
Agent-Oriented
Software Engineering

Nick Jennings
Dept of Electronics and Computer Science

University of Southampton, UK.
nrj@ecs.soton.ac.uk

http://www.ecs.soton.ac.uk/~nrj/

2

Software Development is Difficult
♦ One of most complex construction task humans undertake

“Computer science is the first engineering discipline ever in which the
complexity of the objects created is limited by the skill of the creator and
not limited by the strength of the raw materials. If steel beams were
infinitely strong and couldn’t ever bend no matter what you did, then
skyscrapers could be as complicated as computers.” Brian K. Reid

♦ True whatever models and techniques are applied
“the essential complexity of software” Fred Brooks

♦ Software engineering provides models &
techniques that make it easier to handle
this essential complexity

3

Software Development is
Getting Harder

♦Shorter development lifecycles
♦More ambitious requirements
♦Less certain requirements

• Greater scope for change

♦More challenging environments
• Greater dynamism
• Greater openness

4

• interacting agents

Software Engineering:
Continually Playing Catch Up

♦Better Models
• components
• design patterns
• software architectures

♦Better Processes
• light methods
• heavier methods

“Our ability to imagine complex applications will always
exceed our ability to develop them”

Grady Booch

5

The Adequacy Hypothesis

Agent-oriented approaches can
enhance our ability to model, design

and build complex distributed
software systems.

6

Talk Outline
I. The Essence of Agent-Based Computing

II. The Case for Agent-Oriented Software Engineering

III. Potential Drawbacks

IV. Conclusions

7

Talk Outline
I. The Essence of Agent-Based Computing

II. The Case for Agent-Oriented Software Engineering

III. Potential Drawbacks

IV. Conclusions

“The intolerable wrestle with words
and meanings.”

T. S. Eliot

8

“encapsulated computer system, situated in some environment, and capable
of flexible autonomous action in that environment in order to meet its

design objectives” (Wooldridge)

Agent

9

“encapsulated computer system, situated in some environment, and capable
of flexible autonomousautonomous action in that environment in order to meet its

design objectives” (Wooldridge)

Agent

♦ control over internal state and over own behaviour

10

“encapsulated computer system, situatedsituated in some environmentin some environment, and capable
of flexible autonomous action in that environment in order to meet its

design objectives” (Wooldridge)

Agent

♦ control over internal state and over own behaviour

♦ experiences environment through sensors and acts through effectors

11

“encapsulated computer system, situated in some environment, and capable
of flexibleflexible autonomous action in that environment in order to meet its

design objectives” (Wooldridge)

Agent

♦ reactive: respond in timely fashion to environmental change
♦ proactive: act in anticipation of future goals

♦ control over internal state and over own behaviour

♦ experiences environment through sensors and acts through effectors

12

Definitional Malaise
“My guess is that object-oriented programming will be what
structured programming was in the 1970s. Everybody will be in
favour of it. Every manufacturer will promote his product as
supporting it. Every manager will pay lip service to it. Every
programmer will practice it (differently). And no one will know
just what it is.” (Rentsch, 82)

“My guess is that agent-based computing will be what object-
oriented programming was in the 1980s. Everybody will be in
favour of it. Every manufacturer will promote his product as
supporting it. Every manager will pay lip service to it. Every
programmer will practice it (differently). And no one will know
just what it is.” (Jennings, 00)

13

Multiple Agents

In most cases, single agent is insufficient

• no such thing as a single agent system (!?)

