- Sams Teach Yourself CORBA in 14 Days - Programming - CORBA

ile they

Your Hame

® Exact Phrase
O All words

Search
Search Tips

Rlylnformi T

Click Here for
High-Tech
Jobs!

developerWorks™

DPEC we—

Based Training

F
h click to
Recommaend-it.

-@m TopIT
Hews

TGOS

Hot Topics Yisual Basic Windows 2000 Windows MT

Soluton Centers PragramlIT DatabazelT WebIT MetworkIT

Sams Teach Yourself CORBA
In 14 Days

Author: Jeremy Rosenberger
Web Price: $29.99 US
Publisher: Sams

I SBN: 0672312085
Publication Date: 1/9/98
Pages: 454

Buy This Product

Table of Contents

“in 14 DAYS

Save to Mylnforml T

Teach Yourself CORBA in 14 Daysisatutorial that will provide an
introduction to distributed system development using CORBA. The first week
will provide the reader with much needed guidance towards the general
concepts of distributed software development and CORBA architecture such as
Object Request Broker (ORBSs), and Interface Definition Language (IDL). It
will build upon the principles of object-oriented analysis and design, with
concepts of distributed objects, and other key CORBA-related issues such as
memory management and design patterns forced by the CORBA architecture.
The second week will take everything the reader has |earned to that point, and
apply it in a step-by-step manner for building a CORBA-based system. In
addition to the basics, the reader will learn afew of the key advanced concepts
and higher-level services that are sometimes required for certain CORBA.

Table of Contents
Week 1 at a Glance
Day 1 -Getting Familiar with CORBA
Day 2 -Understanding the CORBA Architecture
Day 3 -Mastering the Interface Definition Language (IDL)
Day 4 -Building a CORBA Application
Day 5 -Designing the System: A Crash Course in Object-Oriented
Analysis and Design
Day 6 -Implementing Basic Application Capabilities
Day 7 -Using Exceptions to Perform Error Checking
Week 2 at a Glance
Day 8 -Adding Automated Teller Machine (ATM) Capability
Day 9 -Using Callbacks to Add Push Capability
Day 10 -Learning About CORBA Design Issues
Day 11 -Using the Dynamic Invocation Interface (DII)
Day 12 -Exploring CORBAservices and CORBAfacilities
Day 13 -Developing for the Internet Using CORBA and Java
Day 14 -Web-Enabling the Bank Example with Java
Week 2in Review
Appendixes -
Appendix A -Answers to Quizzes and Exercises
Appendix B -CORBA Tools and Utilities
Appendix C -What Lies Ahead? The Future of CORBA

http://www.informit.com/product/0672312085/ (1 of 2) [17.07.2000 18:30:32]

Linu=/Open Source

Cizco Knowledge Suite

ConfiguralT

Engineer and featured
author for Macmillan
Computer Publishing. His
primary focusison Java
development.

Featured Book

Advanced

M essaging
' Applications with

| SM O andl
MQSeries

Advanced MSMQ
programming is written
for advanced Windows
95/98/NT developers and
C programmers who need
to know the architecture
and programming
concepts associated with
the Microsoft Message
Queue Server.

http://www.informit.com/
http://ad.doubleclick.net/jump/www.informit.com/programit/;cat=developer;num=92
javascript:document.regularSearch.submit();
http://www.informit.com/search/tips/
http://ad.doubleclick.net/clk;1464039;4446282;i?http://www.informit.com/jobs
http://www.informit.com/news/
http://www.informit.com/downloads/
http://www.informit.com/store/
http://www.informit.com/itlibrary/
http://www.informit.com/edchoice/
http://www.informit.com/alphabook/
http://infobase.informit.com/
http://www.informit.com/My/Accounts
http://ad.doubleclick.net/jump/informit.com/sponsor-button/brassring/badge;sz=100x60
http://ad.doubleclick.net/jump/informit.com/sponsor-button/ibm/badge2;sz=88x31
http://www.informit.com/training/
http://www.recommend-it.com/p.e?415858
http://www.informit.com/news/
http://www.informit.com/downloads/
http://www.informit.com/programit/vb/
http://www.informit.com/networkit/windows2000/
http://www.informit.com/networkit/winnt/
http://www.informit.com/networkit/linux/
http://www.knowcisco.com/
http://www.informit.com/programit/
http://www.informit.com/databaseit/
http://www.informit.com/webit/
http://www.informit.com/networkit/
http://www.informit.com/configureit/
http://www.informit.com/redir/buyit.cgi?0672312085
http://www.informit.com/My/Add?isbn=0672312085&title=Sams+Teach+Yourself+CORBA+in+14+Days&category=Programming&topic=CORBA&chapter=&elementname=
http://ad.doubleclick.net/jump/informit.com/sponsor-button/ibm/badge1;sz=120x60
http://www.informit.com/author/author_16786.shtml
http://www.informit.com/author/author_16786.shtml
http://www.informit.com/product/078972023X/
http://www.informit.com/product/078972023X/
http://www.informit.com/product/078972023X/
http://www.informit.com/product/078972023X/
http://www.informit.com/product/078972023X/
http://www.informit.com/product/078972023X/

- Sams Teach Yourself CORBA in 14 Days - Programming - CORBA

http://www.informit.com/product/0672312085/ (2 of 2) [17.07.2000 18:30:32]

http://www.informit.com/about/
http://www.informit.com/press/
http://www.informit.com/about/advertising/
http://www.informit.com/legal/privacy/
http://www.informit.com/contact/
http://www.informit.com/legal/copyright/
http://www.informit.com/legal/privacy/

- Getting Familiar with CORBA From: Sams Teach Yourself CORBA in 14 Days

ile they last!

G,

Your Hame

® Exact Phrase
O All words

Search
Search Tips

Rlylnformi T

InfarmlT Stare
Dol g

Click Here for
High-Tech
Jobs!

developerWorks™

DPEC we—

Based Training

W ciick to
Recommaend-it.

Top IT
Hews

@m

TGOS

Hot Topics Yisual Basic Windows 2000 Windows MT Linu=/Open Source

Soluton Centers PragramlIT DatabazelT WebIT MetworkIT ConfiguralT

Getting Familiar with CORBA

Contents Next >

Save to Mylnforml T

From: Sams Teach
Yourself CORBA in 14
Days

Author: Jeremy
Rosenberger

Publisher: Sams

More Information

Al
Yoursell

CORBA
in 14 DAYS

o The Purpose of This Book
« Background: History of Distributed Systems
o The Beginning: Monalithic Systems and Mainframes
o The Revolution: Client/Server Architecture
o The Evolution: Multitier Client/Server
o The Next Generation: Distributed Systems
o Why CORBA?
o Exploring CORBA Alternatives
« CORBA History
o Introducing the Object Management Group (OMG)
o CORBA 1.0
o CORBA 2.0and IIOP
o CORBA Architecture Overview
o The Object Request Broker (ORB)
o Interface Definition Language (IDL)
o The CORBA Communications Model
o The CORBA Object Model
o CORBA Clients and Servers
o Stubs and Skeletons
o Beyond the Basics. CORBAservices and CORBAfacilities
e« Summary
o Q&A
« Workshop
0 Quiz

Cizco Knowledge Suite

The Purpose of This Book

Certainly, thisisn't the first book to be written on the subject of the Common Object Request Broker
Architecture (CORBA)--not by along shot. However, among CORBA books currently on shelves, it might be

unique in its approach. At the time this book was written, few, if any, texts were available that covered CORBA

at an introductory level. This book attempts to fill that gap.

CORBA is not a subject for the fainthearted, to be sure. Although development tools that hide some of the
complexity of CORBA exist, if you embark on a project to develop areasonably sophisticated CORBA

http://www.informit.com/content/0672312085/element_002.shtml (1 of 9) [17.07.2000 18:30:57]

http://www.informit.com/
http://ad.doubleclick.net/jump/www.informit.com/programit/;cat=developer;num=92
javascript:document.regularSearch.submit();
http://www.informit.com/search/tips/
http://ad.doubleclick.net/clk;1464039;4446282;i?http://www.informit.com/jobs
http://www.informit.com/news/
http://www.informit.com/downloads/
http://www.informit.com/store/
http://www.informit.com/itlibrary/
http://www.informit.com/edchoice/
http://www.informit.com/alphabook/
http://infobase.informit.com/
http://www.informit.com/My/Accounts
http://ad.doubleclick.net/jump/informit.com/sponsor-button/brassring/badge;sz=100x60
http://ad.doubleclick.net/jump/informit.com/sponsor-button/ibm/badge2;sz=88x31
http://www.informit.com/training/
http://www.recommend-it.com/p.e?415858
http://www.informit.com/news/
http://www.informit.com/downloads/
http://www.informit.com/programit/vb/
http://www.informit.com/networkit/windows2000/
http://www.informit.com/networkit/winnt/
http://www.informit.com/networkit/linux/
http://www.knowcisco.com/
http://www.informit.com/programit/
http://www.informit.com/databaseit/
http://www.informit.com/webit/
http://www.informit.com/networkit/
http://www.informit.com/configureit/
http://www.informit.com/My/Add?isbn=0672312085&title=Sams+Teach+Yourself+CORBA+in+14+Days&category=Programming&topic=CORBA&chapter=2839&elementname=Getting+Familiar+with+CORBA
http://www.informit.com/product/0672312085

- Getting Familiar with CORBA From: Sams Teach Yourself CORBA in 14 Days

application, chances are that you will experience some of CORBA's complexities firsthand. However, though
there might be a steep learning curve associated with CORBA, aworking knowledge of CORBA fundamentals
iswell within the grasp of any competent programmer.

For the purposes of this book, it is assumed that you aready have agood deal of programming experience.
CORBA is alanguage-independent architecture, but because C++ and Java are the principal languages used to
develop CORBA applications, it would be preferable if you had experience with one of these languages. (Most
of the examples are written in C++, with a healthy dose of Javathrown in for good measure.) It wouldn't hurt if
you were familiar with object-oriented analysis and design concepts either, but just in case you need a refresher,
this book will help you review these concepts.

Operating under the assumption that learning CORBA is a surmountable (if daunting) goal for most
programmers, this book begins teaching the fundamentals of CORBA, starting with an overview of the
architecture. Y ou'll then move on to a primer on the Interface Definition Language (IDL), a cornerstone on
which most CORBA applications are based. After that, you'll start building CORBA applications, and before
you know it, you'll be exposed to advanced concepts and design issues, along with other useful things such as
CORBAservices, CORBAfacilities, and the Dynamic Invocation Interface, or DIl (don't worry--you'll learn
what al this means, in due time). All this--and more--in a mere 14 days.

What this book does not do--indeed, cannot do--is make you a CORBA expert overnight (or even in 14 days,
for that matter). It does put you well on your way to mastering CORBA. Keep in mind that CORBA isa
complex architecture, full of design issues and tradeoffs as well asimplementation nuances. As such, it can only
be mastered through experience--something you will gain only by designing and developing CORBA
applications. Perhaps this book does not make you an expert in all things CORBA, but it does put you on the
right track toward achieving that goal.

Background: History of Distributed Systems

If you're interested enough in CORBA to be reading this book, you probably know athing or two already about
distributed systems. Distributed systems have been around, in one form or another, for some time, although they
haven't aways been called that and they certainly haven't ways had the flexibility that they do now. To
discover where CORBA fitsin, let's briefly review the history of distributed systems, starting with the venerable
mainframe.

The Beginning: Monolithic Systems and Mainframes

In the beginning (or close to it), there was the mainframe. Along with it came hierarchical database systems and
dumb terminals, also known as green screens. Mainframes usually cost agreat deal to maintain but were
capable of serving large numbers of users and had the advantage (or disadvantage, depending on one's point of
view) of being centrally managed.

Software systems written for mainframes were often monolithic--that is, the user interface, business logic, and
data access functionality were al contained in one large application. Because the dumb terminals used to access
mainframes didn't do any of their own processing, the entire application ran in the mainframe itself, thus
making the monolithic architecture reasonable. A typical monolithic application architectureisillustrated in
Figure 1.1.

Figure 1.1. Typical monolithic application architecture.

The Revolution: Client/Server Architecture

The advent of the PC made possible a dramatic paradigm shift from the monolithic architecture of

mai nframe-based applications. Whereas these applications required the mainframe itself to perform al the
processing, applications based on the client/server architecture allowed some of that processing to be offloaded
to PCs on the users' desktops.

Along with the client/server revolution came the proliferation of UNIX-based servers. Many applications
simply did not require the massive power of mainframes, and because the client/server architecture was capable
of moving much of the processing load to the desktop PC, these smaller UNIX-based server machines were
often more cost-effective than mainframes. Also, these machines were much more affordable to small

busi nesses than mainframes, which were often simply out of reach for companies with relatively small bank
account balances. Still another benefit was the empowerment of individual departments within an organization
to deploy and manage their own servers. The result was that these departments could be more responsive to
their specific needs when devel oping their own applications, rather than having to jump through proverbial

http://www.informit.com/content/0672312085/element_002.shtml (2 of 9) [17.07.2000 18:30:57]

javascript:popUp('elementLinks/01.jpg');

- Getting Familiar with CORBA From: Sams Teach Yourself CORBA in 14 Days

hoops to get the department controlling the mainframes to devel op applications, as was often the case. Finaly,
whereas terminals were typically restricted to running only applications on the mainframe, a PC was capable of
performing many other tasks independently of the mainframe, further enhancing its useful ness as a desktop
machine.

Client/server applications typically distributed the components of the application so that the database would
reside on the server (whether a UNIX box or mainframe), the user interface would reside on the client, and the
business logic would reside in either, or both, components. When changes were made to parts of the client
component, new copies of the client component (usually executables or a set of executables) had to be
distributed to each user.

With the advent of multitier client/server architecture (discussed in the next section), the "original" client/server
architecture is now referred to as "two-tier" client/server. The two-tier client/server architectureisillustrated in
Figure 1.2.

