techniques to provide privacy in clouds 43

or any other header processing. In some cases, it is necessary to consider the time to encrypt
the packet as it leaves the source and the decryption time when it reaches the destination. For
simplification purposes, the transmission and propagation times will be simplified in the next
figures, when necessary, and will be refereed as TshMsg, which is the sum of both. The physical
media considered in this work is twisted-pair copper wire.

As each technique works in an unique way, they need to be analysed separately.
Even when two or more techniques are combined in the same solution, their operation model
may change and need to be constructed. For example, a solution using TOR and Federated
Identity will not need to send authentication messages twice. In the approach used in this work,
after the TOR circuit is created, users are authenticated with the federated identity technique
but the necessary messages exchanged will not be short or long ones, but TOR messages. This
special messages, explained below, will contain the data needed to authenticate users with their
own IdPs. After the authentication phase, the file is downloaded using TOR infrastructure. As
shown in this example, the cost of a combination will not be the sum of each technique isolated.
The whole operation model needs to be constructed considering the scenario described. This
was the method used in this work to calculate all combinations costs. The following items show
the details of each technique that must be considered in possible combinations.

∙ Content encryption: The data encryption technique requires an additional step in its model.
After data is downloaded to user’s device, it needs to be decrypted. Fig 11 illustrates this
process. The time for this operation is mostly influenced by the file size, but other factors
as key size, algorithm and device’s processor power will also affect it. When combining
this technique with others, it is only necessary to add the decryption time at the end of the
process.

Figure 11 – Messages exchanged in content encryption technique

Chapter 3. Analysis of techniques to provide privacy in clouds 44

∙ Fragmentation with redundancy: Data fragmentation also requires an additional step when
recovering files from the cloud, as shown in Fig. 12. Using this technique, data is broken
into several fragments which are stored in different CSPs. In this analysis, we consider
the use of parallelism in the recovery process, where several threads can be created to
recover data pieces stored in different clouds simultaneously. This can decrease the nec-
essary time for downloading the entire file, as the threads would download in parallel
several file parts. However, this technique requires an additional step for rebuilding the
original file. Also, the file size and the parameters chosen in the algorithm (K and M,
as see in chapter 2) can increase/decrease this time. Combining this technique requires
considering this extra time for reconstructing data. The download time will be that of a
fragment instead of the entire data.

Figure 12 – Messages exchanged in the fragmentation technique

∙ Hide access via TOR: TOR is the most complex technique presented. In TOR, users
first need to create a circuit, where random TOR nodes will be chosen to block others
from knowing users’ location. A secure communication channel must be established with
each node in order to exchange messages. After the circuit creation, all communication
with the cloud will be through it. These intermediary nodes and all encryption neces-
sary in the communication increase the costs of using TOR, as showed in Figs. 13 to
17. This is due to the high number of messages exchanged in the entire process. The en-
cryption/decryption times related to the secure communication channel are hidden in the
figures, but the messages under this channel are the ones represented by the largest black
arrows and are considered in the formulas. On the other hand, the times related to the en-
cryption/decryption performed the the nodes are separately. In this figure, we represented
the add/removal of an encryption layer by braces and powered by the number of layers in
that message. When this technique is combined with others, usually TOR times overcome

Chapter 3. Analysis of techniques to provide privacy in clouds 45

other ones, which increases the costs since the messages will travel in an encrypted form
and will go through extra nodes.

Figure 13 – Messages exchanged in TOR - Circuit creation

Figure 14 – Messages exchanged in TOR - Circuit creation (cont.)

Chapter 3. Analysis of techniques to provide privacy in clouds 46

Figure 15 – Messages exchanged in TOR - Accessing time

Figure 16 – Messages exchanged in TOR - Accessing time (cont.)

Figure 17 – Messages exchanged in TOR - Downloading

Chapter 3. Analysis of techniques to provide privacy in clouds 47

∙ Hide access via VPN-Proxy: Instead of a direct communication between users and cloud,
there is a VPN-Proxy server in the middle which receives users’ messages and requests,
delivers them to the cloud and vice-versa. Besides the extra messages in the communi-
cation, there is also an extra cost related to the communication between users and the
VPN-Proxy server, which occurs in an encrypted way. The whole process is showed in
Fig. 18. The time related to the encryption/decryption is not included in the figures, but
it is considered in the formulas. Combining VPN-Proxy server with other techniques re-
quires considering the extra times in each encrypted message which is first sent to the
proxy server, decrypted and then delivered to the cloud with a different IP. In the way
back, similar steps will be necessary.

Figure 18 – Messages exchanged in access the cloud through VPN-Proxy technique

∙ Hide data possession (Federated identity): Using Federated identity scheme for authen-
tication also incurs in additional costs, with an extra phase in the authentication process,
as illustrated in Fig. 19. In order to use this technique, users first access their CSPs and
choose to authenticate with a third party, the IdP (Identity Provider). They are redirected
and start the authentication process with their own providers. Then, they are brought back
to their CSPs already authenticated and able to access their data. The messages to request
and download data are the same as in the normal operation process. For this reason, when
combining this technique with others, only the extra messages related to the authentica-
tion process should be taken into consideration.

Chapter 3. Analysis of techniques to provide privacy in clouds 48

Figure 19 – Messages exchanged in the federated identity scheme

∙ Metadata encryption: The metadata encryption technique works similarly as the data en-
cryption when considering the cost calculation process, but instead of having the content
encrypted, its metadata, as name, size, ownership etc. that will be. This process must
occur first, since the CSP will need the ciphertext filename in order to retrieve the right
file. This process is shown in Fig. 20. Combining this technique with others only requires
adding in the process the extra time for metadata encryption.

Figure 20 – Messages exchanged in Metadata encryption technique

Formulas to calculate the relative costs

For calculating the costs associated with each solution, we built expressions for each
one based on the operation process, considering all details explained above. Then, we calculated
the costs and normalized them dividing by the shortest time (less costly technique) to obtain the

Chapter 3. Analysis of techniques to provide privacy in clouds 49

RC value. Table 4 presents all 48 possible combinations and their formulas. In this table, besides
the formula of each solution, we also show the binary and decimal codes used to represent each
solution. The parameters used in the formulas are defined in table 5. Next, we present some
details about the values used in the formulas to derive the costs and some considerations during
the calculus.

Table 4 – Time costs for all combinations of techniques

Techniques Binary Decimal Formula

t0 000001 1 T = TencName +(3*TshMsg)+TpropMsg +(nmsg *TtransLgMsg)

t1 000010 2 T = (9*TshMsg)+(2*TshEncMsg)+TpropMsg +(nmsg *TtransLgMsg)

t1 − t0 000011 3 T = Tt1 +TencName

t2 000100 4 T = (7*TshMsg)+(3*TshEncMsg)+TvpnDownMsg

t2 − t0 000101 5 T = Tt2 +TencName

t2 − t1 000110 6
T = (13 * TshMsg) + (13 * TshEncMsg) + (2 * TpropMsg) + TtransLgMsg + TencLgMsg + (nmsg *
TtransLgMsg)+TdecLgMsg

t2 − t1 − t0 000111 7 T = TencName +Tt2−t1

t3 001000 8 T = Tcircuit +TauthMsgTor +TdownFileTor

t3 − t0 001001 9 T = Tt3 +TencName

t3 − t1 001010 10
T = Tt3 + (3 * (TsendTorMsg + TrecTorMsg)) + (2 * (4 * (TpropMsg + TtransTorMsg)) + (7 *
(TencTorMsg +TdecTorMsg)))

t3 − t1 − t0 001011 11 T = TencName +Tt3−t1

t4 010000 16 T = (3*TshMsg)+TpropMsg +(n f rag *TtransLgMsg)+TjoinFrags

t4 − t0 010001 17 T = Tt4 +TencName

t4 − t1 010010 18 T = (9*TshMsg)+(2*TshEncMsg)+(TpropMsg)+(n f rag *TtransLgMsg)+TjoinFrags

t4 − t1 − t0 010011 19 T = TencName +Tt4−t1

t4 − t2 010100 20
T = (7 * TshMsg) + (3 * TshEncMsg) + (2 * TpropMsg) + TtransLgMsg + TencLgMsg + (n f rag *
TtransLgMsg)+TdecLgMsg +TjoinFrags

t4 − t2 − t0 010101 21 T = TencName +Tt4−t2

t4 − t2 − t1 010110 22
T = (13 * TshMsg)+ (13 * TshEncMsg)+ (2 * TpropMsg)+TtransLgMsg +TencLgMsg +(n f rag *
TtransLgMsg)+TdecLgMsg +TjoinFrags

t4 − t2 − t1 − t0 010111 23 T = TencName +Tt4−t2−t1

t4 − t3 011000 24
T = Tcircuit + TauthMsgTor + (4 * (TpropMsg + TtransTorMsg)) + (6 * TencTorMsg) + (2 *
TdecTorMsg)+(4*n f rag *TdecTorMsg)+TjoinFrags

t4 − t3 − t0 011001 25 T = TencName +Tt4−t3

t4 − t3 − t1 011010 26
T = Tcircuit + (3 * (TsendTorMsg + TrecTorMsg)) + (2 * (4 * (TpropMsg + TtransTorMsg) +

(7 * (TencTorMsg + TdecTorMsg))) + TauthMsgTor + (4 * (TpropMsg + TtransTorMsg)) + (6 *
TencTorMsg)+(2*TdecTorMsg)+(4*n f rag *TdecTorMsg))+TjoinFrags

t4 − t3 − t1 − t0 011011 27 T = TencName +Tt4−t3−t1

t5 100000 32 T = (3*TshMsg)+TpropMsg +(n*TtransLgMsg)+TdecFile

Continued on next page

Chapter 3. Analysis of techniques to provide privacy in clouds 50

Table 4 – Time costs for all combinations of techniques (continued)

Techniques Binary Decimal Formula

t5 − t0 100001 33 T = Tt5 +TencName

t5 − t1 100010 34 T = Tt1 +TdecFile

t5 − t1 − t0 100011 35 T = TencName +Tt1 +TdecFile

t5 − t2 100100 36 T = Tt2 +TdecFile

t5 − t2 − t0 100101 37 T = TencName +Tt2 +TdecFile

t5 − t2 − t1 100110 38 T = Tt1−t2 +TdecFile

t5 − t2 − t1 − t0 100111 39 T = TencName +Tt2−t1 +TdecFile

t5 − t3 101000 40 T = Tt3 +TdecFile

t5 − t3 − t0 101001 41 T = TencName +Tt3 +TdecFile

t5 − t3 − t1 101010 42 T = Tt3−t1 +TdecFile

t5 − t3 − t1 − t0 101011 43 T = TencName +Tt3−t1 +TdecFile

t5 − t4 110000 48 T = Tt4 +TdecFile

t5 − t4 − t0 110001 49 T = TencName +Tt4 +TdecFile

t5 − t4 − t1 110010 50 T = Tt4−t1 +TdecFile

t5 − t4 − t1 − t0 110011 51 T = TencName +Tt4−t1 +TdecFile

t5 − t4 − t2 110100 52 T = Tt4−t2 +TdecFile

t5 − t4 − t2 − t0 110101 53 T = TencName +Tt4−t2 +TdecFile

t5 − t4 − t2 − t1 110110 54 T = Tt4−t2−t1 +TdecFile

t5 − t4 − t2 − t1 − t0 110111 55 T = TencName +Tt4−t2−t1 +TdecFile

t5 − t4 − t3 111000 56 T = Tt4−t3 +TdecFile

t5 − t4 − t3 − t0 111001 57 T = TencName +Tt4−t3 +TdecFile

t5 − t4 − t3 − t1 111010 58 T = Tt4−t3−t1 +TdecFile

t5 − t4 − t3 − t1 − t0 111011 59 T = TencName +Tt4−t3−t1 +TdecFile

Table 5 – Parameters to calculate the time costs

Parameters Description
nmsg Number of messages necessary to transmit the entire file

n f rag Number of messages necessary to transmit a file fragment

ntor Number of messages necessary to transmit a file using TOR

TencName Time to encrypt the filename

TdecFile Time to decrypt the file content

Continued on next page

Chapter 3. Analysis of techniques to provide privacy in clouds 51

Table 5 – Parameters to calculate the time costs (continued)

Parameters Description
TpropMsg Time to propagate a message

TtransShMsg Time to transmit a short message

TshMsg
Time to propagate and transmit a short message (TpropMsg+

TtransShMsg)

TshEncMsg
Time to encrypt, propagate, transmit and decrypt a short
message

TtransLgMsg Time to transmit a long message

TencLgMsg Time to encrypt a long message

TdecLgMsg Time to decrypt a long message

TlgMsg
Time to propagate and transmit a long message (TpropMsg +

TtransLgMsg)

TjoinFrags Time to reconstruct the original file based on the fragments

TtN Time of the technique/solution N

TtransTorMsg Time to transmit a TOR message

TencTorMsg Time to encrypt a TOR message

TdecTorMsg Time to decrypt a TOR message

TtorMsg
Time to propagate and transmit a tor message (TpropMsg +

TtransTorMsg)

TtorMsgn
Time to propagate and transmit a tor message with n en-
cryption layers (TpropMsg +TtransTorMsg)

TsendTorMsg
Time to send a message using a TOR connection: T = (4*
(TpropMsg +TtransTorMsg))+(6* (TencTorMsg +TdecTorMsg))

TrecTorMsg

Time to receive a message using a TOR connection:
T = (4 * (TpropMsg + TtransTorMsg)) + (6 * (TencTorMsg +

TdecTorMsg))

Tcircuit

Time to create a TOR circuit, necessary to initiate any com-
munication: T = (12* (TshMsg +TpropMsg +TtransTorMsg))+

(18* (TencTorMsg +TdecTorMsg))

TauthMsgTor
Time to authenticate users and request files using TOR: T =

(2*TsendTorMsg)+TrecTorMsg

TtorDownMsg
Time to transmit the file from the first node (OR1) to the
source (Alice): T = (2*TdecTorMsg)+(4*ntor *TdecTorMsg)

TdownFileTor

Time to download the file required using a TOR connec-
tion: T = (4* (TpropMsg+TtransTorMsg))+(6*TencTorMsg)+

TtorDownMsg

Continued on next page

Chapter 3. Analysis of techniques to provide privacy in clouds 52

Table 5 – Parameters to calculate the time costs (continued)

Parameters Description

TvpnDownMsg

Time to transmit the file from the cloud to the source (Al-
ice): T = (2 * TpropMsg)+ TtransLgMsg + TencLgMsg +(nmsg *
TtransLgMsg)+TdecLgMsg

Table 6 presents the values of the parameters used in the formulas to calculate the
relative costs of the solutions. In this table, we present the parameters, a brief description of
them and the values adopted.

Table 6 – Relative costs: parameters and values

Parameter Description Value

s File size
1 KiB /10 KiB /100 KiB /1 MiB /10 MiB /100
MiB /1 GiB /10 GiB /100 GiB

lmsgHead Message header length 40 bytes

lshMsgPl Short message payload length 10 bytes

lshMsg Short message length lshMsgPl + lmsgHead

llgMsgPl Long message payload length 1460 bytes

llgMsg Long message length llgMsgPl + lmsgHead

ltorMsgHead TOR message header length 14 bytes

ltorMsgPl TOR message payload length 498 bytes

ltorMsg TOR message length ltorMsgPl + ltorMsgHead

k
Necessary parts to recover the
original file

3 units (defined)

m Redundant parts 1 unit (defined)

n
Total number of data frag-
ments

k+m

s f rag File fragmented size (s× (1+(m/k)))/n

nmsg
Number of messages neces-
sary to transmit the entire file

s/llgMsgPl

n f rag

Number of messages neces-
sary to transmit a file frag-
ment

s f rag/llgMsgPl

Continued on next page

Chapter 3. Analysis of techniques to provide privacy in clouds 53

Table 6 – Relative costs: parameters and values

Parameter Description Value

ntor

Number of messages neces-
sary to transmit a file using
TOR

s/ltorMsgPl

encrate Encryption rate 23923444,98 Bytes/s (measured)

transrate Transmission rate 1×108 bits/s (defined)

d Distance between peers 2000 meters (defined)

propspeed
Propagation speed (Twisted-
pair copper wire)

2×108 meters/sec (from ref. (KUROSE; ROSS,
2007)

TpropMsg
Time to propagate a message
(Propagation delay)

d/propspeed

TtransShMsg
Time to transmit a short mes-
sage

(lshMsg ×8)/transrate

TencShMsg
Time to encrypt a short mes-
sage

lshMsg/encrate

TdecShMsg
Time to decrypt a short mes-
sage

TencShMsg

TshMsg
Time to propagate and trans-
mit a short message

TpropMsg +TtransShMsg

TshEncMsg

Time to encrypt, propagate,
transmit and decrypt a short
message

TencShMsg +TpropMsg +TtransShMsg +TdecShMsg

TtransLgMsg
Time to transmit a long mes-
sage

(llgMsg ×8)/transrate

TencLgMsg
Time to encrypt a long mes-
sage

llgMsg/encrate

TdecLgMsg
Time to decrypt a long mes-
sage

TencLgMsg

TlgMsg
Time to propagate and trans-
mit a long message

TpropMsg +TtransLgMsg

TlgMsgEnc
Time to encrypt, transmit and
decrypt a long message

TencLgMsg +TpropMsg +TtransLgMsg +TdecLgMsg

TtransTorMsg
Time to transmit a TOR mes-
sage

(ltorMsg ×8)/transrate

TencTorMsg
Time to encrypt a TOR mes-
sage

ltorMsg/encrate

Continued on next page

Chapter 3. Analysis of techniques to provide privacy in clouds 54

Table 6 – Relative costs: parameters and values

Parameter Description Value

TdecTorMsg
Time to decrypt a TOR mes-
sage

TencTorMsg

TtorMsg
Time to propagate and trans-
mit a TOR message

TpropMsg +TtransTorMsg

TtorMsgx

Time to propagate and trans-
mit a TOR message with x en-
cryption layers

TpropMsg + TtransTorMsg + (x × (TencTorMsg +

TdecTorMsg)))

TencName Time to encrypt the filename TencShMsg

TdecFile
Time to decrypt the file con-
tent

s/encrate

TjoinFrags

Time to reconstruct the ori-
ginal file based on the frag-
ments

TdecFile/12

Observations:

∙ The times to encrypt and decrypt are considered equal for every kind of message.

∙ TjoinFrags: This time was defined according to some tests performed using a Reed-Solomon

code (from Erasure Codes family) with the parameters defined in Table 6 and comparing
it to the time needed for decrypting data in AES algorithm. In the tests performed, the time
to reconstruct the fragments was generally twelve times shorter than the one to decrypt
data.

∙ TencName: We consider the time for encrypting filenames the same as for short messages,
since most names considering extensions do not have more than 50 bytes.

∙ 1 GiB = 1024 MiB = 1024 × 1024 KiB and 1 KiB = 1024 Bytes.

∙ To determine the encryption rate (encrate) and the time to reconstruct the original file
based on its fragments (TjoinFrags), we conducted experiments in a machine with the fol-
lowing configuration: Windows 7 Professional (32 bits) system with an Intel Core(TM)
i3-330M with two cores of @2,13GHz, 3,00 GB DDR3 RAM and a 5400 rpm hard drive.

3.1.2.2 Calculating the Relative Privacy

The relative privacy was estimated with a different approach. First, we established
a subjective degree of Relative Privacy (RP) based on a survey conducted with average users

Chapter 3. Analysis of techniques to provide privacy in clouds 55

where they had to estimate the level of privacy obtained for each technique, in a scale of 0 (no
privacy at all) to 10 (highest level of privacy). This was an on-line survey where we expected
that the participants expressed their perception of privacy using the techniques, considering their
preferences, priorities and experiences. We provided a brief description for each technique with
its characteristics, as well as how it can be used to preserve users’ privacy. They should have
considered the entire process of storing and recovering files in public clouds and all possible
issues they could see related to the exposure of sensitive information, especially to the cloud
administrators. The people invited to take part in the survey was expected to have some expertise
in computer, in any of the related fields. Among the participants, we had professors, master,
doctor, undergraduate students and some professionals of the field. The way the survey was
conducted and the results found are presented and discussed in appendix A.

However, the results were not satisfactory according to our perception. Analyzing
the values established by the participants, we noticed that according to a general point of view,
the techniques give similar benefits for users. We believe that this is not the case. Some methods,
as the content encryption, can be more efficient in protecting users’ privacy than others, as the
metadata encryption for example. We believe that new methods to evaluate the RP are necessary.
The way we constructed the survey could have influenced the results, since we provide short
explanations in order to not annoying the participants. On the other hand, if a more detailed
description was made, a lot of them could have ignored the survey or choose random values
just to finish it as soon as possible. Also, we believe that a detailed threat modelling description
could help users understand the issues and give more precise and well informed opinions.

Thus, we decided to stick with the preliminary analysis method adopted. We choose
the less effective technique according to our point of view and expertise on the field, and es-
tablished a relative cost of one for it. The other techniques were compared to this one and to
the others, and assigned with weights according to how many times they are more effective
in offering privacy to users. We took into consideration the context being used, the cloud data
storage, and the benefits related only to the privacy they can offer to users. For example, due
to the benefits achieved by the content encryption, as the information secrecy, we believe this
technique is 10 times more effective than metadata encryption in a privacy point of view. TOR
is believed to be five times, and so on. For each technique, we briefly explain the main reasons
for the adopted values, followed below.

∙ Metadata encryption: This technique received the smallest grade and it is the reference
for normalizing the others in the relative privacy estimation. We believe that using only
this technique for privacy purposes does not give large advantages to users with respect to
their privacy, since anyone is still able to read the data content and get information from
it.

∙ Federated Identity: This technique received a grade that is twice the value of metadata

Chapter 3. Analysis of techniques to provide privacy in clouds 56

encryption since it gives some extra protection to users’ privacy when used alone.

∙ Hide access via TOR: TOR is used to hide users’ location and for most users this is a
useful privacy tool. Considering the context of cloud data storage, we understand that it
offers five times more privacy than metadata encryption.

∙ Hide access via VPN-Proxy: VPN-Proxy technique has the same goal as TOR does. How-
ever, this is a less effective way to hide users’ location, and for this reason the grade
granted is lower than TOR.

