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ABSTRACT: The aim of this work is to introduce an approach based on a generalization of the
object-oriented paradigm for system modeling and implementation. The key concept is object
network, a set of connected places containing objects modeling the characteristics and
properties of a given system. Object network has a naturally distributed structure, is derived
from a general and formal approach for a theory of objects, and provides a framework
particularly suitable for computational intelligence. An object network has both, formal and
representational power needed to develop and to implement intelligent systems.

1 Introduction

Attempts to develop artificially intelligent systems have a long and rich history. The
last quarter of century has revealed a number of fundamental insights, from
approaches to machine reproduction behavior, control and communication in the
animal and machine, to artificial intelligence and, more recently, computational
intelligence. In particular, computational intelligence has come up as a field
embracing neural networks, evolutionary computation, fuzzy systems, artificial life,
probabilistic reasoning.

Intelligent systems may be viewed as a class of systems in which intelligence
arises as a consequence of some kind of embedded knowledge, learning and
adaptation. From the computational point of view, intelligent systems depend on
architectures for information processing, that is, architectures to determine how they
perceive an environment, to recognize and interpret the objects in it, and to specify
subsequent actions based on objects recognition. Clearly, a central issue in
computational intelligence is the very basic notion of object.



Generally speaking, an object is an identifiable entity that plays a role in an
environment. In computational terms, an object is an identifiable entity that plays a
visible role in providing a service to a user or program1 under request. Therefore, it
is intuitively reasonable to think about a computational object as a means to model
physical and, more abstractly, non-physical objects of an environment.  A
computational object explicitly embodies an abstraction characterized by the
behavior of certain requests. Services may access or modify information associated
with objects. Services are described independently of the form of data and
algorithms used to implement the services. Behavior, in particular, can have several
implementations.

Although a considerable effort in object-oriented programming, there is still no
commonly accepted formal definition of the object-oriented approach. For instance,
Wand2 suggests a formal model in which the object-oriented paradigm is shifted
from implementation-driven to modeling-driven. Wolczko3 suggests a formal, meta-
language specification in which object-oriented programming languages should
adhere to.

Despite the numerous approaches and languages for object-oriented
programming available today, they still lack formal and representational power
which is mandatory within intelligent systems framework. For instance, any
intelligent system should be able to dynamically create and destroy objects; to
associate objects into a higher abstraction levels to assemble time variant cognitive
concepts; to cooperate, to compete and to change its own structure to achieve
adaptation and learning capabilities.

In this work, we introduce the notion of object network aiming at not only to
provide a more general and formal approach for a theory of objects, but also as a
computational framework to develop intelligent systems. After this brief
introduction, the paper proceeds presenting a mathematical theory of objects. Next,
the idea of an object system is developed, followed by the central concept of object
network. An object network has both, formal and representational power needed to
develop and to implement intelligent systems, a feature that is not available in most
current approaches.

2 Foundations for a Mathematical Theory of Objects

In this section we build the formal body of the theory that is addressed here. It starts
by introducing some preliminary definitions used as a base for further developments.
After, we discuss conceptual objects, followed by its formal definition. This



discussion is first related to the object as an individual, and next by the study of its
interaction with other objects, to compose object systems. At the end we define the
object network, and its extensions developed to enhance the representation power of
classes of knowledge.

2.1 Preliminary Definitions

Here, we introduce the concepts and definitions used as a formal background for
further developments. The focus here is on the main issues and definitions only. For
a more in depth coverage the reader is referred to the work of Gudwin4,5,6,7 . The
definitions assume a discrete set N associated with time instants, or algorithm steps
when convenient. Extensions to the continuous case may be possible, but it will not
be considered here. Usually N is the set of natural numbers, but in general it can be
any countable set.

A remark concerning notation: no distinction between a function and its graph
will be made. Therefore, both f : A → B and f ⊂ A × B will be used to express a
function f.

Definition 1 – Tuples : Let q1 , q2 , ... , qn  be generic elements of the sets  Q1 , Q2 ,
... , Qn respectively.  A tuple is a structure joining q1 , q2 , ... , qn  into a single
element denoted by q = (q1 , q2 , ... , qn ).

A tuple with n elements is an n-tuple, or tuple for short. The elements of a tuple
are called components. They can be identified by the indices associated with the
order in which they appear. Note that a tuple component can be itself a tuple. In this
case they are called complex tuples. For example q = (q1 , (q21 , q22 , q23 ), q3 , q4 , q5 )
is a complex tuple. To simplify notation we may assign q2 = (q21 , q22 , q23 ) turning
the original tuple into q = (q1 , q2 , q3 , q4 , q5 ).

Definition 2 - Tuple Arity: Let q = (q1 , q2 , ... , qn ) be a tuple. The arity  of q, Ar(q),
is the number of tuple’s components: Ar(q) = n.

Examples: q = (a,b,c), Ar(q) = 3; q = (a,(b,c),d), Ar(q) = 3; q = ((a,b,c),(d,(e,f),g)),
Ar(q) = 2.

Definition 3 - Reference Index: Let q be tuple. To identify an individual component
of q we associate a reference index to each of its element. For a simple tuple the
reference index will be a number i, 1 ≤ i ≤ Ar(q). For a complex tuple the reference
index will be a simple tuple i with each element ik corresponding to a sub-index of
level k. The value of the sub-indices ranges between one and the arity of the tuple at
level k. The reference index can also be used to identify the domain of the



components. For example, let s∈S be simple, and c∈C complex tuples. Thus the
reference indices and the component domains are found as follows:

s = (a,b,c), S = SA × SB × SC

i=1 → si = a, Si = SA

i=2 → si = b, Si = SB

i=3 → si = c, Si = SC

c = (a,(b,d)), C = CA × (CB × CC )
i=1→ci = a, Ci = CA

i=2→ci =(b,d), Ci = CB × CC

i=(2,1) →ci =b, Ci = CB

i=(2,2) →ci = d, Ci = CC

c = (a,(b,(s,d,(e,f),g),h) ), C = CA ×(CB × (CC × CD × (CE × CF ) × CG ) ×CH )
i=(2,1)→ci = b, Ci = CB

i=(2,2,3) → ci = (e,f) ,  Ci = CE × CF

i=(2,2,3,2) → ci = f, Ci = CF

i=(2,3) → ci = h , Ci = CH

i=2→ ci = (b,(s,d,(e,f),g),h) , Ci = CB × (CC × CD × (CE × CF ) × CG ) × CH

Definition 4 - Induction Formula :  Let q = (q1 , q2 , ... , qn ) be a tuple and k be an
expression defined by the following syntax

k ← [ i ]
i ← i , i
i ← [ i , i ]

where i is a reference index of q. The expression k is called an induction formula.

Examples: k = [ i1 , [ i2 , i3 , i4 ] , i5 ]
k = [ [i1 , i2 ], [i3 , [i4 , i5 ] ] ]
k = [i1 , i2 , i3 ]
where ij are reference indices of q.

Definition 5 - Induction of a tuple: Let q = (q1 , q2 , ... , qn ) be a tuple in
Q = Q1 × ... × Qn  and k be an induction formula. The induction of q according k is
defined as the new tuple q(k) induced by the induction formula. The induced tuple
q(k) is found from k by changing brackets and each reference index ij into parenthesis
and q i j

of the original tuple q. The domain Q(k) of q(k) is found similarly.

Examples: q = (a,b,c,d), Q = Q1 × Q2 × Q3 × Q4,  k = [1,3,4,2 ],
q(k) = (a,c,d,b), Q(k) = Q1 × Q3 × Q4 × Q2



q = (a,b,c,d), Q = Q1 × Q2 × Q3  × Q4 , k = [4,1],
q(k) = (d,a), Q(k) = Q4 × Q1

q = (a,b,c,d), k = [ 1, [2, 3] , 4] ,
q(k) = (a, (b,c), d), Q(k) = Q1×(Q2 × Q3 )×Q4

q = (a,(b,c),d), Q = Q1×(Q2 × Q3 )×Q4 ,k = [1,(2,1),(2,2),3],
q(k) = (a,b,c,d), Q(k) = Q1 × Q2 × Q3 × Q4

q = (a, (b,c), d), Q = Q1×(Q2 × Q3 )×Q4 , k = [3,2],
q(k) = (d,(b,c)), Q(k) = Q4 × (Q2 × Q3 )

q = (a, (b,c), d), Q = Q1×(Q2 × Q3 )×Q4 , k = [3,2,(2,1)],
q(k) = (d,(b,c),b), Q(k) = Q4 × (Q2 × Q3 ) × Q2

Definition 6 - Sub-tuple: A tuple q(k) is called a sub-tuple of q if k has only one pair
of brackets, and each reference index in k is unary and appears only once in k.