Figure 1.2. Two-tier client/server architecture.

The Evolution: Multitier Client/Server

The client/server architecture was in many ways a revolution from the old way of doing things. Despite solving
the problems with mainframe-based applications, however, client/server was not without faults of its own. For
example, because database access functionality (such as embedded database queries) and business logic were
often contained in the client component, any changes to the business logic, database access, or even the
database itself, often required the deployment of a new client component to all the users of the application.
Usually, such changes would break earlier versions of the client component, resulting in afragile application.

The problems with the traditional client/server (now often called "two-tier" client/server) were addressed by the
multitier client/server architecture. Conceptually, an application can have any number of tiers, but the most
popular multitier architecture is three-tier, which partitions the system into three logical tiers: the user interface
layer, the business rules layer, and the database access layer. A three-tier client/server architectureisillustrated
in Figure 1.3.

Figure 1.3. Three-tier client/server architecture.

Multitier client/server architecture enhances the two-tier client/server architecture in two ways. First, and
perhaps most importantly, it makes the application less fragile by further insulating the client from changesin
the rest of the application. Also, because the executable components are more fine-grained, it allows more
flexibility in the deployment of an application.

Multitier client/server reduces application fragility by providing more insulation and separation between layers.
The user interface layer communicates only with the business rules layer, never directly with the database
access layer. The business rules layer, in turn, communicates with the user interface layer on one side and the
database access layer on the other. Thus, changes in the database access layer will not affect the user interface
layer because they are insulated from each other. This architecture enables changes to be made in the
application with less likelihood of affecting the client component (which, remember, has to be redistributed
when there are any changesto it).

Because the multitier client/server architecture partitions the application into more components than traditional
two-tier client/server, it also allows more flexibility in deployment of the application. For example, Figure 1.3
depicts a system in which the business rules layer and database access layer, although they are separate logical
entities, are on the same server machine. It is also possible to put each server component on a separate machine.
Indeed, multiple business logic components (and multipl e database access components, if multiple databases are
being used) can be created for a single application, distributing the processing load and thus resulting in amore
robust, scalable application.

Note: It isinteresting to note that the multitier client/server architecture might actually have had its
roots in mainframe applications. COBOL applications on IBM mainframes could define the user
interface by using atool called Message Format Service (MFS). MFS abstracted the terminal type
(terminals could, for instance, have varying numbers of rows and columns) from the rest of the
application. Similarly, applications could specify the database interfaces as well. Although the
application would still run in one monolithic chunk, the available tools enabled the design of
applications using alogical three-tier architecture.

http://www.informit.com/content/0672312085/element_002.shtml (3 of 9) [17.07.2000 18:30:57]

javascript:popUp('elementLinks/02.jpg');
javascript:popUp('elementLinks/03.jpg');

- Getting Familiar with CORBA From: Sams Teach Yourself CORBA in 14 Days
The Next Generation: Distributed Systems

The next logical step in the evolution of application architecturesis the distributed system model. This
architecture takes the concept of multitier client/server to its natural conclusion. Rather than differentiate
between business logic and data access, the distributed system model simply exposes all functionality of the
application as objects, each of which can use any of the services provided by other objects in the system, or
even objectsin other systems. The architecture can also blur the distinction between "client" and "server"
because the client components can also create objects that behave in server-like roles. The distributed system
architecture provides the ultimate in flexibility.

The distributed system architecture achieves its flexibility by encouraging (or enforcing) the definition of
specific component interfaces. The interface of a component specifiesto other components what services are
offered by that component and how they are used. Aslong as the interface of a component remains constant,
that component's implementation can change dramatically without affecting other components. For example, a
component that provides customer information for acompany can store that information in arelational
database. Later, the application designers might decide that an object-oriented database would be more
appropriate. The designers can make any number of changes to the component's implementation--even
sweeping changes such as using a different type of database--provided that they |eave the component's interface
intact. Again, aslong asthe interface of that component remains the same, the underlying implementation is
free to change.

New Term: Aninterface defines the protocol of communication between two separate components of a system.
(These components can be separate processes, separate objects, a user and an application--any separate entities
that need to communicate with each other.) The interface describes what services are provided by a component
and the protocol for using those services. In the case of an object, the interface can be thought of as the set of
methods defined by that object, including the input and output parameters. An interface can be thought of asa
contract; in a sense, the component providing an interface promises to honor requests for services as outlined in
the interface.

Distributed systems are really multitier client/server systems in which the number of distinct clients and servers
is potentially large. One important difference is that distributed systems generally provide additional services,
such as directory services, which alow various components of the application to be located by others. Other
services might include a transaction monitor service, which allows components to engage in transactions with
each other.

New Term: Directory services refersto a set of services that enable objects--which can be servers, businesses,
or even people--to be located by other objects. Not only can the objects being looked up differ in type, but the
directory information itself can vary aswell. For example, atelephone book would be used to locate telephone
numbers and postal addresses; an email directory would be used to locate email addresses. Directory services
encompass all such information, usually grouping together related information (for example, there are separate
volumes of the yellow pages for different cities; contents of each volume are further divided into types of
businesses).

New Term: A transaction monitor service oversees transactions on behalf of other objects. A transaction, in
turn, is an operation or set of operations that must be performed atomically; that is, either al objectsinvolved in
the transaction must commit the transaction (update their own records) or all objects involved must abort the
transaction (return to their original state before the transaction was initiated). The result is that whether a
transaction commits or aborts, al involved objects will be in a consistent state. It is the job of atransaction
monitor to provide transaction-related services to other objects.

To sum up, business applications have evolved over a period of time from arelatively rigid monolithic
architecture to an extremely flexible, distributed one. Along the way, application architectures have offered
increasing robustness because of the definitions of interfaces between components and the scalability of
applications (furnished in part by the capability to replicate server components on different machines).
Additionally, services have been introduced that enable the end user of an application to wade through the
myriad of available services. Those who have been designing and devel oping business applications since the
days of mainframes have certainly had an interesting ride.

Why CORBA?

So far, in this evolution of business applications from the monolithic mainframe architecture to the highly
decentralized distributed architecture, no mention has been made of CORBA. Therefore, you might be asking
yourself at this point where CORBA fitsin to al this. The answer, as you will see, is emphasized throughout the
rest of this book. Recall that distributed systems rely on the definition of interfaces between components and on
the existence of various services (such as directory registration and lookup) available to an application. CORBA

http://www.informit.com/content/0672312085/element_002.shtml (4 of 9) [17.07.2000 18:30:57]

- Getting Familiar with CORBA From: Sams Teach Yourself CORBA in 14 Days

provides a standard mechanism for defining the interfaces between components as well as sometools to
facilitate the implementation of those interfaces using the devel oper's choice of languages. In addition, the
Object Management Group (the organization responsible for standardizing and promoting CORBA) specifiesa
wealth of standard services, such as directory and naming services, persistent object services, and transaction
services. Each of these servicesis defined in a CORBA-compliant manner, so they are available to all CORBA
applications. Finally, CORBA provides al the "plumbing" that allows various components of an application--or
of separate applications--to communicate with each other.

New Term: The capahilities of CORBA don't stop there. Two features that CORBA provides--features that are
ararity in the computer software realm--are platform independence and language independence. Platform
independence means that CORBA objects can be used on any platform for which there isa CORBA ORB
implementation (this includes virtually all modern operating systems as well as some not-so-modern ones).

L anguage independence means that CORBA aobjects and clients can be implemented in just about any
programming language. Furthermore, CORBA objects need not know which language was used to implement
other CORBA objects that they talk to. Soon you will see the components of the CORBA architecture that make
platform independence and language independence possible.

Exploring CORBA Alternatives

When designing and implementing distributed applications, CORBA certainly isn't a developer's only choice.
Other mechanisms exist by which such applications can be built. Depending on the nature of the
application--ranging from its complexity to the platform(s) it runs on to the language(s) used to implement
it--there are a number of alternatives for a developer to consider. In this section you'll briefly explore some of
the alternatives and see how they compare to CORBA.

Socket Programming

New Term: In most modern systems, communication between machines, and sometimes between processesin
the same machine, is done through the use of sockets. Simply put, a socket is achannel through which
applications can connect with each other and communicate. The most straightforward way to communicate
between application components, then, is to use sockets directly (thisis known as socket programming),
meaning that the devel oper writes data to and/or reads data from a socket.

The Application Programming Interface (API) for socket programming is rather low-level. As aresult, the
overhead associated with an application that communicatesin this fashion is very low. However, because the
APl islow-level, socket programming is not well-suited to handling complex data types, especialy when
application components reside on different types of machines or are implemented in different programming
languages. Whereas direct socket programming can result in very efficient applications, the approach is usually
unsuitable for devel oping complex applications.

Remote Procedure Call (RPC)

New Term: One rung on the ladder above socket programming is Remote Procedure Call (RPC). RPC provides
afunction-oriented interface to socket-level communications. Using RPC, rather than directly manipulating the
data that flows to and from a socket, the devel oper defines a function--much like those in a functional language
such as C--and generates code that makes that function look like a normal function to the caller. Under the

hood, the function actually uses sockets to communicate with a remote server, which executes the function and
returns the result, again using sockets.

Because RPC provides afunction-oriented interface, it is often much easier to use than raw socket
programming. RPC is also powerful enough to be the basis for many client/server applications. Although there
are varying incompatible implementations of RPC protocol, a standard RPC protocol existsthat is readily
available for most platforms.

OSF Distributed Computing Environment (DCE)

The Distributed Computing Environment (DCE), a set of standards pioneered by the Open Software Foundation
(OSF), includes a standard for RPC. Although the DCE standard has been around for some time, and was
probably agood idea, it has never gained wide acceptance and exists today as little more than an historical
curiosity.

Microsoft Distributed Component Object Model (DCOM)

The Distributed Component Object Model (DCOM), Microsoft's entry into the distributed computing foray,
offers capabilities similar to CORBA. DCOM is arelatively robust object model that enjoys particularly good

http://www.informit.com/content/0672312085/element_002.shtml (5 of 9) [17.07.2000 18:30:57]

- Getting Familiar with CORBA From: Sams Teach Yourself CORBA in 14 Days

support on Microsoft operating systems because it is integrated with Windows 95 and Windows NT. However,
being a Microsoft technology, the availability of DCOM is sparse outside the realm of Windows operating
systems. Microsoft isworking to correct this disparity, however, in partnering with Software AG to provide
DCOM on platforms other than Windows. At the time this was written, DCOM was available for the Sun
Solaris operating system, with support promised for Digital UNIX, IBM MVS, and other operating systems by
the end of the year. By the time you read this, some or all of these ports will be available. (More information on
the ports of DCOM to other platformsis available at

http://ww. sof t war eag. coni cor por at/ dconi def aul t. ht m)

Microsoft has, on numerous occasions, made it clear that DCOM is best supported on Windows operating
systems, so developers with cross-platform interests in mind would be well-advised to evaluate the capabilities
of DCOM on their platform(s) of interest before committing to the use of thistechnology. However, for the
development of Windows-only applications, it is difficult to imagine a distributed computing framework that
better integrates with the Windows operating systems.

One interesting development concerning CORBA and DCOM isthe availability of CORBA-DCOM bridges,
which enable CORBA objects to communicate with DCOM objects and vice versa. Because of the "impedance
mismatch” between CORBA and DCOM objects (meaning that there are inherent incompatibilities between the
two that are difficult to reconcile), the CORBA-DCOM bridge is hot a perfect solution, but it can prove useful
in situations where both DCOM and CORBA objects might be used.

Java Remote Method Invocation (RMI)

The tour of exploring CORBA alternatives stops with Java Remote Method Invocation (RMI), avery
CORBA-like architecture with afew twists. One advantage of RMI isthat it supports the passing of objects by
value, afeature not (currently) supported by CORBA. A disadvantage, however, isthat RMI is a Java-only
solution; that is, RMI clients and servers must be written in Java. For all-Java applications--particul arly those
that benefit from the capability to pass abjects by value--RMI might be a good choice, but if there is a chance
that the application will later need to interoperate with applications written in other languages, CORBA isa
better choice. Fortunately, full CORBA implementations already exist for Java, ensuring that Java applications
interoperate with the rest of the CORBA world.

CORBA History

Now that you know alittle bit of CORBA's background and its reason for existence, it seems appropriate to
briefly explore some of the history of CORBA to understand how it came into being.

Introducing the Object Management Group (OMG)

The Object Management Group (OMG), established in 1989 with eight original members, is a 760-plus-member
organi zation whose charter is to "provide a common architectural framework for object-oriented applications
based on widely available interface specifications." That's arather tall order, but the OMG achievesits goals
with the establishment of the Object Management Architecture (OMA), of which CORBA isapart. This set of
standards delivers the common architectural framework on which applications are built. Very briefly, the OMA
consists of the Object Request Broker (ORB) function, object services (known as CORBA services), common
facilities (known as CORBAfacilities), domain interfaces, and application objects. CORBA'srole in the OMA is
to implement the Object Request Broker function. For the majority of this book, you will be concentrating on
CORBA itsalf, occasionally dabbling into CORBAservices and CORBAfacilities.

CORBA 1.0

Following the OMG's formation in 1989, CORBA 1.0 wasintroduced and adopted in December 1990. It was
followed in early 1991 by CORBA 1.1, which defined the Interface Definition Language (IDL) as well asthe
API for applications to communicate with an Object Request Broker (ORB). (These are concepts that you'll
explorein much greater detail on Day 2.) A 1.2 revision appeared shortly before CORBA 2.0, which with its
added features quickly eclipsed the 1.x revisions. The CORBA 1.x versions made an important first step toward
object interoperability, allowing objects on different machines, on different architectures, and writtenin
different languages to communicate with each other.