∙ Content encryption: The content encryption technique receives the highest grade. This is
due to the secrecy achieved when data is encrypted. Since the context of the present study
is about cloud data storage, we believe that users will prefer this technique to the others
for protecting their privacy.

∙ Fragmentation with redundancy: This technique is another form to protect users’ privacy,
but less effective than cryptography since some methods used to break data in several
fragments do not offer properly secrecy properties. Data chunks could revel some useful
information, which is not desirable from a privacy point of view. However, this technique
introduces some extra benefits to users, as redundancy and performance, which are not
counted as they are not related to privacy. In this approach, we do not evaluate the conse-
quences of geopolitical factors in the CSPs choice and let this issue for future work.

3.1.2.3 Discussion

After the calculation performed using the formulas and methods described above,
we construct some tables and graphics to show the results. The first analysis were made for 1
MiB files, showed in table 7, where all techniques are presented along with their new RC and
RP values. Note that the scale of RP was normalized in the range from one to ten.

Table 7 – Relative cost and privacy of techniques used to provide privacy in the cloud with 1
MiB files

Symbol Technique RC RP
t5 Content encryption 3,97 10,00
t4 Fragmentation with redundancy 1,00 4,00
t3 Hide access via TOR 5,32 5,00
t2 Hide access via VPN-Proxy 2,68 3,00
t1 Hide data possession (Federated identity) 2,68 2,00
t0 Metadata encryption 2,67 1,00

Fig 21 illustrates all the possible solutions and their respective relative costs and pri-
vacy (RCi×RPi), and also the cost/benefit ratio Ri = RCi/RPi of each combination i represented
by the size of the circles. In this figure, we considered the transfer of 1 MiB files.

Chapter 3. Analysis of techniques to provide privacy in clouds 57

Figure 21 – Relative cost and privacy for each possible combination (1 MiB file storage). The
circle area is proportional to the cost/benefit ratio.

As an example of how we calculated the ratio R, we demonstrate the calculation for
the combination (110001)2 or (49)10. This solution uses the content encryption, fragmentation
with redundancy and metadata encryption techniques. As t5 and t0 only add extra times related
to the encryption of the content and metadata, respectively, we will show how to calculate the
relative cost of t4 and then add this two extra times to the result. In table 4 we can get the
formulas to calculate the costs. The general formula for this combination is T49 = TencName +

Tt4 +TdecFile, where TencName represents the necessary time to encrypt the filename and TdecFile

the time to decrypt the file content. Tt4 is the time for calculating the whole process using only
the fragmentation technique, and is obtained by the formula: t4 = (3 * TshMsg) + TpropMsg +

(n f rag * TtransLgMsg) + TjoinFrags. After calculating these formulas using approximated values
obtained in practical tests, we get the final value of the cost for this solution. Then, we divide it
by the lowest costly technique, which is t4, getting the relative cost RC. Now, we calculate the
relative privacy of this solution. This is done by getting the relative privacy established for each
technique and adding them all. The cost/benefit ratio R is got by dividing RC by RP.

In this new analysis, the individual removal of techniques t0, t1, t3, t4 and t5 from
combination 59 caused a variation in Ri (i = 59) of +4,8%, +6,3%, −11,3%, +145,1% and
+12,5%, respectively for 1 MiB files. Based on this results, we concluded that the adoption of t3
technique must be done carefully, since its costs may not compensate the benefits. On the other
hand, t4 is highly recommended as its absence increased R significantly. This way, this technique
can be used to balance some solutions. Using t2 instead t3 had a different impact, causing a
variation in Ri (i = 55) of +5,3%, +10,7%, +16,9%, +115,3% and −11,9%, respective. In
this mode, the absence of t5 provided the most positive impact, while the non use of t4 the most
negative impact.

In this analysis, the introduction of content cryptography do not contribute to the
reduction of R as in the first one. Another difference is related to the variations seen in R59 in
both analysis, which presented different results. However, both analysis pointed out to t3 (TOR)
as a bad choice since it worsens R. t0, t1 and t5 are similar in both results, while t4 presented an

Chapter 3. Analysis of techniques to provide privacy in clouds 58

opposite result from the first analysis. Indeed, the latter technique had the best positive effect
when added individually to this combination.

When using t2 (VPN-Proxy) instead of t3 (TOR), the combination R55 will have a
variation of +31,7% in relation of R59. If we compare all the combinations using t2 with the
corresponding ones using t3, we will have a variation of 68,4%(R27/R23), 49,9%(R43/R39),
26,5%(R57/R53) and 31,1%(R58/R54). Based on these results, we can conclude that using t2 is
more effective that t3 in all cases. Moreover, it is worth using this technique than let it out of a
combination, as showed in the analysis where adding it improves the ratio R in 16,9%.

In tables 8 and 9 we considered 10 MiB and 100 MiB files respectively. The values
found did not change significantly with the file size variation, as observed in the graphics 22
and 23 related to the tables. The reason is that neither RC nor RP changed. The RP values were
based on our perception of privacy and so they should remain the same despite of changes in
file sizes. We also did the calculations for other file sizes. For larger files, as 1 GiB, 10 GiB
and 100 GiB, the results were practically the same. However, for files lower than 1 MiB, as 1
Kib (table 10 and Fig. 24), 10 kiB (table 11 and Fig. 25) and 100 kiB (table 12 and Fig. 26),
the changes were significant. In these cases, the download time becomes small compared to
the other times involved, as those for authentication, secure channel establishment and so on,
altering the relative costs and the graphics. The first conclusion we can draw from these re-
sults is that the use of privacy preserving techniques with files smaller than 1 MiB may have a
cost/benefit ratio too high to be practical, depending on the combination of techniques adopted.
Nonetheless, users normally store in clouds files that are steadily increasing in size (high reso-
lution pictures, videos, documents etc) and small files are mostly used by the operating system
(configuration files etc). Therefore, for storing user data in clouds securely, several techniques
and their combinations can be used in a cost effective way.

Table 8 – Relative cost and privacy of the techniques used to provide privacy in the cloud with
10 MiB files

Symbol Technique RC RP
t5 Content encryption 3,97 10,00
t4 Fragmentation with redundancy 1,00 4,00
t3 Hide access via TOR 5,24 5,00
t2 Hide access via VPN-Proxy 2,68 3,00
t1 Hide data possession (Federated identity) 2,68 2,00
t0 Metadata encryption 2,68 1,00

Chapter 3. Analysis of techniques to provide privacy in clouds 59

Figure 22 – Relative cost and privacy for each possible combination (10 MiB file storage). The
circle area is proportional to the cost/benefit ratio.

Table 9 – Relative cost and privacy of the techniques used to provide privacy in the cloud with
100 MiB files

Symbol Technique RC RP
t5 Content encryption 3,97 10,00
t4 Fragmentation with redundancy 1,00 4,00
t3 Hide access via TOR 5,23 5,00
t2 Hide access via VPN-Proxy 2,68 3,00
t1 Hide data possession (Federated identity) 2,68 2,00
t0 Metadata encryption 2,68 1,00

Figure 23 – Relative cost and privacy for each possible combination (100 MiB file storage). The
circle area is proportional to the cost/benefit ratio.

Chapter 3. Analysis of techniques to provide privacy in clouds 60

Table 10 – Relative cost and privacy of the techniques used to provide privacy in the cloud with
1 kiB files

Symbol Technique RC RP
t5 Content encryption 2,12 10,00
t4 Fragmentation with redundancy 1,00 4,00
t3 Hide access via TOR 40,25 5,00
t2 Hide access via VPN-Proxy 5,95 3,00
t1 Hide data possession (Federated identity) 3,07 2,00
t0 Metadata encryption 1,66 1,00

Figure 24 – Relative cost and privacy for each possible combination (1 kiB file storage).

Table 11 – Relative cost and privacy of the techniques used to provide privacy in the cloud with
10 kiB files

Symbol Technique RC RP
t5 Content encryption 3,55 10,00
t4 Fragmentation with redundancy 1,00 4,00
t3 Hide access via TOR 13,20 5,00
t2 Hide access via VPN-Proxy 3,42 3,00
t1 Hide data possession (Federated identity) 2,77 2,00
t0 Metadata encryption 2,44 1,00

Chapter 3. Analysis of techniques to provide privacy in clouds 61

Figure 25 – Relative cost and privacy for each possible combination (10 kiB file storage).

Table 12 – Relative cost and privacy of the techniques used to provide privacy in the cloud with
100 kiB files

Symbol Technique RC RP
t5 Content encryption 3,93 10,00
t4 Fragmentation with redundancy 1,00 4,00
t3 Hide access via TOR 6,14 5,00
t2 Hide access via VPN-Proxy 2,76 3,00
t1 Hide data possession (Federated identity) 2,69 2,00
t0 Metadata encryption 2,65 1,00

Figure 26 – Relative cost and privacy for each possible combination (100 kiB file storage).

We also analyzed the top ten solutions considering files of 1 MiB, which are, re-
spectively: 23, 22, 55, 54, 21, 53, 51, 52, 19 and 50, in increasing order or ration R. All of them
use t4 (data fragmentation), since it helps in the performance of the combination, decreasing
file download time and, consequently, the relative cost. Besides, it has a good relative privacy.
The combination that use t5 (content encryption) appear from the third position on the list, even
having t5 the highest RP value among all the techniques individually. This is due to the high
costs associated to it. However, for those more concerned about privacy and willing to adopt a

Chapter 3. Analysis of techniques to provide privacy in clouds 62

combination that uses at least t5, solutions as 55, 54, 53 and 51 are good ones and offer a high
privacy with reasonable cost/benefit ratios.

This top ten list remains similar for file sizes from 100 kiB to 100 GiB. However, for
smaller files it changes. For 10 kiB files, the ten best solutions are: 49, 51, 48, 50, 53, 52, 19, 55,
54 and 17. For 1 kiB they are: 49, 48, 51, 50, 33, 17, 32, 16, 35 and 34. In these new ranks, the
best combinations mostly use t5 (content encryption) with t4 (fragmentation with redundancy),
t2 (VPN-Proxy), t1 (federated identity) and t0 (metadata encryption) showing that t3 (TOR)
is expensive and prohibitive when the files are small. We also noticed that the best solutions
use at least three or more techniques in a combination, showing us that these techniques are
complementary and can give good results when working together.

On the other hand, the bottom ten solutions considered cost ineffective or even pro-
hibitive due to their elevated ratio R, are: 1, 2, 8, 4, 3, 9, 10, 11, 5 and 6, for file sizes varying
from 1 MiB to 100 GiB. In these combinations, the most predominant techniques are t0 (Meta-
data encryption) and t1 (Federated identity), which are known for the few benefits provided. t3
(TOR) also appears in the list as the third most predominant one, since it presents high costs.
A similar rank is observed for 100 kiB files: 1, 2, 8, 10, 9, 4, 11, 3, 5 and 6. For 10 kiB files,
the rank is: 10, 11, 8, 1, 9, 26, 27, 42, 2 and 43. Considering 1 kiB files, we have: 10, 11, 8,
26, 27, 9, 42, 43, 24 and 58. In all worst ranks, it is clear the high occurrence of t3 and its
negative impact on ratio R due to the elevated costs associated to the extra procedures, as the
circuit creation, for example. Therefore, we can see that t3 should be used only in very specific
scenarios where the need to hide users’ location justifies its high cost, especially when small
files are considered. We also noticed that the worst combinations have less than two techniques
in a combination (except in 11, using t3, t1 and t0).

From our analysis, we concluded that t3 (TOR) is a bad choice since it worsens R
while t4 gives an opposite result: it has the best positive effect when added individually to a
combination. Also, it is clear that using combinations is more effective than using techniques
alone, considering their cost/benefit relation.

3.2 Conclusions

In this chapter we presented an analysis of the relative costs and benefits of some
techniques and their combinations used to improve users’ privacy on cloud data storage, with
the purpose of finding the solutions with the best cost/benefit ratios. We presented two analysis;
a first one based on a estimative about the costs and benefits provided by the techniques and a
second and improved version of the first one, where a more detailed evaluation was performed.
We also showed how we calculated the relative costs, explaining the details taken into consi-
deration. The relative privacy was also discussed and we showed how the values were defined.
Based on the analysis, users can choose the solutions that best fit their needs. Moreover, they can

Chapter 3. Analysis of techniques to provide privacy in clouds 63

see which combinations are worth and which ones are ineffective due to their high costs and
lower benefits. We also discussed the impact caused by each technique individually in some
combinations and showed how file sizes may impact the cost/benefit ratio (i.e. cost/privacy ra-
tio) for each possible combination of privacy preserving techniques. Besides, we found that it
is more effective to use combinations than techniques isolated to preserve users’ privacy.

64

4 Requirements for secure cloud data
storage

This chapter aims to present some requirements for a secure, reliable and user-
friendly application for data storage services on public clouds. These requirements will be se-
parated into two groups, the first one related to security and the other related to usability. From
now on, we will only focus on concerns and threats related to data content and attributes confi-
dentiality, while others related to the data access and possession confidentiality will be covered
in future works. We will present and discuss some systems aimed to improve the security and
privacy in cloud data storage, with the purpose of understanding the subject’s state of art and
finding opportunities for further studies.

4.1 Requirements

The requirements are separated into two groups: security and usability. In the first
group, there is a set of requirements which aims to protect users from several attacks and threats
in cloud data storage environment. The latter group deals with requirements that are essential
in making the user experience as simple and productive as possible, avoiding the complexity
normally present in security applications.

4.1.1 Security requirements

In this subsection we propose a small set of security requirements for data storage
services on public clouds. For each requirement we will present its characteristics and discuss
how to make a good use of it from a security point of view. These requirements were chosen
because they are the most important ones as they have direct impact on security. They can
mitigate common attacks available nowadays, like those related to unauthorized disclosure of
users data, insecure applications, insider attacks, account hijacking, among others.

4.1.1.1 Cryptographic keys security

NIST (National Institute of Standards and Technology) provides recommendations
about cryptographic keys that should be adopted by all systems related to security that use
cryptography. These recommendations are important for system security in a long term period,
and are related to the management of cryptographic keys, cryptoperiods and the states that a key
undergoes during its lifetime. The right management of keys is very important, since the whole
security of a cryptographic system stands on them.

Chapter 4. Requirements for secure cloud data
storage 65

Cryptoperiod is defined by NIST (BARKER W. BARKER, 2006) as the time span
during which the use of a key is allowed, and it is based on factors like the estimated effec-
tive lifetime of the key algorithm, type and purpose of a key. The states of cryptographic keys
are formed by six possible states that a key undergoes during its life. These states are: pre-
activation, active, deactivated, destroyed, compromised and destroyed compromised. All the
states and their possible transitions are described in Fig. 27.

Figure 27 – Key states and transitions (Adaptation from (BARKER W. BARKER, 2006)

These states change according to specific events, such as the expiration of a cryp-
toperiod or the detection of a compromised key. More details about cryptoperiods, the states and
all the possible transitions on a key in its life cycle can be seen in Ref. (BARKER W. BARKER,
2006).

These recommendations may not seem so important in the beginning, but some time
later a system that did not followed them could be compromised and have users data leaked.

4.1.1.2 Secure deduplication

Deduplication is a technique used to eliminate redundant data in a storage system,
in order to save disk space. Instead of storing multiple copies of a file, it creates links of such
file and stores only a single copy (HARNIK; SHULMAN-PELEG, 2010). The deduplication
process could be done considering the whole file or just pieces (or fragments) of it, which is
more effective since parts of the file are more likely to have similar ones than the whole file.
When an entire file is considered, even small changes will make the process consider it as
different one. However, if this file is split in pieces, it is more likely to found equal pieces and
deduplicate them, as some fragments could have the same content. The efficiency of the split
process depends of the technique being used, and it is a difficult task to perform it in order to
be as efficient as possible (ESHGHI; TANG, 2005).

Some CSPs adopt this technology in their servers; however there are some concerns
in the way they implement it, especially because it could generate vulnerabilities and not only

Chapter 4. Requirements for secure cloud data
storage 66

economic advantages. There are two ways to perform the deduplication process: target-based or
source-based. The target-based approach is characterized by the unawareness of the client about
the deduplication process, since it occurs only on the CSP (server side). The main objective of
this approach is to save disk space, and the process only starts after users data are stored in the
cloud.

In the source-based approach, the deduplication process occurs on the client side,
before data is sent to the cloud. The client application is responsible for verifying the existence
of files in cloud servers before sending them. They usually send just a small piece of information
related to that file (a file’s hash, for example) and compares it to what is stored. The advantage
of this approach is that, besides space, it also saves bandwidth, as data is never sent to the cloud
if a copy of it already exists there. In that case, the CSP just creates a link of that data in the
user’s area. Data is only sent if there is no copy of it already stored.

Another characteristic of deduplication process is related to the search space used
to look for equal data. There are two ways to make this search: single-user and cross-user.
The single-user searches only in the space belonging to a particular user, while the cross-
user searches in the entire storage infrastructure, considering all users’ accounts. When an user
makes a request to the CSP for storing some data on their servers and the CSP searches only
in this user’s account for redundant data, it is a single-user deduplication. However, if the CSP
looks for redundant data in all users’ accounts, it is a cross-user deduplication. The latter method
is more efficient considering the amount of disk space saved, since a group of users are more
likely to have the same file. As a drawback, the cross-user mode is more vulnerable to a security
attack, as pointed out by Harnik et al. (HARNIK; SHULMAN-PELEG, 2010).

This attack is known as the identifying files attack. Providers that implement the
source-based approach combined with cross-user deduplication are the ones vulnerable to it. To
understand the attack, consider an attacker who wants to know if some user in a chosen cloud
has a given file. First, he tries to send the intended file to the cloud and keeps monitoring the
network to check if the file will be uploaded to the cloud. If so, it means that no one has this file
stored in the cloud. Otherwise, the file will not be sent and the attacker can conclude that there
is an equal file already stored. If the attacker is a government agency, it may force the CSP to
release the file owner’s name.

In order to avoid attacks as the one described and to obtain some benefits from
deduplication, the cross-user approach should be combined with target-based approach only.
This would save disk space and protect users’ privacy.

Besides that, there is one possible scenario where the deduplication process be-
comes less useful. This happens when cryptography is used to protect users data. Two equal
files encrypted with different keys will be completely different due to the cryptography algo-
rithm properties (STALLINGS, 2008). As each user will choose its own cryptographic key to
encrypt his data, the results from the encryption function will be totally different from each

Chapter 4. Requirements for secure cloud data
storage 67

other, even when two users have the same file, making the deduplication process useless.

One possible solution to this problem is to encrypt the data using its own hash as the
key (WANG et al., 2010). This way, two equal files will be encrypted with the same key and will
produce the same encrypted file, enabling the deduplication process. However, it is important
to notice that the attack described above will still be possible if this solution is adopted.

4.1.1.3 High level of data secrecy

The levels of secrecy are related to the way cryptography is used to protect users
data. Here we propose a way to classify such levels according to the amount of privacy they
provide.

∙ Level 0 - No encryption: This level represents the use of no encryption at all. Users
send data in plaintext to the CSP which stores it in plaintext as well. Data is vulnerable
during transmission to attacks like tampering and sniffing, and also while stored to threats
like those described previously. Nowadays, it is unlikely to find CSPs using this level of
secrecy, since the HTTPS protocol (IETF, 2000a) is being broadly adopted, offering a
secure communication channel, which elevates the security to Level 1, as described next.

∙ Level 1 - Communication channel encryption(CCE): This level is characterized by
the use of cryptography only in the communication channel between the user and the
CSP. Technologies like TLS (Transport Layer Security) (IETF, 2008) are usually used to
provide security. It creates a tunnel between user’s application and the CSP, and all data
transmitted between them go through this tunnel encrypted. Attacks like tampering and
sniffing are no longer possible. However, this level only provides secrecy in the commu-
nication channel. Data will be encrypted as it enters the tunnel to be sent to the CSP and
will be decrypted as it leaves the tunnel in the CSP, being stored in plaintext file. Fig.
28 and 29 illustrate the process of storing and recovering data from the cloud, respec-
tively. Data stored in plaintext file gives the CSP access to users data to improve search
mechanisms or for advertising purposes. Besides, the deduplication process could be done
easily. In this level, the process of sending and receiving data requires four cryptographic
operations (client encryption, server decryption, server encryption and client decryption,
respectively). However, there is no overhead for users related to key management and the
entire process is transparent to the user.

∙ Level 2 - CCE and server-side encryption: This level corresponds to the use of crypto-
graphic protocols by the CSPs to protect users data while in transit and at rest. CSPs are
responsible for performing all cryptographic operations on users data and also for taking
care of the key management. The protection of the communication channel is required,

Chapter 4. Requirements for secure cloud data
storage 68

Figure 28 – Data is sent to the cloud through an encrypted channel

Figure 29 – Data is recovered from the cloud through an encrypted channel

since there is no meaning in sending data from user’s device to the CSP in plaintext file
to encrypt it later.

In a basic scenario (Fig. 30) data is sent in a secure way (using protocols like TLS) to
the cloud, which is responsible for generating a secret key to encrypt it, before storing
it on the servers. This secret key is wrapped by a public key and stored along with the
data it relates to. In the recovery process (Fig. 31), the CSP uses the corresponding pri-
vate key to decrypt the secret key and then opens the data. After the decryption process
is finished, data is sent back to the user through a secure channel. As in Level 1, the
CSPs also have access to users data, since they manage all cryptographic keys. They are
still able to improve search mechanisms or do advertising, and also to use deduplication
techniques to save disk space. Sending and receiving data require six cryptographic op-

Chapter 4. Requirements for secure cloud data
storage 69

erations: Four, as in Level 1, plus two additional ones required by the encryption and
decryption of data when it enters and leaves the CSP. In this level there is also some cryp-
tographic operations related to the encryption/decryption of the symmetric keys, which
will not be counted since they have a much smaller costs than the ones done in data con-
tent. As a way to keep all keys safe, some CSPs encrypt the secret key (or private key)
using a KEK (Key Encryption Key) derived from user’s password using algorithms like
PBKDF2 (Password Based Key Derivation Function) (IETF, 2000b), which makes a key
recovery process easier for users as they only need to remember a secret and also harder
for attackers than usual in brute force attacks. Level 2 also takes all the necessary over-
head related to key management, eliminating this burden from users.