Definition 7 – Relation: If  R1 , ... , Rn are sets and R = {(ri1 , ... , rin )}, i = 1, ... , M,
is a set of M tuples with arity n > 1 such that ∀i ∈ {1, ... ,M}, ∀k ∈ {1, ... , n},  rik ∈
Rk , then the set R,  R ⊆ R1 × ... × Rn  is a relation in R1 × ... × Rn,

Definition 8 – Projection: Let R = {ri }, r i =  (ri1 , ... , rin ) be an n-ary relation in
R1 × ... × Rn  and  k be an induction formula with unary indices k = [k1 , k2 , ... , km ],
ki ∈ {1, ... , n}, ki ≠ kj, if i ≠ j, i = 1, ... , m , j = 1, ... , m, m ≤ n. The projection of R
on R Rk k m1

× ×. . . ,denoted by  R↓ R Rk k m1
× ×. . . ( alternatively, R(k) ) is

the relation obtained by the union of all sub-tuples ri(k) =  (r rik ik m1
, . . . , ) of R

originated from the induction of R’s tuples according to k, R(k) =  ∪ ri(k).

Examples:A = {1, 2} B = {a,b,c} C = {α, β, γ). R={(1,a,β), (2,c,α), (2,b,β), (2,c,β)}
R ↓ A × C = { (1,β), (2,α), (2, β) }
R ↓ C × B = { (β,a), (α,c),  (β,b) , (β,c)}

Definition 9 - Free Projection: Let R = {ri }, r i =  (ri1 , ... , rin ) be an n-ary relation
defined in U = R1 × ... × Rn  and  k be an induction formula. The free projection of R
in U(k), R ↓ U(k)  (alternatively, R(k) ) is the relation obtained by the union of all sub-
tuples ri(k) originated by the induction of the tuples from R according to k:
R(k) =  ∪ ri(k).



NOTE: Free projection is a generalization of projection. Recall that in a projection,
the induction formula has unary indices only. This implies in tuples defined only
over the main dimensions of the original tuple. In free projection, any element, in
whatever level of a tuple, can be used to define the inducted tuple. Clearly, with the
proper induction formula free projection becomes standard projection.

Definition 10 - Cylindrical Extension: Let R = { (ri1 , ri2 , ... , rin ) } be an n-ary
relation in R1 × ... × Rn . The cylindrical extension P of  R in P1 ×... × Pm , denoted
by P =  R↑ P1 × ... × Pm   , where  ∀k ∈ {1, ... , n} ∃Pj = Rk , 1 ≤ j ≤ m,  is the
greatest (in the sense of the greatest number of elements) relation P ⊆ P1 ×... × Pm

such that  P ↓ R1 × ... × Rn  = R.

Example: A = {1, 2} B = {a,b,c} C = {α, β, γ). R = { (1,a),  (2,c) }
R ↑ A × B × C = { (1,a,α),  (2,c,α), (1,a,β),  (2,c,β), (1,a,γ),  (2,c,γ) }
R ↑ C × A × B = { (α,1,a),  (α,2,c), (β,1,a),  (β,2,c,), (γ,1,a,),  (γ,2,c,).

NOTE: As in projection, the order of elements in tuples of the cylindrical extension
it is not the same as in the original tuples.

Definition 11 – Junction: Let R and S be two relations in R1×...× Rn and S1×...× Sm ,
respectively, and P = P1 × ... × Po an universe where ∀i ∈ {1, ... , n} ∃Pk = Ri , and
∀j ∈ {1, ... , m} ∃Ph = Sj , o ≤ n + m . The junction of R and S under P, denoted by
R * S |P , is R * S |P  = R↑ P ∩  S ↑ P.

NOTE: If there is a Ri = Sj  then there may be only one set Pk with elements in
tuples of R*S. In this case, for the tuples to be included in junction, the value of such
element in the tuple in R and S should be the same (see first example).
NOTE: If ∀i,j  , Ri ≠Sj , then R*S |P ↓ R1 × ... × Rn = R and R * S |P ↓ S1 × ... × Sm =
S.
Example: A = {1, 2} B = {a,b,c} C = {α, β, γ). R = { (1,a),  (2,c) } S = {(a,α), (b,β)}

R * S |A ×B ×C = { (1,a,α) }
R * S |A ×B ×B ×C = {(1,a,a,α), (1,a,b,β), (2,c,a,α), (2,c,b,β) }

Definition 12 – Variable:  Let N be a countable set  with a generic element n
(comprising some type of time measure), and X ⊆ U. A variable x of type X is a
function x : N → X . Note that a function is also a relation and hence it can be
expressed as a set. Thus, x ⊂ N × X.

Examples:  N = {1, 2, 3}, X = {a, b, c }, x(1) = a, x(2) = b, x(3) = c or
                   x = { (1, a), (2, b),  (3, c) }



Definition 13 - Composed Variable: Let x be a variable of type X. If the elements
of X are n-tuples with n > 1, then x is called a composed variable (or structure).

The value of a composed variable, in a particular instant of time, will always be
a tuple. The individual value of each sub-element of this tuple can be obtained by its
reference index, the field of the variable. If X = X1 × ... × Xn , then each field of x
can be viewed as a free projection on N × Xi, i.e., it is a standard variable of type Xi.

Example: N={1, 2, 3}, X1 = {a,b}, X2 = {c,d} X = X1 × X2 = { (a,c),(a,d),(b,c),(b,d)}

x = { (1,(a,c)) , (2,(a,d)), (3, (a,d)) }

x ↓ N × X1 = { (1,a) , (2,a), (3, a) }

x ↓ N × X2 = { (1,c) , (2,d), (3, d) }

2.2 The Conceptual Object

Before to mathematically define an object, we briefly describe the conceptual object.
Our concept of object is closely related to its intuitive physical meaning.
Ontologically, an object is an entity of the real world and is characterized by its
properties. The properties are its attributes2 . Based on a frame of reference, it is
possible to find attributes distinguishing different objects. Thus attributes describe
the objects. This view of objects does not consider that, in addition to its existence,
the objects also “act” in real world. Therefore, a mathematical concept of object
must model its active aspect.

The conceptualization of object cannot, in principle, be made in an independent
way. Although we can imagine the existence of an object by itself, we should also
consider its capability to interact with different objects. In other words, to introduce
the main concepts about objects, we have to discuss object systems. An object
system is a set of interacting entities.

The object components that allow interaction are shown in figure 1.
Each active object is assumed to have two types of interfaces: input and output

interfaces, as in figure 1. The input interface is composed by a collection of gates
(input gates). Within an object we find its internal states. These states are divided in
4 regions. The first is a copy of the input interface whereas the second comprises
internal variables. The third region is a copy of the output interface, and the fourth
region is a set of transformation (internal) functions. The output interface, similarly
to the input one, is composed by a collection of output gates.
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Figure 1 – The Conceptual Object

The interaction among objects is regulated by a mechanism called triggering,
and is performed by active objects. In this mechanism, some objects are first bound
to the active object, through the input gates, starting what is called the assimilation
phase. In this phase, the active object copies the internal states of binding objects to
its internal states. After assimilation, the bounded objects can be destroyed or
released back to the system. If they are destroyed, we have a destructive assimilation
(or consumption). Otherwise, a non-destructive assimilation. In the second phase of
triggering, the active object uses one of the transformation functions to change its
internal states. Both, input and output, are in the internal states. This is called the
transformation phase. After the transformation phase, some of the active object
internal states are copied into the output interface. Next, another set of objects is
bound to the output gates, and their internal states are changed to those present in the
output interface. This last phase is called either generation phase, or regeneration
phase, depending on the objects that are bound to output gates. If the bounded
objects are existing objects, then this process is called regeneration because it alters
the internal states of bounded objects. However, this last phase can also create a new
object, not part of the object system. In this case, the last phase creates this new
object, fills its internal states with the information of the output interface, and
releases it to the system. This process is called generation.
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Figure 2 – Object Interactions

The triggering mechanism may allow different kinds of behavior, as illustrated
in figure 2. In this example, object o6 is the active object performing the triggering
process. Objects o1, o2 and o3 are the objects to be assimilated in the triggering.
Objects o1 and o4 are regenerated, and o5 is generated. Note that o1 is, at the same
time, assimilated and regenerated. Object o2, after assimilation, is released back to
the system but o3 is destroyed.

To control the triggering process, there is a special function associated with each
object called the selection function. This function decides which objects are to be
bound to input gates, which objects are to be bound to output gates, and which
internal function is to be used in the triggering process. The control strategy of an
object system is dictated by the selection functions.

