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Abstract

This paper presents an algorithm for action selection, in the context of intelligent agents, capa-
ble of learning from rewards which are sparse in time. Inspiration for the proposed algorithm
was drawn from computational neuroscience models of how the human prefrontal cortex (PFC)
works. We have observed that this abstraction provides some advantages, such as the represen-
tation of solutions as trees, making it human-readable, and turning the learning process into
a combinatorial optimization problem. Results for it solving the 1-2-AX working memory task
are presented and discussed. We also argue the pros and cons of the proposed algorithm and,
finally, address potential future work.

Keywords: action selection, neural networks, machine learning, reinforcement learning, genetic algo-

rithm

1 Introduction

This paper presents an algorithm for action selection in the context of intelligent agents capable
of learning from sparse in time rewards. Inspiration for the proposed algorithm was drawn from
computational neuroscience models of how the human prefrontal cortex (PFC) works.

The mathematical and algorithmic study of how the human conscious mind solves the prob-
lem of selecting the next action to be taken has produced many interesting results (Reggia,
2013; Baars & Franklin, 2009). By controlling and managing other cognitive processes “execu-
tive functions” are those responsible for what is usually considered to be “intelligent behavior”.
They are a “macroconstruct” (Alvarez & Emory, 2006), in the sense that multiple sub-processes
must work in conjunction to solve complex problems. The term “executive function” is there-
fore used as an umbrella for a wide range of cognitive processes and sub-processes (Chan, Shum,
Toulopoulou, & Chen, 2008), with the most prominent being action selection, planning, selective
attention and learning (Baars & Gage, 2010; Fuster, 2008; Frank & Badre, 2012).
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In their nature, executive functions are mostly future directed and goal oriented, whilst
exerting supervisory control over all voluntary activities. They deal with prospective actions
and deliberate plans to achieve goals which can be defined by the executive itself. In a sense,
this is what the frontal lobe, in particular the prefrontal cortex, does for humans (Baars &
Gage, 2010; Chersi, Ferrari, & Fogassi, 2011).

In this work we propose an action selection algorithm inspired by the computational neu-
roscience model described in the Leabra framework ((O’Reilly, Munakata, Frank, Hazy, &
Contributors, 2012), (Hazy, Frank, & O’Reilly, 2007)). With its PBWM (Prefrontal Cortex
Basal Ganglia Working Memory) algorithm, Leabra models how the human PFC interacts with
basal ganglia in order to learn from rewards separated in time and select the most appropriate
action given a particular stimulus. In other words it performs, with the exception of planning,
all major executive functions.

The PBWM mechanism strives to follow the biological cognitive process as closely as possi-
ble. The present work, however, focuses more on the development of a new algorithm, which is
also biologically inspired but ultimately designed to be used in the development of intelligent
agents. In order to do so, the inner workings of the PBWM mechanism (Hazy et al., 2007) were
abstracted in the form of an action selection algorithm, whose behavior towards new stimuli
is defined by an optimized tree structure. We have observed that this abstraction provided a
number of advantages, such as:

• Representing solutions as trees, instead of neural networks, allows one to see the knowledge
it encodes in a direct manner.

• This method turned the learning process into a combinatorial optimization problem. This
potentially makes the use of different optimization techniques straightforward.

Details on how we achieved this can be seen in Section 3. The remainder of this paper is
organized as follows. Section 2 presents our initial motivations for developing this algorithm.
Section 3.1 provides a brief description of how the original PBWM mechanism works, while
describing the “1-2-AX” working memory1 task used as a benchmark for validation. Section
3.2 then describes our proposed gated-learning action selection (GLAS) mechanism. In Section
4 we apply GLAS to learn the 1-2-AX working memory task and present training results given
a particular sequence of events. The paper closes with Section 6, where we discuss obtained
results. We also argue the pros and cons of the proposed algorithm and, finally, point to
potential future work.

2 Motivation

The core motivation for developing this algorithm is to take advantage of what neuroscience,
and more specifically computational neuroscience, has produced that could be useful for the
development of artificial intelligent agents.