Figure 30 – Storing data in the cloud

Figure 31 – Recovering data from the cloud

∙ Level 3 - Client-side encryption: This level corresponds to the cryptographic operations
being performed on client-side. Before sending data to the cloud, users encrypt and send

Chapter 4. Requirements for secure cloud data
storage 70

it to be stored in the cloud. There are applications provided by some CSPs to this end, but
some users may prefer to use outsourced and more trusted applications, like PGP (Pretty
Good Privacy), GPG (Gnu Privacy Guard) or even the CPG (Cloud Privacy Guard) pro-
posed in this work. In this level, users no longer need a secure communication channel
to transmit their data to the cloud, as data leave users’ devices encrypted. Also, the CSPs
are not capable to do any processing in the data and deduplication can no longer be done,
unless some specific measures are taken, like encrypting the data using its own hash as a
key. In this case, identical files will remain identical after encryption, since the keys used
in the process will be the same (the files hash). The users’ password can also be used to
encrypt his secret key (or private key), but it is important to use a different password from
the one used in the authentication process, as the CSP could know the latter somehow
(storing in plaintext, for example). This level is safer for users but it will be no longer
possible to recover a lost password, as the user will be the only one knowing it. Losing
his password means losing all encrypted data, because no one can recover it, and this
might be a burden for some users. In this level, sending and receiving data requires less
cryptographic operations than in the other levels. Only two operations are required: data
encryption (on client side) before sending it, and decryption (also on client side) after
downloading it. There is also the costs related to the encryption/decryption of the sym-
metric keys, but will not be counted as before. However, the main obstacle in the adoption
of this level is the overhead that is placed on users due to the cryptographic key manage-
ment. This is an important concern, since the whole security stands on the key. Fig. 32
illustrates the basic scenario of Level 3 while storing data on the cloud. For each file, a
secret key is generated and used to encrypt it. After this process, this key is wrapped by
user’s public key, and sent along with the file to the cloud. Fig. 33 covers the recovery
process. First, the file and the secret key, both encrypted, are downloaded. The encrypted
secret key is decrypted using user’s private key, followed by the decryption of the file
using the resulting key. After this process, users can access their files.

∙ Level 4 - Client-side encryption and manipulation of encrypted data by the server:
In this level, the cryptography is also performed by users, with the difference that it is
no longer the classic cryptography approach. Instead, the homomorphic cryptography is
used, allowing encrypted data to be processed by third parties without learning anything
about it. As an example, users can store encrypted data in the cloud and later request their
CSPs to perform some operation on it. The CSPs will do it without having the keys to de-
crypt the data and without getting any information about it. Even the operation results will
not be revealed, and will be available only for users with possession of the cryptographic
keys (LI et al., 2012). One example of scenario where this technique can be applied is
in database systems stored in the cloud (SHATILOV et al., 2014). In this example, the
database and each users’ request are encrypted, in a way that the server can perform op-

Chapter 4. Requirements for secure cloud data
storage 71

Figure 32 – Storing encrypted data in the cloud

Figure 33 – Recovering and decrypting data from the cloud

erations and produce the results without knowing the request or even the results in clear
text. The user will receive the results in encrypted form and with his key, he will open
them. However, new advances are still necessary in this area before homomorphic en-
cryption can be effective and widely adopted for storage in clouds.

Chapter 4. Requirements for secure cloud data
storage 72

In levels 3 and 4, there are two ways to use cryptography: Via browser or via appli-
cation. Next, we will explain these two modes along with a brief evaluation of them.

∙ Via browser: This mode consists on using a browser to perform all the cryptographic op-
erations. Some libraries already installed and configured in the browsers by default are
used, which makes this scheme simple since users do not need to worry about installation
and updating processes. Another major benefit for using a browser for this purpose is the
usability, as users do not need to learn how to use a new tool to encrypt their data. Basi-
cally, in this model the server sends a script to the browser every time it requests a service,
which will be interpreted and executed locally. However, there are several vulnerabilities
in this model, as users’ device has to execute an external code. A possible vulnerability
is the existence of trapdoors in the code. As an example, before data encryption, the key
could be sent to an attacker who broke into the script and was able to modify it. Users
will hardly suspect about this attack, once the system is fulfilling its main function. Other
forms of malicious code could be inserted into the script sent to users (PTACEK, 2011).
However, if a secure channel is used, this attack can be more difficult to execute. Another
way to minimize this problem is through the use of browser extensions. However, this is
equivalent to the second mode described next.

∙ Via application: In this mode, an independent software is used and needs to be installed
and configured properly in users’ device. This software is usually supplied by the CSP
itself, but it could also be from a third party, as PGP or any other, including the CPG pro-
posed in this work. These tools are responsible for performing cryptographic operations
locally on users data, before sending them to the cloud. They usually provide means to
deal with users’ cryptographic keys in a safe, but not necessarily, easy way. The major
advantage of this model is that it allows users to audit and/or verify the signature of these
applications, increasing the reliability of the services. If any malicious code is inserted
in the application, its signature verification will fail and the user will be advised to stop
using it.

4.1.1.4 Trust no one

When users lose or forget their passwords, they can use a common feature provided
by most Internet services that offer a process to recover their passwords. With this feature, users
must prove to the server that they are who they claim to be, and then the server sends them their
password or allows the creation of another one. By choosing the password recovery, the server
can replace the old one. It is a good practice to store users’ password in coded form (a hash, for
instance) and calculate a new code during the authentication phase to compare with the stored
value every time users try to login into a system.

Chapter 4. Requirements for secure cloud data
storage 73

However, in cloud storage environment, when users look for services that provide
security and privacy (mostly by the use of cryptography), the recover feature is not a good
solution. In this scenario, if the CSP is able to restore user’s password, it means that the CSP
can find a way to access users’ data, since they usually encrypt data using keys based on their
owners’ passwords. However, not having this feature means that if users forget or lose their
passwords, it will not be possible to decrypt their files any more and all their data will be lost.
This is the price that users have to pay in order to increase their privacy level.

The trust no one requirement aims to separate user’s authentication password from
the one used to encrypt user’s keys. In this way, users will have two passwords, one used on
the authentication process with the CSPs, and another, unknown by the CSPs, used to encrypt
user’s keys, which will not be stored anywhere and it will be used only on user’s devices.

4.1.1.5 Confidentiality of file attributes

Another important security service that CSPs should provide in their solutions is
the file attributes confidentiality. Unfortunately, this issue receives almost no attention from
users who most of the time, are not aware of problems related to it. Moreover, CSPs normally
do not implement this service due to the complex management required. This service is about
hiding some attributes, as filename, size, ownership, last modification date, creation date, among
others, that could be related to the file content and help attackers to choose their targets, if
stored in plaintext form. Applying cryptography techniques over the file attributes (Fig. 34)
could improve the security and privacy and add a barrier to attackers, who will have a hard time
figuring out which files are important and worth stealing.

Figure 34 – Encrypting file attributes

4.1.1.6 Open Source

An important issue in developing a secure software is to make it available for com-
munity analysis. Most CSPs that provide cryptographic services do not have their codes availa-
ble for review, which could raise suspicions about their software. This fact may decrease users’
trust on the CSP since they have to believe the application provided to them is really secure. It is
not enough for the community to have the CSPs word; they need to see the codes and how they

Chapter 4. Requirements for secure cloud data
storage 74

really works to trust on them. The security community has an important role checking if a soft-
ware really does what its creator claims to. Besides, it is a good way to improve the software,
through the detection of potential vulnerabilities in the project.

4.1.1.7 Software authenticity

This is a complementary requirement to the open source, discussed above. Some-
times the running code is not the same one available for review. For this reason, it is necessary
to have ways to prove that the running code is indeed the same one generated by the source
code available. Code signing is a technique that could be used to verify the software before
installing it, making sure that it is the version published and revised by the community, which
is probably the safest one. Fig. 35 illustrates the code signing process, which involves the code
being hashed and the result encrypted with the developers (or company) private key. The result
is normally attached to the software. Before the installation process, users can verify it using
the developers (or company) public key (certificate). They need to calculate a hash from the
software and compare it to the decryption of the code signature block, using the developers
public key (Fig. 36). If both results are equal, the software is indeed the one published by its
developer, and users can install and use it. Otherwise, the software suffered a modification since
it was signed.

Figure 35 – Code signing process

Figure 36 – Code signing verification process

As users will need the developers public key to verify the software, it is important
that the developer uses a certificate belonging to a trusted PKI (Public Key Infrastructure). This

Chapter 4. Requirements for secure cloud data
storage 75

would prevent users from being misled by attackers that could change the developers public key
by theirs and the software signature block from one created by them with a modified version of
the software. In this case, when users download the software and the public key to perform the
verification process, they would download the attackers public key and the modified software.
Then, they would do the whole process and the results would be valid. A trusted PKI would
allow users to check the ownership of a public key and avoid being fooled by attackers using
false keys.

4.1.1.8 Multi-factor authentication

A possible solution to achieve a high level of trust in authentication could be by
the use of multi-factor authentication. This technique consists in combining more than one au-
thentication method to verify someone’s identity. The methods used with this purpose are usu-
ally based on something the user knows (password), something he has (cryptographic device)
or even something he is (biometric characteristics, like fingerprints, iris, voice etc.). Lee et al.
(LEE I. ONG, 2010) describe a two factor authentication system using the usual login/password
method combined with users’ mobile phones. The login/password is the most well-known and
accepted method to authenticate users, since it does not require extra equipment and people
are already familiar with . Therefore, as mobile phones become popular, they are being used
intensively as a second factor to improve the authentication process.

The multi-factor authentication can also benefit the cloud storage environment,
since it will add an extra authentication phase to the system and make it more secure. Cur-
rent CSPs that offer cryptographic systems derive a symmetric key from users’ password and
use such key to encrypt/decrypt their private key (or master key). This makes users’ creden-
tials the most sensitive point on the system. Even if the best cryptographic algorithms and the
biggest possible keys are applied, the security of the system could fall down if attackers get
users’ password. Besides, getting their credentials is not a hard task nowadays, when users
have a lot of different identities on the Internet. Every single service that requires an identity
(a new login/password) makes them create and manage a new one. With so many pairs of lo-
gin/password, users started using the same password in several places or even reducing their
complexity, in order to make them easier to remember. However, this creates vulnerabilities and
makes attacks easier to succeed. Malware and social engineering are other ways to get users’
credentials successfully, but it will not be discussed here since it is out of the scope of this work.

Even the United of States government recognizes the fragility of the login/password
model and started demanding the adoption of the two factor authentication to improve the se-
curity of its agencies in order to avoid certain attacks (STERNSTEIN, 2015). This action repre-
sents the vulnerability presented nowadays and that the adoption of multi-factor authentication
technique by CSPs must be considered, in order to preserve users’ privacy and the security of
their data.

Chapter 4. Requirements for secure cloud data
storage 76

4.1.2 Usability

Another requirement indispensable in popular applications is usability. The dictio-
nary defines it "as something available or convenient for use; capable of being used". According
to the ISO 9241-11: Guidance on Usability (STANDARDIZATION., 1998), usability is "the ex-
tent to which a product can be used by specific users to achieve specified goals with effective-
ness, efficiency and satisfaction in a specific context of use". The focus of the discussion here
will be on cryptographic applications. These applications are usually difficult to use and demand
a lot of time for users to learn how to manage them. This usually involves some procedures and
knowledge in the field. This factor could make users give up on using applications with low
levels of usability, or at least avoiding them whenever possible. In order to get users’ attention
and enable them to use secure applications in their daily lives, these applications should be in-
tuitive and easy to use. For the purpose of accomplishing this goal, a new requirement should
be attended: Usability.

Usability in cryptographic applications

When cryptography techniques are introduced in a system, they usually make it
more complex to use and manage by lay users (and even by experts in the field), due to the
extra procedures needed. As a result, many users believe in the concept that a secure system
is complicated and hard to use. In fact, this concept is almost always true, once security and
usability are conflicting requirements.

For a software to be popular and adopted by many users, it needs to be easy to use
and intuitive, everything that a cryptographic system usually is not. As an example, it could
be mentioned the PGP (ALLIANCE, 2001). This is a well-known and established cryptogra-
phy software which the security community reviewed and considered secure. However, its use
is quite complex to lay users in cryptography, as they need to create and manage their cryp-
tographic keys, distribute them to other users, among other procedures. Even some security
experts have a hard time using this software daily because of the complexity involved. It is
due to this and other reasons that the PGP is mainly used only by those familiarized with the
concepts of data security.

Some CSPs have noticed this problem and started creating applications easier to
use in order to attract more customers, but this is not a trivial task. A CSP that has stood out
because of the simplicity of its application is the ProtonMail (PROTONMAIL, 2014). This is an
email service that uses cryptography to protect users’ emails. They focus on building an easy to
use interface through users’ browser, performing all the cryptographic processes on client side
(Level of secrecy 3 - Via Browser). ProtonMail users normally do not perceive the introduction
of cryptography, which works in background. Even though this service is criticized for working
with the browser for performing all cryptographic operations, it is an evident effort by software
developers to break the existing paradigm between security and usability.

Chapter 4. Requirements for secure cloud data
storage 77

An ideal software is the one looking at simplifying the cryptographic processes, in
order to be easy to use even by lay users in security and cryptography. All the necessary pro-
cedures as key management and other ones, must be absorbed by the application and cause the
least impact on the usability as possible. All of this is desired without compromising security.
In this way, most users would enjoy the benefits of a higher privacy and safety, without the
need to bear the high costs associated with the learning processes of the security tools available
nowadays.

4.2 Related work

Solutions to improve security and privacy in cloud data storage could be found in
the literature as discussed in chapter 2, but they also can be found in commercial products
and even in specific applications built for other purposes. Most of commercial solutions focus
on satisfying some of the requirements presented previously. Some of these solutions are also
concerned with usability issues. In this section, we will cover some cryptographic solutions that
were developed for, or can be adopted in, the cloud environment.

4.2.1 Commercial solutions

In this subsection we analyze some commercial cloud service providers available
nowadays. All the providers discussed use cryptographic techniques in their solutions some-
how, either in the communication channel or in data at rest. All of these CSPs will be analyzed
according to the security requirements presented, with the goal of identifying possible gaps in
their solutions. After the analysis we compare all solutions and point out the needs for fur-
ther studies. For a detailed description of the cryptographic operations of these solutions, see
appendix B.

4.2.1.1 Cloud service providers with cryptography protection

Onedrive (Microsoft) (ONEDRIVE, 2015) and Google Drive (DRIVE, 2015) are
cloud service providers that offer data storage service for its customers for free, charging only
for customized services, being classified as Level 1. Both providers use TLS (Transport Layer
Security) to protect the communication between the servers and users’ device. Users can recover
their password whenever necessary (there is a specific process for that) and can share files.
These CSPs also allow users to enable the multi-factor authentication, using a second method
(users’ mobile phone) to give them access to their accounts. Box (BOX, 2015) is also a CSP
classified as Level 1, using only the TLS protocol to protect users data. However, Box does not
have a free option for their services and only supports multi-factor authentication when users
choose to authenticate with their Google accounts.

Chapter 4. Requirements for secure cloud data
storage 78

ownCloud (SCHIESSLE, 2013) is a free and open source project that allows users
to build their own private cloud. There is an optional application called Encryption App that
handles all the cryptographic services. If users choose to enable this module, all their data
is encrypted on server-side, making ownCloud be classified as Level 2. Users are allowed to
choose if they want to enable the recovery password process or not. If so, all users data is also
encrypted with the administrator’s keys, and in case the password is lost, the administrator can
recover all users data and create a new password for them. It is also possible to use a secure
communication channel (TLS) and to share data with other users. The ownCloud service does
not allow data deduplication on its servers (OWNCLOUD, 2013).

arXshare (GMBH, 2015) is a secure and open-source solution for file synchroniza-
tion and cloud storage, with a similar concept to ownCloud. Users can build their own servers
based on PHP and collaborate with others in a secure way. All data is encrypted before transmis-
sion to protect users’ privacy, and this CSP is classified as Level 3. Each user in the system has
a unique pair of RSA keys (2048 bits key-size). When files are sent to be stored securely, they
are split into chunks of one megabyte each and are zipped and encrypted, using a unique DEK
(AES-256) and IV (Initialization Vector). Every directory has its own AES credentials, used
to encrypt the DEK, wrapped by a KEK (Key Encryption Key) derived from users’ password
using a PBKDF2 (Password Based Key Derivation Function) algorithm (IETF, 2000b). Every
time users share folders with a recipient, the credentials of that folder are encrypted using that
recipient’s public key. Also, filenames and all metadata, even file size, are encrypted. arXshare
has a free version, but it is limited to just three users. It has its server component published as
open source, but the client source code is not.

SpiderOak (SPIDEROAK, 2015) is a cryptographic CSP solution classified as Level
3, since all operations occur on client’s side. In this solution, each folder have a key (KEK) used
to wrap all the DEK employed to encrypt users data. This KEK is then encrypted with another
KEK, derived from users’ password using PBKDF2 algorithm. The system also encrypts users’
filenames. Users are not allowed to recover their passwords when they lose it. If this happen,
they lose access to all their data. However, they can share their data with others (paid version).
SpiderOak claims to use deduplication on single-user mode and target-based approach.

Mega (MEGA, 2015) is a CSP similar to, and meets the same security requirements
as, SpiderOak. However, Mega does not allow deduplication at any mode, since all the crypto-
graphic keys are randomly generated. Mega provides its services in two ways: directly through
users’ browsers or an application installed on users’ device. The latter mode is the one con-
sidered here. Another difference from SpiderOak, is that Mega allows data sharing, through
asymmetric encryption. The symmetric keys used to encrypt users’ files in Mega are smaller
(128-bit key) than those in SpiderOak.

Wuala (GROLIMUND et al., 2006) (MEISSER, 2011) is also similar to SpiderOak.
The main differences are the use of a pair of cryptographic keys (asymmetric cryptography)

Chapter 4. Requirements for secure cloud data
storage 79

instead of a folder key (symmetric cryptography) for sharing data and the deduplication process
is cross-user mode. There is no free version of Wuala. However, this CSP has discontinued its
services. An announcement was made on August 17th to allow its customers to take back all
their data. The remaining information still stored was deleted on November 25th, 2015.

Cyphertite (CYPHERTITE, 2015) also uses similar cryptographic schemes to those
of SpiderOak. The main differences between them are: Cyphertite does not encrypt filenames,
it is an open source project and users can share files.

Bazil (BAZIL, 2015) is a file synchronization implementation targeted to Unix-like
systems. It aims to be an open source and free to use software. By the time of this writing,
the project was still in development. It could be classified as Level 3, since all cryptographic
operations are done on client side. Bazil divides each file in chunks, hashes it in a Merkle tree,
and stores it into a Content-Addressed Store (CAS). All chunks are encrypted and authenticated
with a NaCl secret box (BERNSTEIN et al., 2012) (which is a library that provides all the
core operations needed in a higher-level cryptographic tool). The CAS is mostly used to store
content more than once without requiring extra space, while the Merkle tree is used to ensure
data integrity and also to avoid that small changes to the file requires the uploaded of all chunks;
instead, just the changed chunks are uploaded. Bazil allow the deduplication service, and for
this reason, adopts the convergent encryption (WANG et al., 2010). Users are not allowed to
share data.

Carbonite (CARBONITE, 2015) is a CSP with focus on backup services only. The
security provided in their solution is offered in two ways and could be chosen by users: auto
encryption and private key encryption. The first one is automatic and takes place on server-side,
using 128-bit AES and SSL protocol. The second mode, considered in this work, uses 256-bit
AES and executes on users’ device. All data in this mode are encrypted with a unique key,
which is wrapped using a KEK generated from users’ password. Carbonite does not allow users
to recover their password in case it gets lost and does not allow data sharing.

BackBlaze (NUFIRE, 2008) is another CSP intended for backup services. As Car-
bonite (second mode) it does not allow users to share data. However, it uses two-factor authenti-
cation to give users access to their data and also combine symmetric and asymmetric encryption.
Each user has a 2048-bit RSA key pair. For each backup session, a new random 128-bit AES
key is generated to encrypt data and it is wrapped by users’ public key. The private key used to
decrypt all users data is protected by users’ password, which is unknown by BackBlaze and not
stored anywhere. As a drawback, when users restore files from Backblaze, they need to transfer
their private encryption key to the server. This means that there is a small period of time when
users’ private key are with the CSP, an approach that is not secure and could lead to the leakage
of users data.

Tresorit (TRESORIT, 2015b) is a CSP classified as a Level 3, where all users
data are encrypted with a random symmetric 256 bit key (AES, CFB mode). This DEK key

Chapter 4. Requirements for secure cloud data
storage 80

is wrapped by the root directory key. Data integrity is protected with HMAC (HMAC-SHA-
512), and all transactions (file uploads, modifications etc.) are authenticated with RSA-2048
signatures applied on SHA-512 hashes. The communication channel is protected by the TLS
protocol. To share data, users need to send invitations to the recipients in order to establish a
key agreement protocol. A suite of group key management protocols is used allowing a group of
users to agree on a shared group key (LAM et al., 2012). Recipient’s data access in a directory
structure is provided by Tresorit’s Agreement Module, which can be RSA-based or Tree-based
Group Diffie-Hellman (TGDH). Using a RSA-based module, there is a set of pre-master secrets
for each user who is sharing the file, encrypted with the user’s public key (RSA). To decrypt a
file, users must supply their private key to the module, which will decrypt the pre-master with
the provided private key and derives the symmetric key of the root directory. With this key,
users can decrypt the root directory and access files and folders. The TGDH-based Agreement
Module works similarly but instead of storing encrypted pre-master secrets, it stores users’
Diffie-Hellman certificates. In Tresorit, users have their own X.509 certificate which contains
personal data, as name and an e-mail address. Key revocation is also treated by this protocol,
which uses the lazy re-encryption approach, where data is only re-encrypted when there are
changes. Also, users’ keys are protected by a KEK derived through their passwords using a
PBKDF2 function (with 160-bit random salt and 10.000 iterations) (TRESORIT, 2015a).