CORBA 2.0 and IIOP

CORBA 1.x was an important first step in providing distributed object interoperability, but it wasn't a complete
specification. Although it provided standards for IDL and for accessing an ORB through an application, its chief
limitation was that it did not specify a standard protocol through which ORBs could communicate with each

http://www.informit.com/content/0672312085/element_002.shtml (6 of 9) [17.07.2000 18:30:57]

- Getting Familiar with CORBA From: Sams Teach Yourself CORBA in 14 Days

other. Asaresult, a CORBA ORB from one vendor could not communicate with an ORB from another vendor,
arestriction that severely limited interoperability among distributed objects.

Enter CORBA 2.0. Adopted in December 1994, CORBA 2.0's primary accomplishment was to define a
standard protocol by which ORBs from various CORBA vendors could communicate. This protocol, known as
the Internet Inter-ORB Protocol (110P, pronounced "eye-op"), is required to be implemented by all vendors who
want to call their products CORBA 2.0 compliant. Essentially, 11OP ensures true interoperability among
products from numerous vendors, thus enabling CORBA applications to be more vendor-independent. 110P,
being the Internet Inter-ORB Protacol, applies only to networks based on TCP/IP, which includes the Internet
and most intranets.

The CORBA standard continues to evolve beyond 2.0; in September 1997, the 2.1 version became available,
followed shortly by 2.2; 2.3 is expected in early 1998. (The OMG certainly is keeping itself busy!) These
revisions introduce evolutionary (not revolutionary) advancements in the CORBA architecture.

CORBA Architecture Overview

Finally, having learned the history and reasons for the existence of CORBA, you're ready to examine the
CORBA architecture. You'll cover the architecture in greater detail on Day 2, but Day 1 provides you with a
very general overview--an executive summary, if you will--of what composes the CORBA architecture.

First of all, CORBA is an object-oriented architecture. CORBA objects exhibit many features and traits of other
object-oriented systems, including interface inheritance and polymorphism. What makes CORBA even more
interesting is that it provides this capability even when used with nonobject-oriented languages such as C and
COBOL, athough CORBA maps particularly well to object-oriented languages like C++ and Java.

New Term: Interface inheritance is a concept that should be familiar to Objective C and Java developers. In the
contrasting implementation inheritance, an implementation unit (usually aclass) can be derived from another.
By comparison, interface inheritance allows an interface to be derived from another. Even though interfaces can
be related through inheritance, the implementations for those interfaces need not be.

The Object Request Broker (ORB)

Fundamental to the Common Object Request Broker Architecture is the Object Request Broker, or ORB. (That
the ORB acronym appears within the CORBA acronym was just too much to be coincidental.) An ORB isa
software component whose purpose is to facilitate communication between objects. It does so by providing a
number of capabilities, one of which isto locate aremote object, given an object reference. Another service
provided by the ORB is the marshaling of parameters and return values to and from remote method invocations.
(Don't worry if this explanation doesn't make sense; the ORB is explained in much greater detail on Day 2.)
Recall that the Object Management Architecture (OMA) includes a provision for ORB functionality; CORBA is
the standard that implements this ORB capability. Y ou will soon see that the use of ORBs provides platform
independence to distributed CORBA objects.

Interface Definition Language (IDL)

Another fundamental piece of the CORBA architecture is the use of the Interface Definition Language (IDL).
IDL, which specifies interfaces between CORBA objects, isinstrumental in ensuring CORBA's language
independence. Because interfaces described in IDL can be mapped to any programming language, CORBA
applications and components are thus independent of the language(s) used to implement them. In other words, a
client written in C++ can communicate with a server written in Java, which in turn can communicate with
another server written in COBOL, and so forth.

One important thing to remember about IDL isthat it is not an implementation language. That is, you can't write
applicationsin IDL. The sole purpose of IDL isto define interfaces; providing implementations for these
interfaces is performed using some other language. When you study IDL more closely on Day 3, you'll learn
more about this and other assorted facts about IDL.

The CORBA Communications Model

New Term: CORBA uses the notion of object references (which in CORBA/IIOP lingo are referred to as
Interoperable Object References, or IORs) to facilitate the communication between objects. When a component
of an application wants to access a CORBA object, it first obtains an IOR for that object. Using the IOR, the
component (called aclient of that object) can then invoke methods on the object (called the server in this
instance).

http://www.informit.com/content/0672312085/element_002.shtml (7 of 9) [17.07.2000 18:30:57]

- Getting Familiar with CORBA From: Sams Teach Yourself CORBA in 14 Days

In CORBA, aclient is simply any application that uses the services of a CORBA object; that is, an application
that invokes a method or methods on other objects. Likewise, a server is an application that creates CORBA
objects and makes the services provided by those objects available to other applications. A much more detailed
discussion of CORBA clients and serversis presented on Day 2.

As mentioned previously, CORBA ORBs usually communicate using the Internet Inter-ORB Protocol (110P).
Other protocols for inter-ORB communication exist, but 110OP is fast becoming the most popular, first of al
because it is the standard, and second because of the popularity of TCP/IP (the networking protocols used by
the Internet), alayer that 110OP sits on top of. CORBA is independent of networking protocols, however, and
could (at least theoretically) run over any type of network protocols. For example, there are also
implementations of CORBA that run over DCE rather than over TCP/IP, and there is also interest in running
CORBA over ATM and SS7.

The CORBA Object Model

In CORBA, all communication between objects is done through object references (again, these are known as
Interoperable Object References, or IORs, if you're using 110P). Furthermore, visibility to objectsis provided
only through passing references to those objects; objects cannot be passed by value (at least in the current
specification of CORBA). In other words, remote objects in CORBA remain remote; there is currently no way
for an object to move or copy itself to another location. (You'll explore this and other CORBA limitations and
design issues on Day 10.)

Another aspect of the CORBA object model is the Basic Object Adapter (BOA), a concept that you'll also
explore on Day 2. A BOA basically provides the common services available to all CORBA objects.

CORBA Clients and Servers

Like the client/server architectures, CORBA maintains the notions of clients and servers. In CORBA, a
component can act as both a client and as a server. Essentially, a component is considered a server if it contains
CORBA objects whose services are accessible to other objects. Likewise, acomponent is considered aclient if
it accesses services from some other CORBA object. Of course, a component can simultaneously provide and
use various services, and so a component can be considered a client or a server, depending on the scenario in
guestion.

Stubs and Skeletons

When implementing CORBA application components, you will encounter what are known as client stubs and
server skeletons. A client stub is asmall piece of code that allows a client component to access a server
component. This piece of code is compiled along with the client portion of the application. Similarly, server
skeletons are pieces of code that you "fill in" when you implement a server. Y ou don't need to write the client
stubs and server skeletons themselves; these pieces of code are generated when you compile IDL interface
definitions. Again, you'll soon see al thisfirsthand.

Beyond the Basics: CORBAservices and CORBAfacilities

In addition to the CORBA basics of allowing objects to communicate with each other, recall that the OMA--of
which CORBA is a part--also provides additional capabilitiesin the form of CORBAservices and
CORBAfacilities. Asyou'll find out, CORBAservices and CORBAfacilities provide both h horizontal
(generaly useful to all industries) and vertical (designed for specific industries) services and facilities. You'll
look at the capabilities provided in greater detail on Day 12, after which you'll get the opportunity to use some
of thisfunctionality in a CORBA application.

Summary

Today you had avery brief overview of the CORBA architecture, along with a history of business application
development and where CORBA fitsin. Y ou now know what you can expect to get out of this book--you won't
become a CORBA expert overnight, but you will gain valuable exposure to the process of designing and
developing CORBA -based applications.

In the next few days, you'll explore the CORBA architecture in much greater detail, learn more than you ever
wanted to know about IDL, and you'll be well on your way to developing CORBA applications.

http://www.informit.com/content/0672312085/element_002.shtml (8 of 9) [17.07.2000 18:30:57]

- Getting Familiar with CORBA From: Sams Teach Yourself CORBA in 14 Days

Q&A

Q I'm still not very clear on why | would want to use CORBA as opposed to some other method of
inter process communication.

A There are afew areas where CORBA really shines. For applications that have various components
written in different languages and/or need to run on different platforms, CORBA can make alot of sense.
CORBA takes care of some potentially messy details for you, such as automatically converting (through
the marshaling process) number formats between different machines. In addition, CORBA provides an
easily understood abstraction of distributed applications, consisting of object-oriented design, an
exception model, and other useful concepts. But where CORBA istruly valuableisin applications used
throughout an enterprise. CORBA's many robust features--as well as those provided by the OMA
CORBAservices and CORBAfacilities--and especially CORBA's scalability, make it well suited for
enterprise applications.

Q What isIDL and why isit useful ?

A IDL, or Interface Definition Language, will be covered in greater detail over the next two Days. For
now, it is useful to understand that the value in IDL comes from its abstraction of various language,
hardware, and operating system architectures. For example, the IDL | ong type will automatically be
trang ated to the numeric type appropriate for whatever architecture the application is run on. In addition,
because IDL is language-independent, it can be used to define interfaces for objects that are implemented
in any language.

Workshop

The following section will help you test your comprehension of the material presented today and put what
you've learned into practice. You'll find the answersto the quiz in Appendix A. On most days, afew exercises
will accompany the quiz; today, because no real "working knowledge" material was presented, there are no
exercises.

Quiz

1. What does |1 OP stand for and what isits significance?

2. What is the relationship between CORBA, OMA, and OMG?
3. What isaclient stub?

4. What is an object reference? An IOR?

Contents Next >
Save to Mylnforml T

http://www.informit.com/content/0672312085/element_002.shtml (9 of 9) [17.07.2000 18:30:57]

http://www.informit.com/My/Add?isbn=0672312085&title=Sams+Teach+Yourself+CORBA+in+14+Days&category=Programming&topic=CORBA&chapter=2839&elementname=Getting+Familiar+with+CORBA
http://www.informit.com/about/
http://www.informit.com/press/
http://www.informit.com/about/advertising/
http://www.informit.com/legal/privacy/
http://www.informit.com/contact/
http://www.informit.com/legal/copyright/
http://www.informit.com/legal/privacy/

- Understanding the CORBA Architecture From: Sams Teach Yourself CORBA in 14 Days

ile they last!
Y¥our Name Mi

® Exact Phrase
O All words

Search
Search Tips

Rlylnformi T

InfarmlT Stare
Dol g

Click Here for
High-Tech
Jobs!

developerWorks™

DPEC we—

Based Training

W ciick to
Recommaend-it.

-@m TopIT
Hews

TGOS

Hot Topics Yisual Basic Windows 2000 Windows MT Linu=/Open Source Cizco Knowledge Suite

Soluton Centers PragramlIT DatabazelT WebIT MetworkIT ConfiguralT

Understanding the CORBA Architecture

From: Sams Teach
Yourself CORBA in 14
B Days

R Author: Jeremy
(00)1419:Y Rosenberger

' 14 DAYS| Publisher: Sams
- More Information

<Back Contents Next>

Save to Mylnforml T

o Overview

« The Object Request Broker (ORB)
o Marshaling
o Platform Independence

o ORB Summary
« Interface Definition Language (IDL)

o Language Independence
o The CORBA Communications Model
o Inter-ORB Protocols
o CORBA and the Networking Model
o The CORBA Object Model
o Object Distribution
o Object References
o Basic Object Adapters (BOAS)
« CORBA Clients and Servers
o Multiple Personalities? Being Both a Client and a Server
» Stubs and Skeletons
« Beyond the Basics: CORBASservices and CORBAfacilities
« Summary
o Q&A
« Workshop
0 Quiz

Overview

On thefirst day, you learned about CORBA's history and saw how the CORBA architecture fits into the world
of client/server application development. Y ou were also presented with a brief overview of the CORBA
architecture. By the end of this Day, you will have a degper understanding of the CORBA architecture and its
components. These are the major aspects covered in this chapter:

« The Object Request Broker (ORB), one of the cornerstones of the CORBA architecture

» The Interface Definition Language (IDL), the other CORBA architectural cornerstone

« The CORBA communications model, how CORBA objects fit within the network architecture
« The CORBA object model, including object references and Basic Object Adapters (BOAS)

« Thedefinition and roles of clients and serversin the CORBA architecture

http://www.informit.com/content/0672312085/element_003.shtml (1 of 9) [17.07.2000 18:31:04]

http://www.informit.com/
http://ad.doubleclick.net/jump/www.informit.com/programit/;cat=developer;num=92
javascript:document.regularSearch.submit();
http://www.informit.com/search/tips/
http://ad.doubleclick.net/clk;1464039;4446282;i?http://www.informit.com/jobs
http://www.informit.com/news/
http://www.informit.com/downloads/
http://www.informit.com/store/
http://www.informit.com/itlibrary/
http://www.informit.com/edchoice/
http://www.informit.com/alphabook/
http://infobase.informit.com/
http://www.informit.com/My/Accounts
http://ad.doubleclick.net/jump/informit.com/sponsor-button/brassring/badge;sz=100x60
http://ad.doubleclick.net/jump/informit.com/sponsor-button/ibm/badge2;sz=88x31
http://www.informit.com/training/
http://www.recommend-it.com/p.e?415858
http://www.informit.com/news/
http://www.informit.com/downloads/
http://www.informit.com/programit/vb/
http://www.informit.com/networkit/windows2000/
http://www.informit.com/networkit/winnt/
http://www.informit.com/networkit/linux/
http://www.knowcisco.com/
http://www.informit.com/programit/
http://www.informit.com/databaseit/
http://www.informit.com/webit/
http://www.informit.com/networkit/
http://www.informit.com/configureit/
http://www.informit.com/My/Add?isbn=0672312085&title=Sams+Teach+Yourself+CORBA+in+14+Days&category=Programming&topic=CORBA&chapter=2840&elementname=Understanding+the+CORBA+Architecture
http://www.informit.com/product/0672312085

- Understanding the CORBA Architecture From: Sams Teach Yourself CORBA in 14 Days

« Theuse of client stubs and server skeletons to build CORBA applications

« Anoverview of CORBAservices and CORBAfacilities, which provide additional functionality to
CORBA applications

The Object Request Broker (ORB)

As one might guess, afundamental part of the Common Object Request Broker architecture is the Object
Request Broker (ORB). The concept of an ORB is this: When an application component wants to use a service
provided by another component, it first must obtain an object reference for the object providing that service.
(How this object reference is abtained is an issue in its own right--and will be discussed later--but for the
purposes of studying the ORB mechanism, assume for the time being that the object reference is already
available.) After an object reference is obtained, the component can call methods on that object, thus accessing
the desired services provided by that object. (The devel oper of the client component knows at compile time
which methods are available from a particular server object.) The primary responsibility of the ORB isto
resolve requests for object references, enabling application components to establish connectivity with each
other. (See Figure 2.1 for an illustration of these ORB concepts.) Asyou will see, the ORB has other
responsibilities as well.