• multiple agents are the norm, to represent:
n natural decentralisation
n multiple loci of control
n multiple perspectives
n competing interests

14

Agent Interactions
♦ Interaction between agents is inevitable

• to achieve individual objectives, to manage inter-
dependencies

♦ Conceptualised as taking place at knowledge-level
• which goals, at what time, by whom, what for

♦ Flexible run-time initiation and responses
• cf. design-time, hard-wired nature of extant approaches

paradigm shift from previous perceptions of
computational interaction

15

Redo

Agent-Based Manufacturing Control

Buffer

Store of
Part A’s

Store of
Part C’s

O1

O2

O1, O2

O5

O6

O6

O9

O7, O8O3, O4

OO

O

OO

O3

OO2

Store of
Part B’s

Orders
A:O2; B:O3; C:O8

16

Redo

Agent-Based Manufacturing Control

Buffer

Store of
Part A’s

Store of
Part B’s

Store of
Part C’s

O1

O2

O1, O2

O5

O6

O6

O9

O7, O8O3, O4

O OO

O

O4

OO1O2

O3

O

O2

O3

Orders
A:O1; B:O4; C:O7

17

OO

Redo

Agent-Based Manufacturing Control

Buffer

Store of
Part A’s

Store of
Part B’s

Store of
Part C’s

O1

O1, O2

O5

O6

O6

O9

O7, O8O3, O4

O OO

O2

O3

OO4

O1

O

O2

O3

O2

O4

O1

18

Redo

Agent-Based Manufacturing Control

Buffer

Store of
Part A’s

Store of
Part B’s

Store of
Part C’s

O1

O2

O1, O2

O5

O6

O6

O9

O7, O8O3, O4

O2

O5

OO

OOOO

O5

O4

19

Redo

Agent-Based Manufacturing Control

Buffer

Store of
Part A’s

Store of
Part B’s

Store of
Part C’s

O1

O2

O1, O2

O5

O6

O6

O9

O7, O8O3, O4

O2

OO OO

OO

O5O4

O5

20

Redo

Agent-Based Manufacturing Control

Buffer

Store of
Part A’s

Store of
Part B’s

Store of
Part C’s

O1

O2

O1, O2

O5

O6

O6

O9

O7, O8O3, O4

O2

OO OO

OO O5

O6O6

21

Redo

Agent-Based Manufacturing Control

Buffer

Store of
Part A’s

Store of
Part B’s

Store of
Part C’s

O1

O2

O1, O2

O5

O6

O6

O9

O7, O8O3, O4

O2

OO OO

OO O5
O6O6

O7

22

Redo

Agent-Based Manufacturing Control

Buffer

Store of
Part A’s

Store of
Part B’s

Store of
Part C’s

O1

O2

O1, O2

O5

O6

O6

O9

O7, O8O3, O4

OO OO7

OO

O5 O5

O6O6

23

Redo

Agent-Based Manufacturing Control

Buffer

Store of
Part A’s

Store of
Part B’s

Store of
Part C’s

O1

O2

O1, O2

O5

O6

O6

O9

O7, O8O3, O4

OO

O7

OO

O6 O6
O9O9

OO

24

Redo

Agent-Based Manufacturing Control

Buffer

Store of
Part A’s

Store of
Part B’s

Store of
Part C’s

O1

O2

O1, O2

O5

O6

O6

O9

O7, O8O3, O4

OO

O9

OO
O6 O6

O9O9

OO

O8

25

Redo

Agent-Based Manufacturing Control

Buffer

Store of
Part A’s

Store of
Part B’s

Store of
Part C’s

O1

O2

O1, O2

O5

O6

O6

O9

O7, O8O3, O4

OO

OO

O9O9O9

O6 O6

OO8

26

Redo

Agent-Based Manufacturing Control

Buffer

Store of
Part A’s

Store of
Part B’s

Store of
Part C’s

O1

O2

O1, O2

O5

O6

O6

O9

O7, O8O3, O4

OO

OO

O9O9O9

O9 O9

OO

O8

27

Redo

Agent-Based Manufacturing Control

Buffer

Store of
Part A’s

Store of
Part B’s

Store of
Part C’s

O1

O2

O1, O2

O5

O6

O6

O9

O7, O8O3, O4

OO

OO

O9O9O9

O9 O9

OO

O9

28

Redo

Agent-Based Manufacturing Control

Buffer

Store of
Part A’s

Store of
Part B’s

Store of
Part C’s

O1

O2

O1, O2

O5

O6

O6

O9

O7, O8O3, O4

OO

OO

O9O9O9

OO

O9 O9 O9

29

Agents act/interact to achieve objectives:
• on behalf of individuals/companies
• part of a wider problem solving initiative

underlying organisational relationship
between the agents

Organisations

30

Organisations

This organisational context:
• influences agents’ behaviour

n relationships need to be made explicit
– peers
– teams, coalitions
– authority relationships