Credeon (CREDEON, 2015) and Boxcryptor (BOXCRYPTOR, 2015) are crypto-
graphic modules intended to be integrated with an existing CSP, like Google Drive, Microsoft
OneDrive and so on, and they are responsible only to provide cryptographic services. They can
be classified as Level 3. The main differences between these two services are: Credeon uses
only symmetric encryption, does not allow password recovery or filenames encryption and is
not an open source project, while Boxcryptor uses asymmetric encryption, allows password re-
covery and filenames encryption and is an open source project. PBKDF2 technology is used
in both applications to derive a KEK from users’ password to encrypt users’ keys. However,
none of them allow deduplication, since all the keys used to encrypt users’ files are random and
unique.

ProtonMail (PROTONMAIL, 2014) is another CSP but with a purpose different
from the ones presented so far. This is an email service that offers cryptography in their solution
to protect users’ privacy. It can be classified as Level 3. Scripts are sent to the browsers which
are responsible to perform all necessary operations, using the already existent libraries on users’
machine. ProtonMail uses two passwords to grant users’ access to their emails. The first one
is used along with an username to give users access to their account, but with all their content
encrypted. Then, with the second one, they can decrypt it. This latter password is intended to
never leave users’ machine. Also, ProtonMail does not allow users to recover their passwords
in case they are lost (at least the second password related to the decryption of the cryptographic
keys), and despite some libraries used in their project being open source, their core application
are not and remains unknown by the community. To protect data, each user has a RSA key

Chapter 4. Requirements for secure cloud data
storage 81

pair, used to wrap the symmetric keys (AES-256) that encrypt/decrypt users’ emails. However,
the header of emails remains in plaintext to enable the servers make decisions regarding to the
forwarding of messages.

Storj (WILKINSON et al., 2014) (STORJ, 2016) adopts a different approach for
storing data securely in the cloud. This is an alternative for a decentralized application using the
concepts of the cloud storage services based on P2P (peer-to-peer) (BABAOGLU et al., 2012),
(BABAOGLU; MARZOLLA, 2014), (XU et al., 2012a). This way, there is no third parties for
controlling and handling users data. Users store data in the peers available on the network. Be-
sides the store service, they can also benefit from contributing to the network on Storj. They can
share hard drive space and/or internet bandwidth, and doing so are rewarded with cryptocur-
rencies as a payment mode. The Storjcoin X (SJCX) is a cryptocurrency developed to be used
inside the Storj network to purchase bandwidth and storage spaces among users. This is an in-
centive to attract more users to the network. The more nodes present and contributing, the more
copies of files will be distributed and available for downloading at the same time, increasing the
speed of the network. Storj is divided into two application: MetaDisk and DriveShare. The first
one is intended to upload files to the network, while the latter is to share hard drive space with
the network. In MetaDisk (WILKINSON; LOWRY, 2014), when users upload data to the cloud,
it is split into pieces, or shards, using Erasure Code techniques to create redundancy according
to users’ need; each shard is encrypted using a different key, along with its attributes. Then, all
shards are transferred to different farmers (nodes that provide storage space and bandwidth to
the network). This approach is classified as Level 3 and adopts a convergent encryption key,
128-bit AES-CTR, using Pycrypto (The Python Cryptography Toolkit), a library implementing
a collection of cryptographic modules designed for python. Storj also implements other tech-
nologies, as blockchain, used as a distributed consensus mechanism to be able to locate files and
check for their integrity, and to keep metadata files (file hash, network location of the shards,
and Merkle roots).

4.2.1.2 Comparison of CSPs

We analyze the CSPs according to the set of security requirements defined in the
previous section. In Table 13 we show the CSPs that meet the security requirements, represented
by a green V , the ones that do not meet represented by a red X and the ones that partially meet,
indicated by a blue P. The question mark in this table represents the absence of information,
where we could not determine if the corresponding CSP meets or not the requirement.

All the features analyzed were extracted from the documentation available on the
providers’ website, forums, emails exchanged with the developers and also by trying some
of them. However, even with the lack of documentation it was possible to build a model of
how most CSPs handle the cryptographic services. As it is shown in the table, none of the
CSPs meet all the security requirements. There are some requirements that are not fulfilled

Chapter 4. Requirements for secure cloud data
storage 82

Table 13 – Comparison of main CSPs features

CSPs Cryptographic
keys security

High Level
of data
secrecy

Trust
no
one

Confiden-
tiality of file
attributes

Secure
deduplication

Open
Source

Software
authenticity

Multi-factor
authentication

Onedrive X X X X X X X V

Drive X X X X X X X V

Box X X X X X X X V

ownCloud P X P X V V X X

Bazil P V V X X V X X

Cypherite P V V X V V X X

BackBlaze P V V X V X X V

Credeon P V V X V X X X

ProtonMail P V V X V X X X

Carbonite P V V X ? X X X

Mega P V V P V X X X

Wuala P V V P X X X X

SpiderOak P V V P V X X X

Boxcryptor P V V P V V X X

arXShare P V V V V V X X

Storj P V V V V V X X

Tresorit V V V X V X X X

entirely by neither of them and others that just few ones did, like the cryptographic key life
cycle control, file attributes encryption, source and executable code signatures and multi-factor
authentication. Most CSPs meet only partially the requirement regarding the control of the key
life cycle, while only one CSP is concerned with the encryption of file attributes besides the
filename. Some of the providers have their codes available, but do not offer ways to prove that
the application running in their servers is indeed the result of compilation of the available code.
Only the CSPs classified as Level 1 of secrecy and only one in Level 3 offer more than one
method to authenticate users (two factor authentication).

Despite all the security features adopted by them, some problems still remain. Most
CSPs do not offer the necessary level of security to guarantee users’ privacy, having a lot of
space for improvements with respect to the users’ privacy point of view. Further studies are
required in order to improve the privacy in the cloud data storage environment.

4.2.2 Other solutions

In this subsection we present an analysis of other forms to achieve security and
privacy in cloud data storage. We introduce two well-known applications and analyze how they
work to protect users’ privacy, followed by a set of possible improvements.

Chapter 4. Requirements for secure cloud data
storage 83

4.2.2.1 PGP

PGP stands for Pretty Good Privacy. It is a security software package developed by
Philip Zimmermann that supports strong symmetric and asymmetric encryption, being used to
provide privacy, confidentiality and authentication of data, mostly in network communication.
There have been many versions of PGP: OpenPGP (ALLIANCE, 2001) (standard specified by
RFC 4880 (CALLAS et al., 2007)) and GNU Privacy Guard (GnuPG or GPG) with its variants
GPG4Win and FireGPG for Firefox. Also, there are some versions to be integrated with browser
to encrypt emails. Commercial versions are also available. PGP provides several services for its
users, as data encryption, digital signatures, data compression, among others. In order to use
these services, users need to install the PGP software through a Wizard (GPG4Win). At some
point, they are required to create the encryption keys (there are different cryptosystems and sizes
for choice). They also can limit the key lifetime. After that, they are asked to create a password
to protect their keys, which is expected to be long (at least eight symbols) and complex, but
users have to remember it since a recover is impossible in case it gets lost. PGP provides an
interface for its users manage their cryptographic keys and also the public keys of their friends,
co-workers or business partners, which can be imported into the system. The export option is
also available as they have to share their public key with others (KOŚCIELNY et al., 2013).

According to the RFC 4880 specification, the PGP combines symmetric and asym-
metric encryption. When encrypting a message, email, file etc., firstly the object is encrypted by
a unique and random symmetric key (DEK) which is later wrapped by the receiver’s public key
(Fig. 37). The object is usually compressed before the encryption process. Besides the confiden-
tiality achieved by the encryption, data could also be signed digitally. In this case, the signature
is attached to the object and then both are encrypted. In the decryption process, seen in Fig. 38,
users first need to provide their password to the system, which will convert it in a symmetric
key (KEK) to unwrap the DEK. After that, the object is decrypted. If the object was signed, the
verification process using the sender’s public key is performed, followed by a decompression
process whether necessary.

PGP also adopts the concept of Web of Trust, a decentralized alternative to the
centralized trust model of a public key infrastructure (PKI). Instead of relying on a certificate
authority (CA) to endorse someone’s public key, users can trust on others to do it, avoiding all
the expenses of a PKI. PGP generates certificates for its users, which contain their public key
and also some personal information. The certificates are signed by a trusted person. Users will
only use the keys that have been signed by trusted participants of them. A key could be signed
several times, in order to create a large mutual trust group (KOŚCIELNY et al., 2013).

4.2.2.2 TrueCrypt

According to Koscielny C. et al. (KOŚCIELNY et al., 2013), TrueCrypt is a free and
open-source security software mostly used for disk encryption, available for multiple platforms,

Chapter 4. Requirements for secure cloud data
storage 84

Figure 37 – Encryption process on PGP

Figure 38 – Decryption process on PGP

as Windows, Mac OS, and also Linux. It could be installed through an easy Wizard guide
(standard installation) or be used in a portable version of it. Users are able to encrypt single
container-files or an entire disk partition. The root partition, where the operating system is
installed, can also be encrypted using TrueCrypt. The encryption process is automatic, real-
time (on-the-fly) and transparent.

When users encrypt an entire partition and want to move or copy data in it, data
will be encrypted during the copying process. To move or copy data to another partition, the
process goes the other way. If data is moved from an encrypted partition to another, it is first
decrypted and then re-encrypted using different keys. Before encrypting data, users need to
choose a password, which is recommended to be long and strong enough for the purpose of
avoiding brute force or dictionary attacks. In order to read encrypted data, they have to provide
the correct password to the system.

Chapter 4. Requirements for secure cloud data
storage 85

TrueCrypt also allows its users to create hidden volumes, which should consist of
hidden and also some neutral data, chosen in the creation of the volume. Users can create an
encrypted file system and protect it with a password. Inside it, they can create a hidden area
to protect some files, which will be accessed by a second password. Unless users reveal the
existence of the hidden area (and also the password) to an adversary, it should be impossible to
determine its existence. However, some applications can leak significant information outside of
the hidden area (CZESKIS et al., 2008) that could allow attackers to guess it.

In order to enhance its security, TrueCrypt allows users to adopt Keyfiles. This is an
optional form that enables two-factor authentication and adds a second line of security to users
data. This could be achieved by any file on users’ computer or one stored in an external medium
(pen drive). TrueCrypt reads part of the chosen file and uses it as a password in the encryption
process. Accessing encrypted data without the password and the Keyfile will be impossible.
There can be many Keyfiles for an object, but in this case all of them will be necessary in
the decryption process. If one of them is lost, damaged or modified, the decryption will fail
(KOŚCIELNY et al., 2013).

Broz and Matyas (BROZ; MATYAS, 2014) highlight that TrueCrypt uses different
symmetric algorithms to encrypt data. Users can choose among AES, Serpent, and Twofish. The
mode used in the encryption process is the XTS. When encrypting data, TrueCrypt creates a
container, consisting of an encrypted header with metadata (key and other relevant information)
and the encrypted data in the remaining space. Header and data are encrypted using the same
algorithm, but with different keys. Data is encrypted using a symmetric key which is stored in
the header, while the header is encrypted using a key derived from a salt (random data stored in
the header) and user’s password using the PBKDF2 algorithm. The simplified encryption and
decryption process are illustrated in Figs. 39 and 40.

Figure 39 – Encrypting data with TrueCrypt

Chapter 4. Requirements for secure cloud data
storage 86

Figure 40 – Decrypting data with TrueCrypt

Despite being a good tool for protecting users data, TrueCrypt project was ended
in May, 2014, and said to be insecure (TRUECRYPT, 2014). However, there is an initiative
dedicated to the development of the next TrueCrypt called TCnext ((TCNEXT, 2015)). Also,
there are some projects derived from it, as VeraCrypt and CipherShed. The first one is a free and
open source project aimed to disk encryption, based on TrueCrypt version 7.1a (VERACRYPT,
2015). The authors claim to have fixed most security issues found on TrueCrypt (JUNESTAM;
GUIGO, 2014). The latter one is also a free and open source project for disk encryption, but at
this time it is still in development (CIPHERSHED, 2015).

4.2.2.3 Operating System’s Built-in Encryption

Besides PGP and TrueCrypt, users also have the possibility of using cryptographic
applications built for specific operating systems. In Windows, users can enable BitLocker (MI-
CROSOFT, 2015) to get full-disk encryption. Mac OS X offers for its users the FileVault disk
encryption (FILEVAULT, 2015), while in Linux there is a variety of encryption technologies,
but modern distributions often enable full-disk encryption though LUKS (Linux Unified Key
Setup) (LUKS, 2015). Other solutions include AES Crypt, AxCrypt, DiskCryptot, EncFS, Se-
crecy, among others, which are beyond the scope of this work.

4.2.2.4 Discussion

PGP, TrueCrypt and other similar solutions could be an alternative for cloud data
storage, even though they were not built for this specific purpose. They require a lot of inter-
action and manual steps for users to store their files in the cloud. Users have to encrypt their
files and upload them to the cloud. In the decryption process, the file must be downloaded and
then decrypted. All of this process could be too hard for lay users to handle, especially when

Chapter 4. Requirements for secure cloud data
storage 87

they are responsible for the cryptographic key management. Another complication is about
encrypted folders. Accessing a specific file inside a folder would require the download and de-
cryption of the entire folder, increasing the processing time according to the folder size, as it
happens in TrueCrypt. The volume created would be stored in the cloud and in order to access
any file inside it, users would have to download the whole content and decrypt it.

Some users, especially lay ones, would rather not store data in encrypted form in
the cloud due to the complexity involved using the tools. An application made specifically for
cloud data storage in a way that makes all the processes transparent to users, would facilitate
its adoption. Also, this would be even a motivation for starting using this kind of technology.
Such application should remove all the burden caused by the cryptography and require less
interaction from users, in a way that they would not even realize that cryptography is being
used.

4.3 Conclusions

In this chapter we presented and discussed some requirements for a secure, reliable
and user-friendly cloud data storage application. These requirements were divided into two
groups: the ones related to the application security and the one associated to the application
usability. The first group of requirements can protect users’ privacy and provide security for
their data from attacks and threats they may face while using cloud data services. The latter
aims to make the application more easy to use, requiring less effort and specific knowledge
from users. All the complexity is absorbed by the software. The main goal is to leverage the
protection offered by security applications to as many users as possible, even for those with
minimum knowledge of cryptography.

We also presented in this chapter some solutions to mitigate common risks and
improve users’ privacy in cloud environment. We divided and presented the solutions in two
lines: commercial and others. The first one is related to commercial solutions available nowa-
days to protect users’ privacy. The CSPs discussed in this chapter saw an opportunity regarding
data protection in cloud and started offering easy-to-use solutions to store data in the cloud se-
curely. However, some improvements are still necessary. None of the CSPs fulfil all the security
requirements, as showed in the analysis done where the CSPs’ features were contrasted with
requirements.

The second line was related to other solutions that could be integrated in the cloud
environment to protect users’ privacy. The solutions presented and analysed were not built
specifically for cloud data storage use. For this reason, they require much more effort from
users than the available commercial solutions presented before. However, even though they
have low levels of usability for this environment, they still are an option and some are used by
experts in cryptography due to their reliability and flexibility.

88

5 Cloud Privacy Guard (CPG)

In this chapter we propose a cryptographic software called CPG (Cloud Privacy
Guard) to overcome the most common security risks in cloud data storage. CPG satisfies some
important security requirements in clouds and is based on good usability principles. Moreover,
we present a comparison of CPG with other applications with similar purposes and a discussion
about its limitations and its future.

5.1 Introduction

There are many systems and tools created to improve users’ privacy in the cloud en-
vironment. However, most of them still lack features to be a secure and reliable applications, as
showed in previous chapters. Aiming to fulfil the gaps found in the available solutions and also
taking into consideration the techniques proposed in the literature, we propose a new applica-
tion to mitigate some security problems on cloud data storage and also to address some relevant
security requirements. The application, called Cloud Privacy Guard (CPG), was designed with
the purpose of being secure and reliable, but also easy to use. It reduces the overhead caused
by the introduction of the cryptography due to the extra procedures necessary, and aims to be
adopted by most users in daily activities. We will explain how this application works, how it
manages the cryptographic keys and how it addresses the security requirements.

5.2 Objectives

With the purpose of getting a higher security and better privacy in cloud computing,
solutions that mitigate common risks and threats in this technology are necessary. CPG is a
cryptographic solution aiming to bring the advantages of cryptography to all kind of users,
even the ones with no knowledge in this field. This is achieved by a user-friendly interface that
requires less effort from users when storing their files in the cloud securely. CPG is an automatic
solution that employs cryptographic techniques in a way that users do not even realize they are
using them, since all the processes are transparent and run in background. They also do not
need to worry about key management or other issues incurred by cryptography in order to
protect their data and privacy. The solution was conceived using interface techniques already
understood by most users, as the drag and drop model.

One of the main purposes of CPG is to give users exclusive access to their data. It
adopts symmetric and asymmetric cryptography to mitigate some of the confidentiality prob-
lems on cloud data storage. It also allows users to share their private data with others, through
certificates. In order to improve users’ privacy and become a secure and reliable cryptographic

Chapter 5. Cloud Privacy Guard (CPG) 89

system, CPG tries to fulfil all the security requirements discussed previously. Another objective
of CPG is to be used with any kind of CSP that works with a specific folder to synchronize
data, where users only need to put their files in this folder to have it sent to the cloud. CPG does
not provide the storage infrastructure for users storing their data, but it is a software that can be
integrated with most CSPs available. Examples of CSPs supported by CPG are Google Drive,
Dropbox, Microsoft OneDrive, and ownCloud.

CPG allows its users to access their files from different devices. In order to do that,
they just need to configure the application in each device. If the right passphrase is given, the
system will automatically find and open users’ key pairs obtained from the cloud, where they
are stored in encrypted form. Also, the CSP client needs to be installed and configured in the
intended device.

5.3 Requirements to be met by CPG

This section will explain how CPG intends to meet the requirements presented and
discussed in Chapter 4 to be a secure, reliable and easy to use application.

5.3.1 Cryptographic keys security

The cryptographic keys security is an important requirement and must be addressed
carefully, since all the security of cryptography software relies on the protection of its keys.
CPG adopts the key life cycle control in order to fulfil this requirement. CPG uses two types
of cryptographic keys: a symmetric key for encrypting data (DEK) and an asymmetric key pair
for each user to protect the DEK and also to enable data sharing. The first is dealt by adhering
to the key states recommended by NIST. For each new file, a new key is generated. Also, every
time files are modified, new file keys are generated to re-encrypt them, avoiding access to new
versions of it by users that are no longer permitted and also as a measure to mitigate the risks
of attacks. The older keys are destroyed. However, the pre-activation and deactivated states are
not adopted, since there is no need for performing proof of possession or key confirmation
(process used in the pre-activation state). The keys are also destroyed when files are modified or
destroyed and are not used again even for further decryption, not being necessary the deactivate
state. On the other hand, a different treatment is done with respect to the asymmetric keys. These
keys are outsourced to a PKI responsible for issuing certificates. This PKI will control and limit
the validity period of each key pair and also the key stages, besides other related issues.

Another security measure adopted by CPG is related to the time user’s private key
remains in memory. Despite CPG does not propose a security alternative to address this prob-
lem, CPG mitigates it enforcing that users’ cryptographic keys do not remain in memory for a
long period of time but just during the period they are needed.

Chapter 5. Cloud Privacy Guard (CPG) 90

5.3.2 Secure deduplication

As seen before, deduplication is useful for CSPs, but can be insecure for users. Only
a secure deduplication process should be allowed, but CPG has no control over CSP internal
procedures. Because CPG uses unique and random keys to encrypt files, the deduplication at
CSP servers will not be possible and its problems will be avoided.

5.3.3 High level of data secrecy

Based on the description about the levels of secrecy, it can be seen that Level 3 is
the practical one with the best privacy preserving features when compared to the other ones,
since all the cryptographic operations are performed on users’ device. In this mode, users are
in control of the whole process and are the only ones to have access to their data. However, this
could be a drawback since it is a burden too heavy for some users to handle, as they will be
the ones responsible for the cryptographic key management and other issues. Based on this, the
proposed CPG adopts Level 3 concepts in its design, but builds a model where most of the key
management procedures are done by the application in order to release users from this burden.
The only thing they will need to do (after initial configuration) is to remember a passphrase,
which will be used to give them access to their keys and hence to their data in a transparent
form.

5.3.4 Trust no one

The CPG application uses the concept called trust no one since it will improve data
security and users’ privacy. Users are the only ones who know the passphrase needed to give
them access to the securely stored data and thus another passphrase (or password) is needed to
identify them to the CSP. One important consequence of this requirement adoption is that the
CSP will not be able to help users in case they loose the passphrase used to encrypt files.

5.3.5 Confidentiality of file attributes

This requirement is also addressed by CPG through the encryption of the file at-
tributes, like timestamps, group, ownership, filenames etc., in order to protect user’s privacy.
The same DEK used to encrypt the file content is used to protect its attributes, which are collect
into another file that is stored together with the corresponding data file.

5.3.6 Open Source

CPG has its source code opened to the community for reviews. This practice helps
the detection of possible flaws and opens space for improvements, coming from community
reviews and suggestions.

Chapter 5. Cloud Privacy Guard (CPG) 91

5.3.7 Software authenticity

CPG adopts the source and executable code signatures in order to meet this require-
ment and allow users to verify the authenticity of the application installed in their devices. The
signatures are based on certificates of well known and reliable Certificate Authorities.

5.3.8 Two-factor authentication

CPG adopts the multi-factor authentication using something users know (a passphrase)
and something they have (mobile phone). When users choose the two factor authentication
(2FA), the system will add an additional step requesting the second factor in the authentication
process. In the activation process of this new authentication factor, it is demanded that users go
through a registration phase, where they will follow some steps to configure their device and
also the application.

Google Authenticator, which uses the TOTP protocol (Time-Based One-Time Pass-

word Algorithm (IETF, 2011)), was the choice for the initial stage of tests with CPG with 2FA
because, despite its vulnerabilities (DMITRIENKO et al., 2014), it is easy to install, configure
and use. In the first step of the registration phase, CPG will generate a sequence of 16 char-
acters that need to be inserted in users’ mobile phone, which is supposed to have the Google

Authenticator App installed. The generated code can be inserted into Google’s app in two ways:
manually or with a QR code.

In the authentication process, the Google Authenticator will generate a small code
(6 characters) every 30 seconds that needs to be inserted in CPG application when requested
(there is an additional tolerance time to type the code). If the code provided is the same as the
one generated by the application, users have their access granted to CPG; otherwise, users are
rejected and, after three wrong attempts, the process is ended. To try again, users must initiate
CPG and start the whole process all over again. The entire authentication process using the
second factor is summarized in Fig. 41.