Figure 2.1. ORB resolution of object requests.

Marshaling

After an application component has obtained a reference to an object whose services the component wants to
use, that component can invoke methods of that object. Generally, these methods take parameters as input and
return other parameters as output. Another responsibility of the ORB isto receive the input parameters from the
component that is calling the method and to marshal these parameters. What this meansis that the ORB
trangates the parameters into aformat that can be transmitted across the network to the remote object. (Thisis
sometimes referred to as an on-the-wire format.) The ORB a so unmarshals the returned parameters, converting
them from the on-the-wire format into aformat that the calling component understands. The marshaling process
can be seenin Figure 2.2.

Figure 2.2. Marshaling parameters and return values.

New Term: Marhsaling refers to the process of trandating input parametersto aformat that can be transmitted
across a network.

Unmarshaling is the reverse of marshaling; this process converts data from the network to output parameters.

An On-the-wire format specifies the format in which data is transmitted across the network for the marshaling
and unmarshaling processes.

The entire marshaling process takes place without any programmer intervention whatsoever. A client
application simply invokes the desired remote method--which has the appearance of being alocal method, as far
astheclient is concerned--and aresult is returned (or an exception is raised), again, just as would happen with a
local method. The entire process of marshaling input parameters, initiating the method invocation on the server,
and unmarshaling the return parameters is performed automatically and transparently by the ORB.

Platform Independence

A product of the marshaling/unmarshaling processis that, because parameters are converted upon transmission
into a platform-independent format (the on-the-wire format is provided as part of the CORBA specification) and
converted into a platform-specific format upon reception, the communication between componentsis
platform-independent. This means that a client running on, for instance, a Macintosh system can invoke
methods on a server running on a UNIX system. In addition to independence of operating system used,
differencesin hardware (such as processor byte ordering, or endianness) are also rendered irrelevant because the
ORB automatically makes these conversions as necessary. In essence, any differencesin platforms--be it
operating system, endianness, word size, and so on--are accounted for by the ORB.

Note again that the process of marshaling and unmarshaling parametersis handled completely by the ORB,
entirely transparent to both the client and server. Because the entire processis handled by the ORB, the
developer need not concern himself with the details of the mechanism by which the parameters are marshaled
and unmarshaled.

http://www.informit.com/content/0672312085/element_003.shtml (2 of 9) [17.07.2000 18:31:04]

javascript:popUp('elementLinks/01.jpg');
javascript:popUp('elementLinks/02.jpg');

- Understanding the CORBA Architecture From: Sams Teach Yourself CORBA in 14 Days

ORB Summary

Because the concept of the ORB is central to an understanding of the CORBA architecture, it isimportant to
make sure that you grasp the ORB concepts. To summarize the purpose of the ORB, itsresponsibilities are as
follows:

« Given an object reference from a client, the ORB locates the corresponding object implementation (the
server) on behalf of the client. (Note that it is the responsibility of the client to obtain an object reference
in the first place, through a processyou'll learn later.)

« When the server islocated, the ORB ensures that the server is ready to receive the request.

« The ORB on the client side accepts the parameters of the method being invoked and marshals (see the
next section) the parameters to the network.

« The ORB on the server side unmarshals (again, see the next section) the parameters from the network and
deliversthem to the server.

« Return parameters, if any, are marsha ed/unmarshaled in the same way.

The major benefit offered by the ORB isits platform-independent treatment of data; parameters can be
converted on-the-fly between varying machine formats as they are marshaled and unmarshal ed.

Interface Definition Language (IDL)

If the concept of the Object Request Broker is one cornerstone of the CORBA architecture, the Interface
Definition Language (IDL) isthe other. IDL, as its name suggests, is the language used to define interfaces
between application components. Note that IDL is not a procedural language; it can define only interfaces, not
implementations. C++ programmers can think of IDL definitions as analogous to header files for classes; a
header file typically does not contain any implementation of a class but rather describes that class's interface.
Java programmers might liken IDL definitions to definitions of Java interfaces; again, only theinterfaceis
described--no implementation is provided.

New Term: The Interface Definition Language (IDL) is a standard language used to define the interfaces used
by CORBA objects. It iscovered in great detail on Day 3.

The IDL specification is responsible for ensuring that data is properly exchanged between dissimilar languages.
For example, the IDL | ong typeis a 32-bit signed integer quantity, which can map to aC++ | ong (depending
on the platform) or to aJavai nt . It isthe responsibility of the IDL specification--and the IDL compilers that
implement it--to define such data types in a language-independent way.

IDL will be covered in great detail in the next chapter. After that, you will use IDL to--what else?--define
interfaces for the examples used throughout this book.

Language Independence

The IDL language is part of the standard CORBA specification and isindependent of any programming
language. It achieves this language independence through the concept of alanguage mapping. The OMG has
defined a number of standard language mappings for many popular languages, including C, C++, COBOL,
Java, and Smalltalk. Mappings for other languages exist as well; these mappings are either nonstandard or are in
the process of being standardized by the OMG.

New Term: A language mapping is a specification that maps IDL language constructs to the constructs of a
particular programming language. For example, in the C++ language mapping, the IDL i nt er f ace mapsto a
C++cl ass.

Language independence is a very important feature of the CORBA architecture. Because CORBA does not
dictate a particular language to use, it gives application devel opers the freedom to choose the language that best
suits the needs of their applications. Taking this freedom one step further, devel opers can also choose multiple
languages for various components of an application. For instance, the client components of an application might
be implemented in Java, which ensures that the clients can run on virtually any type of machine. The server
components of that application might be implemented in C++ for high performance. CORBA makes possible
the communication between these various components.

The CORBA Communications Model

In order to understand CORBA, you must first understand its role in a network of computing systems.
Typically, acomputer network consists of systems that are physically connected (although the advent of

http://www.informit.com/content/0672312085/element_003.shtml (3 of 9) [17.07.2000 18:31:04]

- Understanding the CORBA Architecture From: Sams Teach Yourself CORBA in 14 Days

wireless network technology might force us to revise our understanding of what "physically connected" means).
This physical layer provides the medium through which communication can take place, whether that medium is
atelephone line, afiber-optic cable, a satellite uplink, or any combination of networking technologies.

Somewhere above the physical layer lies the transport layer, which involves protocol s responsible for moving
packets of data from one point to another. In this age of the Internet, perhaps the most common transport
protocol in useis TCP/IP (Transmission Control Protocol/Internet Protocol). Most Internet-based applications
use TCP/IP to communicate with each other, including applications based on FTP (File Transfer Protocol),
Telnet (a host communication protocol), and HTTP (Hypertext Transport Protocol, the basis for the World
Wide Web).

Inter-ORB Protocols

So how does CORBA fit into this networking model ? It turns out that the CORBA specification is neutral with
respect to network protocols; the CORBA standard specifies what is known as the General Inter-ORB Protocol
(GIOP), which specifies, on ahigh level, a standard for communication between various CORBA ORBs and
components. GIOP, asits name suggests, isonly agenera protocol; the CORBA standard also specifies
additional protocols that specialize GIOP to use a particular transport protocol. For instance, GIOP-based
protocols exist for TCP/IP and DCE (the Open Software Foundation's Distributed Computing Environment
protocol). Additionally, vendors can (and do) define and use proprietary protocols for communication between
CORBA components.

New Term: The General Inter-ORB Protocol (GIOP) is ahigh-level standard protocol for communication
between ORBs. Because GIOP is ageneralized protocal, it is not used directly; instead, it is specialized by a
particular protocol that would then be used directly.

For discussion and use of CORBA in this book, your main interest will be the GIOP-based protocol for TCP/IP
networks, known as the Internet Inter-ORB Protocol (I10P). As of the 2.0 version of the CORBA specification,
vendors are required to implement the 11OP protocol in order to be considered CORBA-compliant (although
they might offer their proprietary protocolsin addition to [IOP). This requirement helps to ensure
interoperability between CORBA products from different vendors because each CORBA 2.0-compliant product
must be able to speak the same language. Some vendors have gone so far as to adopt 11OP as their products
native protocol (the protocol used by default) rather than use a proprietary protocol; however, an ORB is
alowed to support any number of protocols, aslong as I1OP is supported (when communicating with each
other, ORBs can negotiate which protocol to use). Additionally, a number of vendors are including
I1OP-compliant ORBs with products ranging from database servers to application development toolsto Web
browsers. I10OP, as you can see, is an important key to CORBA interoperability.

New Term: The Internet Inter-ORB Protocol (110P) is a specialization of the GIOP. [10P is the standard
protocol for communication between ORBs on TCP/IP based networks. An ORB must support [1OP (but can
support other additional protocols) in order to be considered CORBA 2.0-compliant.

CORBA and the Networking Model

With al this discussion of inter-ORB protocols, you have yet to see where CORBA fitsin with the rest of the
networking model. Figure 2.3 illustrates the network architecture of atypical CORBA application. Essentialy,
CORBA applications are built on top of GIOP-derived protocols such as 11OP. These protocols, in turn, rest on
top of TCP/IP, DCE, or whatever underlying transport protocol the network uses. CORBA applications aren't
limited to using only one of these protocols; an application architecture can be designed to use a bridge that
would interconnect, for instance, DCE-based application components with 11OP-based ones. Y ou can see, then,
that rather than supplant network transport protocols, the CORBA architecture creates another layer--the
inter-ORB protocol layer--which uses the underlying transport layer asits foundation. This, too, isakey to
interoperability between CORBA applications, as CORBA does not dictate the use of a particular network
transport protocol.

Figure 2.3. Architecture of a distributed CORBA application.

The CORBA Object Model

Every object-oriented architecture features an object model, which describes how objects are represented in the
system. Of course, CORBA, being an object-oriented architecture, has an object model as well. Because
CORBA isadistributed architecture, however, its object model probably differs somewhat from the traditional
object models with which most readers are familiar (such as C++'s or Java's object model). Three of the mgjor
differences between the CORBA object model and traditional modelsliein CORBA's " semi-transparent”

http://www.informit.com/content/0672312085/element_003.shtml (4 of 9) [17.07.2000 18:31:04]

javascript:popUp('elementLinks/03.jpg');

- Understanding the CORBA Architecture From: Sams Teach Yourself CORBA in 14 Days

support for object distribution, its treatment of object references, and its use of what are called object
adapters--particularly the Basic Object Adapter (BOA). Y ou will now explore these conceptsin greater depth.

Object Distribution

To a CORBA client, aremote method call looks exactly like alocal method call, thanks to the use of client
stubs (a concept you'll explore later in this chapter). Thus, the distributed nature of CORBA objectsis
transparent to the users of those objects; the clients are unaware that they are actually dealing with objects
which are distributed on a network.

Actually, the preceding statement is amost true. Because object distribution brings with it more potential for
failure (due to a network outage, server crash, and so on), CORBA must offer a contingency to handle such
possibilities. It does so by offering a set of system exceptions, which can be raised by any remote method.
You'l learn about exceptions morein later chapters--on Day 3, you'll see how exceptions are declared in IDL;
on Day 7, you'll add exception handling to a sample application. For the time being, though, all you need to
know isthat al operationsin all CORBA objectsimplicitly can raise a CORBA system exception, which
signals a network error, server unavailability, or other such situation. Thus, with the exception--pun
intended--of this additional exception raised by CORBA object methods, a remote method is otherwise identical
toitsloca counterpart.

Object References

In adistributed application, there are two possible methods for one application component to obtain accessto an
object in another process. One method is known as passing by reference, illustrated in Figure 2.4. In this
method, the first process, Process A, passes an object reference to the second process, Process B. When Process
B invokes a method on that object, the method is executed by Process A because that process owns the object.
(The object exists in the memory and process space of Process A.) Pracess B only has visibility to the object
(through the object reference), and thus can only request that Process A execute methods on Process B's behalf.
Passing an object by reference means that a process grants visibility of one of its objects to another process
while retaining ownership of that object.

New Term: When an object is passed by reference, the object itself remains "in place" while an object
reference for that object is passed. Operations on the object through the object reference are actually processed
by the object itself.

Figure 2.4. Passing an object by reference.

The second method of passing an object between application componentsis known as passing by value and is
depicted in Figure 2.5. In this method, the actual state of the object (such as the values of its member variables)
is passed to the requesting component (typically through a process known as serialization). When methods of
the object are invoked by Process B, they are executed by Process B instead of Process A, where the original
object resides. Furthermore, because the object is passed by value, the state of the original object is not
changed; only the copy (now owned by Process B) is modified. Generally, it is the responsibility of the
developer to write the code that serializes and deserializes objects (although this capability is built into some
languages, such as Java).

New Term: When an object is passed by value, the object's state is copied and passed to its destination, where a
new copy of the object is instantiated. Operations on that object's copy are processed by the copy, not by the
original object.

Serialization refers to the encoding of an object's state into a stream, such as a disk file or network connection.
When an object is serialized, it can be written to such a stream and subsequently read and deserialized, a
process that converts the serialized data containing the object's state back into an instance of the object.

Figure 2.5. Passing an object by value.