Specifically, adapting the PBWM mechanism to provide human-readable solutions was mo-
tivated by our previous work with behavior networks2 and action selection (Raizer, Paraense,
& Gudwin, 2012; Raizer, Rohmer, Paraense, & Gudwin, 2013).

1Working memory (WM) is a term, coined by behavioral neuroscience, which describes the cognitive capacity
for storing and manipulating novel information for a short period of time (Baars & Gage, 2010). It was initially
proposed by Allan Baddeley (Baddeley & Hitch, 1974), and it is believed that the PFC plays a critical role in
active maintenance of WM information (Fuster, 2008).

2A behavior network is an action selection mechanism initially developed by Pattie Maes (Maes, 1989),
which is capable of selecting the most relevant action at the present time, while at the same time deliberating
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(a) Dopamine firing propagates backwards to-
wards continuous stimulus

(b) Dopamine firing can not propagate back
due to gap between stimulus and reward

Figure 1: Dopamine firing due to reward, given a particular stimulus. Adapted from (Hazy et
al., 2007) and (O’Reilly et al., 2007).

As a matter of fact, not only should an agent be able to select the most relevant action
at a given time, but it should do so while taking into consideration its future consequences.
Traditional reinforcement learning mechanisms, such as variations of SARSA and Q-Learning
(Russell & Norvig, 2003), have often been used to solve challenging problems in engineering and
computer science (Stone, Sutton, & Kuhlmann, 2005; Mahadevan & Connell, 1992; Riedmiller,
Gabel, Hafner, & Lange, 2009; Bagnell & Schneider, 2001; Zico Kolter & Ng, 2011). They lack,
however, an ability the mammalian brain excels at: to bridge the gap between actions and late
rewards (Bakker, Zhumatiy, Gruener, & Schmidhuber, 2003).

Let us take for instance the task of teaching a dog that taking a bath is a rewarding
experience.

In Figures 1 and 2, “stimulus from senses” represents the dog’s perception of having a bath.
Figure 1a represents the use of a synchronous reward (reward is given while the dog is still
perceiving the stimulus) and Figure 1b represents the use of a late reward. We see therefore 4
bath episodes being represented here, and learning is represented by the dotted vertical line. If
every time during bath its owner gives the dog a cookie (reward), a burst of dopamine neural
firing happens in the dogs’ brain. Since the stimulus of taking a bath is still active, the brain
manages to correlate this reward with the beginning of the stimulus, linking the perception of
taking a bath to being something good.

However, if the owner waits to give its dog a cookie long after each bath is finished, something
like what is described in Figure 1b could happen. In this case, there is nothing linking the
moment of reward to the appearance of the stimulus.

Dogs, however, are mammals with highly developed prefrontal cortexes. The PFC works,
among other things, as a temporary container for storing stimuli representations. Therefore,
what really should happen in the previous case, is something like what we see in Figure 2.

In this case, the PFC stimulus representation was held long enough for the brain to make
the association. In other words, the represented stimulus, stored in PFC, acted as if it were the
perceived stimulus coming from the dog’s senses.

Traditional artificial neural networks, such as MLPs (multi layer perceptrons) and recurrent
neural networks, are known to be bad at establishing a link between longer time lapses, since

the consequences of those actions. Deliberation is made possible because each behavior has a list of preconditions,
which hold propositions necessary for the behavior to become relevant, and lists of consequences. These lists
contain human-readable propositions about the world state. For more details we refer to Maes’ original paper.
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Figure 2: The PFC stores a temporary representation of stimuli. Bridging the gap between
reward and stimulus.

backpropagated errors tend to either explode or exponentially decay during training (Pérez-
Ortiz, Gers, Eck, & Schmidhuber, 2003).

Computational models successful at solving this kind of problem are usually those based on
gating mechanisms. A gating mechanism is responsible for holding stimuli in what is called a
“short-term memory”. The information held in memory can then affect both action selection
at a given instant and the learning process alike. Examples of algorithms using this sort of
gating mechanism are the Long-Short Term Memory recurrent neural network (Bakker, 2002),
and the aforementioned PBWM mechanism.

The choice of PBWM mechanism as inspiration for GLAS was motivated by the possibility
of abstracting its core functionality into an algorithm able to perform a gated action selection
learning, while at the same time keeping this learned knowledge in a human-readable form.