• is subject to ongoing change
n provide computational apparatus for creating,

maintaining and disbanding structures

31

A Canonical View

Environment

Agent
Interactions

Organisational
relationships

(see also: Castelfranchi, Ferber, Gasser, Lesser, …..)

Sphere of influence

32

Talk Outline
I. The Essence of Agent-Based Computing

II. The Case for Agent-Oriented Software Engineering

III. Potential Drawbacks

IV. Conclusions

ü

33

Making the Case: Quantitatively

0

10

20

30

40

50

Productivity Reliability Maintainability

Software Metrics

Objects Agents

“There are 3 kinds of lies: lies, damned lies and statistics”
Disraeli

34

Making the Case: Qualitatively

35

Software techniques for
tackling complexity

Making the Case: Qualitatively

36

Tackling Complexity

♦Decomposition

♦Abstraction

♦Organisation

37

Software techniques for
tackling complexity

Making the Case: Qualitatively

Nature of complex
systems

38

Complex Systems
♦ Complexity takes form of “hierarchy”

•• notnot a control hierarchy
• collection of related sub-systems at different levels of abstraction

♦ Can distinguish between interactions among sub-
systems and interactions within sub-systems
• latter more frequent & predictable: “nearly decomposable systems”

♦ Arbitrary choice about which components are
primitive

♦ Systems that support evolutionary growth develop
more quickly than those that do not: “stable
intermediate forms”

(Herb Simon)

39

Nature of complex
systems

Agent-based
computing

Software techniques for
tackling complexity

Making the Case: Qualitatively

40

Nature of complex
systems

Agent-based
computing

Degree of
Match

Software techniques for
tackling complexity

Making the Case: Qualitatively

41

The Match Process

1. Show agent-oriented decomposition is effective way of
partitioning problem space of complex system

2. Show key abstractions of agent-oriented mindset are
natural means of modelling complex systems

42

The Match Process

1. Show agent-oriented decomposition is effective way of
partitioning problem space of complex system

2. Show key abstractions of agent-oriented mindset are
natural means of modelling complex systems

43

Decomposition: Agents

♦ In terms of entities that have:
• own persistent thread of control (active: “say go”)

• control over their own destiny (autonomous: “say no”)

♦ Makes engineering of complex systems easier:
• natural representation of multiple loci of control

n “real systems have no top” (Meyer)

• allows competing objectives to be represented and
reconciled in context sensitive fashion

44

Decomposition: Interactions

♦ Agents make decisions about nature & scope
of interactions at run time

♦ Makes engineering of complex systems easier:
• unexpected interaction is expected

n not all interactions need be set at design time

• simplified management of control relationships
between components
n coordination occurs on as-needed basis between

continuously active entities

45

The Match Process

1. Show agent-oriented decomposition is effective way of
partitioning problem space of complex system

2. Show key abstractions of agent-oriented mindset are
natural means of modelling complex systems

ü

46

Suitability of Abstractions
♦ Design is about having right models

♦ In software, minimise gap between units of
analysis and constructs of solution paradigm
• OO techniques natural way of modelling world

47

Complex System Agent-Based System

Sub-systems

Sub-system components

Interactions between sub-systems and
sub-system components

Relationships between sub-systems
and sub-system components

48

Complex System Agent-Based System

Sub-systems Agent organisations

Sub-system components

Interactions between sub-systems and
sub-system components

Relationships between sub-systems
and sub-system components

49

Complex System Agent-Based System

Sub-systems Agent organisations

Sub-system components Agents

Interactions between sub-systems and
sub-system components

Relationships between sub-systems
and sub-system components

50

Complex System Agent-Based System

Sub-systems Agent organisations

Sub-system components Agents

Interactions between sub-systems and
sub-system components:

“at any given level of abstraction, find
meaningful collections of entities that
collaborate to achieve some higher
level view” (Booch)

“cooperating to achieve common
objectives”

“coordinating their actions”

“negotiating to resolve conflicts”

Relationships between sub-systems
and sub-system components

51

Complex System Agent-Based System

Sub-systems Agent organisations

Sub-system components Agents

Interactions between sub-systems and
sub-system components

“cooperating to achieve common
objectives”

“coordinating their actions”
“negotiating to resolve conflicts”

Relationships between sub-systems
and sub-system components

- change over time

- treat collections as single
coherent unit

Explicit mechanisms for representing &
managing organisational relationships

Structures for modelling collectives

52

ü
The Adequacy Hypothesis

Agent-oriented approaches can
enhance our ability to model, design

and build complex distributed
software systems.

53

The Establishment Hypothesis

As well as being suitable for designing and
building complex systems,

agents will succeed as a software
engineering paradigm

[NB: will be complementary to existing software models
like OO, patterns, components, …]

54

Agents Consistent with Trends
in Software Engineering

♦ Conceptual basis rooted in problem domain
• world contains autonomous entities that interact to get things done

55

Agents Consistent with Trends
in Software Engineering

♦ Conceptual basis rooted in problem domain

♦ Increasing localisation and encapsulation
• apply to control, as well as state and behaviour

56

Agents Consistent with Trends
in Software Engineering

♦ Conceptual basis rooted in problem domain

♦ Increasing localisation and encapsulation

♦ Greater support for re-use of designs and programs
• whole sub-system components (cf. components, patterns)

n e.g. agent architectures, system structures

• flexible interactions (cf. patterns, architectures)
n e.g. contract net protocol, auction protocols

57

Agents Support System
Development by Synthesis

An agent is a stable intermediate form
• able to operate to achieve its objectives and interact with

others in flexible ways

construct “system” by bringing agents together and watching
overall functionality emerge from their interplay

• well suited to developments in:
n open systems (e.g. Internet)
n e-commerce

58

Talk Outline
I. The Essence of Agent-Based Computing

II. The Case for Agent-Oriented Software Engineering

III. Potential Drawbacks

IV. Conclusions

üü

“The moment we want to believe something, we suddenly
see all the arguments for it, and become blind to

the arguments against it”
George Bernard Shaw

59

Isn’t autonomous software and
making decisions about interactions

at run-time a recipe for disaster?

60

♦ Yes
• If expect to just throw agents together and have a

coherent and efficient system.
n Sometimes this is exactly what is desired

– Simulation software

n Also the default for synthesised systems

♦No
• If engineer system appropriately

n Interaction Engineering
n Organisation Engineering

61

Customer
Service
Agents

Provide Quote

BT’s Provide Customer Quote Process

Producer Consumer
Serv

ice
Nam

e

(Jennings et al.)

62

Customer
Service
Agents

VetCustomer

Provide Quote

BT’s Provide Customer Quote Process

Customer
Vetting
Agents

Producer Consumer A B C D n...Serv
ice

Nam
e

(Jennings et al.)

63

Customer
Service
Agents

Legal
Agents

VetCustomer

Provide Quote

Cost&DesignNetwork

BT’s Provide Customer Quote Process

Customer
Vetting
Agents

Producer Consumer A B C D n...Serv
ice

Nam
e

Design
Agents

(Jennings et al.)

ProvideLegalAdvice

64

Customer
Service
Agents

Legal
Agents

VetCustomer

Provide Quote

Cost&DesignNetwork

BT’s Provide Customer Quote Process

Customer
Vetting
Agents

Producer Consumer A B C D n...Serv
ice

Nam
e

Design
Agents

(Jennings et al.)