One important aspect of the CORBA object model isthat all objects are passed by reference. (Actualy, at the
time of thiswriting, the OMG has issued an RFP (Request for Proposals) for adding to CORBA the capability
to pass objects by value, so it islikely that this capability will be added to the CORBA standard in the near
future.) In order to facilitate passing objects by value in a distributed application, in addition to passing the state
of the object across the network, it is also hecessary to ensure that the component receiving the object has
implementations for the methods supported by that object. (Thisis not necessary when objects are passed by
reference; recall that method invocations are executed by the component that owns the actual object.) When the
CORBA pass-by-value capahility is specified, it will need to address these issues; readers should stay tuned to
OMG announcements for updates on this development. (The OMG Web site, which makes available a great

http://www.informit.com/content/0672312085/element_003.shtml (5 of 9) [17.07.2000 18:31:04]

javascript:popUp('elementLinks/04.jpg');
javascript:popUp('elementLinks/05.jpg');

- Understanding the CORBA Architecture From: Sams Teach Yourself CORBA in 14 Days
deal of CORBA-related information and specifications, islocated at ht t p: / / www. ong. or g/ .)

There are afew issues associated with passing objects by reference only. Remember that when passing by
reference is the only option, methods invoked on an object are aways executed by the component that owns
that object (in other words, the component that has created that object); an object cannot migrate from one
application component to another. (However, you can devise methods that simulate this behavior; it simply is
not provided by the CORBA architecture itself at thistime.) This aso means that all method calls are remote
method calls (unless both the calling object and called object are owned by the same application component).
Obvioudly, if acomponent invokes alengthy series of method calls on aremote object, a great deal of overhead
can be consumed by the communication between the two components. For this reason, it might be more
efficient to pass an object by value so the component using that object can manipulate it locally. On Day 10
you'll explore thisissue in greater detail, but in the meantime, readers should be aware that CORBA's current
lack of pass-by-value semantics does raise thisissue.

Basic Object Adapters (BOAS)

The CORBA standard describes a number of what are called object adapters, whose primary purposeisto
interface an object's implementation with its ORB. The OM G recommends that new object adapter types be
created only when necessary and provides three sample object adapters: the Basic Object Adapter (BOA),
which you will concentrate on, and the Library Object Adapter and Object-Oriented Database Adapter, both of
which are useful for accessing objectsin persistent storage. (The CORBA specification describes these object
adaptersin greater detail.) Again, you will concern yourself only with the Basic Object Adapter, by far the most
commonly used object adapter.

The BOA provides CORBA objects with a common set of methods for accessing ORB functions. These
functions range from user authentication to object activation to object persistence. The BOA s, in effect, the
CORBA object's interface to the ORB. According to the CORBA specification, the BOA should be availablein
every ORB implementation, and this seems to be the case with most (if not all) CORBA products available.

Server Activation Policies

One particularly important (and useful) feature of the BOA isits object activation and deactivation capability.
The BOA supports four types of activation policies, which indicate how application components are to be
initialized. These activation policies include the following:

« The shared server policy, in which asingle server (which in this context usually means a process running
on amachine) is shared between multiple objects

« Theunshared server policy, in which a server contains only one object

« The server-per-method policy, which automatically starts a server when an object method isinvoked and
exits the server when the method returns

o The persistent server policy, in which the server is started manually (by a user, batch job, system
daemon, or some other external agent)

New Term: A server activation policy indicates how that particular server isintended to be accessed; for
example, if thereisasingle server used by all clients, or a new instance of the server should be started for each
client, and so on.

Thisvariety of activation policies alows an application architect to choose the type of behavior that makes the
most sense for a particular type of server. For instance, a server requiring alength of timeto initialize itself
might work best as a persistent server, because the necessary initialization time would adversely affect the
response time for that server. On the other hand, a server that starts up quickly upon demand might work well
with the server-per-method policy.

Note: It isworth noting here that the term persistent server has nothing to do with the common use
of the term persistent, which refers to the capahility of an object to store its state in some sort of
nonvolatile storage facility such as a database of disk files. A persistent server does not necessarily
storeits state in persistent storage (although it could); in this case, the term merely implies that the
server runs persistently or, in other words, continuously.

CORBA Clients and Servers

Traditionally, in a client/server application, the server is the component, or components, that provides services
to other components of the application. A client is a component that consumes services provided by a server or
servers. The architecture of a CORBA application is no different; generally, certain components of an

http://www.informit.com/content/0672312085/element_003.shtml (6 of 9) [17.07.2000 18:31:04]

- Understanding the CORBA Architecture From: Sams Teach Yourself CORBA in 14 Days

application provide services that are used by other components of the application. Not surprisingly, the general
terms client and server refer to these components of a CORBA application. When considering a single remote
method invocation, however, the roles of client and server can be temporarily reversed because a CORBA
object can participate in multiple interactions simultaneously.

In a CORBA application, any component that provides an implementation for an object is considered a server,
at least where that object is concerned. If acomponent creates an object and provides other components with
visihility to that object (in other words, allows other components to obtain references to that object), that
component acts as a server for that object; any requests made on that object by other components will be
processed by the component that created the object. Being a CORBA server means that the component (the
server) executes methods for a particular object on behalf of other components (the clients).

Multiple Personalities? Being Both a Client and a Server

Frequently, an application component can provide services to other application components while accessing
services from other components. In this case, the component is acting as a client of one component and as a
server to the other components (see Figure 2.6). In fact, two components can simultaneously act as clients and
servers to each other. To understand this situation, consider the following scenario (illustrated in Figure 2.7):
The first component, Component A, receives areference to an object created by a second component,
Component B, and calls a method on that object. Here, Component A acts as a client and Component B actsas a
server. Now assume that as a parameter of the method called, Component A passes a reference to an object that
it has created (and thus provides an implementation for the object). Assume further that Component B now calls
some method on that object. For this particular method invocation, Component A acts as a server, whereas
Component B acts as a client. The two components have not changed their overall roles in the application, but
they have temporarily reversed their roles as client and server. Therefore, from this example you see that in a
CORBA application, the terms client and server might depend on the context of the method being called and in
which component that method's object resides.

Figure 2.6. Acting as a client and a server.

One last point to consider in the terminology of clients and servers: Although an application component can
function as both a client and a server, it is nevertheless typical to label such acomponent as one or the other
(not both). In the preceding example, assume that for the most part, Component A calls methods on objects
owned by Component B. Asillustrated in the example, some (or even al) of these method calls can pass object
references to Component B, which can then make calls through those object references back to Component A.
Although Component A is acting as a server for these method calls, because the overall function of the
component isto use services provided by Component B, and only provides objects as arguments to methods in
Component B, you might very well refer to Component A as the client and to Component B as the server.
Methods called in thisway are generally referred to as client callback methods, or simply callbacks. Callbacks
are especially important given CORBA's current lack of pass-by-value capability; the capability to pass objects
by value, when it becomes available, will eliminate the need for many callbacks.

New Term: Client callback method, or simply callback, is a generic term given to a method that isimplemented
by aclient and called by a server. Callbacks essentially make a client

Figure 2.7. Aclient callback method.

Stubs and Skeletons

After adeveloper creates component interface definitions using IDL, he or she processes the resulting IDL files
with an IDL compiler. The IDL compiler generates what are known as client stubs and server skeletons. Client
stubs and server skeletons serve as a sort of "glue” that connects language-independent IDL interface
specifications to language-specific implementation code. Client stubs for each interface are provided for
inclusion with clients that use those interfaces. The client stub for a particular interface provides adummy
implementation for each of the methods in that interface. Rather than execute the server functionality, however,
the client stub methods simply communicate with the ORB to marshal and unmarshal parameters.

New Term: A client stub, which is generated by the IDL compiler, isasmall piece of code that makes a
particular CORBA server interface availableto a client.

A server skeleton, also generated by the IDL compiler, isa piece of code that provides the "framework™ on
which the server implementation code for a particular interface is built.

On the other side, you have server skeletons, providing the framework upon which the server is built. For each

http://www.informit.com/content/0672312085/element_003.shtml (7 of 9) [17.07.2000 18:31:04]

javascript:popUp('elementLinks/06.jpg');
javascript:popUp('elementLinks/07.jpg');

- Understanding the CORBA Architecture From: Sams Teach Yourself CORBA in 14 Days

method of an interface, the IDL compiler generates an empty method in the server skeleton. The developer then
provides an implementation for each of these methods. Figure 2.8 illustrates how client stubs and server
skeletons fit into a CORBA application.

Figure 2.8. Client stubs and server skeletons.

Y ou will study the process of building a CORBA client and server in detail on Day 4. There you will find how
to usethe IDL compiler, how to build a CORBA client using the client stubs generated by the IDL compiler,
and how to build a CORBA server, starting from the server skeletons also generated by the IDL compiler.
Eventually, you will see that you can build CORBA clients without using client stubs at all, using what is
known as the Dynamic Invocation Interface (DIl). Rather than being statically linked to server interfaces, such
clients can discover server interfaces dynamically and use services not even conceived of at the time the clients
were built. (However, using the DI significantly increases the complexity of aclient application and is
probably best Ieft for a certain niche of applications.) Because the Dynamic Invocation Interface is considered
an advanced topic, you won't be seeing any more of it until Day 11.

Beyond the Basics: CORBAservices and
CORBAfacilities

Certainly, much can be accomplished using just the basics of CORBA: using IDL to create component
interfaces, then implementing those interfaces and developing clients to exploit the services provided. However,
the Object Management Architecture (which you'll recall is the Object Management group's overall architecture
which includes CORBA) provides much more than the basic ORB capabilitiesin the form of CORBAservices
and CORBAfacilities. These capabilities include event management, licensing, object persistence, naming,
security, transactions, user interface management, data interchange, and much more. The interfaces for using
these capabilities are standardized by the OMG, meaning that their usageis (or will be) consistent across
platforms and products. What's more, the interfaces for CORBAservices and CORBAfacilities are specified in
IDL, meaning that applications can use these services just as they use any other CORBA objects.

Y ou will examine the CORBAservices and CORBAfacilities, both present and future, on Day 12. For the time
being, you should be aware that there is a difference between what services and facilities are specified by the
OMG and what services and facilities are available in various CORBA products. Before deciding to use a
particular service or facility in an application design, you should first ensure that a product actually exists that
implements that functionality. Also note that in order to be considered CORBA 2.0-compliant, a product need
not implement any of the CORBA services or CORBAfacilities; only the CORBA core functionality is required.

Summary

In this chapter, you first discovered the two cornerstones of the CORBA architecture: the Object Request
Broker (ORB), which manages the communication of CORBA objects with each other, and the Interface
Definition Language (IDL), which defines application component interfaces upon which CORBA applications
are built. Y ou explored the CORBA object model, where you learned about inter-ORB protocols (particularly
I10OP), CORBA's use of object references, and the concept of the Basic Object Adapter. Y ou defined the terms
client and server in the context of CORBA and saw that a single application component can simultaneously act
as both aclient and a server. Y ou also saw how IDL definitions create client stubs and server skeletons, which
in turn implement CORBA clients and servers. Finaly, you were introduced to CORBA services and
CORBAfacilities, which provide additional functionality for CORBA applications.

Now that you have developed an understanding of the overall CORBA architecture, you will move on to the
basics of IDL, starting with simple data types and working up to more complex IDL constructs. Y ou will find
this knowledge of IDL necessary to design and implement CORBA applications.

Q&A

Q Why would the capability to pass objects by value eliminate the need for many callbacks?

A Inmany cases, aclient might only need to pass a simple object to a server method. Because objects
cannot be passed by value, the server must use callbacks to the client to manipulate the object (even if it
only wants to read the object's state). If the object can be passed by value, the server can operate on a
local copy of the object, eliminating the need for client callbacks. (Of course, in some cases the client will
want to retain ownership of the object and will want the server to make callbacks; in such cases, the

http://www.informit.com/content/0672312085/element_003.shtml (8 of 9) [17.07.2000 18:31:04]

javascript:popUp('elementLinks/08.jpg');

- Understanding the CORBA Architecture From: Sams Teach Yourself CORBA in 14 Days
callback paradigm would be retained.)

Q Client stubs seem too restrictive for my application; do | need touse DI1?

A For an overwhelming majority of applications, if you think DIl is necessary, you might want to
reconsider. Due to the complexity and overhead of using DII, it isamost aways best to avoid it. (See
Chapter 11 for more information on when the use of DIl might be appropriate.)

Q Why ar e language mappings a necessary part of CORBA?

A Because CORBA object interfaces are specified in IDL, which isindependent of any implementation
language, it is necessary to specify a methodology for converting IDL datatypesto data types of the
implementation language(s) chosen. The language mapping for a particular implementation language
describes this methodol ogy. Furthermore, language mappings for many common languages are
standardized, meaning that an application written to use one CORBA product can be made to work with a
different product with little or no modification (as long as the application uses only features of the
standard language mapping).

Workshop

The following section will help you test your comprehension of the material presented today and put what
you've learned into practice. You'll find the answersto the quiz in Appendix A. On most days, afew exercises
will accompany the quiz; today, because no real "working knowledge" material was presented, there are no
exercises.

Quiz

1. Earlier in the chapter, you claimed that the capability to pass objects by value, when it becomes
available, will eliminate the need for many callbacks. Why isthis true?

2. An architect of a CORBA application wants to include two server components in the application. The
first component has a single method that simply returns the time of day. The second component, when
initialized, performs a lengthy calculation on alarge database table; it features a single method that
returns the precal culated result. Which server activation policies will the architect want to use for these
two components, and why?

3. Can you think of adrawback to the use of client stubsin a CORBA client application? (Hint: What
potentially useful capability does the Dynamic Invocation Interface (DI1) provide?)