3 Methods

Before getting into the algorithms, we must first define a simplified problem to serve as a
benchmark.

In order to study working memory in a controlled environment, a number of tasks were
devised to demonstrate the demands of our brain’s executive system. Examples of such tasks
are the AX-CPT (AX continuous performance task, widely studied in humans) and a more
complex variant called 1-2-AX task (Hazy et al., 2007).

In the 1-2-AX task, a person sits down on a chair with two buttons, one to the left and
another to the right. A sequence of visual stimuli is shown to this person who, in turn, must
either press the right button (R) or the left one (L). Possible stimuli are: 1, 2, A, B, X and Y.

At each choice of action, pressing the correct button (according to a hidden set of rules)
produces a positive reward, whilst pressing the incorrect button produces a negative reward.
The challenge is to find out which button to press, given not only the current stimulus, but also
a recent history of stimuli.

By the end of the experiment, if the subject’s memory is working correctly, he should be
able to learn the following rules about the 1-2-AX task:

• If the last number I saw was a 1, I must press ‘R’ when I see an ‘X’ after an ‘A’

• If the last number I saw was a 2, I must press ‘R’ when I see a ‘Y’ after a ‘B’
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• In all other cases, I should press ‘L’

An example of applying those rules to a given sequence of stimuli can be seen in Table
1. Notice how the subject should ignore ‘Y’ at step i = 5 by pressing ‘L’ instead of ‘R’, and
correctly presses ’R’ at step i = 7.

Table 1: Short example stimuli with correct action choices for the 1-2-AX working memory
task.

i si ai
0 1 L
1 B L
2 A L
3 X R
4 2 L
5 Y L
6 B L
7 Y R

Performing this task, even when knowing the rules, is not trivial. The subject must keep in
mind at all time which number was last seen, while at the same time paying attention to the
inner task sequences (AX or BY). Learning those rules in the first place is even harder3.

We are going to use this 1-2-AX task to help us briefly explain the PBWM mechanism, and
then to show how GLAS works while solving the same problem.

3.1 The PBWM Mechanism

As the name suggests, the PBWM mechanism is a model for how working memory operates
given the interactions between our prefrontal cortex and basal ganglia.

The basal ganglia are a set of older brain structures known to be responsible, among other
things, for action selection and reward based learning (Chakravarthy, Joseph, & Bapi, 2010;
Stewart, Choo, & Eliasmith, 2010).

As we saw in Figure 2, the PFC is considered to be responsible for storing a temporary
representation of relevant stimuli for action selection. However, how does it know what is
relevant and what is not?

According to PBWM, the basal ganglia is the structure responsible for deciding what should
be gated into the PFC. It has, therefore, two important roles; deciding what should be stored
in the PFC, and which action to select given a certain scenario. In this context, both functions
should be learned from experience.

Figure 3 presents a snapshot of Leabra’s PBWM neural network structure while solving the
1-2-AX working memory task.

As can be seen in this picture, the PBWM mechanism is based on a group of interconnected
neural networks, which play the roles of input, output, hidden neural layers, PFC representa-
tions and Basal Ganglia structure. The mechanism behind Leabra’s neural network is quite

3Parallels to this kind of problem can be found in many real world engineering problems. For instance, in
assistive technology, a robotic wheel chair system might need to learn that the patient chooses to go to the
kitchen only on Tuesdays and Thursdays, and only if he has a visit, or there is a particular program on TV,
respectively. With this information, the wheelchair system could make automated suggestions to the user in
order to help him around the house (Raizer et al., 2013). Other potential applications are the development of
artificial intelligent agents for video games, traffic control and mobile robotics in general.
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Figure 3: Snapshot of Leabra’s PBWM neural network mechanism and connections for the
1-2-AX working memory task (O’Reilly et al., 2012).

complex, and explaining its inner workings is out of the scope of this work. For a complete
description of this mechanism, please refer to (Hazy et al., 2007). Figure 4 shows a simplified
version (diagrams were simplified for clarity) of how the PBWM mechanism would work with
the sequence of events seen in Table 1.