Note, however, that the selection functions do have some restrictions. These
restrictions concern the transformation functions requirements, as well as some
problems involving synchronization. Each transformation (internal) function
requires a minimum set of objects to start the triggering procedure. Therefore, the
selection function must consider the simultaneous availability of all objects needed
to enable a transformation function. The synchronization problems that may appear
are related to multiple active objects binding the same object. For assimilation
bindings, there should be a guarantee that only one active object is performing a
destructive assimilation. If some assimilated object is also being regenerated, it must
be regenerated by only one active object. And cannot be destructively assimilated in
this case. In this sense, there should be a global policy for the selection functions,
assuring that those constraints are satisfied.

With an appropriate implementation of selection functions, objects can become
autonomous entities, i.e., independent of an external synchronization mechanism.
Synchronism, despite being useful sometimes, is not a requirement in object
systems. The behavior of real objects, with asynchronous and parallel activities can



be modeled. Note that both assimilated and (re)generated objects are not necessarily
passive. This allows adaptive and self-organizing systems to be modeled by object
systems.

2.3 The Mathematical Object

Using the preliminary definitions, we can now proceed to define the mathematical
concepts involving objects, turning the conceptual object into a mathematical one.

Definition 14 – Class: A class C is a set whose elements  ci are tuples of  the type:

(v1, v2 , ... , vn , f1, f2 , ... , fm ) , n ≥ 0, m ≥ 0
where vi  ∈ Vi , and fj are functions

fj : 
p P

p

q Q

q

j j

V V
∈ ∈
× ×→ .

Here×means the Cartesian product, Pj  ⊆ {1, ... , n} and Qj  ⊆ {1, ... , n}.

Definition 15 – Object: Let C be an non-empty class and c be a variable of type C.
Thus c is an object of class C.

It is worth noting that an object, as a variable, supports objects composed by
parts which are objects themselves. In addition, if n=1 and m=0 then the tuple
reduces to a single element. Hence a standard variable (a primitive object) is an
object. For an empty class n=m=0 and there is no object. Clearly  structures are also
object. As it will be seen later, a structure is a passive object.

Definition 16 - Instance of an Object: Let c be an object of class C. The instance
c(n) is the value of c at n.

C is a set of tuples. Therefore the instance of an object is an element of C, i.e. a
tuple.

Definition 17 - Superclass and Subclass: Let C be a class. The set D whose
elements are sub-tuples of the elements of C belonging to the same universe, and
each element in C is associated with one element of D and D is itself a class, is
called a superclass of C. In this case C is a subclass of D.

 Note that a class can be defined from primitive classes. Since class is a relation,
another class can be generated by the cylindrical extension of a class, by the junction
of two or more classes, or by both junction and cylindrical extensions. In all cases,



the primitive classes are superclasses of the newly generated class. Moreover, for a
given a class its cylindrical extension is a subclass of itself. The junction of two
classes is a subclass of  both of them. Any class is a subclass of empty class.
Therefore a hierarchy of classes is induced by projections, junctions and cylindrical
extensions (figure 3).
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Figure 3 - Example of Class Hierarchy

Definition 18 - Sub-object: Let c be an object of class C and d an object of class D a
superclass of C. If for any n the instance of d is a sub-tuple of the instance of c, then
d is a sub-object of c.

In other words, d is the free projection of c in N × D, i.e. d = c ↓ N × D.

Definition 19 - Active and Passive Objects: An object c of a class C is called an
active object if m > 0. If m = 0, then c is a passive object.

Definition 20 - Input Interface:  Let c be an active object of a class C and I a
superclass of C, defined by:





∉≤≤∀
∈≤≤∃

∈∀=×
ll

jj
i

i
Qiml1,f

Piwheremj1,f
thatsuch}n,...,1{i,VI

The input interface i of the object c is the passive object generated by the free
projection of c in N × I, i.e. i = c ↓ N × I.

Definition 21 - Function Specific Input Interfaces: Let c be an active object of
class C, i its input interface, and Ij a superclass of I and C such that :



ljji

i

j Qi},m,...,1{landPi,ffor,thatsuch}n,...,1{i,VI ∉∈∀∈∈∀=×
The specific input interface for function j of c, ij , is the free projection of c in

N × Ij .
Note that ij = c ↓ N × Ij = i ↓ N × Ij . If the elements of class C have m functions,

then there exist m function specific input interfaces. Each ij is a sub-object of i and c.

Definition 22 - Output Interface:  Let c be an active object of class C and O a
superclass of C characterized by:





∉≤≤∀
∈≤≤∃

∈∀=×
ll

jj
i

i
Piml1,f

Qiwheremj1,f
thatsuch}n,...,1{i,VO

The output interface o of object c is the passive object generated by the free
projection of c in N × O, i.e. i = c ↓ N × O.

Definition 23 -Function Specific Output Interfaces: Let c be an active object of a
class C, o its output interface, and Oj is a superclass of O and C such that :

ljji

i

j Pi},m,...,1{landQifforthatsuch}n,...,1{i,VO ∉∈∀∈∈∀=×
The output interface specific for function j of c, oj , is the free projection of c in

N × Oj .
Clearly,  oj = c ↓ N × Oj = o ↓ N × Oj  and if the elements of class C have m

functions, then there exist m function specific input interfaces. Each oj is a sub-
object of o and c.

Definition 24 -  Existence of Objects: An object c is said to exist at n if the function
which maps instances of c in C is defined for n ∈ N .

2.4 Interaction Among Objects

After formally defining the concepts involving objects, we now proceed to define
the concepts necessary to provide objects interaction.

Definition 25 -  Generation and Destruction of Objects: An object is generated at
n if it does not exist at n and does exist at n+1. An object is destroyed (destructively
assimilated) at n if it does exist at n but does not exist at n+1.



Definition 26 -  Enabling Scope of Functions: Consider an active object c from a
class C = { (v1, v2 , ... , vn , f1, f2 , ... , fm )}, a function fj of C, and  ij an input
interface specific for function fj . Let β be the arity of instances of ij , gi an input
index function for fj , gi : {1, ... , β } → {1, ... , n} mapping each component from
instances of the input interface specific for fj  to a component in instances of c, and
B = {0,1}. An enabling scope for fj is a set of tuples H = {(ht ,bt )}, t = 1, ... , β,
where ht is an object of class Vgi(t) and bt ∈ B is a boolean value indicating if object
ht should (bt = 1) or should not (bt = 0) be destroyed when c triggers.

Definition 27 - Generative Scope of Functions: Assume an active object c of class
C = { (v1, v2 , ... , vn , f1, f2 , ... , fm )}, a function fj of C, an output interface oj

specific or function fj , α the arity of instances of  oj , and an output index function
for fj,   go : {1, ... , α } → {1, ... , n} mapping each component from instances of
output interface specific for fj to a component in instances of c. A generative scope
for fj is a set of objects S = {su }, u = 1, ... , α , where su is an object of  class Vgo(u).

Definition 28 - Enabling of  an Active Object: An active object of class C is
enabled at n if  all objects belonging to an enabling scope of one of its functions fj

do exist at n. Function fj is said to be enabled at n.

Definition 29 - Triggering of an Active Object: Consider the following:

 a)-an object c from a class C,
 b)- the instance of c at n, c(n)  =  (v1 (n), ... , vn (n), f1 (n), ... , fm (n) ),
 c)-a function fj of c at n, enabled by H = {(ht ,bt )},
 d)-a generative scope S = {su } for f j such that if  s ∈ S, then or s does not exist

at n, or s ∈ H,
 e)-p, the number of values such that k ∈Pj, k = 1, ... , n, (Pj from def. 14)
 f)-a domain index function gd : (1, ... , p } → {1 , ... , n} for fj ,
 g)-the projection of f(.) on Vk , f(.)↓Vk ,
 h)-β, α,  gi e go as before.
Triggering an active object at n means:
 1)- determination of c’s instance at instant n+1, given the instance of c at n and

the instances of ht at n:
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2)- destruction (bt = 1)  of object ht , (ht , bt ) ∈ H ,at n,
3)-generation, at n , of the objects of S those do not exist at n,
4)-determination of the instances of the objects of S, at n+1, according to the

instances of c at n+1:
su (n+1) =  vgo(u) (n+1)

2.5 Object Systems

Knowing what objects are and which mechanisms allow objects interaction we can
define an object system.