4. Why are language mappings a necessary part of CORBA?

<Back Contents Next>
Save to Mylnforml T

http://www.informit.com/content/0672312085/element_003.shtml (9 of 9) [17.07.2000 18:31:04]

http://www.informit.com/My/Add?isbn=0672312085&title=Sams+Teach+Yourself+CORBA+in+14+Days&category=Programming&topic=CORBA&chapter=2840&elementname=Understanding+the+CORBA+Architecture
http://www.informit.com/about/
http://www.informit.com/press/
http://www.informit.com/about/advertising/
http://www.informit.com/legal/privacy/
http://www.informit.com/contact/
http://www.informit.com/legal/copyright/
http://www.informit.com/legal/privacy/

- Mastering the Interface Definition Language (IDL) From: Sams Teach Yourself CORBA in 14 Days

ile they last!
Y¥our Name Mi

Hot Topics Yisual Basic Windows 2000 Windows MT Linu=/Open Source Cizco Knowledge Suite

Soluton Centers PragramlIT DatabazelT WebIT MetworkIT ConfiguralT
® Exact Phrase

© Ao Mastering the Interface Definition Language

Search

s (IDL)

<Back Contents Next> From: Sams Teach

Yourself CORBA in 14
e Days
; T Author: Jeremy
(0(0)1417.Y Rosenberger
w 14 DAYs | Publisher: Sams
- More Information

&lpha

Editar! :
Free Library
InformlT Store

Save to Mylnforml T

o Overview

o IDL Ground Rules
Click Here for 0 Case Sensitivity
HI']EIIJ';‘!T“““ o 1DL Definition Syntax

o IDL Comments

developerWorks” o Use of the C Preprocessor

o TheModule
DPEC.we_ o Coupling and Cohesion

Based Training

o Primitive Types

P s, oo
. o boolean

@‘H Top IT o char and wchar
News o Floating Point Types
TGS - e e

O octet

o string

o Theconst Modifier
« Constructed Types
o The Enumerated Type
o The Structure Type
o Theunion Type
o Theinterface Type
o Other IDL Constructs

o typedef
o Forward Declarations

o Container Types
o The seguence Type

o TheArray
o The exception Type

o exception
o Standard Exceptions

Theany Type

http://www.informit.com/content/0672312085/element_004.shtml (1 of 16) [17.07.2000 18:31:11]

http://www.informit.com/
http://ad.doubleclick.net/jump/www.informit.com/programit/;cat=developer;num=92
javascript:document.regularSearch.submit();
http://www.informit.com/search/tips/
http://ad.doubleclick.net/clk;1464039;4446282;i?http://www.informit.com/jobs
http://www.informit.com/news/
http://www.informit.com/downloads/
http://www.informit.com/store/
http://www.informit.com/itlibrary/
http://www.informit.com/edchoice/
http://www.informit.com/alphabook/
http://infobase.informit.com/
http://www.informit.com/My/Accounts
http://ad.doubleclick.net/jump/informit.com/sponsor-button/brassring/badge;sz=100x60
http://ad.doubleclick.net/jump/informit.com/sponsor-button/ibm/badge2;sz=88x31
http://www.informit.com/training/
http://www.recommend-it.com/p.e?415858
http://www.informit.com/news/
http://www.informit.com/downloads/
http://www.informit.com/programit/vb/
http://www.informit.com/networkit/windows2000/
http://www.informit.com/networkit/winnt/
http://www.informit.com/networkit/linux/
http://www.knowcisco.com/
http://www.informit.com/programit/
http://www.informit.com/databaseit/
http://www.informit.com/webit/
http://www.informit.com/networkit/
http://www.informit.com/configureit/
http://www.informit.com/My/Add?isbn=0672312085&title=Sams+Teach+Yourself+CORBA+in+14+Days&category=Programming&topic=CORBA&chapter=2841&elementname=Mastering+the+Interface+Definition+Language+(IDL)
http://www.informit.com/product/0672312085

- Mastering the Interface Definition Language (IDL) From: Sams Teach Yourself CORBA in 14 Days

« The TypeCode Pseudotype
« Summary
o Q&A
« Workshop
0 Quiz

o Exercises

Overview

On Day 2 you learned about the details of the CORBA architecture and attained an understanding of the various
CORBA application components and their purposes. One chief component of the CORBA architecture, as you
saw, isthe use of the Interface Definition Language (IDL). IDL is used to describe the interfaces between
CORBA objects. You also learned that IDL is neutral with respect to implementation language; in other words,
IDL interfaces can be implemented in any language for which alanguage mapping exists, such as Java, C, C++,
and a number of others.

Today you'll explore the various constructs of IDL and learn their uses. Y ou'll start with the primitive data
types, such as Booleans, floating point types, integer types, and characters and character strings, which you will
find similar to data types found in most programming languages. Y ou'll then move on to constructed types--the
enumerated type, the structure type, the union type, and the interface type--which are simply types constructed
from other types. Finally, you'll learn about advanced types, such as container types (sequences and arrays),
exceptions, and others. By the end of the chapter you'll have covered virtually all there isto know about IDL.

IDL Ground Rules

Before you begin with IDL data types and other constructs, you'll want to cover afew ground rules of IDL
syntax and other aspects of the IDL language. In particular, IDL has rules regarding case sensitivity, definition
syntax, comment syntax, and C preprocessor usage.

Case Sensitivity

In IDL, identifiers (such as names of interfaces and operations) are case sensitive. In other words, an interface
called myObject cannot be referred to later as myOBJECT. Besides these identifiers being case sensitive, IDL
imposes another restriction: The names of identifiers in the same scope (for instance, two interfaces in the same
module or two operations in the same interface) cannot differ in case only. For example, in the myObject
interface, IDL would not allow an operation named anOperation and another operation named anOPERATION
to be defined simultaneously. Obviously, you haven't yet been exposed to modules, interfaces, and operations;
stay tuned to this chapter for more details on these constructs.

Note:What the OMG refers to as operations, you might know as methods, member functions, or
even messages. Whatever name you know it by, an operation defines a particular behavior of an
interface, including the input and output parameters of that particular behavior. Throughout this
book, the terms operation and method will be used interchangeably, because they refer to exactly
the same concept.

IDL Definition Syntax

All definitionsin IDL are terminated by a semicolon (;), much asthey arein C, C++, and Java. Definitions that
enclose other definitions (such as modules and interfaces) do so with braces ({}), again like C, C++, and Java.
When a closing brace also appears at the end of a definition, it is also followed by a semicolon. An example of
this syntax appearsin Listing 3.2 in the section, "The Module."

IDL Comments

Commentsin IDL follow the same conventions as Java and C++. Both C-style and C++-style comments are
allowed, asillustrated in Listing 3.1. (Note that the second comment in the listing contains embedded comment
characters; these are for description purposes only and are not actually allowed by IDL.)

Listing 3.1. IDL comments.

http://www.informit.com/content/0672312085/element_004.shtml (2 of 16) [17.07.2000 18:31:11]

- Mastering the Interface Definition Language (IDL) From: Sams Teach Yourself CORBA in 14 Days

View Code
Use of the C Preprocessor
IDL assumes the existence of a C preprocessor to process constructs such as macro definitions and conditional

compilation. If the IDL you write does not make use of these features, you can do without a C preprocessor, but
you should recognize that IDL can make use of C preprocessor features.

Note: The C preprocessor, included with C and C++ compilers and with some operating systems,
isatool that is essential to the use of those languages. (The Java language does not use a
preprocessor.) Before a C or C++ compiler compiles code, it runs the preprocessor on that code.
The preprocessor, among other things, resolves macros, processes directives such as #ifdef ... #endif
and #include, and performs substitutions of #defined symbols. For more information on the C
preprocessor, consult a C or C++ text, or if you have accessto a UNIX system, try man cpp.

The Module

Thefirst IDL language construct to examine is the module. The module construct is used to group together DL
definitions that share a common purpose. The use of the module construct is simple: A module declaration
specifies the module name and encloses its members in braces, asillustrated in Listing 3.2.

New Term: The grouping together of similar interfaces, constant values, and the like is commonly referred to
as partitioning and is atypical step in the system design process (particularly in more complex systems).
Partitions are also often referred to as modules (which should be no surprise) or as packages (in fact, the IDL
module concept closely resembles the Java package concept--or the other way around, because IDL came first).

Listing 3.2. Module example.

1: nodul e Bank {

2: i nterface Custoner {
3:

4: };

5: i nterface Account {
6:

7 b

8: C

9: };

The examplein Listing 3.2 defines amodule called Bank, which contains two interfaces called Customer and
Account (ellipses are used to indicate that the actual definitions are omitted). The examples get ahead of
themselves somewhat by using the interface construct here; interfaces are described later in this chapter.

Coupling and Cohesion

New Term: So, now that you have the ability to group interfaces together, how do you decide which interfaces
to group together? Thisisreally a question of system design and would be best answered in atext dedicated to
that subject. (There are plenty of excellent books available on the subject of object-oriented analysis and
design.) However, an overall guideline is that a good design generally exhibits two attributes: |oose coupling
and tight cohesion. The first means that components in separate modules are not tightly integrated with each
other; an application using components in one module generally need not know about components in another
module. (Of course, thereis often some overlap between modules for various reasons, such as the need to share
data between modules or to facilitate common functionality between modules.) When thereislittle or no
dependency between components, they are said to be loosely coupled.

On the other hand, within asingle module it is advantageous for a design to achieve tight cohesion. This means
that interfaces within the module are tightly integrated with each other. For example, amodule called

Internal CombustionEngine might contain interfaces such as CylinderHead, TimingChain, Crankshaft, Piston,
and many others. It is difficult to describe the purpose of one of these components without referring to the
others; hence, one might say that the components are tightly cohesive. By way of comparison, you would
probably find very little in common between the components of |nternal CombustionEngine and, for instance,
AudioSystem; Internal CombustionEngine components such as QilFilter and SparkPlug are loosely coupled to
AudioSystem components such as CompactDiscPlayer and Subwaoofer.

http://www.informit.com/content/0672312085/element_004.shtml (3 of 16) [17.07.2000 18:31:11]

javascript:popUp('elementLinks/element_004_code_1.html');

- Mastering the Interface Definition Language (IDL) From: Sams Teach Yourself CORBA in 14 Days

Figure 3.1 illustrates the concepts of coupling and cohesion; note that there are many relationships between
components within the same module, whereas there are few relationships between components within separate
modules. The figure aso illustrates the advantage of |0ose coupling between modules: Imagine if, when you
installed anew CD player in your car, you had to change the spark plugs and replace your timing chain! Loose
coupling of components reduces the possibility that changes to one component will require changes to another.

Figure 3.1. Coupling and cohesion.

Primitive Types

Like most programming languages, IDL features a variety of primitive types (which can then be combined into
aggregate types). These types store simple values such as integral numbers, floating point numbers, character
strings, and so on.

void

The IDL void typeis analogousto the void type of C, C++, and Java. It is pointless to have a variable of type
void, but the type is useful for methods that don't return any value.

boolean

The IDL boolean type, as its name suggests, stores a Boolean value. IDL defines two boolean constants, true
and false, which have obvious meanings. Depending on the programming language used, the IDL boolean type
can map to an integral type (such as C/C++'s short) or to the language's native Boolean type (as is the case with
Java).

bool ean aBool ean;

char and wchar

The char typein IDL, analogous to the char typein C, C++, and Java, stores asingle character vaue. As
expected, it maps directly to the char type in these languages. The char datatype is an 8-bit quantity.

char aChar;

Inversion 2.1, CORBA added the wchar, or wide character type, which has an implementation-dependent width
(which islikely to be 16 hits, but you might want to consult with your ORB documentation).

Floating Point Types
IDL defines a number of typesto represent floating point values; these are already familiar to most devel opers.
float

The IDL float type represents an | EEE single-precision floating point value. Again, it is analogous to the C,
C++, and Javartype of the same name.

fl oat aFl oat;
double and long double

The double type represents an | EEE double-precision floating point value. Not surprisingly, it corresponds to
the familiar double type of a number of languages.

doubl e aDoubl e;

The long double type, introduced in CORBA 2.1, represents an | EEE double-extended floating point value,
having an exponent of at least 15 bits and a signed fraction of at |east 64 bits.

Integer Types

IDL also defines a number of integral numeric types. Again, most devel opers will recognize these. Unlike most
familiar programming languages, though, IDL doesn't define aplain int type, only short and long integer types.

long and long long

The IDL long type represents a 32-bit signed quantity (with arange of -231..231-1), like C/C++'sint (on most

http://www.informit.com/content/0672312085/element_004.shtml (4 of 16) [17.07.2000 18:31:11]

javascript:popUp('elementLinks/01.jpg');

- Mastering the Interface Definition Language (IDL) From: Sams Teach Yourself CORBA in 14 Days

platforms) and Javasint (on all platforms, because Java, unlike C/C++, explicitly specifies the size of int).
| ong alLong;

In CORBA 2.1, the long long type was added, which is a 64-bit signed quantity (with arange of -263,.263-1).
unsigned long and unsigned long long

The unsigned long typein IDL is an unsigned version of the long type; its range is 0..232-1.
unsi gned | ong anUnsi gnedLong;

CORBA 2.1 added the unsigned long long type, which is a 64-bit unsigned quantity with arange of 0..264-1.
short

The short type represents a 16-bit signed quantity, like C/C++'s short or short int (again, on most platforms) and
Java's short. Itsrangeis-215..215-1,

short aShort;
unsigned short

The unsigned short type, as expected, is the unsigned version of short, with arange of 0..216-1.
unsi gned short anUnsi gnedShort;

octet

The octet type is an 8-hit quantity that is not translated in any way during transmission. This type has no direct
counterpart in C and C++, although the char or unsigned char types are often used to represent this type of
value. Java, of course, has the byte type, which is similar.

octet anCctet;
string

The string type represents a string of characters, similar to C++'s Cstring and Java's String class. C has no direct
counterpart (because there is no "true" string typein C); character arrays are used instead. IDL supports both
fixed- and variable-length strings.

string aFi xedLengt hString[20];
string aVari abl eLengt hStri ng;

The const Modifier

In addition to these standard types, IDL, like C and C++, also alows constant values to be specified by using
the const modifier. const values are useful for values that should not change, such as physical constants such as
pi or c. The scope of a const value, like any value, is that of its enclosing interface or module.

const float aFl oat Constant = 3.1415926535897932384;
const | ong aLongConstant = 12345;
const string aStringConstant = "Ain't |IDL great?";

Constructed Types

Constructed types, which combine other types, enable the creation of user-defined types. Perhaps the most
useful of these constructsis the interface, which defines the services provided by your application objects.
Because IDL is, after al, the Interface Definition Language, it seemsfitting that interfaces should comprise the
bulk of IDL source code.