ProvideLegalAdvice

SurveyPremises

Survey
Agents

65

Interaction Engineering:
Service Provisioning = Negotiation

♦Two agents must agree about conditions
under which service will be executed
• price
• quality
• start and end times
• ………

♦Need to design appropriate negotiation
protocol

66

The Vet Customer Negotiation

♦ Is a 1:many negotiation
• One buyer, many sellers

♦Structured as a reverse auction
• Efficient means for allowing agent to quickly find

partner with highest valuations
• Multi-dimensional English (open cry) auction

(Vulkan and Jennings, 00)

67

Multi-Dimensional English Auction

Initiation

Buyer announces
• declared utility function (U)
• maximum price will pay (P)
• minimum acceptable price
• time will wait between offers (T)
• minimum percentage increase

that next offer must exceed (X)

can lie about U and P

Auction

♦ Sellers submit offers (on all
dimensions)
• can lie and speculate

♦ Offer accepted if:
• protocol has not terminated
• offer exceeds last accepted one

by X%

♦ Buyer makes acceptable bid
public

♦ Terminates T seconds after
last acceptable offer

68

Analysis of the Protocol

Can prove that:
• negotiation will terminate
• no point in buyer lying about U and P

n truth telling is dominant strategy
• no point in seller speculating about competitors

n bid X% more than current price, up to reservation
level is the dominant strategy

• in buyer’s best interest to use suggested protocol
n no other protocol (either auction or direct

negotiation) can yield a better result for it

69

Organisation Engineering
♦ Survey Dept is part of Design Division

• Have common goals and objectives
• Design agents have degree of power over survey agents

n Relationship explicitly represented in both agents
n Survey agents still autonomous though!

♦ Impact of organisational relationship
• Negotiation is cooperative in nature

n Don’t reject requests unless cannot meet them
n Quickly move to region of agreement

– Agreement produced if one exists

n Search for win-win negotiation solutions
– Using concept of fuzzy similarity (Faratin et al., 2000)

70

Talk Outline
I. The Essence of Agent-Based Computing

II. Promise of Agent-Oriented Software Engineering

III. Potential Drawbacks

IV. Conclusions

ü
ü
ü

“We seldom attribute good sense, except
with those who agree with us.”

Duc de la Rouchefoucauld

71

Promise

Agent-based computing can:

provide powerful metaphors, concepts
and techniques for conceptualising,
designing and implementing complex
distributed systems

72

Realising the Promise
♦ Practical methodologies

• For analysing and designing agent-based systems
• Should be useable by practitioners

♦ Industrial strength toolkits
• So that don’t have to start from scratch

♦ Re-useable know-how and technologies
• Libraries of interactions protocols
• Organisational patterns

73

Acknowledgements

♦ Cristiano Castelfranchi

♦ Ed Durfee

♦ Les Gasser

♦ Carl Hewitt

♦ Mike Huhns

♦ Vic Lesser

♦ Joerg MÜller

♦ Simon Parsons

♦ Van Parunak

♦ Carles Sierra

♦ Mike Wooldridge

♦ Franco Zambonelli

74

References
♦ P. Faratin, C. Sierra and N. R. Jennings (2000) “Using similarity criteria to

make negotiation trade-offs” Proc. 4th Int. Conf on Multi-Agent Systems,
Boston, 119-126.

♦ N.R. Jennings (2000) “On Agent-Oriented Software Engineering” Artificial
Intelligence 117 (2) 277-296.

♦ N. R. Jennings, P. Faratin, T. J. Norman, P. O’Brien and B. Odgers (2000)
“Autonomous agents for business process management” Int. J. of Applied
Artificial Intelligence 14 (2) 145-190.

♦ N. Vulkan and N. R. Jennings (2000) “Efficient mechanisms for the supply of
services in multi-agent environments” Int J. of Decision Support Systems 28
(1-2) 5-19.