Square boxes represent PFC stripes (Hazy et al., 2007). Each stripe is a section of PFC,
responsible for holding a single stimulus representation. The diagram depicts a unit with three
stripes, but in theory they could be formed by a much longer chain of stripes. Each stripe has its
own “basal ganglia component”, represented here by circles. At any given time, a stimulus (the
hexagon shape) is presented to the whole unit, and an action (downwards arrow) is produced.

A clear circle means that whatever comes from stimuli can fill, and replace, its neighbour’s
stripe content. A dark circle means its neighbour stripe is closed. Being closed means two
things. First, if empty it will not allow new stimuli to enter it and will, therefore, remain
empty. Second, if it is already holding a stimulus it will keep it in, preventing new stimuli from
altering its contents.

As can be seen in Figure 4, the following would happen assuming the basal ganglia has
already learned what to do:

a) No stimulus available. b0 keeps s0 open. s0 is empty.

b) Stimulus “1” available. b0 allows stimulus to get into s0.

c) b0 closes gate for s0. b1 opens gate for s1 and allows “B” to get in.

d) b1 keeps s1’s gate open and stimulus “A” gets in.

e) b1 closes gate for s1, keeping “A” inside s1. b2 opens gate for s2, and allows “X” stimulus
to get in.

f) b0 detects a “2” stimulus. It opens s1’s gate for it to get in and, by doing so, resets the
unit.
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(a) s = empty (b) s = 1 (c) s = B

(d) s = A (e) s = X (f) s = 2

Figure 4: Stimuli gating and action selection for the PBWM mechanism. Simplified from (Hazy
et al., 2007)

See that the first stripe holds a special type of stimuli (for the 1-2-AX task the “1” and
“2” stimuli), which are capable of resetting the unit. These are called “task stimuli” (or task
sequence starters), because they identify the starting stimulus for a particular task sequence.

Up to this point we have assumed that the BG already knows what to do: what to gate
in, what to gate out and which actions to select. In order to learn what to do, the PBWM
model uses a reinforcement learning mechanism (a variation of temporal differences learning
called PVLV - primary value and learned value (O’Reilly et al., 2007)). The net effect is that
the algorithm learns working memory tasks based only on experience.

3.2 GLAS - A Gated-Learning Action Selection Mechanism

Knowledge, in the PBWM model, is stored in a group of interconnected neural networks.
Because information about task sequences and gating rules are encoded in the BG’s neural
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S, Istart

1, L 2, L

A,L B,L

X,R Y,R

(a) s = empty

S, Istart

1, L
2, L

A,L
B,L

X,R
Y,R

(b) s = 1

S, Istart

1, L
2, L

A,L
B,L

X,R
Y,R

(c) s = B

S, Istart

1, L 2, L

A,L
B,L

X,R
Y,R

(d) s = A

S, Istart

1, L 2, L

A,L B,L

X,R
Y,R

(e) s = X

S, Istart

1, L
2, L

A,L
B,L

X,R
Y,R

(f) s = Y

Figure 5: GLAS solving the 1-2-AX task. Red circle shows current node.

networks weights, it is hard for a human user to learn what the network knows.

In order to avoid this we proposed GLAS to represent knowledge in the form of a tree, with
each node holding a stimulus and an action. An example for the 1-2-AX task can be seen in
Figure 5. The tree starts at the root node, and we can see two distinct task sequences coming
from it; 1-A-X and the 2-B-Y.

3.2.1 Action Selection

The algorithm itself starts at the root node. The current node is denoted in Figure 5 by a red
circle surrounding a particular node. When initially presented to a sequence of stimuli, the
algorithm should ignore it until it sees one of the task sequence starters, in this case either “1”
or “2”. If it identifies a task sequence starter in its input, it should move from the root node to
the one related to the aforementioned input stimulus. From here on, it can only move to a child
node or to another task sequence starter node (with the later taking precedence, representing
the unit being reset), and only if some of them contains the currently seen stimulus. Once it
reaches the last node in a task sequence (its ending node), it goes back to its respective task
sequence starter. Notice that the mechanisms shown in Figure 4 and 5 produce the same action
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selection at each step.
Pseudo-code for this algorithm can be seen in Algorithm 1.