The Enumerated Type

The enumerated type, enum, allows the creation of types that can hold one of a set of predefined values
specified by the enum. Although the identifiers in the enumeration comprise an ordered list, IDL does not
specify the ordinal numbering for the identifiers. Therefore, comparing enum values to integral values might not
be safe, and would almost certainly not be portable across languages. C and C++ aso have an enumerated type
that works similarly. An example of the enum type appearsin Listing 3.3.

http://www.informit.com/content/0672312085/element_004.shtml (5 of 16) [17.07.2000 18:31:11]

- Mastering the Interface Definition Language (IDL) From: Sams Teach Yourself CORBA in 14 Days
Listing 3.3. enum example.

1: enum DaysOf Week {
2 Sunday,

3 Monday,

4: Tuesday,

5: Wednesday,

6: Thur sday,

7 Fri day,

8 Sat ur day

9: };

The Structure Type

IDL provides a structure type--struct--that contains, asin C and C++, any number of member values of
disparate types (even other structs). structs are especialy useful in IDL because, unlike CORBA objects (which
are represented by interfaces), structs are passed by value rather than by reference. In other words, when a struct
is passed to aremote object, a copy of that struct's values is created and marshaled to the remote object. An
example of the struct type appearsin Listing 3.4.

Listing 3.4. struct example.

1. struct DateStruct {

2 short year,

3 short nont h,

4. short day,

5: short hour,

6: short m nut e,

7 short second,

8 | ong m crosecond
9:

|
The union Type
The IDL union type, like a struct, represents values of different types. The IDL union type will appear
somewhat odd to C and C++ programmers, resembling something of a cross between a C/C++ union and a case
statement, but Pascal programmers should recognize the format. An example of aunion definition appearsin
Listing 3.5.

Listing 3.5. union example.

1: union MiultiplePersonalities switch(long) {
2 case 1:

3: short myShort Personality;

4. case 2:

5: doubl e nyDoubl ePersonality;

6 case 3:

7 defaul t:

8: string nyStringPersonality;

9: };

In the examplein Listing 3.5, avariable of type MultiplePersonalities might have either a short value, adouble
value, or astring value, depending on the value of the parameter when the union is used in a method call. (The
parameter is known as a discriminator.)

New Term: A discriminator, asused in an IDL union, is a parameter that determines the value used by the
union. In the examplein Listing 3.5, along was used for the discriminator; other types can be used also,
including long, long long, short, unsigned long, unsigned long long, unsigned short, char, boolean, or enum.
The constant values in the case statements must match the discriminator's type.

Note: In practice, IDL unions are rarely useful. Whereas the traditional C union might find ausein
optimization of native C code, unions ailmost never appear in distributed applications. Behavior of
objectsis usualy better abstracted through the use of interfaces. However, should the need for a
union arise, IDL provides thistype, just in case.

http://www.informit.com/content/0672312085/element_004.shtml (6 of 16) [17.07.2000 18:31:11]

- Mastering the Interface Definition Language (IDL) From: Sams Teach Yourself CORBA in 14 Days

The interface Type

The interface typeis by far the most versatile of IDL data types. The interface describes the services provided
by a CORBA object. These services appear in the form of operations (or methods), resembling methods in
object-oriented languages like C++ and Java. The difference, again, isthat IDL isused only to specify the
interfaces of these methods, whereas languages like Java and C++ are used to specify interfaces and (usually)
provide implementations for those interfaces methods.

The IDL interface type is very much like the Javainterface type because neither provides an implementation for
the methods defined. (However, amajor differenceisthat IDL interfaces can contain attributes, whereas Java
interfaces don't.) C++, on the other hand, has no direct counterpart to IDL's interface, although it is common for
C++ applications to use a header file to define the interface of aclass. An IDL interface definition can thus be
compared to a C++ header file containing a class definition. Also, a C++ class whose methods are all pure
virtual can be considered analogous to the IDL interface.

LikeaJavaor C++ class, an IDL interface can contain attributes (also commonly known as member variables)
and operations (which, again, you may know as methods or member functions). Like Javas interface, all
methods defined within an IDL interface are public--they can be called by any other object having areference to
the interface's implementation object. Finally, because IDL interfaces usually describe remote objects, IDL aso
provides some additional modifiersto further describe the interface and its members. For example, methods can
be declared as oneway; arguments to methods can be declared asin, out, or inout; and attributes can be declared
asreadonly. In afew moments, you'll explore what each of these modifiers means, how it is used, and why.

Methods and Parameters

Methods of an interface are, in essence, what define an object's functionality. Although the object's
implementation determines how the object behaves, the interface's method definitions determine what behavior
the object implementing that interface provides. These method definitions are often called method signatures, or
just signatures. IDL methods can use any IDL data types as input and output parameters--primitive types,
structs, sequences, and even interfaces. The general syntax for a method declaration is as follows:

[oneway] return_type net hodNane(paranil_dir paraml _type paraml_ nane,
paran?_dir paranf_type paran2_nane, ...);

The oneway modifier is optional; return_type specifies the type of data returned by the method, the paramndir
modifier specifies the direction of each parameter (one of in, out, or inout), and paramntype specifies the type of
each parameter. Modifiers such as these are not commonly found in programming languages and thus merit
some attention.

New Term: A method signature, often simply called a signature, describes what a method does (ideally, the
method name should specify, at least in general terms, what the method does), what parameters (and their types)
the method takes as input, and what parameters (and their types) it returns as output. in, out, and inout
Parameters As already mentioned, parameters in amethod can be declared asin, out, or inout. These names are
fairly self-explanatory: Anin parameter serves as input to the method; an out parameter is an output from the
method; and an inout parameter serves as an input to and an output from the method.

In remote method terms, this means that before the method isinvoked, any in and inout parameters are
marshaled across the network to the remote object. After the method executes, any out and inout
parameters--along with the method's return value, if any--are marshaled back to the calling object. Note
particularly that inout parameters are marshaled twice--once as an input value and once as an output value.
oneway Methods Thetypical paradigm for calling aremote method is as follows. When an object callsa
method on aremote object, that calling object waits (thisis called blocking) for the method to execute and
return. When the remote object finishes processing the method invocation (often called arequest), it returnsto
the calling object, which then continues its processing. Figure 3.2 illustrates this process.

New Term: In general, the term blocking refers to any point at which a process or thread iswaiting for a
particular resource or another process/thread. Within the context of CORBA,, if aclient invokes aremote
method and must wait for the result to be returned, the client is said to block.

A request is simply another name for a remote method invocation. The term is commonly used when referring
to the operation of a distributed system. In fact, when you study CORBA's Dynamic Invocation Interface (DII),
you'll see that remote methods can be invoked through a Request object.

Figure 3.2. Blocking on a remote method call.

When amethod is declared oneway, it means that the object calling that method will not block. Rather, that
object will call the remote method and then immediately continue processing, while the remote object executes

http://www.informit.com/content/0672312085/element_004.shtml (7 of 16) [17.07.2000 18:31:11]

javascript:popUp('elementLinks/02.jpg');

- Mastering the Interface Definition Language (IDL) From: Sams Teach Yourself CORBA in 14 Days

the remote method. The advantage to this approach is that the calling object can continue working rather than
wait for the remote object to complete the request. Figure 3.3 illustrates the operation of a oneway method.

Figure 3.3. The oneway (nonblocking) remote method call.

Theflexibility of the oneway calling paradigm comes at a price, however. Because the method invocation
returns before the method execution is completed, the method cannot return avalue. Therefore, for a oneway
method, the return value must be declared void, and al parameters must be declared asin (out and inout
parameters are not allowed). In addition, a oneway method cannot raise any exceptions. Also, the calling object
has no way of knowing whether the method executed successfully; the CORBA infrastructure makes a
best-effort attempt to execute the method, but successis not guaranteed. (Readers familiar with the User
Datagram Protocol will recognize the similarity.) Therefore, oneway methods are most useful for situationsin
which one object wants to inform another object of a particular status but (1) does not consider the message to
be essential and (2) does not expect (or desire) aresponse.

Note: A method that has only in parameters, returns avoid, and does not raise any exceptions is not
automatically a oneway method. The difference between such a method and a oneway method is
that, whereas the latter is not guaranteed to execute successfully (and the client will have no way of
determining whether it did), the former will result in the client blocking until aresult is returned
from the remote method (even though the result will be null). The important difference here is that
the success of the non-oneway method can be determined, because a CORBA system exception
would be raised if this were not the case.

There are ways of overcoming the issues associated with blocking. Most commonly, the use of multithreading
can circumvent the blocking "problem” by creating a separate thread to invoke the remote method. While that
thread is blocked waiting for the result to be returned, other threads can continue working. On Day 10 you'll
study issues such as thisin greater detail and learn about some possible resolutions to these issues.

Attributes

An attribute of an IDL interface is analogous to an attribute of a Java or C++ class, with the exception that IDL
attributes always have public visibility. (Indeed, everything in an IDL interface has public visibility.) The
genera syntax for defining an attribute is this:

[readonly] attribute attribute type attributeNane;

In Javaand C++, it isgenerally considered good programming practice to provide accessor and mutator
methods for attributes of a class, and to make the attribute itself protected or private. IDL advances this concept
one step further: IDL attributes map to accessor and mutator methods when the IDL is compiled. For instance,
the following definition:

attri bute short myChannel;

maps to the following two methods:

short myChannel ();
voi d myChannel (short val ue);
readonly Attributes

The preceding exampl e indicates the optional use of the readonly modifier. As the name suggests, this modifier
is used to specify that a particular attribute is for reading only; its value cannot be modified directly by an
external object. (The object implementing the interface is, of course, free to modify values of its own attributes
asit seesfit.) Although a non-readonly attribute maps to a pair of accessor/mutator methods, for a readonly
attribute the IDL compiler will generate only an accessor method.

Inheritance of interfaces

IDL interfaces, like the Java and C++ constructs they resemble, support the notion of inheritance. That is, an
interface can inherit the methods and attributes of another (one can aso say that the former interface derives
from or is derived from the latter). In addition to inheriting its superclass methods and attributes, a subclass can
define additional methods and attributes of its own. The subclass can aso be substituted anywhere that its
superclassis expected; for example, if amethod takes a parameter of type Fish and the Halibut interface isa
subclass of the Fish interface, then that method can be called with a parameter of type Halibut instead of Fish.

New Term: A subclass, or derived class, is aclass that inherits methods and attributes from another class. The
class from which these methods and attributes are inherited is known as the superclass, or parent class.
Although IDL uses interfaces and not classes, these general terms can still be applied.

http://www.informit.com/content/0672312085/element_004.shtml (8 of 16) [17.07.2000 18:31:11]

javascript:popUp('elementLinks/03.jpg');

- Mastering the Interface Definition Language (IDL) From: Sams Teach Yourself CORBA in 14 Days

New Term: In object speak, polymorphism refers to the ability to substitute a derived class into a parameter that
expects that class's superclass. Because in a sense the subclassis an instance of the superclass (asaBeagleisa
Dog), any operation that acts on the superclass can also act on the subclass. Polymorphism is a fundamental
property of object-oriented architecture.

The syntax for specifying interface inheritance resembles the syntax used by C++ and Java. The exception in
IDL isthat no visibility for the superclassis specified (recall that all methods and attributes are implicitly
public). Theinheritance syntax isillustrated in Listing 3.6.

Listing 3.6. Inheritance syntax example.

1. interface Fish {

2:

30}

4. interface Halibut : Fish {
5 -

H

In Listing 3.6, the Halibut interface inherits from the Fish interface, asindicated by the colon (:) operator.
Attributes and methods have, of course, been omitted.

One last word with respect to inheritance of IDL interfaces: IDL interfaces, like C++ classes, can inherit from
more than one superclass. This capability, known as multiple inheritance, is not available in Java, although Java
alows asingle class to implement multiple interfaces, afeature that often achieves the same result as multiple
inheritance. The syntax for multiple inheritance in IDL isillustrated in Listing 3.7.

Listing 3.7. Multiple inheritance syntax example.

1. interface LandVehicle {

2

3}

4. interface WaterVehicle {

5:

6: };

7: interface Anphibi ousVehicle : LandVehicle, VWaterVehicle {
8: C

9: };

In Listing 3.7, the AmphibiousV ehicle interface, being both a LandV ehicle and a WaterV ehicle, inherits both
those interfaces. Note that due to the polymorphic behavior of derived classes, an AmphibiousV ehicle can be
substituted for either a LandVechile or a WaterVehicle.

interface Definition Syntax

The syntax for an interface definition is not unlike the syntax used in C++ or Java. The body of the interface
contains method signatures and attribute declarations, in no particular order. A few sample interface definitions
appear in Listing 3.8.

Listing 3.8. Sample IDL interfaces.

1. // This nodul e defines sone useful househol d appliances.
2: nodul e Appliances {

3: /1 Television interface definition.

4 interface Tel evision {

5: [l My serial nunber.

6: readonly attribute string mySeri al Nunber ;

7: /1 My current volune |evel.

8 attri bute short mnyVol une;

9 /'l My current channel.

10: attri bute short myChannel;

11: [l Turn this Tel evision on.

12: void turnOn();

13: /1 Turn this Tel evision off.

14: void turnOif();

15; /1 Set this Television's sleep tinmer.
16: voi d set Sl eepTinmer(in short m nutes);

http://www.informit.com/content/0672312085/element_004.shtml (9 of 16) [17.07.2000 18:31:11]

- Mastering the Interface Definition Language (IDL) From: Sams Teach Yourself CORBA in 14 Days

17: };

18: i nterface WWATel evision : Tel evision {
19: /1 Surf to the given URL.