Definition 30 - Object System: Assume the following:

a)-ci  are objects of class Ci , i = 1, ... , δ ,

b)-& = �
i

ic ,

c)-Θi = { 0, ... , mi } where  mi is the number of functions for object ci ,

d)-B = {0,1},
e)-γi  , 0 ≤ i ≤ δ, δ > 0, are selection functions γi : N → 2& x B × 2&  × Θi which,

for each object ci  at n, select an enabling scope Hi , a generative scope Si and a
function index such that ∀(c,b) ∈ Hi , if b = 1, then (∀k ≠ i)((c,1) ∉ Hk ), ∀c ∈ Si ,
(∀k ≠ i)(c ∉ Sk ) and (∀k)((c,1) ∉ Hk ). Hi is an enabling scope and Si is a generative
scope for function γi (n) ↓ Θi . If ci is a passive object or, at n /∃ Hi ≠ ∅ or /∃ Si ≠ ∅,
then    γi (n) = ( ∅, ∅, 0 ). The third index is null to indicate that no function is to be
executed. The meaning of these conditions are grasped as follows. An object of an
enabling scope programmed to be destroyed must be destroyed by only one active
object. If an object is part of a generative scope of an active object, then it cannot be
in any other generative scope. If the object in question is passive, or if active it does
not have an enabling scope for any of its functions, then its selection function must
do nothing.

An object system Ω is a set of pairs {ωi }, ωi = (ci ,γi ), such that :
 1)-for n=0, there exists at least one ωi  with an object ci defined,
 2)-for n>0 all active objects ci with γi (n) ≠ ( ∅, ∅, 0 ), i.e. objects whose

selection functions are in the form γi (n) = (Hi, Si, j ) may trigger according to its
enabling scope Hi and the generative scope Si , using its j-th internal function,



 3)-for n>0, all objects ci which exist at n and do not have its instance at (n+1)
determined by  item 2, may have ci (n+1) = ci (n).

The definition of an object system may be viewed from two different
perspectives. In the first, it provides a recursive way of building an object system. In
the second view, comprising a given collection of objects, it works as a
specification. To call a given set of objects an object system, the values of its
instances (and their existence at different times) should be associated with each
other according to the laws of triggering and regeneration of objects given by items
2 and 3 of definition 30. These laws determine, at each time instant, the values of the
instances (or its inexistence) based on their previous values. The objects that interact
at each instant are determined according to the selection functions, which define the
enabling scopes, the generative scopes, and the functions to be triggered for each
active object. Therefore, the selection function plays a fundamental role in the object
system dynamics.

Objects are functions and there are, in principle, no restrictions on their form.
For a set of objects the functions can be any. An object system has, as opposed to a
set of objects, a clear recursive nature. The recursiveness is not simple because
objects may be partial functions, i.e. they do not have to be defined for any value of
its domain. This leads to the fundamental question about the computability8,9 of
object systems, certainly a desirable property. An object system being computable
means that we can determine, for each n ∈ N, the values of the instances for the
existing objects at n. Conditions for computability of object systems are given as
follows. Assume Ω an object system with a finite number of elements ωi , with all
its selection functions γi computable, and all internal functions of all objects ci of ωi

computable. Then Ω is computable.
These are sufficient conditions only. An object system does not need to

necessarily have a finite number of objects to be computable. If for adjacent instants
n and n+1 the number of existing objects is finite, then the system is computable.

An object system fulfilling the previous conditions can be viewed as the limit of
a (possibly  infinite) sequence of objects systems Ω1 , Ω2 , ... , each Ωi with a finite
number of objects defined on a finite and incremental domain Ni. That is: N0 = {0},
and Ni = Ni-1 ∪ {i}.

Consequently, each object system Ωi is computable and the whole sequence is
computable as well. The infinite object is the i-th element of this sequence when
i→ ∞. Hence, the object system is computable, although infinite.



2.6 Object Network

An object network is a special type of object system in which additional restrictions
concerning interactions are included. To distinguish object network and object
system let us assume places and arcs whose roles are similar to those used in Petri
nets10,11 context. Objects in places can only interact with objects in places connected
through arcs. Thus, at each instant, the objects defined should be at one place. For
each place there is a set of places connected with through input arcs. These places
are called the input gates of the place. Analogously, each place has a set of places
connected with it by means of output arcs, called output gates. For each field of
output interface of objects in this place there should exist one corresponding output
gate. With those conditions we can see that, for each place, there should be only
objects of the same class. Remember that objects can be of two types: passive and
active. Passive objects do not have functions in its tuples and are only used to store
information. Active objects do have functions in its tuples, and perform the task of
transitions in the object network. Each place can only have objects of the same class.
In this sense, we can say that there are passive and active places if the objects that
can be put in a place are passive or active, respectively. Apart of those special
characteristics, an object network is similar to an object system.

Object networks can be put in a graphical form, with places being represented
by circles and arcs by lines. Passive places are indicated by circles. Active places are
indicated by double circles, and instances of objects by black tokens, as in figure 4.

Passive Places

Active Place

Instances of
Objects

γ - Selection
Function

(v1 , ... , vn , f1 , ... , fm )
(v1 , ... , vn )

f’s - Transformation
Functions

Figure 4 : Example of an Object Network



Observe that, differently than in Petri nets, the tokens are instances of objects
that have individuality, i.e., they are not a marking on the place, but are related to
objects with attributes and eventually transforming functions. Again, active objects,
which perform the role of transitions, are also mobile and changeable. This gives an
object net great power of representation, allowing modeling of systems that are not
suitable to be modeled by Petri nets, e.g., adaptive systems.

As for an object system, the basic behavior in an object network is the triggering
of active objects. Triggering an active object corresponds to the generation of new
instances of objects in places directly connected to the place where the active object
is through output arcs. To be triggered, an object must first have an enabling scope,
that is, a set of object instances put in the input gates, enabling one of the object
functions. To select an enabling scope, there is a selection function that selects, from
the object instances available, those that are to be used for triggering. After
triggering, object instances may be put in one ore more output gates of the place
where the active object is. This is also determined by the selection function. The
object instances used as an enabling scope may (or not) be destroyed for the next
time instant.

Definition 31 - Object Network: Assume the following:

a)- a set of classes Σ = {Ci }
b)- a set of objects &  = {ci }, where ci are objects from a class Ci , Ci ∈ Σ,

0 ≤ i ≤ δ, δ > 0.
c)- Π = { πi }  a set of places πi

d)- A , a set of arcs A = {ai }
e)-η a node function η : A → Π × Π
f)-ξ a localization function ξ : N × & → Π, which relates to each object c ∈ &,

for each instant n, a place π.
g)-F(π) a mapping Π → 2Π  , defined by F(π) = ∪ πk where k ∈ K,

K = {k |  ∃ aj ∈ A such that η(aj) = (πk,π) }.
h)-V(π) a mapping Π → 2Π , defined by  V(π) = ∪ πk where k ∈ K,

K = {k  | ∃ aj ∈ A such that η(aj) = (π,πk) }.
i)- X(π) a mapping of connections Π → 2Π, such that X(π) = F(π) ∪ V(π).
j)-Ξ =  Ξ (π) a mapping of classes Π → Σ, such that ∀π ∈ Π for each field vi  of

input interface of objects from class Ξ(π), being vi an object from class C, ∃πk,
πk ∈ F(π), such that  Ξ(πk ) = C, and for each field vi of output interface of objects



from class Ξ(π), being vi an object from class C, ∃πk, πk ∈ V(π), such that
Ξ(πk ) = C.

k)- ii the input interface of an object from class Ξ(πi ).
l)-oi the output interface of an object from class Ξ(πi ).
m)-∂i  the number of fields in ii and ρi the number of fields in oi .
n)-the function fpii the attribute function for input gates of objects which are at a

place πi , defined fpii : {1, ... , ∂i }  → A and fpi = {fpii }.
o)-fpoi = { 1, ... , ρi } → A  the attribute function for output gates of objects that

are at a place πi  and fpo = {fpoi }
p)-Θi = { 0, ... , mi }, where mi is the number of function for object ci

q)-γ = { γi } , 0 ≤ i ≤ δ, δ > 0, which elements are selection functions
γi : N → 2& x B  × 2&  × Θi that for each object ci , in an instant n, select an enabling
scope Hi , a generative scope Si and the index for the function to be executed by the
object, having as a restriction that ∀(c,b) ∈ Hi , ξ(n,c) = π, π ∈ F(ξ(n,ci ) ), if b = 1,
(∀k ≠ i)((c,1) ∉ Hk ), ∀c ∈ Si , ξ(n+1,c) = π, π ∈ V(ξ(n,ci ) ), (∀k ≠ i)(c ∉ Sk ) and
(∀k)((c,1) ∉ Hk ). More than that, Hi should be an enabling scope and Si  should be a
generative scope for function fk , k = γi (n) ↓  Θi . If ci is a passive object or, for a
given n, /∃ Hi ≠ ∅ or /∃ Si ≠ ∅ then γi (n) = ( ∅, ∅, 0 ). The third index being 0 does
mean that no function is going to be executed. Those conditions are analogous to the
selection function for an object system, added by the following conditions: Any
object belonging to the enabling scope of another object should be connected to the
place  where the active object is by an input arc. Any object belonging to the
generative scope of an active object should be put in a place that is connected to the
place where the active object is by means of an output arc.