5.3.9 Usability in cryptography applications

CPG aims to simplify the cryptographic processes to its users in order to be adopted
even by lay ones. It proposes to use concepts already adopted by most users, as drag and drop
objects to a specific folder, for example. This is the same model as the one adopted by popu-
lar CSPs available nowadays, like Google Drive, OneDrive, Dropbox, etc., with the purpose of
making CPG’s use experience simpler, requiring less interactions between users and applica-
tion.

Most of the necessary security procedures as key management and other ones are
absorbed by CPG to cause as little impact on the usability as possible. All cryptographic keys,
for example, are protected by just one passphrase, the only one users have to remember to use

Chapter 5. Cloud Privacy Guard (CPG) 92

Figure 41 – Authentication 2FA

the application. In this way, most users would enjoy the benefits of a higher privacy and safety
for their data, without having to submit themselves to high costs associated to the learning and
adoption of traditional security techniques.

5.4 How CPG works

This section gives an introduction about CPG operation. It covers topics such as
first use, configuration settings and authentication, among others. For more information about
CPG, as its main use cases, see Appendix C.

5.4.1 First use

Before users start CPG for the first time, they need to create and configure an ac-
count in any CSP that can be integrated with CPG. They also need to download and install the
client application responsible for synchronizing data from their devices with the cloud servers.
After that, they need to install and configure CPG in their device. When it is initialized, it
requires the creation of a passphrase used to protect users’ cryptographic keys. Then, the appli-
cation creates a pair of keys (or allows users to select one already existent) and requests users
to fill out the configuration settings.

Every time the application performs a secure task, it requests users’ passphrase, un-
less it was supplied some moments ago (there is a time to live parameter for a keyed passphrase).

Chapter 5. Cloud Privacy Guard (CPG) 93

The CPG application starts every time users’ device initializes. Users can see it running through
the system tray, represented by an icon that allows them to interact with it (Fig. 42). They can
close the application or even change the configuration settings through this icon.

Figure 42 – CPG icon on the system tray

5.4.2 Configuration settings

Users need to configure CPG before using it. This step is done after the first time
the system is initialized. Users can also change the application setting at any time by accessing
the configuration options while CPG is running, through the icon available on the system tray.
The configuration process is short and simple. Users only need to choose the folders used by the
application, which are the Encrypted Files folder, used to synchronize data between users’ com-
puter and the cloud servers, and the Secret Files folder, used to define the data to be encrypted.
There is also a path indicating where the cryptography keys are placed, which is defined auto-
matically when the keys are created (users can modify it if necessary). It is important to notice
that the Encrypted Files folder can be the root of the cloud or just a specific folder inside of it
with the purpose of storing encrypted files. CPG will only handle encrypted files in this folder
and ignore other ones. Fig. C.3 illustrates the CPG configuration screen.

Figure 43 – CPG configuration window

5.4.3 Drag and Drop model

CPG adopts the well understood drag and drop model, used by most CSPs available
nowadays. This is a choice to create an easy to use interface, requiring less effort and interaction

Chapter 5. Cloud Privacy Guard (CPG) 94

from users when using CPG. To send encrypted files to the cloud, users just need do drag (or
copy) them into the "Secret Files" folder, as shown in Fig. 44. CPG will be monitoring this
folder and any modification on it will be detected and the appropriate procedures started. The
CSP client will be responsible for synchronizing the files with the cloud servers.

Figure 44 – Drag and Drop model - How it works.

5.4.4 How to send encrypted files to the cloud

CPG was conceived to require as little interaction with users as possible to send
encrypted files to the cloud. The CPG working process could be better explained using Fig. 45,
followed by an example of how sending files securely to the cloud.

In this figure, user Bob wants to store his files in the cloud securely. He first ini-
tializes CPG (step 1), which requests his passphrase. After supplying it (step 2), the application
goes to a validation process. If Bob’s passphrase is correct, CPG starts; otherwise, Bob have
three attempts to supply the correct password before the application is ended. If the access is
granted, CPG starts and synchronizes data in the Secret Files folder with the Encrypted Files

folder. Besides, it also starts monitoring these two folders. Any modification on them, as file
creation, deletion or modification will activate CPG. When Bob stores a new file (step 3), CPG
will be activated and starts encrypting it using Bob’s certificate (step 4). In step 5, the encrypted
file is stored in the Encrypted Files folder. Step 6 is performed by the CSP client, responsible for
the synchronization process between user’s device and the cloud servers. Step 7 corresponds to

Chapter 5. Cloud Privacy Guard (CPG) 95

Figure 45 – CPG working process

CPG synchronizing the Encrypted Files and Secret Files folders, decrypting data from the first
to the second. The decrypted data is then placed on the Secret Files folder (step 8).

5.4.5 How to decrypt files

The decryption process is not performed very often by CPG. Although all data in
Secret Files folder is encrypted before it is sent to the cloud, a version in plaintext will remain
in this folder on users’ device. He will use this version and every change will be noticed by
CPG, which will encrypt it and replace the encrypted version in the cloud by this new one. The
decryption process will be needed only in two cases. The first one is when users access their
data through a different device. When they install and initiate CPG in a new device, all existing
encrypted data will be decrypted and placed in the Secret Files folder of this device. The second
case of decrypting data is done when a user shares data with other ones. In this case, the shared
information will be available for use by the recipients and, in the moment it appears in their
space, CPG will detect, decrypt and store a plaintext version of it in their Secret Files folder.

5.4.6 How to share files

Public key infrastructure is a well-established technology used to solve some se-
curity problems with asymmetric cryptography; however it comes with a high cost. In Brazil,
an alternative for minimizing this cost in educational and research institutions was the creation
of an educational public key infrastructure called ICPEdu (RNP, 2015). Students, teachers, re-
searchers and the staff people that are part of educational institutions affiliated to RNP (Brazilian
national research and education network) can get freely ICPEdu certificates. CPG makes use of

Chapter 5. Cloud Privacy Guard (CPG) 96

this kind of certificates to encrypt files and to share them among users. As ICPEdu certificates
are technically based on X.509 format, any other certificate in such format will be compatible
with CPG.

In order to share encrypted files, users need to share the folder containing the in-
tended files through the conventional CSP interface, and then put in such folder the certificate
of every person that shall be able to open those files. For security reasons, such certificates must
be encrypted by the file owner private key, avoiding that someone else put undesired certificates
on the same shared folder. The application will encrypt the data with the certificates present
in the folder. Removing access to a shared file from a particular user, requires the removal of
that user’s certificate from the folder. When new data is stored in the folder or a file is modi-
fied, it will be encrypted only for those users who still have their certificates presented in the
folder, denying access to this new information to the ones whose certificates were removed.
This technique is referred as lazy revocation (KALLAHALLA et al., 2003).

5.5 Cryptographic process

The proposed CPG application adopts both symmetric and asymmetric cryptogra-
phy, taking advantage of the best properties of each one. The symmetric algorithm chosen was
the 256-bit AES due to strength, reliability and good performance in the encryption/decryption
of large amounts of data. Indeed this is one of the most used algorithms in the solutions studied.
CPG creates a random and unique symmetric key for each file (DEK), which is used to encrypt
users data. To protect the DEK, the asymmetric RSA algorithm was chosen. Despite some au-
thors preferring to use the Elliptic Curve Cryptography (ECC) (YIN et al., 2014) (KUMAR et

al., 2012) due to its better performance, we preferred to stick with classical RSA solution in the
first version of CPG. Other alternatives that could present better performance than RSA will be
studied for future versions of CPG.

The public key cryptography was chosen to be implemented in CPG since it facili-
tates data sharing and could rely on a PKI (Public Key Infrastructure), which is a way to control
the key life cycle of one of the most valuable keys belonging to users: the private key.

Each CPG user has a 2048-bit RSA key pair (public and private keys), used to
wrap the DEKs. The public key is stored in plaintext form in a certificate and the private key
stored encrypted with a symmetric key (KEK) derived from user’s passphrase by the PBKDF2
algorithm. When a file needs to be encrypted, a new and random symmetric key is generated and
used to encrypt it along with its metadata. After this process, the encrypted file key is wrapped
by user’s public key. The encrypted file, metadata and key file are put together in a container,
which is stored in the cloud (Figs. 46 and 47). To decrypt the file, the user needs to provide his
passphrase to derive the symmetric KEK intended to decrypt his private key, needed to unwrap
the encrypted key file and finally open the encrypted file and metadata. The latter is used to

Chapter 5. Cloud Privacy Guard (CPG) 97

restore the file attributes (Figs. 48 and 49).

Figure 46 – Keys encryption process on CPG

Figure 47 – Files encryption process on CPG

Figure 48 – Keys decryption process on CPG

Chapter 5. Cloud Privacy Guard (CPG) 98

Figure 49 – Files decryption process on CPG

When sharing files, users need the recipient’s certificate (public key) in order to
give them access to the data. The DEK is wrapped using the owner’s public key and also the
recipient’s public key. The encrypted DEKs are stored in the same data container. When the
recipient user gets access to the encrypted file, he will decrypt the corresponding key using his
private keys, and then open the encrypted file.

5.6 Comparison

CPG aims to meet all the requirements discussed in Chapter 4 in order to be a secure,
reliable and easy to use application, and also to fulfil the gaps found in most solutions available
nowadays. For this reason, we performed a comparison of CPG with other solutions that propose
to store data securely in the cloud. Table 14 shows how well the commercial solutions and CPG
satisfies the security requirements. The CSPs that meet the security requirements are represented
by a green V , the ones that do not meet represented by a red X and the ones that partially meet,
indicated by a blue P. The question mark in this table represents the absence of information,
where we could not determine if the corresponding CSP meets or not the requirement.

Among all of these CSPs, Credeon and Boxcryptor are the ones similar to CPG
in the way they work (an application to be integrated with an existing cloud storage infrastruc-
ture). These CPSs also use the drag and drop model in their interface to be simpler to users when
storing encrypted files in clouds. As shown in the table, Boxcryptor is more close to a secure
and reliable model than Credeon. However, none of them neither others solutions presented
in the table fulfil all the requirements as CPG does. Most CSPs do not fulfil the requirement
related to the high trusted authentication, and the ones which do it, do not address other impor-
tant requirements. Also, the cryptographic keys security requirement is partially meet by most

Chapter 5. Cloud Privacy Guard (CPG) 99

Table 14 – Comparison of CPG and other solutions for storing data securely in the cloud

CSPs Cryptographic
keys security

High Level
of data
secrecy

Trust
no
one

Confiden-
tiality of file
attributes

Secure
deduplication

Open
Source

Software
authenticity

Multi-factor
authentication

Onedrive X X X X X X X V

Drive X X X X X X X V

Box X X X X X X X V

ownCloud P X P X V V X X

Bazil P V V X X V X X

Cypherite P V V X V V X X

BackBlaze P V V X V X X V

Credeon P V V X V X X X

ProtonMail P V V X V X X X

Carbonite P V V X ? X X X

Mega P V V P V X X X

Wuala P V V P X X X X

SpiderOak P V V P V X X X

Boxcryptor P V V P V V X X

arXShare P V V V V V X X

Storj P V V V V V X X

Tresorit V V V X V X X X

CPG V V V V V V V V

CSPs, and just a few ones are concerned with the confidentiality of file attributes. The software
reliability is not addressed entirely by none of them.

5.7 Limitations

CPG model considers users’ computer a safe place to store files and metadata. Data
is only encrypted while it is outside users’ device. Malware and other threats capable of getting
access to users’ computer were not in the scope of this work and require different procedures
in order to be mitigated. Other attacks capable of stealing users’ private key while in memory
are not covered, but they are mitigated since the users’ cryptographic keys do not remain in
memory for a long period of time but just during the period they are needed. The client device
evaluation will be covered in future work, as it is an important issue that has direct impact on
users’ privacy. Also, a device compromised can make users feel a false sense of security, once
they have tools to protect them (CPG, for example) but they are ineffective against the attacker
controlling that device.

Other limitation is related to data modifications performed at the same time in two
devices. If this happens, there is no way to guarantee which modification will persist after
synchronization. CPG is not responsible for the synchronization in the cloud level, only locally,

Chapter 5. Cloud Privacy Guard (CPG) 100

and for this reason it can not control which change will occur first. There is also a problem
related to the accuracy of the device clocks. It is recommended to use just one device at a
time to perform any modification and let the files be synchronized before accessing them from
another device.

5.8 Proof of concept

A proof of concept of CPG was developed and a first version of the application was
released for tests (https://github.com/regras/cpg). The programming language chosen was Java,
due to its attractive features, especially the interoperability. Besides, it has standard cryptog-
raphy frameworks that simplifies the buiilding of cryptographic applications, as the JCA (Java
Cryptography Architecture). This is a framework for working with cryptography that is part of
the Java SE Security, a large set of APIs, tools, and implementations of security algorithms,
mechanisms, and protocols. Also, JCA includes the JCE (Java Cryptography Extension) in its
framework, which is responsible for providing a uniform implementation of security features in
Java, supporting several applications in digital security, such as symmetric, asymmetric, stream
and block ciphers, key generation, storage and retrieval, digital signatures, among others. (OR-
ACLE, 2015a).

5.8.1 Implementation model

In order to allow users having an automatic encryption service using a simple way to
store encrypted data in the cloud (through the use of the drag and drop model), CPG combines
a set of technologies. The package java.nio.file is one of them, which defines interfaces and
classes for the Java virtual machine, allowing access to files, file attributes, and file systems.
A watch service is used to monitor the directories related to CPG (Secret Files and Encrypted

Files folders) in order to catch all the changes on them, as file creation, modification or deletion
(ORACLE, 2015b). The watch service is created as a thread responsible for reporting to CPG
the events that may occur in the monitored folders. It gets the folder path and the event kind
so CPG can know where and what to do. This information is passed to other CPG threads
responsible for handling them. If any file is inserted or modified in the Secret Files folder, it
should be encrypted and replace its old version in the Encrypted Files folder when possible. In
case of deletion, CPG must find the corresponding encrypted version and delete it too. If the
changes occur in the Encrypted Files folder and are related to insertion or modification, CPG
must decrypt the corresponding file and replace the old version in the Secret Files folder for the
new one. If the deletion event occurs, the plaintext version of the file must be erased too.

CPG adopts metadata files used to control the files and identify the modifications.
The basic structure of these metadata, called state files, can be seen in Fig. 50. Basically, the
state files are XML files and for each data handled by CPG, a new structure similar to the

Chapter 5. Cloud Privacy Guard (CPG) 101

one described in the figure is created, containing information related to the filename, encrypted
filename, last modification date, last modification date of the encrypted file, file path, among
others. Each folder has its own state file, and it is stored locally in the same folder containing
CPG application files. If a directory does not have any files, its state file will be created but
empty. Each device will have its own state file, created when CPG starts for the first time. If
someone is using the application in a device for the first time but already used it in a different
device, CPG will noticed the presence of encrypted files in the cloud when configured. Then,
the files will be decrypted and all information related to them will be filled out in the state file
corresponding to that folder. CPG uses the information on these metadata files to detect which
data needs to be encrypted, decrypted or erased.

When users start their devices, CPG will start along with it. The first task of CPG is
to look for changes in both directories (Secret Files and Encrypted Files folders) using the state
files. These metadata files are necessary to compare searched data from the directories with the
inputs on it using a more efficient approach since we cannot compare data in plaintext form
(Secret Files folder) with encrypted form (Encrypted Files folder) without decrypting them all
the time. This would require users’ password to decrypt their private key, which would be used
to open the DEK and then decrypt the filenames. Only then the comparison would be possible
because we would know which encrypted file corresponds to the plaintext file and vice-versa,
at least when both are available since there could be a new file which does not have its own
plaintext or decrypt version yet. This decryption process would be necessary for all files and
every time the system synchronizes data. Also, users’ private key would be used more frequently
and remains in memory more than necessary, and most of times being just used for verification
purposes which could return nothing.

Each file and folder in both directories are verified in order to keep the system
synchronized. Those files which are in the Secret Files folder and do not have an input in the
state files, need to be encrypted. Files in the state file which are not in Secret Files, need to
be erased from the Encrypted Files folder, since users must have erased them while CPG was
not running. In the Encrypted Files folder, the logic is similar: files in Encrypted Files which
are not in the state file need to be decrypted and the ones in the opposite situation are erased
from Secret Files. File modifications are detected through the last modification date got from
the operating system and compared to the register in the state file. When both versions of a file
are available, they are verified and the last modification date of each one is compared to the
entries in the metadata file. If the plaintext version has a modification data more recent than the
one in the state file, the file needs to be encrypted again and its encrypted version replaced. On
the other hand, if the encrypted version is more recent than the entry in the state file, the file
needs to be decrypted and its plaintext version replaced.

In the synchronization process using multiple devices, as each one of them has its
own state file, the logic applied is the same as before. An example: If all devices are synchro-

Chapter 5. Cloud Privacy Guard (CPG) 102

Figure 50 – CPG Metadata structure

nized and a file is erased from device 1, the input in the state file and the encrypted version of it
in the Encrypted Files folder will be erased from this device. When other devices are used, the
CSP client will synchronize the Encrypted Files folder in these devices with the cloud servers.
The file erased from device 1 will have its encrypted version erased from the other devices, and
when CPG starts the synchronization process, will notice an input the in state file and the plain-
text file, but not the encrypted version of it. Following the logic above, the input and plaintext
file will be erased, maintaining all devices with the same data.

In order to keep users data synchronized, CPG adopts a verification scheme per-
formed in two ways: partial and full. The first one is performed through the operating system

Chapter 5. Cloud Privacy Guard (CPG) 103

events using the watch service described above. CPG will stay sleeping and waiting for any
event occurrence to treat it. On the other hand, the full verification is performed every time
CPG starts to execute and from time to time. In this scheme, CPG looks for changes in both
directories (Secret Files and Encrypted Files folders) using the state files. Each file and folder
in both directories is verified in order to keep the system synchronized.

The full verification is necessary mostly in systems which stay disconnected from
the network or turnned off for a long period of time. If an event was lost for some reason and
CPG could not handle it, the corresponding file would not be encrypted, decrypted or erased,
and CPG directories would not be synchronized until the system be restarted. To avoid this
situation, after a defined period of time, a complete verification takes place and every file and
folder is verified again, synchronizing the folders.

5.8.2 CPG class diagram

Fig. 51 presents a simplified class diagram of CPG first version. In this figure, we
illustrated only the main classes essential to the application operation. A complete class diagram
can be found along with CPG source code (https://github.com/regras/cpg).

Chapter 5. Cloud Privacy Guard (CPG) 104

Fi
gu

re
51

–
C

PG
si

m
pl

ifi
ed

cl
as

s
di

ag
ra

m

Chapter 5. Cloud Privacy Guard (CPG) 105

5.9 Future steps in CPG development

CPG tried to fulfil all the requirements discussed in Chapter 4, but in its first ver-
sion improvements are still necessary in order increase the level of security and usability, as
discussed in this section.

The first step is to create a new version of CPG that attends all the requirements
entirely. The support for PKI is one of the features that still need to be implemented to allow
data sharing and to fulfil the cryptographic keys security requirement.

A future improvement could be related to the high trusted authentication. CPG could
replace the second factor authentication adopted in the current version (mobile phone using
Google Authentication App) by a more secure model, similar to the one offered by Nitrokey
(NITROKEY, 2015). They use an external device built specifically to protect users’ crypto-
graphic keys. In Nitrokey’s solution, users’ secret keys are stored in a tamper-resistant and
PIN-protected device, which is secure against viruses and Trojan Horses, and even by loss or
theft since users have a PIN to protect the keys stored on it. CPG could store users’ private
key in a device similar to this one in order to increase its level of security in the authentication
process. However, this extra level of security comes with a price. This would require an extra
hardware and users would have to carry it whenever they want to access their data. Also, the
costs associated to this new device should be considered.

There are other possible changes in the CPG’s authentication based on 2FA. In
the current model, the second factor is required every time users perform the authentication.
However, the 2FA could be used in different situations. In the first one the 2FA is only required
when users need to access their most valuable files. They would choose some files to add an
extra protection layer, and every time they would access these files the second factor would
be required. Other scenario is using the continuous authentication method, where users must
provide their credentials from time to time to prove they still own all of them. The use of more
sophisticated forms of 2FA will be left for future work.

In order to improve CPG’s performance, we can replace the RSA cryptography by
ECC. The latter asymmetric algorithm uses keys with the same level of security but smaller
in size. This would increase the performance of cryptographic operations. However, the imple-
mentation of ECC is not very simple since choosing trusted parameters is difficulty and requires
a better understanding of all the implications.

5.10 Conclusions

In this chapter we presented CPG, an application proposed for mitigating some
risks and threats on cloud data storage and also to fulfil a set of requirements indispensable
in a secure, reliable and easy to use cloud application. Along this chapter, we described the

Chapter 5. Cloud Privacy Guard (CPG) 106

objectives of CPG, how it works and performs all the cryptographic operations, the requirements
and how they were met by CPG, and also a comparison with other CSPs and applications
with a similar purpose. Finally, we discussed CPG’s limitations and also the next steps in its
development.

107

6 Conclusions

Privacy in cloud computing is an important subject and ways to ensure it are needed
towards a wider adoption of a more private computing model, mostly when it comes to the
protection of sensitive data. In this work we presented some problems related to the security
and privacy of users who store their data in the cloud. Moreover, we presented some concerns
about users’ privacy on data storage services, related to the data name, content, access and
possession confidentiality, along with some techniques used to mitigate them. We also presented
a review on academic solutions aiming to minimize some threats and concerns. We studied
these solutions and identified the problems they tried to mitigate, the proposed techniques used
to solve these problems and how they did it. However, these solutions are limited on solving
only a set of problems, which could not be enough for some users. Also, some of them are still
not practical for use and in most solutions the usability is not even considered.

Another subject approached in this work was the proposal of a set of requirements
we consider essential in the design of a secure, reliable and easy to use cloud system for data
storage. The focus of these requirements are on data content and name confidentiality due to
the greater concern demonstrated by users about these topics. We also presented several related
works from commercial solutions and other ones which use the cryptography to address confi-
dentiality in general and could be integrated to the cloud storage environment in order to protect
users data and privacy.