Algorithm 1 Action Selection

1: function runAS(s)
2: i← 0(current stimulus)
3: c← 0(current node)
4: for i = 0 to s length - 1 do
5: if c is root then
6: if s(i) is at start node then
7: c← next viable node
8: else if c is sequence start or intermediate then
9: if s(i) is at start node then

10: c← viable start node
11: else
12: if s(i) is at child node then
13: c← next child node
14: else if c is sequence end then
15: if s(i) is at start node then
16: c← viable start node
17: else
18: c← this sequence’s first node

19: actions(i) = known actions(c)

20: return actions

For general cases, this action selection algorithm starts at root node in the solution tree,
and at the first stimulus in the given sequence of events. The algorithm keeps track of which
node it is and, as new stimuli are presented to the algorithm, it behaves differently depending
on what kind of node it is at any given moment. If it is at the root node, it can only go to one
of the starting nodes if one of them holds the current stimulus. If at a starter or intermediate
node, it can only go either to a child node or a starting node holding the current stimulus. If
the current node ends a sequence two things can happen: it can go to a starting node if there
is a starting node holding the current stimulus, but if this is not the case it jumps back to the
node which started the current sequence. Every time a new stimulus is presented an action is
selected based on which node the algorithm is currently at.

3.2.2 Encoding

In the previous section we explained that GLAS represents knowledge in the form of a tree,
with each node holding a stimulus and an action. We must, therefore, encode information for
three different components: the tree structure, the stimulus at each node and the action at each
node.

Encoding tree structure. We encode the “tree structure” as an array of integers, with
position i in the array determining node i ’s parent in the tree. For instance, let us take the
“tree structure” seen in Figure 6. In this example the tree has 8 nodes, and n1 is the root node.
Nodes n2 and n3 are “task sequence starters”. Nodes n4 and n6 are “intermediate nodes”, and
nodes n5, n7 and n8 are called “task sequence ending” nodes.
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n1start

n2 n3

n4 n5

n6

n7

n8

Figure 6: Example of a tree with 8 nodes.

We can represent this “tree structure” as the following vector of integers:

tree structure =
i

[ 0
1

1
2

1
3

2
4

2
5

3
6

4
7

6
8

]

Position i = 1 informs that node 1 has 0 as parent, which means node 1 is the root node.
Position i = 2 informs that node 2 has node 1 as parent. Position i = 3 informs that node 3 also
has node 1 as parent, which means that both nodes 2 and 3 are sequence starters. Following the
same logic for the remaining elements of this array allows us to encode the same information
we see in Figure 6.

Encoding stimuli. Stimulus at each node is also represented as a vector of integers. A
possible example for the tree presented in Figure 6 is as follows.

stimuli =
i

[ 0
1

1
2

1
3

2
4

2
5

2
6

3
7

3
8

]

In this example, the 0 at position i = 1 means node 1 is associated stimulus 0. The 1 in
position i = 2 means node 2 is associated with stimulus 1, and so forth.

Encoding actions. Finally, action at each node is also represented as a vector of integers.
A possible example for the same tree presented in Figure 6 is as follows.

actions =
i

[ 0
1

2
2

2
3

1
4

3
5

4
6

2
7

1
8

]

In this example, the 0 at position i = 1 means node 1 is associated with action 0. The 2 in
position i = 2 means node 2 is associated with action 2, and so forth.

We call “solution tree”, an array of integers with all three components in a row. For instance,
the “solution tree” for the the previous example is the following vector of integers:
solution tree = [0 1 1 2 2 3 4 6 0 1 1 2 2 2 3 3 0 2 2 1 3 4 2 1]

In other words, the “solution tree” is encoded as an array of integers with three parts; tree
structure, stimuli and actions. The final solution is a 3 ∗ N sized vector, with N being the
number of nodes: “solution tree” = [“tree structure” “stimuli” “actions”].
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Table 2: Codification for the 1-2-AX benchmark task

For stimuli:
stim U 1 2 A B X Y
int 0 1 2 3 4 5 6

For actions:
act I L R
int 0 1 2

Representing the solution tree for the 1-2-AX task. For the 1-2-AX benchmark task,
we have used the following codification with “U” representing an unknown stimulus and “I” an
ignore action, as seen in Table 2.