An object network ℜ is a tuple ℜ = (Σ, Π, Ξ, A, η, fpi, fpo, & , ξ, γ ), such that:
1)- an objects system Ω = { (ci , γi ) } is determined by choosing ci ∈ & and

γi ∈ γ, 0 ≤ i ≤ δ,
2)-for each object ci ∈ &  with a function fj being triggered at n, being this object

at n at a place π = ξ(n,ci ), the objects si
k belonging to the generative scope Si

indicated by γi (n) should have a localization function defined by:

ξ(n+1,si
k ) = πk

where  πk should be such that η ( fpoπ (k’) ) = (π,πk )  and k’ is the index of the
k-th field of the input interface specific to function fi of ci referred at the output
interface of ci .



Alike an object system, an object network can be seen as a specification
comprising the trajectories over time for a given set of objects. In the same way, an
important class of object networks are those that are computable. Again, we can
determine a computable object network iteratively, generating a sequence of object
networks ℜ0 , ℜ1 , ... , where each ℜi contains a finite number of objects, defined
over incremental domains Ni . Each object network from the sequence is equivalent
to the previous, being its objects added by a temporal instance, according to the laws
of triggering, the selection function defined for the last instance and the localization
function. The procedure is similar to the one used for objects systems with infinite
number of objects, included the conditions for localization functions. With this
methodology, one can determine, for each instant n ∈ N, the instance of any object
that exists in n. The initial objects network from the sequence, ℜ0 has a special
denomination, being called the kernel of an object network. In its kernel, objects and
localization functions are defined only for instance n=0, and the selection function
should be computable, being described by an algorithm γ´.

Definition 32 - Kernel of an Object Network: We define the kernel of an object
network as an objects network ℜ0 = (Σ, Π, Ξ, A, η , fpi, fpo, & 0 , ξ0 , γ) , where

•  Σ, Π, Ξ, A, η , fpi and fpo are as in the Definition of objects network and
• & 0 = {ci’ } is a set of objects defined only for n=0.

•  ξ0 is a localization function ξ0 : N × & 0  → Π, defined only for n=0.
•  γ  is a selection function determined by means an algorithm γ’.

Starting with a kernel, new finite object networks are computed in sequence.
Each algorithm step generates a new network that is, fundamentally, the previous
one increased by the definition of new values for & , ξ and γ . The new &  is the old
one plus the objects to be generated at step n, according to γ. The new ξ is also the
old one, defined now also for instant n, again according to γ. The algorithm γ’
incrementally defines function γ. At each step the algorithm defines new instances
for the current objects and new values for localization function and selection
function such that for each instant n, we obtain new & , ξ and γ corresponding to a
new finite objects network. Finite networks correspond to some element of such a
sequence. Infinite networks (both networks with a finite number of objects, defined
in infinite domains, or networks with an infinite number of objects), are considered
as the limit element i of the sequence, when i → ∞. An example of such algorithm is
described in figure 5. Note that each new network in the sequence includes the
previous one increased by the definition of a new time instant.



ℜ5ℜ4ℜ3ℜ2ℜ1ℜ0

object 1

object 2

object 3

object 4

1 1 2 1 2 31 2 31 2 3 1 2 3 41 2 3 4 1 2 3 4 51 2 3 4 51 2 3 4 5 1 2 3 4 5 61 2 3 4 5 61 2 3 4 5 6

Figure 5 - Example of an Evolution Sequence

Examples of main algorithms described through pseudo-codes are the following:

procedure Main:
{Define &  , composed by objects ci given in  & 0 .
  Define localization function ξ, composed by the tuples in ξ0 .
  Define γ = ∅
  For n from 0 to final
 {Apply γ’ to determine γ(n) and refresh γ.

  For all active objects ci existing at n:
      {Calculate γi (n) = (Hi , Si , f ).

  If Hi = ∅, go to next object
  If Hi ≠ ∅ :

{execute function f, generating a new instance ci (n+1)
  refresh ci : ci =  ci (n) ∪ ci (n+1).
  For all si

k ∈ Si

  {If si
k ∉ &  generate a new empty object and add to &

             calculate the value for si
k (n+1) from ci (n+1) and refresh si

k .
  determine ξ (n+1,si

k ) ∈ V(ξ (n,ci )) and refresh ξ.
   }

}
}

For all objects ci such that (ci , 1) does not appear at any other enabling scope
and ci is not at neither generative scope

    ci (n+1) = ci (n).
     }
}



Procedure γ’
{For each active object ci

 {For each function fj of active object ci
{Generate a new empty enabling scope for function fj

   For each field k of input interface specific to fj

 {check if in the place pointed by the arc fpo(k) does exist:
no object, one object or  more than one object

  If there is no object, delete the enabling scope(s) and go to next function
     If there is only one object, put it into the enabling scope(s).
    If there is more than one object, do as many copies of the enabling scope

                     as the number of  objects and put one object into each enabling scope.
}

  For each enabling scope calculate a performance index
}

}
  For each active object ci

 {Do a list ordered by the performance index containing the function and the
        enabling scope.

}
  For each active object ci

{Choose the first element in the list as the function and enabling scope for the
           object

  Check if is there any conflict with other objects choices.
  If is there a conflict, use a decision criterion. The looser object chooses than the

          next in its list. If the own object ci belongs to the enabling scope of another
          object, cancel its enabling scope and reorganize the list.

}
  For each active object ci with an enabling scope different from empty

{Create an empty generative scope for ci

  For each field k of output interface specific to function fj chosen
  {If is there an object in &  not defined at n-1 and n for the desired class,

put it into the generative scope, else create a new object for the desired
                 class and include it.

}
}

   Returns, for each object, the enabling scope, the generative scope and the function
    chosen
}



2.7 Extensions

To enhance its representation power, additional definitions are developed to allow
different classes of concepts. Those concepts are used mainly within computational
semiotics theory4,5,6,7. They are presented next.

Definition 33 - Temporal Restriction for Objects: Let N be a set of time instants, S
a class and o:N→S an object of type S. Let N’ ⊆ N . The temporal restriction of
object o to N’, denoted by o ⇓ N’ corresponds to the object o’:N→S such that if
(n,s) ∈ o and n ∈ N’, (n,s) ∈ o’. Otherwise, (n,s) ∉o’.

Example: N = { n1 , n2 , n3 }, S = ℜ3 , o = { (n1 , (0,0,0) ) , (n2 , (0,1,0) ) ,
                 (n3 , (1,2,2) ) }.

N’ = { n2 , n3 } → o’ =  { (n2 , (0,1,0) ) , (n3 , (1,2,2) ) }.

Definition 34 -Set Variable: Let N be an enumerable set, with a generic element n
and X ⊆ U a subset of U. We define a set variable x of type X as a function
x : N → 2X .

Examples: Let N = {1,2,3} and  X = {1,2,3,4} . An example of a set variable x of
type X is :

x = { (1, {1,2} ) , (2, {2,3,4} ) , (3, {1,3} ) }

Assume now X2 = X × X. Thus, a set variable x’ of type X2 is, for example,

x’ = { (1, { (1,2),(2,3),(2,4),(3,3) } ) ,  (2, {(2,3),(4,1),(1,1)} ) , (3,  {(1,3),(2,1) }) }

Note, in the last example, that the value of x for each n ∈ N corresponds to a
relation. In this case, if we set R1 = { (1,2),(2,3),(2,4),(3,3) }, R2 = {(2,3),(4,1),(1,1)}
and
R3 =  {(1,3),(2,1) }, we get, for short, x’ = { (1,R1 ) , (2,R2 ), (3, R3 ) }.

Definition 35 - Generic Object: Let C be a non-empty class. Let c be a set variable
of type C. The variable c is called a generic object of class C.

Definition 36 - Case of a Generic Object: Let c be a generic object of class C. An
object c’ of type C is said to be a case of generic object c if ∀n ∈ N, c’(n) ∈ c(n).

Definition 37 - Fuzzy Object: Let N be an enumerable  set with a generic element n,

X a class, 
~
X  a fuzzy set defined onto X and 2

~X  the set of all fuzzy sets onto X. We

define a fuzzy object x of type X as a function x : N → 2
~X  .



If X is a passive class,  X = X1 × ... × Xm , 
~
X  will be, in general,  an m-ary

fuzzy relation. In some cases, it is interesting to use not a generic fuzzy relation, but
a fuzzy relation formed by the cartesian product of different fuzzy sets. In this case,
~
X  may be represented by a tuple of m fuzzy sets. If X is an active class, 

~
X would

consider as fuzzy only the fields that are not functions. The m-ary fuzzy relation, in
this case, will be represented by the (fuzzy) cartesian product of all elements that are
not functions.