The current commercial solutions were analysed and compared, concluding that
most of them do not offer the necessary level of security to guarantee users’ privacy, since none
of the available cloud service providers (CSP) meet all the requirements proposed in this work.
Despite all security features adopted by them, some problems still remain and there is a lot of
space for improvements with respect to the user’s privacy point of view. With respect to the
general solutions, we concluded that, even offering a good level of security, they do not meet
the requirements and were not built for this purpose, being harder to use in this environment for
most users. Extra procedures would be necessary to integrate them to cloud data storage, which
could be a burden for some users.

In this work, we also made an analysis of the relative costs and benefits of several
techniques to preserve users’ privacy and all their possible combinations. A methodology to
calculate these costs in order to find the best solutions was also proposed. Besides, this metho-
dology revealed the solutions that are worth to be used and the ones which are ineffective and
even prohibitive due to their elevated costs and low benefits.

In order to consolidate and prove our claims, we proposed (and built a proof of con-
cept) a cryptography application, called Cloud Privacy Guard (CPG), aiming to mitigate some

Chapter 6. Conclusions 108

of the problems discussed and also to fulfil the security requirements discussed. We showed
how the application works, including the details of the cryptographic protocols adopted, and
made a comparison of it with commercial solutions. CPG proposal is concerned about being
transparent to users, through initiatives like signing open source code and executable files. It
uses certificates to mitigate some security problems and to enable data sharing. Furthermore,
the proposal is compromised to leverage the security and improve privacy for all kinds of users,
being them experts or not in the filed of security.

6.1 Contributions

The main contributions of this study are summarized below.

∙ A methodology to calculate and analyze the relative costs and benefits of some techniques
used to provide privacy in cloud computing and their combinations.

∙ Identification and grouping of a set of requirements for cloud data storage systems in
order to be secure, reliable and easy to use.

∙ A classification of how cryptography can be applied in the cloud data storage (levels of
secrecy).

∙ The proposal of an application model (called CPG) with the characteristics desired in a
cloud data storage application.

All these contributions are also documented in the papers published in national and
international scientific conferences, which are presented in appendix D.

6.2 Future work

As a future work we intend to study the concerns related to data access and posses-
sion confidentiality in more detail, with the purpose of deriving requirements for a more private
cloud storage application. We also plan to study the threats related to inability to access data,
data lock-in, and data fragmentation.

A more precise estimate of the costs and benefits from the techniques used to im-
prove users’ privacy in cloud computing is planned, which could help users making a better
choice. It is also planned to look for more adequate ways to determine the privacy level accord-
ing to users’ vision, since the online survey conducted was not efficient. We realized that most
users had difficulties in understanding the problems and the techniques from the description
provided in the survey. We think that more realistic results can be obtained by exposing the par-
ticipants to a better explanation where all details (threat model and the benefits obtained from
each technique) are given.

Chapter 6. Conclusions 109

We intend to study deeper the 4th level of secrecy, where Homomorphic Encryption
is used, to better understand its potential. The appropriate case scenario needs to be understood
as well as the advantages of this technique to users. Another requirement that will receive further
attention is the security of cryptographic keys, where the adopted protocol could be improved to
simplify the key life cycle management. Other ways to implement the high trust authentication
requirement will also be studied, along with the use of different authentication factors. We also
plan to study and evaluate new CSPs, according to the requirements presented.

Another future work is related to CPG. We want to work more in this application
proposal in order to improve its efficiency, user-friendliness and security.

110

Bibliography

ABU-LIBDEH, H.; PRINCEHOUSE, L.; WEATHERSPOON, H. Racs: A case for cloud
storage diversity. In: Proceedings of the 1st ACM Symposium on Cloud Computing. New York,
NY, USA: ACM, 2010. (SoCC ’10), p. 229–240. ISBN 978-1-4503-0036-0.

ALLIANCE, C. The notorious nine: cloud computing top threats in 2013. Cloud Security
Alliance, 2013.

ALLIANCE, O. About OpenPGP. 2001. <http://www.openpgp.org/about_openpgp/>.
Accessed 2015 Dez 10.

ASHKTORAB, V.; TAGHIZADEH, S. R. Security threats and countermeasures in cloud
computing. International Journal of Application or Innovation in Engineering & Management
(IJAIEM), v. 1, n. 2, p. 234–245, 2012.

BABAOGLU, O.; MARZOLLA, M. The people’s cloud. Spectrum, IEEE, IEEE, v. 51, n. 10,
p. 50–55, 2014.

BABAOGLU, O.; MARZOLLA, M.; TAMBURINI, M. Design and implementation of a
p2p cloud system. In: ACM. Proceedings of the 27th Annual ACM Symposium on Applied
Computing. [S.l.], 2012. p. 412–417.

BARKER W. BARKER, W. B. W. P. M. S. E. Recommendation for key management-part 1:
General (revised). In: CITESEER. NIST special publication. [S.l.], 2006.

BAZIL. Bazillion bytes. 2015. <https://bazil.org/>. Accessed 2015 Dez 10.

BERNSTEIN, D. J.; LANGE, T.; SCHWABE, P. The security impact of a new cryptographic
library. In: Progress in Cryptology–LATINCRYPT 2012. [S.l.]: Springer, 2012. p. 159–176.

BESSANI, A.; CORREIA, M.; QUARESMA, B.; ANDRÉ, F.; SOUSA, P. Depsky:
Dependable and secure storage in a cloud-of-clouds. ACM Transactions on Storage (TOS),
ACM, v. 9, n. 4, p. 12, 2013.

BIRRELL, E.; SCHNEIDER, F. B. Federated identity management systems: A privacy-based
characterization. 2012.

BOX. Secure, effortless collaboration from any device. 2015. <https://www.box.com/home/>.
Accessed 2015 Dez 10.

BOXCRYPTOR. Technical Overview. 2015. <https://www.boxcryptor.com/en/
technical-overview>. Accessed 2015 Dez 10.

BROZ, M.; MATYAS, V. The truecrypt on-disk format–an independent view. Security &
Privacy, IEEE, IEEE, v. 12, n. 3, p. 74–77, 2014.

CALLAS, J.; DONNERHACKE, L.; FINNEY, H.; SHAW, D.; THAYER, R. RFC
4880-openpgp message format. Informe técnico, Internet Engineering Task Force (IETF),
2007.

http://www.openpgp.org/about_openpgp/
https://bazil.org/
https://www.box.com/home/
https://www.boxcryptor.com/en/technical-overview
https://www.boxcryptor.com/en/technical-overview

Bibliography 111

CARBONITE. Encryption. 2015. <http://support.carbonite.com/articles/
Server-Windows-Encryption#auto_encrypt>. Accessed 2015 Dez 10.

CHADWICK, D. W. Federated identity management. In: Foundations of security analysis and
design V. [S.l.]: Springer, 2009. p. 96–120.

CHEN, P.-C.; FREG, C.-P.; HOU, T.-W.; TENG, W. G. Implementing raid-3 on cloud storage
for emr system. In: Computer Symposium (ICS), 2010 International. [S.l.: s.n.], 2010. p.
850–853.

CIPHERSHED. CipherShed Technical Wiki. 2015. <https://wiki.ciphershed.org/>. Accessed
2015 Dez 10.

CREDEON. Cloud Data Protection. 2015. <http://psg.hitachi-solutions.com/credeon/
cloud-data-protection-overview>. Accessed 2015 Dez 10.

CYPHERTITE. Cryptography. 2015. <https://www.cyphertite.com/papers/WP_Crypto.pdf>.
Accessed 2015 Jul 10.

CZESKIS, A.; HILAIRE, D. J. S.; KOSCHER, K.; GRIBBLE, S. D.; KOHNO, T.;
SCHNEIER, B. Defeating encrypted and deniable file systems: Truecrypt v5. 1a and the case
of the tattling os and applications. In: HotSec. [S.l.: s.n.], 2008.

DMITRIENKO, A.; LIEBCHEN, C.; ROSSOW, C.; SADEGHI, A.-R. Security analysis of
mobile two-factor authentication schemes. Intel R○ Technology Journal, v. 18, n. 4, 2014.

DRIVE. Visao geral das conexoes SSL. 2015. <https://support.google.com/a/answer/100181?
hl=pt-BR>. Accessed 2015 Dez 10.

DUFFIELD, N.; GREENBERG, A.; GOYAL, P.; MISHRA, P.; RAMAKRISHNAN, K.;
MERWE, J. Van der. Virtual private network. [S.l.]: Google Patents, 2005. US Patent
6,912,232.

ERMAKOVA, T.; FABIAN, B. Secret sharing for health data in multi-provider clouds. In:
Business Informatics (CBI), 2013 IEEE 15th Conference on. [S.l.: s.n.], 2013. p. 93–100.

ESHGHI, K.; TANG, H. K. A framework for analyzing and improving content-based chunking
algorithms. Hewlett-Packard Labs Technical Report TR, v. 30, p. 2005, 2005.

FILEVAULT. Usar o filevault para criptografar o disco de inicialização no seu mac. 2015.
Accessed 2015 Dez 14.

FU, Y.; SUN, B. A scheme of data confidentiality and fault-tolerance in cloud storage. In:
Cloud Computing and Intelligent Systems (CCIS), 2012 IEEE 2nd International Conference
on. [S.l.: s.n.], 2012. v. 01, p. 228–233.

GASTI, P.; ATENIESE, G.; BLANTON, M. Deniable cloud storage: Sharing files via
public-key deniability. In: Proceedings of the 9th Annual ACM Workshop on Privacy in
the Electronic Society. New York, NY, USA: ACM, 2010. (WPES ’10), p. 31–42. ISBN
978-1-4503-0096-4.

GMBH, A. S. arXshare: End-to-end encrypted file storage. 2015. <http://www.arxshare.com/
faq/>. Accessed 2015 Dez 10.

http://support.carbonite.com/articles/Server-Windows-Encryption#auto_encrypt
http://support.carbonite.com/articles/Server-Windows-Encryption#auto_encrypt
https://wiki.ciphershed.org/
http://psg.hitachi-solutions.com/credeon/cloud-data-protection-overview
http://psg.hitachi-solutions.com/credeon/cloud-data-protection-overview
https://www.cyphertite.com/papers/WP_Crypto.pdf
https://support.google.com/a/answer/100181?hl=pt-BR
https://support.google.com/a/answer/100181?hl=pt-BR
http://www.arxshare.com/faq/
http://www.arxshare.com/faq/

Bibliography 112

GROLIMUND, D.; MEISSER, L.; SCHMID, S.; WATTENHOFER, R. Cryptree: A folder
tree structure for cryptographic file systems. In: IEEE. Reliable Distributed Systems, 2006.
SRDS’06. 25th IEEE Symposium on. [S.l.], 2006. p. 189–198.

HARNIK, B. P. D.; SHULMAN-PELEG, A. Side channels in cloud services: Deduplication in
cloud storage. Security & Privacy, IEEE, IEEE, v. 8, n. 6, p. 40–47, 2010.

HUBBARD, D.; SUTTON, M. Top threats to cloud computing v1. 0. Cloud Security Alliance,
2010.

IETF. HTTP Over TLS. 2000. <https://tools.ietf.org/html/rfc2818>. Accessed 2016 Jan 10.

IETF. Password-Based Cryptography Specification: Version 2.0. 2000. <https://www.ietf.org/
rfc/rfc2898.txt>. Accessed 2015 Dez 10.

IETF. The Transport Layer Security (TLS) Protocol: Version 1.2. 2008. <https://tools.ietf.org/
html/rfc5246>. Accessed 2015 Dez 10.

IETF. TOTP: Time-Based One-Time Password Algorithm. 2011. <https://tools.ietf.org/html/
rfc6238>. Accessed 2015 Dez 10.

JAATUN, M.; NYRE, A.; ALAPNES, S.; ZHAO, G. A farewell to trust: An approach to
confidentiality control in the cloud. In: Wireless Communication, Vehicular Technology,
Information Theory and Aerospace Electronic Systems Technology (Wireless VITAE), 2011 2nd
International Conference on. [S.l.: s.n.], 2011. p. 1–5.

JAATUN, M. G.; ZHAO, G.; ALAPNES, S. A cryptographic protocol for communication
in a redundant array of independent net-storages. In: Proceedings of the 2011 IEEE Third
International Conference on Cloud Computing Technology and Science. Washington,
DC, USA: IEEE Computer Society, 2011. (CLOUDCOM ’11), p. 172–179. ISBN
978-0-7695-4622-3.

JACOBSON, V.; SMETTERS, D. K.; THORNTON, J. D.; PLASS, M. F.; BRIGGS, N. H.;
BRAYNARD, R. L. Networking named content. In: Proceedings of the 5th International
Conference on Emerging Networking Experiments and Technologies. New York, NY, USA:
ACM, 2009. (CoNEXT ’09), p. 1–12. ISBN 978-1-60558-636-6.

JUNESTAM, A.; GUIGO, N. Open Crypto Audit Project: TrueCrypt. 2014. <https:
//truecrypt.ch/wp-content/uploads/2015/04/TrueCrypt_Phase_II_NCC_OCAP_final.pdf>.
Accessed 2015 Dez 10.

KALLAHALLA, M.; RIEDEL, E.; SWAMINATHAN, R.; WANG, Q.; FU, K. Plutus: Scalable
secure file sharing on untrusted storage. In: Proceedings of the 2Nd USENIX Conference on
File and Storage Technologies. Berkeley, CA, USA: USENIX Association, 2003. (FAST ’03),
p. 29–42.

KALPANA, P.; SINGARAJU, S. Data security in cloud computing using RSA algorithm.
IJRCCT, v. 1, n. 4, p. 143–146, Sep 2012.

KAMARA, S.; LAUTER, K. Cryptographic cloud storage. In: Proceedings of the 14th
International Conference on Financial Cryptograpy and Data Security. Berlin, Heidelberg:
Springer-Verlag, 2010, (FC’10). p. 136–149. ISBN 3-642-14991-X, 978-3-642-14991-7.

https://tools.ietf.org/html/rfc2818
https://www.ietf.org/rfc/rfc2898.txt
https://www.ietf.org/rfc/rfc2898.txt
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc6238
https://tools.ietf.org/html/rfc6238
https://truecrypt.ch/wp-content/uploads/2015/04/TrueCrypt_Phase_II_NCC_OCAP_final.pdf
https://truecrypt.ch/wp-content/uploads/2015/04/TrueCrypt_Phase_II_NCC_OCAP_final.pdf

Bibliography 113

KHALIL, I. M.; KHREISHAH, A.; AZEEM, M. Cloud computing security: A survey.
Computers, Multidisciplinary Digital Publishing Institute, v. 3, n. 1, p. 1–35, 2014.

KOŚCIELNY, C.; KURKOWSKI, M.; SREBRNY, M. Pgp systems and truecrypt. In: Modern
Cryptography Primer. [S.l.]: Springer, 2013. p. 147–173.

KUMAR, A.; LEE, B. G.; LEE, H.; KUMARI, A. Secure storage and access of data in cloud
computing. In: ICT Convergence (ICTC), 2012 International Conference on. [S.l.: s.n.], 2012.
p. 336–339.

KUMAR, M.; KUMAR, M. A secured cloud storage technique to improve security in cloud
infrastructure. In: Recent Trends in Information Technology (ICRTIT), 2013 International
Conference on. [S.l.: s.n.], 2013. p. 97–102.

KUROSE, J. F.; ROSS, K. W. Computer networking: a top-down approach. Boston, MA,
USA: Addison-Wesley, 2007.

LAM, I.; SZEBENI, S.; BUTTYAN, L. Invitation-oriented tgdh: Key management for
dynamic groups in an asynchronous communication model. In: Parallel Processing Workshops
(ICPPW), 2012 41st International Conference on. [S.l.: s.n.], 2012. p. 269–276. ISSN
1530-2016.

LEE I. ONG, H. L. H. L. S. Two factor authentication for cloud computing. Journal of
information and communication convergence engineering, v. 8, n. 4, p. 427–432, 2010.

LI, J.; SONG, D.; CHEN, S.; LU, X. A simple fully homomorphic encryption scheme available
in cloud computing. In: Cloud Computing and Intelligent Systems (CCIS), 2012 IEEE 2nd
International Conference on. [S.l.: s.n.], 2012. v. 01, p. 214–217.

LUKS. Cryptsetup and luks - open-source disk encryption. 2015. Accessed 2015 Dez 14.

MATHER, T.; KUMARASWAMY, S.; LATIF, S. Cloud security and privacy: an enterprise
perspective on risks and compliance. [S.l.]: " O’Reilly Media, Inc.", 2009.

MEGA. Developers - Documentation. 2015. <https://mega.nz/#doc>. Accessed 2015 Dez 10.

MEISSER, L. Wuala Blog. Wuala’s Encryption For Dummies. 2011. <https://www.wuala.com/
blog/2011/04/wualas-encryption-for-dummies.html>. Accessed 2015 Jul 10.

MICROSOFT. Visão geral da criptografia de unidade de disco bitlocker. 2015. Accessed 2015
Dez 14.

MURDOCH, S.; DANEZIS, G. Low-cost traffic analysis of tor. In: Security and Privacy, 2005
IEEE Symposium on. [S.l.: s.n.], 2005. p. 183–195. ISSN 1081-6011.

NITROKEY. Introduction. 2015. <https://www.nitrokey.com/>. Accessed 2015 Dez 10.

NUFIRE, T. BackBlaze: How to make strong encryption easy to use. 2008. <https:
//www.backblaze.com/blog/how-to-make-strong-encryption-easy-to-use/>. Accessed 2015
Dez 10.

ONEDRIVE. A sua vida em um único lugar. 2015. <https://onedrive.live.com/about/pt-br/>.
Accessed 2015 Dez 10.

https://mega.nz/#doc
https://www.wuala.com/blog/2011/04/wualas-encryption-for-dummies.html
https://www.wuala.com/blog/2011/04/wualas-encryption-for-dummies.html
https://www.nitrokey.com/
https://www.backblaze.com/blog/how-to-make-strong-encryption-easy-to-use/
https://www.backblaze.com/blog/how-to-make-strong-encryption-easy-to-use/
https://onedrive.live.com/about/pt-br/

Bibliography 114

ORACLE. Java SE Security. 2015. <http://www.oracle.com/technetwork/java/javase/tech/
index-jsp-136007.html>. Accessed 2015 Dez 10.

ORACLE. Package java.nio.file. 2015. <https://docs.oracle.com/javase/7/docs/api/java/nio/
file/package-summary.html>. Accessed 2015 Dez 10.

OWNCLOUD. Deduplication on Owncloud: Frequently Asked Questions. 2013.
<https://owncloud.org/faq/deduplication>. Accessed 2015 Jul 10.

PADMAJA, N.; KODURU, P. Providing data security in cloud computing using public key
cryptography. IJESR, v. 4, n. 01, 2013.

PATTERSON, D. A.; GIBSON, G.; KATZ, R. H. A case for redundant arrays of inexpensive
disks (raid). SIGMOD Rec., ACM, New York, NY, USA, v. 17, n. 3, p. 109–116, jun. 1988.
ISSN 0163-5808.

PFITZMANN, A.; HANSEN, M. A terminology for talking about privacy by data
minimization: Anonymity, unlinkability, undetectability, unobservability, pseudonymity, and
identity management. 2010.

PHUONG, T.; OMOTE, K.; LUYEN, N.; THUC, N. Improvement of multi-user searchable
encrypted data scheme. In: Internet Technology And Secured Transactions, 2012 International
Conference for. [S.l.: s.n.], 2012. p. 396–401.

PROTONMAIL. How are ProtonMail keys distributed? 2014. <http://security.stackexchange.
com/questions/58541/how-are-protonmail-keys-distributed>. Accessed 2015 Dez 10.

PTACEK, T. Javascript Cryptography Considered Harmful. 2011. <https:
//www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2011/august/
javascript-cryptography-considered-harmful/>. Accessed 2015 Dez 10.

RNP. ICPEdu. 2015. <http://www.rnp.br/servicos/servicos-avancados/icpedu>. Accessed 2015
Dez 10.

SCHIESSLE, B. Owncloud: Introduction to the new ownCloud Encryption App. 2013.
<http://blog.schiessle.org/2013/05/28/introduction-to-the-new-owncloud-encryption-app/>.
Accessed 2015 Dez 10.

SCHNJAKIN, M.; ALNEMR, R.; MEINEL, C. A security and high-availability layer for
cloud storage. In: Proceedings of the 2010 International Conference on Web Information
Systems Engineering. Berlin, Heidelberg: Springer-Verlag, 2011. (WISS’10), p. 449–462.
ISBN 978-3-642-24395-0.

SCHNJAKIN, M.; KORSCH, D.; SCHOENBERG, M.; MEINEL, C. Implementation of
a secure and reliable storage above the untrusted clouds. In: Computer Science Education
(ICCSE), 2013 8th International Conference on. [S.l.: s.n.], 2013. p. 347–353.

SCHNJAKIN, M.; METZKE, T.; MEINEL, C. Applying erasure codes for fault tolerance in
cloud-raid. In: Computational Science and Engineering (CSE), 2013 IEEE 16th International
Conference on. [S.l.: s.n.], 2013. p. 66–75.

SHAMIR, A. How to share a secret. Commun. ACM, ACM, New York, NY, USA, v. 22, n. 11,
p. 612–613, nov. 1979. ISSN 0001-0782.

http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136007.html
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136007.html
https://docs.oracle.com/javase/7/docs/api/java/nio/file/package-summary.html
https://docs.oracle.com/javase/7/docs/api/java/nio/file/package-summary.html
https://owncloud.org/faq/deduplication
http://security.stackexchange.com/questions/58541/how-are-protonmail-keys-distributed
http://security.stackexchange.com/questions/58541/how-are-protonmail-keys-distributed
https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2011/august/javascript-cryptography-considered-harmful/
https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2011/august/javascript-cryptography-considered-harmful/
https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2011/august/javascript-cryptography-considered-harmful/
http://www.rnp.br/servicos/servicos-avancados/icpedu
http://blog.schiessle.org/2013/05/28/introduction-to-the-new-owncloud-encryption-app/

Bibliography 115

SHATILOV, K.; BOIKO, V.; KRENDELEV, S.; ANISUTINA, D.; SUMANEEV, A. Solution
for secure private data storage in a cloud. In: Computer Science and Information Systems
(FedCSIS), 2014 Federated Conference on. [S.l.: s.n.], 2014. p. 885–889.