As an example, a solution tree for the 1-2-AX task is as follows.

• tree structure = [0 1 1 2 3 4 5]

• stimuli = [0 1 2 3 4 5 6]

• actions = [0 1 1 1 1 2 2]

solution tree = [0 1 1 2 3 4 5 0 1 2 3 4 5 6 0 1 1 1 1 2 2]

3.2.3 Learning

It is important to notice that the action selection algorithm itself is fixed. The only thing that
changes is how it deals with stimuli (what to gate in, gate out and which action to select),
which is defined by the solution tree.

Therefore, the learning process in GLAS consists on finding the solution tree which max-
imizes reward given a sequence of events. Each event is composed by a current stimulus, a
selected action and a reward.

By using the same coding presented in Table 2, a possible sequence of events is shown in
Table 3. For each event “i”, there is a stimulus si, a selected action ai and a respective reward
ri. Given rewards can be of values “1”, when it chooses the correct button for non-ending
cases, and “-1” for when it pushes the wrong one. Rewards are “10”, when it chooses the
correct button for sequence ending cases, and “-10” when it makes the wrong choice.

Then, we search for a tree maximizing the total accumulated reward by the algorithm as it
is presented to the given sequence4

In this work, we used a traditional genetic algorithm (GA) to explore the space of possible
solutions. We named the most important parameters as:

α : population size

µ : number of parents

λ : number of offspring

ng : number of generations

The GA was implemented using Opt4J framework (Lukasiewycz, Glaß, Reimann, & Teich,
2011) for meta-heuristic optimization. Chromosome codification was defined as explained in
Section 3.2.2, and the GA’s operands and fitness function were implemented as follows.

4In other words, GLAS is currently an offline learning algorithm. A fixed sequence of events must be
presented to it in order for it to learn a new solution. Much like how an MLP (Multi Layer Perceptron) neural
network learns in batch mode.
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Table 3: Example of sequence of events used to learn solutions for the 1-2-AX working memory
task. Rewards ri are given by the environment.

i si ai ri
0 1 1 1
1 4 1 1
2 3 1 1
3 5 2 10
4 2 1 1
5 3 1 1
6 4 1 1
7 6 2 10
8 1 2 -1
9 4 1 1
10 3 1 1
11 5 1 -10
12 2 1 1
13 3 0 -1
14 4 1 1

i si ai ri
15 6 2 10
16 2 1 1
17 4 1 1
18 3 1 1
19 5 1 1
20 1 1 1
21 5 1 1
22 4 1 1
23 6 1 1
24 2 1 1
25 3 1 1
26 3 1 1
27 6 2 -10

Operands. Mutation is slightly different for each part of the chromosome. For actions, it is
a random variation between 0 and the number of known actions available (including the ignore
case). For stimuli it is the same, but in the interval ranging from 0 to the number of known
stimuli (including the unknown case). For structure, each position is only allowed to vary in a
range that produces a valid tree. We used the default crossover.

Fitness. Each individual in the population goes through the same sequence of events, using
the knowledge in its solution tree to choose the best action at each time step. If it chooses
the same action in the current event, it accumulates its reward (which could be positive or
negative). If it chooses a different action, it cannot judge the merit of the action it has chosen
and, therefore, ignores the reward at the present event and moves on. The total final fitness is
calculated as follows.

Given:

φ : total fitness

N : number of nodes

ρ : accumulated reward

ne : number of events in the sequence

ni : number of intermediate nodes in the history of nodes

ι : reward to avoid staying in intermediate nodes5

5Adding this reward helped the algorithm escape some local maxima by encouraging individuals going
through whole task sequences more often.
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In order to calculate ι, we first present the sequence to a given individual, and record its
history of nodes. At each time step, it should be at a particular node from the solution tree.
Whenever the current node is an intermediate node, we add “1” to ni.

Equation 1 shows how to calculate the reward to those individuals who avoid staying too
long in intermediate nodes.

ι = 1− ni
ne

(1)

Finally, Equation 2, shows the final fitness for a particular individual.

φ = ρ+ ι−N (2)

There is a penalty for larger trees (larger N), which acts as an incentive for more parsimo-
nious solutions.