Note that a fuzzy object can represent any (standard) object
o = { (n,x)  | ∀n ∈ N, x ∈ X} if we take, for each n ∈ N, a fuzzy set that is a
singleton in x ∈ X.

Since a passive object corresponds to a fuzzy relation, it is possible to define
operations involving fuzzy objects. The same occurs with active objects, because the
operations are related with non-function fields only.

Definition 38 - Union of  Fuzzy Objects: Let x’ and x’’ be two fuzzy objects of
type X, defined in N such that ∀n ∈ N, if x’(n) is defined, x’’(n) is also defined. The
union x of x’ and x’’ is a fuzzy object such that ∀n ∈ N, x(n) = x’(n) S x’’(n), where
S is a matrix operator which applies a triangular co-norm, element to element, in the
m-ary relational matrices. Operator S applies only to non-function fields of the
corresponding tuples.

Definition 39 - Intersection of Fuzzy Objects: Let x’ and x’’ be two fuzzy objects
of type X, defined in N, such that ∀n ∈ N, if x’(n) is defined, x’’(n) is also defined.
The intersection x of x’ and x’’ is a fuzzy object such that ∀n ∈ N,
x(n) = x’(n) T x’’(n), where T is a matrix operator which applies a triangular norm,
element to element, in the m-ary relational matrices. Again, operator T applies  only
to the non-function fields of the tuples.

For the sake of computational implementation, it is important to stress that both
generic objects and fuzzy objects can be transformed into objects. Suppose that the
values of their instances (which are sets or fuzzy sets) are represented by
discriminating functions, functions that are approximated by multilayer neural
networks. We can generate a standard object whose attributes are the parameters of
such neural network. In this case, we represent a generic object (or a fuzzy object),
by a standard object. To use a generic knowledge in this form, however, the
arguments used to manipulate it must be modified to deal with generic/fuzzy objects
in such a representation.



Definition 40 - Meta-Object: Let  N be an enumerable set, with a generic element n;
V be an enumerable set where each v ∈ V is a variable of type N defined over the
occurrence space T, v : T → N; R be a set of restrictions for the values of variables
V (possibly empty) and X be a class. A meta-object x of type X is a function
x : V → X .

Examples : Let T = { 1,2, ... } , N = {1,2,3,4,5,6}, V = { v1 , v2  , v3 }, such that
v1 , v2  , v3  : T → N , R = ∅, and  X = X1 × X2 , X1 = {1,2,3,4}, X2 = {a,b,c}. An
example of a meta-object x’ of type X1 is  x’ = { (v1 , 1) , (v2 , 3) }. Other example
of a meta-object x’’ of type X is x’’ = { (v1 , (1,a) ) , (v2 , (3,a) ) }.

Definition 41 - Instance of a Meta-Object: Let x be a meta-object of type X. An
instance of x is an object x’ where the variables of x are substituted for the values
provided by specific instances of such variables in the occurrence space.

Examples: Consider the meta-objects x’ and  x’’ as in the example above. An
instance of x’, doing  v1 = 1 and v2 = 2 is x’’’ =  { (1 , 1) , (2 , 3) }. Other example,
for  v1 = 2 and v2 = 5, x’’’ = { (2 , 1) , (5 , 3) }. An instance of  x’’, for  v1 = 1 and
v2 = 4 is x’’’ = {(1 , (1,a)), (4 , (3,a))}.

Definition 42 - Occurrence of a Meta-Object in an Object: Consider an object o
from class X, and a meta-object o’ from class X’. An occurrence o’’ of meta-object
o’ in o is an object o’’ such that o’’ is at the same time a sub-object from an instance
of o’ and a temporal restriction of a sub-object of o.

Examples: Assume an object x of type X,  x = { (1,(1,a)) , (2,(3,b)) , (3,(3,a)),
(4,(1,c)) , (5,(2,b)), (6,(3,a)). As in the example above, for v1 = 1 and v2 = 2, we have
an instance x’’’ =  { (1,1), (2,3) } which is a temporal restriction of sub object
x ↓ X1 of x to N = {1,2}. This is an occurrence of x’ in x. Other occurrences for this
case do exist, for  v = (v1 , v2 ) = (1,3), v = (1,6), v = (4,6). Not so obvious is the case
for  v = (4,2) and v = (4,3). Meta-object x’’ does also occur in x, but there exist only
two occurrences, for  v = (1,3) and v = (1,6) respectively.

When the restriction R for a meta-object is not empty, domain variables may
have restrictions to its values. One way of representing restrictions is by means of
algebraic equations and/or inequations using domain  variables. In this case the
occurrence of meta-objects in objects does consider such restrictions for the
determination of possible instances for the meta-object.



Example: In the example above, assume that v2 = v1 + 1. In this case, there exists
only one occurrence of x’ in x for v = (1,2), because the restriction is violated for the
other cases. Note that here, the meta-object x’’ does not occur in x.

Other example could be v2 > v1. Viewing the inequality as a restriction in the
example of Definition 6, we avoid non-intuitive cases v = (4,2) and v = (4,3) as
occurrences.

Following the definition, an occurrence does not need to be, necessarily, a meta-
object instance, but any sub-object of the former. With this, from the same meta-
object there may be different occurrences in different objects, with each object from
a different class, but sharing a field of the instance of the meta-object.

Definition 43 - Occurrence of a Meta-Object in a Generic Object: Let x be a
generic object from class X, and x’ a meta-object from class X’. An occurrence x’’
of the meta-object x’ in x is an object x’’ such that x’’ is an occurrence for any case
of x.

Definition 44 - Occurrence of a Meta-Object in a Fuzzy Object: Let o be a fuzzy
object from class X, and o’ a meta-object from class X’. An occurrence o’’ of the
meta-object o’ in o is a fuzzy object o’’ such that o’’ corresponds to the intersection
of a sub-object from an instance of o’, described as a fuzzy object by means of
singletons, and a temporal restriction of a fuzzy sub-object of o.

Example: Consider the following fuzzy sets
a1 = {1/0.2, 2/0.8, 3/0.6 }, a2 = {1/0.1, 2/0.2, 3/0.9 }, a3 = {1/0, 2/0.15, 3/0.3 },
b1 = { 5/0.3, 6/0.4, 7/0.1 }, b2 = { 5/0.4, 6/0.4, 7/0.8 }, b3 = { 5/0.1, 6/0.9, 7/0.8 },
c1 = { 15/0.2, 18/0.9 }, c2 = { 15/0.3, 18/0.8 }, c3 = { 15/0.7, 18/0.1 }, the fuzzy
object x = { (1,(a1,b1,c1)), (2,(a2 ,b2 ,c2)), (3,(a3 ,b3 ,c3)), and the meta-object
x’ = { (v 1 , (2,5,15)) , (v2 , (3,7,18)) }. For  v1 = 1 and v2 = 3, there is an instance of
meta-object x’ which is x’’ = { (1 , (2,5,15)) , (3 , (3,7,18)) }. Thus, for a’1 = {1/0,
2/1, 3/0 }, b’1 = {5/1, 6/0, 7/0 } and c’1 = {15/1, 18/0 }, a’2 = {1/0, 2/0, 3/1 },
b’2 = {5/0, 6/0, 7/1 } and c’2 = {15/0, 18/1 }  we have the representation of  x’’ by
the fuzzy object x’’’ = { (1, (a’1 , b’1  , c’1 )) , (3, (a’2 , b’2 , c’2 )) }. An occurrence of
x’ in x, in this case, can be found to be x’’’’ = ( x ⇓ {1,3} ) T  x’’’, i.e.,
x’’’’ = { (1, (a’’ 1 , b’’1  , c’’1 )) , (3, (a’’2 , b’’2 , c’’2 )) }, where, taking the minimum
as triangular norm, we have: a’’1 = a1 T a’1 = {1/0, 2/0.8, 3/0 }, b’’1  = b1 T b’1
={5/0.3, 6/0, 7/0 }, c’’1 = c1 T c’1 = {15/0.2, 18/0 }, a’’2 = a3 T a’2 =
{1/0, 2/0, 3/0.3 }, b’’2 =  b3 T b’2 = {5/0, 6/0, 7/0.8 }, c’’2  = c3 T c’2 =
{15/0, 18/0.1 }.



Definition 45 - Generic Meta-Object: Let N be an enumerable set, with generic
element n,  V be an enumerable set, where each v ∈ V is a variable of type N,  R be
a set of restrictions on the variables of V (possibly empty) and X be a class. A
generic meta-object x of type X is a function x : V → 2X.

Definition 46 - Case of a Generic Meta-Object: Let x be a generic meta-object
from class X. A meta-object x’ of type X is a case of generic meta-object x if
∀v ∈ V, x’(v) ∈ x(v).