SILVA, C.; RODRIGUES, L. A fault-tolerant secure corba store using fragmentation-
redundancy-scattering. In: CITESEER. ECOOP Workshops. [S.l.], 1998. p. 287.

SPIDEROAK. Engineering. The Details Behind What We Do. 2015. <https://spideroak.com/
features/private-by-design#engineering-matters-10-ribbon>. Accessed 2015 Dez 18.

STALLINGS, W. Criptografia e segurança de redes 4a ed. [S.l.]: São Paulo: Pearson Prentice
Hall, 2008.

STANDARDIZATION., I. O. for. ISO 9241-11: Ergonomic Requirements for Office Work with
Visual Display Terminals (VDTs): Part 11: Guidance on Usability. [S.l.: s.n.], 1998.

STERNSTEIN, A. WHITE HOUSE TELLS AGENCIES TO TIGHTEN UP CYBER
DEFENSES ’IMMEDIATELY’. 2015. <http://www.nextgov.com/cybersecurity/2015/06/
white-house-tells-agencies-tighten-online-security-immediately/115216/>. Accessed 2015
Dez 10.

STORJ. Descentralized cloud storage. 2016. Accessed 2016 Jan 15.

SUBASHINI, S.; KAVITHA, V. A survey on security issues in service delivery models of
cloud computing. Journal of network and computer applications, Elsevier, v. 34, n. 1, p. 1–11,
2011.

TCNEXT. TrueCrypt will not die. 2015. <https://truecrypt.ch/>. Accessed 2015 Dez 10.

TRESORIT. How is my password managed in Tresorit? 2015. <https://tresorit.zendesk.com/
entries/23577091-How-is-my-password-managed-in-Tresorit>. Accessed 2015 Dez 10.

TRESORIT. White Paper. 2015. <https://tresorit.com/files/tresoritwhitepaper.pdf>. Accessed
2015 Dez 10.

TRUECRYPT. Migrating from TrueCrypt to BitLocker. 2014. <http://truecrypt.sourceforge.
net/>. Accessed 2015 Dez 10.

VERACRYPT. User’s guide. 2015. <https://veracrypt.codeplex.com/documentation>.
Accessed 2015 Dez 10.

WANG, C.; QIN, Z.-g.; PENG, J.; WANG, J. A novel encryption scheme for data deduplication
system. In: IEEE. Communications, Circuits and Systems (ICCCAS), 2010 International
Conference on. [S.l.], 2010. p. 265–269.

WILKINSON, S.; BOSHEVSKI, T.; BRANDOFF, J.; BUTERIN, V. Storj a peer-to-peer cloud
storage network. Citeseer, 2014.

WILKINSON, S.; LOWRY, J. Metadisk a blockchain-based decentralized file storage
application. Citeseer, 2014.

XU, H.-M.; SHI, Y.-J.; LIU, Y.-L.; GAO, F.-B.; WAN, T. Integration of cloud computing
and p2p: A future storage infrastructure. In: IEEE. Quality, Reliability, Risk, Maintenance,
and Safety Engineering (ICQR2MSE), 2012 International Conference on. [S.l.], 2012. p.
1489–1492.

https://spideroak.com/features/private-by-design#engineering-matters-10-ribbon
https://spideroak.com/features/private-by-design#engineering-matters-10-ribbon
http://www.nextgov.com/cybersecurity/2015/06/white-house-tells-agencies-tighten-online-security-immediately/115216/
http://www.nextgov.com/cybersecurity/2015/06/white-house-tells-agencies-tighten-online-security-immediately/115216/
https://truecrypt.ch/
https://tresorit.zendesk.com/entries/23577091-How-is-my-password-managed-in-Tresorit
https://tresorit.zendesk.com/entries/23577091-How-is-my-password-managed-in-Tresorit
https://tresorit.com/files/tresoritwhitepaper.pdf
http://truecrypt.sourceforge.net/
http://truecrypt.sourceforge.net/
https://veracrypt.codeplex.com/documentation

Bibliography 116

XU, L.; WU, X.; ZHANG, X. Cl-pre: a certificateless proxy re-encryption scheme for
secure data sharing with public cloud. In: ACM. Proceedings of the 7th ACM Symposium on
Information, Computer and Communications Security. [S.l.], 2012. p. 87–88.

YIN, X. C.; LIU, Z. G.; LEE, H. J. An efficient and secured data storage scheme in cloud
computing using ecc-based pki. In: Advanced Communication Technology (ICACT), 2014 16th
International Conference on. [S.l.: s.n.], 2014. p. 523–527.

ZHOU, M.; ZHANG, R.; XIE, W.; QIAN, W.; ZHOU, A. Security and privacy in cloud
computing: A survey. In: Semantics Knowledge and Grid (SKG), 2010 Sixth International
Conference on. [S.l.: s.n.], 2010. p. 105–112.

ZISSIS, D.; LEKKAS, D. Addressing cloud computing security issues. Future Generation
computer systems, Elsevier, v. 28, n. 3, p. 583–592, 2012.

Appendix

118

APPENDIX A – Survey: Privacy

In this appendix, we show the details about the survey mentioned in Chapter 3.

A.1 Introduction

We conducted a survey in order to evaluated the privacy level perceived by users
when using some techniques to preserve their privacy on cloud data storage environment. In
this section, we will show the details about the survey as well as the results obtained.

The survey was conducted using a software-based and open-source online platform,
called LimeSurvey. This service is offered by the University of Campinas, and was used to col-
lect users’ opinion about the techniques. A brief description was made, as well as how they can
be used to preserve users’ privacy. We expected that each survey participant expressed his/her
perception of privacy using the techniques, considering preferences, priorities and experiences.
In each case, the participants had to choose values in a scale from 0 to 10, where 0 means no
privacy at all and 10 means that the highest level of privacy is obtained. They should consider
the entire process of storing and recovering files in public clouds and all possible issues they
could see related to the exposure of sensitive information, especially to the cloud administrators.

We had a total of 76 participants. The target audience was people with any expertise
in computer, in any related field. Among the participants, we had professors, master, doctor,
undergraduate students, and some professionals of the field. In the next sections, we will explain
how we elaborated the survey and the results obtained.

A.2 Description

When users started the survey, a message was showed explaining its purpose and
what was expected from them. The introduction message is shown below.

This survey aims to estimate the level of privacy an average cloud user perceives for different

techniques used to preserve his/her privacy in cloud data storage services. Each technique has

a different purpose and provides a different level of privacy.

We made a brief description for each one of them about their characteristics, as well as how

they can be used to preserve user privacy. We expect that the survey participants express their

perception of privacy for the techniques, considering preferences, priorities and experiences.

The results of this survey will be used for calculating a relative level of privacy got from the

enlisted techniques according to users’ point of view. This survey is part of a research about

APPENDIX A. Survey: Privacy 119

the security and privacy on public cloud data storage held at the Department of Computer

Engineering and Industrial Automation (DCA), School of Electrical and Computer

Engineering (FEEC), University of Campinas (Unicamp).

The results will be made public in the web page shown below.

http://www.dca.fee.unicamp.br/ṽhgmoia/cloud_security/results.html

Further details about the survey, can be obtained from:

Vitor H. G. Moia (vhgmoia@dca.fee.unicamp.br) or Marco A. A. Henriques

(marco@dca.fee.unicamp.br)

Further details about the techniques, can be obtained in:

http://www.dca.fee.unicamp.br/ṽhgmoia/cloud_security/dissertation.pdf

A.3 Questions

Following the introduction, the survey participants were asked to answer some ques-
tions. We divided these questions in two groups which were presented in different pages. The
first one was about personal information, with three optional questions on the participant name,
institution, and address; there was also one mandatory question on how the participant classified
its own expertise on information security, with the following possible answers: Low, medium
and high.

The second group was related to the privacy level obtained from the techniques in
the users’ point of view. There were six mandatory questions and for each one, the participants
had to choose grades from 0 to 10 in order to classify the techniques. A brief explanation was
made for each technique highlighting its definition and goal. Users also had space for optional
comments in each question. The questions and explanation about the techniques are presented
below.

∙ Question: From your point of view, choose a number from 0 to 10 that better describes

the level of privacy you would perceive when using one of the techniques described below

to protect the data you store in a public cloud. The number 0 means no privacy at all

and 10 means that the highest level of privacy is obtained. Consider the entire process of

storing and recovering files in public clouds and all possible issues they can see related

to the exposure of sensitive information, especially to the cloud administrators. Obs.:

Comments are optional (English or Portuguese).

∙ Techniques description:

APPENDIX A. Survey: Privacy 120

1. Data fragmentation
Goal: Offer redundancy in data storage and make it difficult unauthorized access to

the whole file.

Description: In this technique, data is broken in many small fragments which are

spread over several CSPs (Cloud Service Providers). Normally, the main reason to

use data fragmentation is to provide fault tolerance and/or improve performance.

But here, data is spread over different clouds to avoid attackers to get the whole

data in case of security breaches in some of them.

2. Data encryption
Goal: Keep data safe from unauthorized access.

Description: Data encryption is a technique used to keep information confidential

and accessible only by those who know a secret (a key), used in the codification pro-

cess. The secrecy is achieved by a codification based on the key, which will generate

an unintelligible version of the original data. In this context, we only consider the

encryption of file content, as implemented in several public clouds. Data attributes

(as file’s name, type, size, creation and modification date etc.) will not be encrypted,

but stored in plaintext (legible).

3. Metadata encryption
Goal: Keep the file attributes unavailable to third parties.

Description: Data encryption is a technique used to keep information confidential

and accessible only by those who know a secret (a key), used in the codification pro-

cess. The secrecy is achieved by a codification based on the key, which will generate

an unintelligible version of the original data. In this context, only data attributes, as

filename, size, last modification and creation dates etc., will be encrypted. The data

itself will remain in plaintext (legible).

4. VPN-Proxy
Goal: Keep user’s location (IP) secret with the help of a third party.

Description: A trusted VPN (Virtual Private Network) service combined with a

proxy creates a secure (encrypted) communication channel between user’s device

and a VPN-Proxy server. The main function of this server is to receive, decrypt and

forward the users’ packets to the cloud, but using as the source address its own IP in

place of the original one, providing IP (localization) anonymity. Although all com-

munication between user’s device and the VPN-Proxy servers goes through a secure

(encrypted) communication channel, those between VPN-Proxy and cloud are not

necessarily encrypted.

5. TOR (The Onion Router)
Goal: Keep users’ location secret with the help of TOR servers.

Description: Technology to protect users against surveillance, masking their loca-

tion (IP address) and encrypting all traffic while surfing on the Internet. All users’

APPENDIX A. Survey: Privacy 121

messages goes through a series of random TOR nodes spread over the network in

secure communication channels. In addition, several layers of encryption are put

over the messages in order to protect them and keep their source confidential. It is

considered that all configurations needed to access cloud servers from TOR network

are in place and working properly.

6. Federated Identity
Goal: Keep user’s real identity secret from the CSPs.

Description: Delegates the authentication process to a trusted third party, the Iden-

tity Provider (IdP). When users want to access an online service which requires

authentication, instead of creating a new account in that service, they can choose

to authenticate using an identity provider (Facebook or Google, for example). This

technology could be applied to the cloud environment and used to hide user’s real

identity. When accessing cloud services, users authenticate with a trusted IdP, which

creates tickets (pseudonyms) for them. Users are therefore known to that CSP only

by these pseudonyms and the access to their files in the cloud is done without the

CSP linking the data stored to their owners’ true names.

A.4 Results

We had a total of 76 participants in the survey. Table A.1 shows the values chosen
by each participant according to each technique. Fig. A.1 to A.6 presents the results for each
technique, describing the amount of the votes each level of privacy received. Finally, Table A.2
illustrates statistical data derived from the results.

Table A.1 – Values attributed by the participants for each technique

User Data Frag-

mentation

Data En-

cryption

Metadata

Encryption

VPN-Proxy TOR Federated

Identity

1 6 9 3 3 4 5

2 7 8 0 0 6 5

3 8 9 3 4 4 3

4 3 8 6 3 9 6

5 7 9 4 6 9 5

6 5 6 6 4 8 8

7 9 10 8 7 6 0

8 7 8 8 8 9 9

9 6 8 5 6 7 6

10 7 7 5 4 6 5

Continued on next page

APPENDIX A. Survey: Privacy 122

Table A.1 – Values attributed by the participants for each technique (continued)

User Data Frag-

mentation

Data En-

cryption

Metadata

Encryption

VPN-Proxy TOR Federated

Identity

11 7 8 3 5 9 5

12 6 9 7 7 6 6

13 6 10 3 3 6 4

14 2 4 3 9 4 4

15 6 7 6 7 7 7

16 8 6 4 3 8 6

17 5 7 2 6 8 7

18 3 7 5 4 9 6

19 9 8 9 9 9 2

20 7 6 6 7 8 7

21 5 8 9 7 6 4

22 8 9 8 8 9 8

23 5 10 10 0 0 5

24 7 9 8 9 6 8

25 7 8 5 9 5 9

26 3 0 0 6 8 9

27 8 8 6 5 7 7

28 7 8 5 7 8 5

29 4 10 1 5 10 0

30 1 8 2 7 9 5

31 6 9 6 5 8 7

32 3 8 5 9 10 8

33 3 5 6 7 6 5

34 8 10 2 5 5 7

35 6 6 6 6 6 6

36 3 9 1 7 8 2

37 8 7 6 8 10 9

38 5 10 10 9 7 8

39 3 6 1 0 0 0

40 7 7 4 6 7 4

41 7 8 9 6 7 7

42 9 8 9 8 8 5

43 3 5 5 5 7 8

44 5 7 8 5 9 10

Continued on next page

APPENDIX A. Survey: Privacy 123

Table A.1 – Values attributed by the participants for each technique (continued)

User Data Frag-

mentation

Data En-

cryption

Metadata

Encryption

VPN-Proxy TOR Federated

Identity

45 0 9 9 6 6 2

46 7 8 4 8 9 9

47 4 8 6 5 6 7

48 8 9 4 2 2 5

49 7 10 5 7 8 3

50 5 5 7 6 7 7

51 0 7 3 5 10 3

52 2 8 1 6 9 5

53 5 7 4 4 5 4

54 6 7 7 2 4 4

55 5 9 3 5 8 3

56 6 8 8 7 9 8

57 5 7 0 4 5 8

58 7 5 7 5 8 7

59 2 10 10 2 1 8

60 7 5 8 2 6 7

61 6 7 6 6 8 8

62 7 5 4 4 9 6

63 3 10 6 8 6 4

64 8 8 8 6 7 7

65 8 10 2 7 7 5

66 7 9 9 9 10 5

67 5 8 8 5 6 7

68 3 7 8 8 9 9

69 4 7 5 8 8 8

70 0 6 0 0 5 6

71 2 5 5 5 3 3

72 5 9 9 6 8 2

73 7 9 3 6 8 4

74 4 10 0 0 0 0

75 7 6 8 7 9 8

76 7 5 3 5 6 5

APPENDIX A. Survey: Privacy 124

Figure A.1 – Data Fragmentation technique votes

Figure A.2 – Data encryption technique votes

Figure A.3 – Metadata encryption technique votes

APPENDIX A. Survey: Privacy 125

Figure A.4 – TOR technique votes

Figure A.5 – VPN-Proxy technique votes

Figure A.6 – Federated Identity technique votes

Analyzing all these data, we can conclude that the values have a little variation from
technique to technique, which means that they give, according to the participants’ point of view,

APPENDIX A. Survey: Privacy 126

Table A.2 – Statistical results derived from the survey

Measure Data Frag-
mentation

Data En-
cryption

Metadata
Encryption

VPN-Proxy TOR Federated
Identity

Average 5,45 7,63 5,24 5,53 6,84 5,64
Variation 4,93 3,18 7,60 5,43 5,45 5,54
Median 6,00 8,00 5,00 6,00 7,00 6,00
Mode 7,00 8,00 6,00 6,00 8,00 5,00

St. Deviation 2,22 1,78 2,76 2,33 2,33 2,35

the same benefits with respect to privacy. However, we do not agree with these values since we
strongly believe that some techniques are more effective than others. For example, if we use
data encryption we will have more privacy than metadata encryption. We concluded that the
way we constructed the survey may have influenced users judgement, or even that was not clear
for them the problems and the purpose of each technique. Thus, we decided to stick with the
other method to evaluate users’ privacy since this survey was not sufficient to allow a good
evaluation of users perspective related to cloud data storage.

127

APPENDIX B – Analysis of CSP’s key
management

In this appendix, we show how some CSPs handle their cryptography keys.

B.1 Introduction

A study was conducted on commercial solutions available nowadays to store users
data in the cloud. Their designs were analyzed in order to understand how they work. In Chap-
ter 4, a discussion of these CSPs was made, analyzing mostly how they approach the security
requirements and presenting some of their main characteristics. In this section, further informa-
tion regarding these CSPs will be presented, highlighting how they manage the cryptographic
keys in their solutions.

B.1.1 Encryption App - ownCloud

In ownCloud, users can enable an optional application called Encryption App aimed
to protect their data through cryptography. This way, all their data is encrypted on the server
side. In the encryption process, presented in Fig. B.1, all data is encrypted using a random
and unique symmetric key (DEK or Data Encryption Key) with AES algorithm. This DEK
is wrapped by a key called shared key (KEK or Key Encryption Key) using RC4 algorithm.
User’s public key is then used to encrypted this KEK. Users can enable the password recovery
feature or even choose to share their data using links. In these cases, the Shared Key (KEK) will
also be encrypted using the administrator’s public key (Figs. B.3 and B.4) and/or the Sharing
Public Key(Figs. B.5 and B.6). In the decryption process (Fig. B.2), users need to provide their
passwords to the system. A symmetric key will be derived from their passwords and used to
unwrap user’s private key. Then, the Shared Key is decrypted and also the DEK, used to open
the data. The process of how user’s key is created is illustrated in Figs. B.7 and B.8.

APPENDIX B. Analysis of CSP’s key management 128

Figure B.1 – Encrypting data with ownCloud Encryption App

Figure B.2 – Decrypting data with ownCloud Encryption App

APPENDIX B. Analysis of CSP’s key management 129

Figure B.3 – Password recovery feature - ownCloud key generation

Figure B.4 – Password recovery feature - ownCloud key recovery

APPENDIX B. Analysis of CSP’s key management 130

Figure B.5 – Sharing files through links - key generation

Figure B.6 – Sharing files through links - key recovery

APPENDIX B. Analysis of CSP’s key management 131

Figure B.7 – ownCloud key generation

Figure B.8 – ownCloud key recovery

APPENDIX B. Analysis of CSP’s key management 132

B.1.2 SpiderOak

SpiderOak uses symmetric encryption to protect users data. The encryption process
is illustrated in Fig. B.9, where each file has a DEK created from its own content. Then, a
Folder Key (KEK) is used to encrypt the DEK and it is wrapped by a symmetric key derived
from users’ password using the PBKDF2 algorithm. In the decryption process, presented in Fig.
B.10, users need to supply their password in order to generate the derived key again, used to
unwrap the folder key, which it is used to decrypt the DEK responsible for decrypting data.

Figure B.9 – Encryption process on SpiderOak

APPENDIX B. Analysis of CSP’s key management 133

Figure B.10 – Decryption process on SpiderOak

B.1.3 BoxCryptor

BoxCryptor adopts a combination of symmetric and asymmetric encryption. Data
is encrypted first with a DEK, which is wrapped by user’s public key (Fig. B.11). In order to
allow users to access their data, BoxCryptor uses their own password to derived a symmetric
key and unwrap their private key, stored in encrypted form. Then, the DEK is opened using the
user’s private key and used to decrypt users data (Fig. B.12).

Figure B.11 – Storing users data in BoxCryptor: Encryption

APPENDIX B. Analysis of CSP’s key management 134

Figure B.12 – Accessing users data in BoxCryptor: Decryption

B.1.4 Credeon

Credeon uses only symmetric encryption to protect users data. In the encryption
process, presented in Fig. B.13, a random and unique DEK is created and used to encrypt user’s
data. This DEK is then wrapped by a symmetric key derived from user’s password (KEK). In
the decryption process, illustrated in Fig. B.14, after users provide their password, a symmetric
key is derived and used to decrypt the DEK needed to open the data.

Figure B.13 – Encryption process on Credeon

APPENDIX B. Analysis of CSP’s key management 135

Figure B.14 – Decryption process on Credeon

B.1.5 ProtonMail

ProtonMail protects the privacy of their users by the encryption of all their emails.
It combines the symmetric and asymmetric cryptography for this end, encrypting the recipient’s
message with a symmetric key (DEK) and wrapping this key using the public key belonging to
the recipient (Fig. B.15). In order to access this encrypted email, the recipient has to provide
his password to ProtonMail application, which is used to unwrap his private key. This key
is then used to decrypt the DEK, responsible for opening the message (Fig. B.16). However,
this process works only for ProtonMail users. If an user wants to send encrypted message for
someone who do not use this email provider, a secret must be agreed beforehand. The email
will be encrypted using an asymmetric algorithm (Fig. B.17) and the secret established. After
receiving the encrypted message, the recipient will need to access an interface provided by
ProtonMail and enter the right secret in order to decrypt the message (Fig. B.18).

Figure B.15 – Encrypting and sending messages - ProntonMail users

APPENDIX B. Analysis of CSP’s key management 136

Figure B.16 – Receiving and decrypting messages - ProntonMail users

Figure B.17 – Encrypting and sending messages from ProntonMail to another provider

Figure B.18 – Receiving and decrypting messages from another provider to ProntonMail

APPENDIX B. Analysis of CSP’s key management 137

B.1.6 Cyphertite

Cyphertite adopts only symmetric encryption to protect their users, using AES al-
gorithm in XTS mode. Before sending data to the cloud, every file is first broken in several
fixed-size fragments, which are compressed and encrypted. Then, all fragments are sent to be
stored in the cloud, as illustrated in Fig. B.19. During the encryption process, each file chunk
uses two symmetric keys, the Chunk key K1 and Tweak key K2, used to encrypt the file. These
keys are protect by a master key Km, which is wrapped by a secret passphrase Ks derived from
user’s password. This process is presented in Fig. B.20. In the decryption process, users only
need to provide their passwords to the system in order to generate the Ks used to unwrap user’s
master key Km, which is used to decrypt both K1 and K2, necessary to open the desired file. This
process is illustrated in Fig. B.21.