Pseudo-code for the learning component of GLAS can be see in Algorithm 2.

Algorithm 2 Learning from sequence

1: function Learn(events sequence, N)
2: population ← α random valid solutions with N nodes
3: for g = 1 to ng do
4: fitness ← getFitness(population, events)
5: population ← selectBestFit(population, fitness)
6: population ← applyOperands(population)

7: fitness ← getFitness(population, events)
8: solution ← individual with best fitness
9: return solution

In getFitness(), each individual in the population is passed to runAS(), producing a sequence
of chosen actions. This list of chosen actions is then used to calculate the individual’s fitness
based on Equations 1 and 2.

We must stress, however, that the learning component illustrated in Algorithm 2 could be
carried out by other optimization algorithms. Therefore, this pseudo-code should be taken as
reference for how we solved the problem of finding an appropriate solution, and not as a set of
necessary rules that must be followed.

4 Results

In order to train a GLAS instance with the sequence of events given in Table 3, we used
the following parameters (other parameters are the default ones): α = 100, µ = 2 , λ = 2,
ng = 1000.

We ran the learning algorithm for different numbers of nodes, ranging from N=2 to N=9.
The result, in fitness, for the best solution found with each number of nodes can be seen in
Figure 7.

As the number of nodes grows from 2 to 7, there is an increase in the resulting fitness for
the best found solution. After that. if the algorithm tries to add more nodes to the solution,
fitness starts to decrease accordingly. This is an indication that the best overall found solution,
given this sequence of events, is the one with N=7.
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Figure 7: GLAS learning the 1-2-AX working memory task for different numbers of nodes.

In the following figures we can see examples of solutions found by the GA. Each node is
denoted by a gray circle with its number written at its lower center. Inside each circle and to
the left, we see the stimulus that activates the given node, while to the right we can see the
action it performs. Figure 8a shows the best solution found for N=6. Figures 8b and 8c show
two possible solutions for N=7. Notice how fitness is slightly higher for the solution described
in Figure 8b. At last, Figure 8d shows the best solution found for N=8, which is very similar in
functionality to the best one for N=7, but has a penalty for having more nodes in comparison.

5 Discussion

This GLAS algorithm was inspired by a computational neuroscience model of how the PFC and
BG interact in order to learn action selection from stimuli and late rewards. Abstracting this
mechanism as an action selection algorithm and a knowledge tree working together provided
the following benefits:

• What the algorithm has learned is now in human readable form.

• As a combinatorial task, it can now be tackled by a number of optimization techniques
specialized in solving this class of problems.

• The use of GA could ease its application to multi-objective problems.

• New heuristics could be specifically designed to modify the fitness function in order to
improve training for different applications.

We are particularly interested in further investigating how different heuristics would influ-
ence the algorithm’s capacity to correlate stimuli far apart in time. Some of the drawbacks we
identify in this approach are:

• No guarantee to find the best possible solution.
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(c) Alternative solution for N=7
(Fitness = 43.1250).
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(d) Best found solution for N=8
(Fitness = 42.3333).

Figure 8: Results for the learning algorithm with different number of nodes.

• Curse of dimensionality. A larger number of stimuli and actions can make this approach
unfeasible depending on how big the space to be explored is.

Both drawbacks are common when dealing with combinatorial optimization problems, and
should always be taken into consideration whenever choosing GLAS, or similar mechanisms, to
solve a specific problem.

6 Conclusions

In this paper we introduced and described a novel gated learning action selection algorithm
named GLAS. Its mechanism was inspired by a computational neuroscience model of how the
PFC and BG interact in order to learn action selection from stimuli and rewards separated in
time.

We are currently working in an online mode of learning, which we believe is more interesting
in the context of intelligent agents. Our next step is to validate GLAS with real world problems,
such as controlling intelligent agents in games and mobile robotics. Then, we intend to explore
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other optimization tools - such as Particle Swarm Optimization, Simulated Annealing and others
- in order to investigate whether any of those algorithms might produce a better result. We
also intend to address the aforementioned drawbacks, and investigate some of the algorithms
properties such as convergence and potential for generalization.
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