Definition 47 - Occurrence of a Generic Meta-Object in an Object: Assume x  as
a generic meta-object of type X and x’ an object of type X’. An occurrence x’’ of x
in x’ is an object x’’ such that x’’ is an occurrence of any case of x in x’.

Definition 48 - Occurrence of a Generic Meta-Object in a Generic Object: Let x
be a generic meta-object of type X and x’ a generic object of type X’. An occurrence
x’’ of x in x’ is a generic object x’’ such that x’’ is the union of all occurrences of
any case of x in cases of x’.

Definition 49 - Occurrence of a Generic Meta-Object in a Fuzzy Object: Let x be
a generic meta-object of type X and x’ a fuzzy object of type X’. An occurrence x’’
of x in x’ is a fuzzy object x’’ such that x’’ is the intersection of a sub-object of x,
viewed as fuzzy object, and a temporal restriction of a sub-object of x’.

Example: Consider the fuzzy sets a1 = {1/0.2, 2/0.8, 3/0.6 },
a2 = {1/0.1, 2/0.2, 3/0.9 }, a3 = {1/0.1, 2/0.15, 3/0.3 }, b1 = { 5/0.3, 6/0.4, 7/0.1 },
b2 = { 5/0.4, 6/0.4, 7/0.8 }, b3 = { 5/0.1, 6/0.9, 7/0.8 }, c1 = { 15/0.2, 18/0.9 },
c2 = { 15/0.3, 18/0.8 }, c3 = { 15/0.7, 18/0.1 }, the fuzzy object x = { (1,(a1,b1,c1)),
(2,(a2 ,b2 ,c2)), (3,(a3 ,b3 ,c3)), and the generic meta-object x’ = { (v1 ,([2,3],[5,6],15)),
(v2 , ([1,2],[6,7],18)) }. For  v1 = 1 and v2 = 3, we have an instance of the generic
meta-object x’, x’’ = { (1 , ([2,3],[5,6],15)) , (3 , ([1,2],[6,7],18)) }. Thus, for
a’1 = {1/0, 2/1, 3/1 }, b’1 = {5/1, 6/1, 7/0 } and c’1 = {15/1, 18/0 },
a’2 = {1/1, 2/1, 3/0 }, b’2 = {5/0, 6/1, 7/1 } and c’2 = {15/0, 18/1 }  we get a
representation of x’’ by the fuzzy object x’’’ = { (1, (a’1 , b’1  , c’1 )) ,
(3, (a’2 , b’2 , c’2 )) }. An occurrence of  x’ in x, in this case, can be found through
x’’’’ = ( x ⇓ {1,3} ) T  x’’’, i.e., x’’’’ = { (1, (a’’ 1 , b’’1  , c’’1 )) ,
(3, (a’’2 , b’’2 , c’’2 )) }, where, taking again the minimum as a triangular norm, we
have: a’’1 = a1 T a’1 = {1/0, 2/0.8, 3/0.6 },  b’’1  = b1 T b’1 ={5/0.3, 6/0.4, 7/0 },
c’’ 1 = c1 T c’1 = {15/0.2, 18/0 }, a’’2 = a3 T a’2 = {1/0.1, 2/0.15, 3/0 },
b’’ 2 =  b3 T b’2 = {5/0, 6/0.9, 7/0.8 }, c’’2  = c3 T c’2 = {15/0, 18/0.1 }.



Definition 50 - Fuzzy Meta-Object: Let N be an enumerable set, with a generic
element n, V be an enumerable set, where each v ∈ V is a variable of type N, R be a

set of restrictions over the variables in V (possibly empty), X a class,  
~
X , a fuzzy

set defined over X and 2
~X , the set of all fuzzy sets defined on X. A fuzzy meta-

object x of type X is a function x : V → 2
~X  .

Definition 51 - Occurrence of a Fuzzy Meta-Object in an Object: Let x be a
fuzzy meta-object of type X and x’ an object of type X’. An occurrence x’’ of x in x’
is a fuzzy object x’’ such that x’’ is the intersection of a sub-object of x and a
temporal restriction of a sub-object of x’ described as a fuzzy object.

Definition 52 - Occurrence of a Fuzzy Meta-Object in a Generic Object: Let x be
a fuzzy meta-object of type X and x’ a generic object of type X’. An occurrence x’’
of x in x’ is a fuzzy object x’’ such that x’’ is the intersection of a sub-object of x
and a temporal restriction of a sub-object of  x’ described as a fuzzy object.

Definition 53 - Occurrence of a Fuzzy Meta-Object in a Fuzzy Object: Let x be a
fuzzy meta-object of type X and x’ a fuzzy object of type X’. An occurrence x’’ of x
in x’ is a fuzzy object x’’ such that x’’ is the intersection of a sub-object of x and a
temporal restriction of a sub-object of  x’.

Note that the definitions of occurrence of fuzzy meta-objects are the same,
wherever being in an object, generic object or fuzzy object. In all cases, the
representation of object or generic object is first converted to a fuzzy object, and
next the definition for an occurrence of a fuzzy meta-object in a fuzzy object is used.

In our examples of occurrences, we showed only meta-objects with two
variables, i.e., V = {v1 , v2 }. But this is not a requirement. The use of meta-objects
with two variables is particularly useful to represent events, i.e. sudden changes
between two states. But other types of occurrences do exist, as e.g. an unitary
occurrence that represents a single state. This kind of occurrence is useful, e.g., to
obtain information about some attribute of the object during its existence. Meta-
objects with more than 2 variables are used to represent tendencies or behaviors as,
e.g., an increasing or decreasing behavior, or a periodic behavior. The formal model
herein stated allows the representation of occurrences with all those subtle
differences.

To use meta-objects (and its generic and fuzzy extensions) in the framework of
object networks, we have to convert them to objects. But first, all objects that are to



be related to the meta-objects have to be modified to handle some kind of memory.
This is showed in figure 6.
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Figure 6 - Assembling Memory in an Object

Once the related objects are equipped with memory, we can modify the meta-
object to become an object.  This transformation  is shown in figure 7.
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Figure 7 - Transformation of a meta-object into an object

Now, to check the occurrence of a meta-object in an object (and its variations),
we use an active object that is fed both with the modified meta-object and the object
with memory. Its active function is responsible for doing the respective
computations.

In real systems, object memory can not be infinite. An alternative strategy for
this problem is to use hierarchical memory using occurrence knowledge to generate
a higher level memory. An example is shown in figure 8.
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Figure 8 - Composition of a Higher Level Memory



As it can be seen in the example, a higher level memory has a smaller size. This
may lead to information loss because higher-level memory stores only the
occurrences considered to be relevant. The procedure to generate higher level
memories can be successively applied, creating many levels, in a complex hierarchy.

3 Computational Intelligence and Object Nets

In this session we provide examples to show how we can implement  and
computational intelligence12,13 techniques with object networks.

From computational semiotics4,5,6,7, we know that there are three main functions
used to build intelligent systems: deductive, inductive and abductive functions, also
called arguments. Arguments are described by means active objects in an object
network.

3.1 Fuzzy Systems

A general fuzzy production system is shown in figure 9.
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Figure 9 – Fuzzy System

The main argument in a fuzzy production system is the deductive argument in
P6, called the inference engine. The other arguments in P1, P3, P8 and P10 are also
deductive arguments, but their only task is to convert knowledge into a suitable
format.



3.2 Neural Networks

Figure 10 shows the representation of a self-organizing neural network by an object
network. Note that this neural network has two main arguments. The deductive
argument works during the feedforward phase when it generates an output from an
input. The learning function is an inductive argument that performs the self-
organization of the neural network. It acts considering the input, and modifying the
neural structure (i.e., the weights and offsets of the neural net) to perform learning.

Learning
Function

Neural Structure
(Weights and Offsets)

Input

Deductive
Argument

Output

Figure 10 – Self-Organizing Neural Network

Other types of neural networks (like supervised neural networks) would have a
similar representation including, in this case, a place for the desired output feeding
the learning function argument.

3.3 Evolutionary Systems

An example of an evolutionary system is given in figure 11. In this example, there is
an original population used as input for 4 inductive arguments (performing
crossover, mutation, inductive mutation, etc), generating  new sub-populations.
Those 4 new sub-populations are used, in conjunction with the original population to
fed an abductive argument that will choose the new population (and destroy the old
one). The best individual of this new population is extracted by an abductive
argument to generate a solution, and the new population is redirected again to the
beginning through a feedback deductive argument that simply moves the new
population from the new population place to the original population place.
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Figure 11 – Evolutionary System

3.4 Hybrid Systems

Soft computing techniques can be enlarged using not only its three main constituents
(i.e., fuzzy systems, neural networks and evolutive systems), but (with object
networks) hybrid systems can be constructed as well from the tools provided by the
basic types of arguments associated with the three operations with knowledge:
knowledge extraction, knowledge generation and knowledge selection.