Figure B.19 – Cyphertite - Sending files encrypted to the cloud

APPENDIX B. Analysis of CSP’s key management 138

Figure B.20 – Cyphertite - Encryption model

Figure B.21 – Cyphertite - Decryption model

B.1.7 Wuala

Waula uses a model where every file is encrypted using a symmetric DEK created
from its own content, in order to allow deduplication. This DEK is encrypted with another
symmetric key, the key folder, protected by a KEK derived from user’s password, according to

APPENDIX B. Analysis of CSP’s key management 139

Fig. B.22. In the decryption process, presented in Fig. B.23, after users supply their passwords
to the system, the KEK is generated and used to decrypt the folder key corresponding to the
desired file. This key is then used to open the DEK, to decrypt the file.

Figure B.22 – Encrypting data with Wuala

Figure B.23 – Decrypting data with Wuala

APPENDIX B. Analysis of CSP’s key management 140

B.1.8 arxShare

This CSP protects users data through the use of unique and random DEKs. These
keys are encrypted by a symmetric KEK belonging to the corresponding folder where data is
placed, and users’ password is used to derive a KEK to wrap the folder key and protect it.
This process is presented in Fig. B.24. When sharing data, the corresponding folder key is
encrypted using the recipient’s public key and delivered to him, as illustrated in Fig. B.25. With
the recipient’ password, it is possible to decrypt his private key, open the folder key and decrypt
the DEK to open the file.

Figure B.24 – Data encryption process on arXshare

APPENDIX B. Analysis of CSP’s key management 141

Figure B.25 – Sharing data in arXshare

B.1.9 BackBlaze

BackBlaze uses symmetric and asymmetric cryptography to protect users data. The
encryption process is presented in Fig. B.26, where data is encrypted using a symmetric DEK,
which is wrapped by users’ public key. In Fig. B.27, users must supply their password to derive
a symmetric KEK used to unwrap their private key. Then, the DEK is decrypted and used to
open the data.

APPENDIX B. Analysis of CSP’s key management 142

Figure B.26 – Encrypting data in BackBlaze

Figure B.27 – Decrypting data in BackBlaze

B.1.10 Carbonite

Carbonite uses a cryptography process similiar as Credeon. Using symmetric en-
cryption, a random and unique DEK is generated and used to encrypt user’s data, which is later

APPENDIX B. Analysis of CSP’s key management 143

wrapped by another symmetric key derived from user’ password (KEK). This process is illus-
trated in Fig. B.28. Users can access their files just providing their password to Carbonite, which
will derive a KEK and use it to decrypt the DEK, which is used to decrypt the data, according
to Fig. B.29.

Figure B.28 – Carbonite: Protecting files

Figure B.29 – Carbonite: Accessing encrypted files

APPENDIX B. Analysis of CSP’s key management 144

B.1.11 Mega

Mega protects its users files through symmetric encryption, using random and unique
DEKs to encrypt them. The DEKs are protected by a specific symmetric master key created for
each user in the system. A KEK derived from users’ passwords is used to wrap this master
key. The entire encryption process is illustrated in Fig. B.30. To access encrypted files, users
must provide their passwords to Mega, which uses them to derive a KEK and hence decrypts
the master key. The DEK is then decrypted by users’ master key, used to open their files. This
process can be seen in Fig. B.31.

Figure B.30 – Encrypting files with Mega

APPENDIX B. Analysis of CSP’s key management 145

Figure B.31 – Decrypting files with Mega

146

APPENDIX C – CPG Use Cases

In this appendix we show the main use cases of the proposed CPG application.

C.1 Introduction

In order to understand the problems and challenges in building an application like
CPG, we designed use cases covering the main scenarios during users’ interactions. Before
presenting the use cases, a few definitions must be made in order to understand the system
components, as well as the actors.

C.1.1 Services provided

CPG offers two main services to users: data sharing and encryption/decryption of
data content and attributes.

C.1.2 Requirements demanded by CPG

Users need to have the following items in order to use CPG:

∙ An account previously created and configured in any CSP which works with the concept
of synchronization between the cloud and a folder in user’s device.

∙ The client application of that CSP installed and configured in user’s computer.

∙ A personal ICPEdu, ICP-Br or similar (X.509) digital certificate.

C.1.3 Actors and components

The actors involved in the use cases are:

∙ Alice: User who wants to store data securely in the cloud.

∙ Bob: User who needs a file shared by Alice.

∙ CPG: Proposed application.

∙ CSP: Cloud Service Provider chosen by Alice and Bob to store their data.

The folders used by CPG are:

APPENDIX C. CPG Use Cases 147

∙ Encrypted Files folder: Folder where encrypted files are stored. As it is located inside the
clod synchronization folder, its content is synchronized with the cloud by the cloud client
application.

∙ Secret Files folder: Folder used to store files to be encrypted and sent to the Encrypted

Files folder. The files remain in plain text format in this folder.

C.2 Basic events on CPG

In this section, we detail the main use cases presented in Table C.1. For each one, a
description will be given, along with the basic flow.

Table C.1 – Events of CPG basic flow

Use case ID Use case Name Actor
1 Authentication Alice
2 CPG Configuration settings Alice
3 Storing encrypted files Alice
4 Recovering encrypted files from the cloud Alice
5 Sharing files Alice
6 Erasing files Alice/CPG
7 Closing CPG Alice
8 Starting CPG CPG
9 Creating the cryptographic keys CPG

10 Validating users’ passphrase CPG
11 Encrypting files CPG
12 Decrypting files CPG

C.2.0.1 Authentication

Use case ID: 1
Actor: Alice.
Description: Alice must authenticate providing her passphrase, in order to access CPG and
perform any activity involving her private key.
Basic flow:

1. Alice starts CPG or starts any operation involving her private key.

2. CPG shows a window for Alice to provide her passphrase (Fig. C.1).

3. Alice enters her passphrase.

4. CPG performs the validation process (Use Case 10 - Validating user’s passphrase).

APPENDIX C. CPG Use Cases 148

5. If the authentication succeeds, CPG starts the intended task; otherwise, an error message
will be shown to Alice, requesting her passphrase again. This is done for a pre-established
number of times when the application blocks access for a given period of time.

Observations: CPG will show in the Login window (Fig. C.1) the usersname got from the op-
erating system. This is done in order to decrease users’ interaction with CPG, avoiding they
also have to supply an username every time they authenticate with the application. Also, the
passphrase provided by Alice has a lifetime and after this time expires, Alice will be requested
to supply it again in the next interaction with CPG.

Figure C.1 – User authentication window

C.2.0.2 CPG Configuration settings

Use case ID: 2
Actor: Alice.
Description: After Alice starts CPG for the first time, she will be requested to set the standard
folders used by CPG. Alice also can change the folders at any time through the "Settings"

option, which can be accessed by clicking with the right mouse button in CPG icon available in
the system tray (Fig. C.2).
Basic flow:

1. CPG shows Alice a configuration window (Fig. C.3).

2. Alice needs to select folders for CPG usage, as demanded in the configuration window.
The folders are:

a) Encrypted Files: Folder where encrypted files are stored. It has to be inside the cloud
synchronization folder, in order to have its content synchronized with the cloud.

b) Secret Files: Folder used to receive data to be encrypted and sent to the cloud.

c) Cryptographic keys: Folder used to store users’ key pair (private and public). By
default, this folder is created automatically by CPG when used for the first time.

3. Alice fills out each item. She also can click in the button beside the text box to find and
select the folders.

APPENDIX C. CPG Use Cases 149

4. To finish the process, Alice must click in the "Save" button.

5. CPG stores a configuration file in its own folder with these information provided by Alice.

Figure C.2 – Activating CPG settings option

Figure C.3 – Settings

C.2.0.3 Storing encrypted files

Use case ID: 3
Actor: Alice.
Description: Alice wants to store one or more files in the cloud in encrypted form.
Basic flow:

1. Alice starts CPG and performs the authentication process (Use Case 1 - Authentication).

2. Alice stores the intended file(s) in the Secret Files folder (Figs. C.4 and C.5).

3. The file(s) is(are) encrypted (Use Case 11 - Encrypting Files) and stored in the Encrypted

Files folder to be synchronized with the cloud servers (figs. C.6 and C.7).

APPENDIX C. CPG Use Cases 150

Figure C.4 – Folder of files to be encrypted

Figure C.5 – Sending a file to be encrypted and stored in the cloud

C.2.0.4 Recovering encrypted files from the cloud

Use case ID: 4
Actor: Alice.
Description: Alice wants to recover one or more files stored in the cloud in encrypted form.
Basic flow:

1. If the file was stored in the cloud by the current device being used by Alice, no additional
steps are necessary. She can access her file in the Secret Files folder, where the plain text
version of it is stored.

Alternative flow: If the file was stored in the cloud by Alice using a different device or she is
trying to access a file shared with her by some user, the following steps are necessary:

1. Alice starts CPG and performs the authentication process (Use Case 1 - Authentication).

APPENDIX C. CPG Use Cases 151

Figure C.6 – File encryption

Figure C.7 – Encrypted Files folder

2. After authentication, CPG will decrypt every file in the cloud whose plain version is not
stored in Alice’s current device.

3. Alice can access her file (or the shared file) in the Secret Files folder.

C.2.0.5 Sharing files

Use case ID: 5
Actor: Alice.
Description: Alice wants to share a file with Bob.
Basic flow:

1. Bob expresses desire to get/access Alice’s file (by email, for example).

2. Bob sends his certificate to Alice (by email, for example).

APPENDIX C. CPG Use Cases 152

3. Alice chooses or creates in Secret Files a folder for sharing data with Bob. She accesses
her CSP’s interface, creates and shares a similar folder with Bob using the means offered
by her provider.

4. Alice starts CPG and performs the authentication process (Use Case 1 - Authentication).

5. Alice puts Bob’s certificate into the folder selected previously (Fig. C.8).

6. CPG will encrypt every file in this folder using Alice and Bob’s certificates (Use Case 11
- Encrypting Files) and stores them in Encrypted Files folder.

a) CPG encrypts only the DEK (Data Encryption Key) with Bob’s public key.

b) The new encrypted DEK is attached in the file container.

c) For separating the DEKs as there will be one for each user with access to the file, it
could be used a XML file with users’ name and the respective encrypted keys (Fig.
C.10 case 3).

7. Bob starts CPG and performs the authentication process (Use Case 1 - Authentication).

8. Bob’s CPG decrypts the new files and stores them in the folder shared between him and
Alice (Use Case 12 - Decrypting Files).

9. Bob has access to the file in his Secret Files folder.

Figure C.8 – Sharing files

APPENDIX C. CPG Use Cases 153

C.2.0.6 Erasing files

Use case ID: 6
Actor: Alice / CPG.
Description: After Alice selects one or more files in the Secret Files folder and deletes them
(in the same way she deletes files in her operating system), CPG will delete these files from the
cloud too.
Basic flow:

1. Alice starts CPG and performs the authentication process (Use Case 1 - Authentication).

2. Alice delete the file(s) of the Secret Files folder.

3. CPG deletes the encrypted version of it(them) from the Encrypted Files folder, which is
reflected in the cloud servers when a synchronization is performed.

Observations: CPG does not guarantee that the files will be deleted from the cloud servers.
It only deletes them from users’ accounts in the same way used by users to delete them from
the cloud interface (cloud client). Also, users’ files that are supposed to be deleted could stay
in the cloud servers for a long period of time, due to the deduplication process or for allow
users restore them later in case of an accidental deletion. However, with CPG these files will be
encrypted and the CSPs will not have access to their content neither their attributes, preserving
users’ privacy.

C.2.0.7 Closing CPG

Use case ID: 7
Actor: Alice.
Description: CPG will be closed after Alice selects the "Close" option.
Basic flow:

1. Alice clicks with the right mouse button in CPG’s icon available on the system tray (be-
side the system clock) and selects the "Close" option.

2. CPG shows a confirmation window for Alice clicking in "Yes", in case she wants to pro-
ceed, or "Cancel", in case she does not want to close the application any more (Fig. C.9).

3. In case Alice selects the Yes option, CPG releases all open files, clean variables and tem-
porary files. After that, it ends. Otherwise, CPG keeps running.

APPENDIX C. CPG Use Cases 154

Figure C.9 – Confirmation message

C.2.0.8 Starting CPG

Use case ID: 8
Actor: CPG.
Description: This process occurs every time Alice starts CPG.
Basic flow:

1. Alice starts CPG.

2. CPG searches for Alice’s username in the operating system.

3. If the configuration file do not exist or are not found, CPG requests their configuration
(Use Case 2 - CPG Configuration settings).

4. CPG searches for Alice’s cryptographic keys. If the keys do not exist or are not found,
CPG requests their creation (Use Case 9 - Creating the cryptographic keys). Otherwise,
CPG requests Alice’s passphrase to authenticate her (Use Case 10 - Validating users’
passphrase).

5. CPG keeps running in background.

C.2.0.9 Creating the cryptographic keys

Use case ID: 9
Actor: CPG.
Description: CPG creates user’s cryptographic keys (public and private).
Basic flow:

1. When CPG is started, it checks for the user’s cryptographic key pair in the Cryptographic

keys folder.

2. If the keys were not found, CPG requests Alice to select an existent key pair or create
a new one. If she does not have one and wants to proceed, CPG generates a public and
private key for Alice and stores them in separated files; otherwise, she needs to select the
key pair.

APPENDIX C. CPG Use Cases 155

3. CPG requests Alice to create a passphrase which will be necessary every time she uses the
application or performs a cryptographic operating using her private key. This passphrase
will be stored nowhere and can not be recovered in case it gets lost.

4. CPG uses Alice’s passphrase to derive a KEK (Key Encryption Key) and encrypts her
private key. The public key is stored in a digital certificate format. Both keys are stored
locally, in Cryptographic keys folder, and in the cloud, in a hidden folder (.config) inside
Encrypted Files.

5. CPG keeps running in background.

C.2.0.10 Validating users’ passphrase

Use case ID: 10
Actor: CPG.
Description: CPG verifies if the passphrase provided by Alice is the right one.
Basic flow:

1. CPG shows a window requesting Alice’s passphrase (Fig. C.1).

2. Alice enters her passphrase.

3. CPG decrypts Alice’s private key with the provided passphrase.

4. To perform the verification, CPG encrypts a random text Text0 with Alice’s public key
and decrypts it with the private key got from the previous step, resulting in Text1. If text
Text0 is the same as Text1, the passphrase is correct; otherwise, an error message is sent
to Alice asking her to try again.

Observations: Users’ passphrase will be only valid for a period of time. After that, it has to be
provided again in order to perform any operation that request users’ private key.

C.2.0.11 Encrypting files

Use case ID: 11
Actor: CPG.
Description: CPG will encrypt the file(s) in the Secret Files folder and store it (them) in the
Encrypted Files folder to be sent and stored in the cloud in a secure way.
Basic flow:

1. Alice stores the file(s) desired to be sent in encrypted form in Secret Files folder.

2. The(se) file(s) will be encrypted and stored in the Encrypted Files folder to be synchro-
nized with the cloud server.

APPENDIX C. CPG Use Cases 156

a) The file is compressed and placed in a temporary folder.

b) CPG generates a unique, random and symmetric key (DEK - Data Encryption Key)
for this file.

c) The file is encrypted with this key using AES algorithm. Then, the DEK is encrypted
with Alice’s public key and the result stored in a file. If there is any certificate
belonging to another user inside the folder where the file was stored, this DEK is
also encrypted using the public key of this user.

d) The filename is also encrypted with the DEK. The result is stored in a file in a base-
32 form, and a fixed-size part of it is used to rename the new encrypted file. The
base-32 form was chosen to avoid the special characters slash (\) and backslash (/) in
the name of files, since they are not permitted in operating systems. Other attributes
as last modification date, size, creation data etc., are hidden in the compression
process, and can not be accessed after the file is encrypted, since new attributes
will be defined for it. Only after the is file decrypted, the original attributes can be
restored.

e) At this point, there will be at least three files created by this process: the file, DEK(s)
(there will be a DEK file for each user that has access to the file) and the filename
file. All these files are encrypted and renamed with the same name, except in the
extension.

f) There are at least three different ways to store all these files, which are:

i. Creates a new and single object and store each file content in a pre-defined
layout (Fig. C.10 case 1).

ii. Creates a container and store the files inside of it as distinct files (Fig. C.10 case
2).

iii. Creates a metadata file to store the encrypted key and filename content. Then,
the metadata and content files are stored in a container as distinct files (Fig.
C.10 case 3).

Observation: In CPG’ design, we choose the second way.

C.2.0.12 Decrypting files

Use case ID: 12
Actor: CPG.
Description: CPG will decrypt the files in the Encrypted Files folder which do not have a plain
version in the Secret Files folder and stores them in the latter one.
Basic flow:

APPENDIX C. CPG Use Cases 157

Figure C.10 – Encrypted file structure

1. CPG will decrypt every file in Encrypted Files folder which do not have a plain text
version in the Secret Files folder. This process occurs when users send files to the cloud
from one device and access them from another, or when files are shared among users. In
such cases, the encrypted files are downloaded and then decrypted by CPG.

2. The(se) file(s) will be decrypted and stored in the Secret Files folder where it (them) can
be accessed.

a) Before decrypting the file, CPG separates it considering the structure adopted in the
encryption process (Fig. C.10). It will be considered the second case since it is the
one adopted by CPG on its first implementation. After separating the files, there
will be at least three files: file content, DEK and filename. These files are placed in
a temporary folder.

b) CPG first uses Alice’s passphrase to decrypt her private key.

c) Then, the DEK is decrypted with Alice’s private key and used to decrypt the content
and filename files.

d) A new file is created with the name decrypted and content. The DEK is discarded.

APPENDIX C. CPG Use Cases 158

e) The final step is related to decompress the file. All files original attributes are re-
stored in this step.

3. Alice accesses her file.

Observations: Usually, Alice can access her files without decrypting it(them), once they are
stored in plain text format in the device. The decryption is only needed when files are sent to
the cloud from a different device or when users share files with her. In such cases, the files will
be downloaded in the device and then decrypted by CPG.

159

APPENDIX D – Publications derived from
this work

∙ Vitor H. G. Moia; Marco A. A. Henriques. Relação custo/benefício de técnicas
utilizadas para prover privacidade em computação nas nuvens. In XIV Simpósio

Brasileiro em Segurança da Informação e de Sistemas Computacionais SBSeg 2014,
pages 322-325, Belo Horizonte, MG, Brazil, Nov 2014.

∙ Vitor H. G. Moia; Marco A. A. Henriques. Cloud privacy guard (CPG): Security and
privacy on data storage in public clouds. In VIII Congresso Iberoamericano de

Seguridad Informática CIBSI 2015, pages 88-95, Quito, Ecuador, Nov 2015.

∙ Vitor H. G. Moia; Marco A. A. Henriques. Security requirements for data storage
services on public clouds. In XXXIII Simpósio Brasileiro de Telecomunicações - SBrT

2015, Juiz de Fora, MG, Brazil, Set 2015.

∙ Vitor H. G. Moia; Marco A. A. Henriques. Uma forma de tratar o desafio de proteger a
privacidade dos usuários de armazenamento de dados em nuvens. In XV Simpósio

Brasileiro em Segurança da Informação e de Sistemas Computacionais SBSeg 2015,
pages 644-655, Florianópolis, SC, Brazil, Nov 2015.

	Title page
	Dedication
	Acknowledgements
	Epigraph
	Abstract
	List of Figures
	List of Tables
	Contents
	Introduction
	Main concerns on cloud data storage and some solutions
	Threats to cloud data storage
	Privacy on cloud data storage
	Data confidentiality
	Cryptography
	Data fragmentation

	Metadata confidentiality
	Data access confidentiality
	TOR
	VPN-Proxy

	Data possession confidentiality

	Related work
	Cryptography
	Data fragmentation
	Cryptography and data fragmentation
	Discussion

	Conclusions

	Analysis of techniques to provide privacy in clouds
	Relative costs and benefits of the techniques
	Preliminary analysis
	Improved analysis of relative costs and benefits
	Calculating the Relative Cost
	Calculating the Relative Privacy
	Discussion

	Conclusions

	Requirements for secure cloud data , storage
	Requirements
	Security requirements
	Cryptographic keys security
	Secure deduplication
	High level of data secrecy
	Trust no one
	Confidentiality of file attributes
	Open Source
	Software authenticity
	Multi-factor authentication

	Usability

	Related work
	Commercial solutions
	Cloud service providers with cryptography protection
	Comparison of CSPs

	Other solutions
	PGP
	TrueCrypt
	Operating System's Built-in Encryption
	Discussion

	Conclusions

	Cloud Privacy Guard (CPG)
	Introduction
	Objectives
	Requirements to be met by CPG
	Cryptographic keys security
	Secure deduplication
	High level of data secrecy
	Trust no one
	Confidentiality of file attributes
	Open Source
	Software authenticity
	Two-factor authentication
	Usability in cryptography applications

	How CPG works
	First use
	Configuration settings
	Drag and Drop model
	How to send encrypted files to the cloud
	How to decrypt files
	How to share files

	Cryptographic process
	Comparison
	Limitations
	Proof of concept
	Implementation model
	CPG class diagram

	Future steps in CPG development
	Conclusions

	Conclusions
	Contributions
	Future work

	Bibliography
	Appendix
	Survey: Privacy
	Introduction
	Description
	Questions
	Results

	Analysis of CSP's key management
	Introduction
	Encryption App - ownCloud
	SpiderOak
	BoxCryptor
	Credeon
	ProtonMail
	Cyphertite
	Wuala
	arxShare
	BackBlaze
	Carbonite
	Mega

	CPG Use Cases
	Introduction
	Services provided
	Requirements demanded by CPG
	Actors and components

	Basic events on CPG
	Authentication
	CPG Configuration settings
	Storing encrypted files
	Recovering encrypted files from the cloud
	Sharing files
	Erasing files
	Closing CPG
	Starting CPG
	Creating the cryptographic keys
	Validating users' passphrase
	Encrypting files
	Decrypting files

	Publications derived from this work