4 Object Networks and Software Engineering

Object-oriented modeling approach has been extensively to specify, visualize,
construct and document software, databases, business and many other systems.
However, it is important to point out the difference between object-oriented
programming and object-oriented modeling. Object-oriented programming basically
involves adding inheritance and dynamic binding to programming. Object-oriented
modeling comprises a software engineering methodology used to properly specificy
complex software systems14. There are several object-oriented modeling
methodologies proposed in the literature. Among them, we should mention the
OMT15 (Object Modeling Technique), one of the earliests to gain popularity and the
UML16 (Unified Modeling Language), derived from OMT and other technologies,
which is being viewed as a new standard amongst software developers using object
technology.



Most of the modeling techniques use a set of diagrams to capture the meaning of
the system being modeled. For example, in figure 12, we summarize the diagrams
used by UML. To each kind of diagram it is attached a corresponding semantics,
used to specificy a part of the system.

Use case diagram
Class diagram
Behavior diagrams Statechart diagram

Activity diagram
Interaction diagrams Sequence diagram

Collaboration diagram
Implementation diagrams Component diagram

Deployment diagram

Figure 12 – Diagrams used by UML

The choice of diagrams to be used in a system modeling has a profound
influence on how a problem is approached and how a solution is developed. As a
general tool, UML provides different types of diagrams to allow different types of
systems to be specified.

Intelligent systems are a special kind of software systems, whose particularities
make them very difficult to be modeled by generic methodologies like UML or
OMT. These methodologies still lack diagrams to adequately manage some
characteristics of inteligent systems. A strong limitation of these approaches
concerns their use of a limited scope of the object-oriented paradigm, which is, the
idea of a set of objects that exchange messages. Although being the usual meaning
of what is an object system, it does not convey the whole expressiveness of the
paradigm. The formalization of what is an object and an object system introduced in
this paper attempts to surpass this limitation by considering messages also as
objects. In this sense, our formalization subsumes the usual conceptualization, and
embraces a more abstract view of what an object is. It allows a representation for
adaptation, self-organization and parallelism, important issues when modeling
intelligent behavior, which are not easyly tackled by generical modeling tools. When
put together with higher order models of intelligence, like semiotics and
computational intelligence, the object networks appear as a promising tool for
modeling intelligent systems.

The design and implementation of an autonomous vehicle controller, example
developed under this paradigm can be found in the work of Gudwin4,6.  In this



example, the task is to navigate a vehicle in an unknown environment, by
interactively building an internal model for the environment, and using the model to
make control decisions about the next actions to be performed.

5 Conclusion

The notion of object network has been introduced with the purpose to provide a
modeling and implementation framework for computational intelligence. Beginning
with a general and formal approach, put in the form of a foundation for a theory of
objects, the idea of an object system was developed, followed by the key concept of
object network. Object network has the formal and representational power needed to
deal with intelligent systems. Several potential applications have been envisioned
including control of autonomous vehicles using computational semiotics
methodology4,5,6.
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Exercises

1. Assume we are interested in modeling an industrial oven and consider that,
for our purposes, the following list of attributes fully describes an oven: Width (w),
Height (h), Depth (d), Weight (p), Color (c), Temperature (t), Number of heaters
(nh), Clean State (cl), Age (a) and Conservation State (cs).

Notice that some of the attributes are static, as Width, Height, Depth, Weight,
Color and Number of heaters. Width, Height and Depth are given in cm, Weight in
kg, Color by a triplet (R,G,B), and Number of heaters is an integer number.
Temperature is a dynamic attribute, ranging from 0 to 200 °C. Age is also a dynamic
attribute, ranging from 0 to 50 years. Clean State and Conservation State are
normalized dynamic attributes, ranging from 0 to 1. A clean state of 0 means that the
oven is totally dirty. A clean state of 1 means a totally clean oven. The same holds
with the Conservation State: 0 means a spoiled (useless) oven, whereas 1 means a
perfect working oven.



Now, suppose that the dynamic attributes are as given by the functions depicted
in figure 13:
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Figure 13 – Dynamic Attributes of Industrial Oven

Based on the formal definition of object, define the classes involved and the
mathematical object “oven” that models the industrial oven in the period of time
indicated in the figure 13.

2. Consider the object model for an industrial oven developed in exercise 1. We
want to model the verb “to warm” and to use it associated with the oven. The
purpose to answer the questions: Did the oven warm ? When ?

Based on the formal definition of meta-object, build a (fuzzy/generic) meta-
object to model the verb “to warm”. Next, find the occurrences of such meta-object
in the object “oven”.



3. Assume the meta-object developed in exercise 2 and the object developed in
exercise 1. Transform the meta-object “to warm” into an object, and the object
“oven” into an object with memory. Next, build an object network that is able to
compute if (and when) something has warmed, and feed it with the object “oven” to
obtain the answer.

4. Consider the graphs of object networks illustrated in figures 9, 10 and 11,
illustrating examples of a fuzzy system, a neural network and an evolutionary
system. Provide a formal definition of the kernel for each object network, and
develop them through a sequence of object networks, until reaching object networks
with 10 time steps.

5. Recall the example of an object network depicted in figure 10, which
represents a neural network with unsupervised learning. Develop the graph for an
object network for a neural network with supervised learning.

6. Let N be the set of integers and R the set of reals. Let it be a class C1

representing instances of rhematic knowledge pieces given by C1 = {(v1,v2)}, where
v1 ∈ N corresponds to a flag indicating the rhematic knowledge type, as follows: 0 -
sensorial piece of knowledge, 1 – designative piece of knowledge, 2 – prescriptive
piece of knowledge and v2 ∈ Rn corresponds to the set of attributes characterizing
the rhematic knowledge pieces (do not care, by now, about it). Let it be a class C2,
representing instances of objects of type sensor, given by C2 = {(v3,v4,f1)}, where v3
∈ N corresponds to a timer indicating the time instant, v4 ∈ C1 corresponds to the
output interface and f1 is a function f1:N → N × C1 , that for each time instant
updates the internal timer and generates an object of type C1 corresponding to a
sensorial piece of knowledge (flag=0). Let it be a class C3 representing instances of
objects of type actuator, given by C3 = {(v5, v6, f2)}, where v5 ∈ N is a timer, v6 ∈
C1 is the input interface and f2 is a function f2:N × C1 → N, that for each time instant
updates the internal timer and destructively assimilate an object of type C1,
corresponding to a prescriptive piece of knowledge (flag=2). Let it be a class C4,
representing instances of objects of type reasoners, given by
C4 = {(v7, v8, f3, f4)}, where v7 ∈ C1 is the input interface, v8 ∈ C1 is the output
interface, f3 is a function f3 : C1 → C1, that destructively assimilates sensorial pieces
of knowledge (flag=0), generating designative pieces of knowledge (flag=1), and f4

is a function f4 : C1 → C1, that destructively assimilates designative pieces of



knowledge (flag = 1), generating prescriptive pieces of knowledge (flag=2). Let it be
the kernel of an object network given by:

ℜ0 = (Σ, Π, Ξ, A, η , fpi, fpo, & 0 , ξ0 , γ)
Σ= { C1, C2, C3, C4 },
Π = {π1, π2, π3, π4},
Ξ = ((π1, C2), (π2, C3), (π3, C1), (π4, C4) },
A = { a1, a2, a3, a4},
η = { (a1, (π1, π3)), (a2, (π3, π4)), (a3, (π4, π3)), (a4, (π3, π2)) },
fpoπ1(1) = a1, fpiπ2(1) = a4, fpiπ4(1) = a2, fpiπ4(2) = a2, fpoπ4(1) = a3, fpoπ4(2) = a3,

&
 0  = { c1, c2, c3 }, where c1 is of type C2, c2 is of type C3 and c3 is of type C4,

Nu = (o, r) is a default value, Nu ∈ C1,

c1 = { (0, (0, Nu, f1)) },
c2 = { (0, (0, Nu, f2)) },
c3 = { (0, (Nu, Nu, f3, f4)) },
ξ0 = { (0, c1, π1), (0, c2, π2), (0, c3, π4) }.

Using this data, do the following:

a) Draw the graph for the object network.
b) Evolve the network ℜ0 for 6 steps (until ℜ6), using an arbitrary selection

function γ (arbitrated step by step), assuming that the knowledge type
requirements (if sensorial, designative or prescriptive) are sustained.

c) Speculate on an asynchronous (distributed) algorithm that should be used
for the determination of all instances of γ.

7. Think about the implications of using synchronous (centralized) and
asynchronous (distributed) selection functions, assuming that an object network is
allowed to have two active objects competing to destructively assimilate the same
object. Speculate on how to generate an asynchronous selection function dealing
with this problem.