20: void surfTo(in Internet::URL url);
21; };

22: };

Close inspection revea s that IDL interfaces don't specify constructors or destructors. Java devel opers should
not be surprised at this because Javainterfaces don't include constructors or destructors either (but then again,
there are al'so no destructorsin Java). C++ developers, however, might be wondering what happened to the
constructors and destructors. Asit turns out, constructors and destructors are still a part of CORBA objects; they
just aren't included as part of the object's interface. Y ou'll see the reason for this when you begin building a
CORBA application in the next chapter.

Other IDL Constructs

IDL supports several other useful constructs. Among these are the capability to refer to any IDL type by a
user-specified type name and the capability to declare a type name without defining it, which is helpful for
handling circular references.

typedef

Like C and C++, IDL supports atypedef statement to create a user-defined type name. typedef can make any
IDL type accessible by atype name of the user's choosing, a capability that adds convenience to the language.
For example, in Listing 3.8, the Television interface contains the member mySerial Number, which is of type
string. Because the use of the string type isn't very telling, it might be preferable to define a Serial Number type
that can then be used by any interfaces and methods requiring a serial number. Assuming that the string typeis
adequate for storing serial numbers, it would be convenient to use a string type but refer to it as a SerialNumber.
The typedef statement allows you to do just this. The statement

typedef string Serial Nunber;
means that anywhere the Serial Number type is found, it should be treated as a string.

Forward Declarations

Occasiondly, you will create interfaces that reference each other--that is, within the first interface you'll have an
attribute of the second interface's type, or a method that uses the second interface's type as a parameter or return
value. The second interface, similarly, will reference the first interface in the same way. Listing 3.9 illustrates
this concept, known asacircular reference.

New Term: A circular reference occurs when two classes (or interfaces, in the context of IDL) each have
attributes or methods that refer to the other class.

Listing 3.9. Circular reference example.

1. nmodule Circular {

2: interface A {

3: void useB(in B aB);
4: }

5: interface B {

6: voi d useA(in A anA);
7: }

8: };

In Listing 3.9, the A interface references the B interface, which in turn references the A interface. If you were to
attempt to compile this code asit is listed, the IDL compiler would report an error in the useB() method
definition because the B interface is unknown. If you were to reverse the order of definition of the A and B
interfaces, the IDL compiler would signal an error in the useA () method because the A interface is unknown. As
you can see, the circular reference problem is abit of a Catch 22.

C and C++ programmers mi ight already know the answer to the circular reference problem: the forward
declaration. A forward declaration allows you to inform the IDL compiler that you intend to define the declared
type later, without defining the type at that point. (Y ou will have to define the type at some point, however.)
The syntax of aforward declaration, which closely resembles the C/C++ syntax, is simple:

http://www.informit.com/content/0672312085/element_004.shtml (10 of 16) [17.07.2000 18:31:11]

- Mastering the Interface Definition Language (IDL) From: Sams Teach Yourself CORBA in 14 Days
interface B;

Thistellsthe IDL compiler that a definition for the Bar interface will appear at some point in the future but that
for now it should accept references to the as-yet-undefined Bar. Listing 3.10 illustrates how the forward
declaration would fit into the previous example.

Listing 3.10. Circular reference example.

nodul e Circul ar {
/!l Forward declaration of the B interface.
i nterface B;
interface A {
void useB(in B aB);
}

interface B {
voi d useA(in A anA);
}

oxNOOREWONE

10: };

In Listing 3.10, when the IDL compiler reaches the definition for useB(), it sees that the B interface has already
been declared (by the forward declaration) and thus will not report an error.

Note:You could just as well have defined the B interface first and made a forward declaration to
the A interface; the IDL compiler does not impose a particular order in which interfaces must be
defined.

Container Types

Most programming languages include constructs for dealing with multiple values of similar types. Arrays are
common throughout programming languages: Java includes java.util .V ector, C++ features its Standard
Template Library (STL), and, of course, various libraries of container classes abound. IDL isno exception,
featuring two such constructs: the sequence, which is a dynamically sizable array, and the array, which mirrors
the array constructs found in many languages.

The sequence Type

An IDL sequenceis simply adynamically sizable array of values. These values can be dynamically inserted in
or removed from the sequence; the sequence manages its size accordingly. All values of a sequence must be of
the same type or derived from the same type (with the exception of the any type. For example:

sequence<f | oat > t enper at ur eSequence;
defines a sequence of float values and assigns this type to the variable temperatureSequence. Values of type

float can subsequently be added to temperatureSequence, or values can be removed. Recalling the Appliances
example (refer to Listing 3.8), you can also create a sequence of Television objects:

sequence<Tel evi si on> tel evi si onl nvent ory;
In this case, televisionlnventory can be populated with objects of type Television, or any objects derived from
Television, in this case WWWTelevision. If you had created athird interface derived from Television--for

instance, PortableT el evision--the televisionlnventory sequence could contain Televisions, WWWTelevisions,
and PortableTeevisions.

The Array

An IDL array corresponds directly to the array constructsin C, C++, and Java. An array stores a known-length
series of similar datatypes. For example:

string DayNanes[7];

defines an array, with the name DayNames, of seven string values. Arrays can hold elements of any IDL data
type; asin the Appliances example (refer to Listing 3.8), you can define the following array:

Tel evi si on TVArray[10];

to define an array of ten Televisions. Remember that, due to polymorphism, each array element can hold either
aplain Television or the derived WWWTelevision.

http://www.informit.com/content/0672312085/element_004.shtml (11 of 16) [17.07.2000 18:31:11]

- Mastering the Interface Definition Language (IDL) From: Sams Teach Yourself CORBA in 14 Days

The exception Type

One concept embraced recently by developersis the use of exceptions to perform error handling. Exceptions,
featured in object-oriented languages such as Java and C++, are constructs which are created to signify some
error condition. When a method rai ses an exception, the method stops what it is doing and returns immediately.
When the calling method catches the exception, it can either handle the exception or throw it up to that method's
caller. This process might continue all the way up to the top level (typically, main()); if the top-level method
does not handle the exception, the application usually exits (although alowing this to happen is generally
considered poor programming practice).

New Term: When amethod passes an exception back to its caller, it is said that the method throws an
exception, or in CORBA-speak, raises an exception.

CORBA and IDL fully support exception handling through predefined standard exceptions and user-defined
exceptions. IDL alows developers to define exceptions and specify which exceptions are raised by what
methods. When an exception is raised, the ORB passes that exception back to the calling object's ORB, which
then passes the exception back to the calling object. In thisway, CORBA extends the familiar exception-passing
mechanism to a distributed architecture.

In addition to their distributed nature, IDL exceptions differ from their counterpartsin C++ and Javain other
ways. C++ exceptions can be virtually any type; C++ does not even require that exception objects be derived
from a certain type (for instance, a method could throw a const char*, if it so desired). Java exceptions can be
any type that implements the java.lang. Throwabl e interface. IDL, however, is somewhat more restrictive than
these languages; exception objects must be declared explicitly as such. Furthermore, whereas C++ and Java
allow exception types to be derived from other types, IDL does not support inheritance of exception types.

exception

The IDL exception typeitself is similar to a struct type; it can contain various data members (but no methods).
The definition for an exception type also resembl es the struct definition, as the example in Listing 3.11 shows.
The example demonstrates that an exception need not have any members at al; sometimes the mere act of
raising an exception provides enough error-handling information.

Listing 3.11. exception definition example.

/1 This exception mght be used where a file to be opened
/1 couldn't be located. Since it mght be useful for the caller
/1 to know the invalid filenane, the exception provides that
/1 information.
exception Fil eNot FoundException {
string fil eNane;
}

/1 This exception might be used where a particuar operation,
/1 which was supposed to have conpleted within a gi ven anount
10: // of time, failed to do so. The exception provides the

11: // operation nanme and the tinme length given for the operation.
12: exception OperationTi medCut Exception {

LoNIORONME

13: string operati onNane;
14: | ong ti nmeout Lengt h;
15: };

16: // This exception night be used where an attenpt to log into a
17: // systemfailed. No other information is necessary, So none is
18: // provided.

19: exception InvalidLogi nException {

20: };

Standard Exceptions

In addition to allowing developersto create user-defined exceptions, CORBA also provides a number of
standard exceptions, or system exceptions. Exceptionsin this set might be raised by any remote method
invocation. IDL method definitions don't explicitly declare that they raise a system exception; rather, these
exceptions are raised implicitly. (Actually, when the IDL code is compiled, the generated method definitions do
declare that CORBA system exceptions are raised, as well as any user-defined exceptions raised by those
methods.) In addition to regular methods, even the accessor/mutator methods--corresponding to the attributes of

http://www.informit.com/content/0672312085/element_004.shtml (12 of 16) [17.07.2000 18:31:11]

- Mastering the Interface Definition Language (IDL) From: Sams Teach Yourself CORBA in 14 Days
interfaces--can raise standard exceptions, even though they cannot raise user-defined exceptions.

The standard exceptions provided by CORBA are listed in Table 3.1.

Table 3.1. CORBA standard exceptions.

|Exception Name |Deﬁcription

UNKNOWN The unknown exception.
BAD_PARAM Aninvalid parameter was passed.
|NO_M EMORY |Dynami ¢ memory allocation failure.
IMP_LIMIT Violated implementation limit.
COMM_FAILURE Communication failure.

|I NV_OBJREF |I nvalid object reference.

|NO_PERM ISSION |No permission for attempted operation.
INTERNAL |ORB internal error.

MARSHAL |Error marshaling parameter or resullt.
|INITIALIZE |ORBinitiaIizaIionfaiIure.

NO _IMPLEMENT Operation implementation unavailable.
BAD_TYPECODE Bad TypeCode.

|BA D_OPERATION |I nvalid operation.

NO_RESOURCES Insufficient resources for request.
NO_RESPONSE Response to request not yet available.
PERSIST_STORE |Persi stent storage failure.

|BA D_INV_ORDER |Routi ne invocations out of order.

TRANSIENT |Transient failure--re-issue request.
FREE_MEM |Cannot free memory.

|I NV_IDENT |Inva|id identifier syntax.
INV_FLAG Invalid flag was specified.
INTF_REPOS Error accessing interface repository.
|BA D_CONTEXT |Error processing context object.
OBJ ADAPTER Failure detected by object adapter.
DATA_CONVERSION |Data conversion error.

OBJECT_NOT_EXIST |Nonexistent object--del ete reference.

The any Type

For those occasional methods that need to accept any sort of CORBA object as a parameter or take a parameter
that could potentially be one of several unrelated data types (in other words, none of the data types are inherited
from any of the others), IDL providesthe any type. When any is used as the type of a parameter or return vaue,
that value can literally be any IDL type. A method that accepts an any as an input parameter will usually need to
determine precisely what type of object isbeing passed before it can manipulate the object; you will see how
thisis done when you begin implementing CORBA clients and servers.

Note: For a method that must accept one of various types of CORBA objects as a parameter, the
any is not always the only choice. If the type of the parameter can be one of only afew types, and
the type of the parameter is known, then the union type might be a better choice. However, with the
union type, all of the types must be known in advance; thisis not true for an any type. An any
parameter can literally hold any type of object, even one that is unknown to the server receiving the
any parameter.

For an example of the any type, see Listing 3.12. In this example, the browseObject() method accepts asingle
parameter, called object, of type any. A client calling this method can use an object of any IDL typeto fill this
parameter. Internally to browseObject(), the method will attempt to determine what the actual type of object is.
If it determines that object is atype of object it can interact with, it will do so. Otherwise, it will raise the
UnknownObjectType exception, which is returned to the caller.

http://www.informit.com/content/0672312085/element_004.shtml (13 of 16) [17.07.2000 18:31:11]

- Mastering the Interface Definition Language (IDL) From: Sams Teach Yourself CORBA in 14 Days

Listing 3.12. any example.

1: interface ObjectBrowser {

2 excepti on UnknownQbj ect Type {

3: string nessage;

4: b

5 voi d browseQbj ect (in any object) raises (UnknownQbj ect Type);
6: };

The TypeCode Pseudotype

Along with the any type comes the TypeCode pseudotype. TypeCodeis not actually an IDL type; instead, it
provides type information to a CORBA application. In most method calls, the types of the parameters passed to
the method are known because they are specified by the IDL method signatures. However, when a method
accepts an any type as an argument, the actua type of that object is unknown. Thisiswhere TypeCode comes
in. Because every CORBA type--both standard types such as long and string and user-defined types such as
Television--has a unique TypeCode associated with it, a method implementation can determine which type of
object was sent through its any parameter. When the object's type is determined, the method can act on that
object. Think of TypeCodes as a sort of runtime-type information for CORBA applications.

Summary

This chapter presented the basic data types provided by CORBA's Interface Definition Language (IDL),
including integer and floating point numeric types, Boolean values, and characters and character strings.
Because many of these data types closely resemble data types of programming languages like C, C++, or Java,
readers who are aready familiar with one of these languages will have little difficulty assimilating the IDL

types.

Y ou have expanded your knowledge of IDL to now include higher-level data types--particularly the
user-defined types--and their uses. Most importantly, you are familiar with the interface construct and how it
defines the behavior of CORBA objects. Because the interface is one of the fundamental IDL datatypes, a clear
understanding of this construct is essential to the design of CORBA applications. Indeed, you cannot design or
implement a CORBA application without interfaces.

Today you have seen some very useful IDL datatypes and constructs, in particular, the sequence and array
types for storing multiple values of similar types. Y ou learned about the exceptionsin IDL, including the
predefined CORBA standard exceptions. Finaly, you looked at the any type, which can contain a value of any
IDL type, and its counterpart, the TypeCode pseudotype, for determining unknown data types passed to a
method. These constructs--particularly the sequences and exceptions--are essential for building robust CORBA
applications.

Y ou've covered just about everything thereisto know about IDL; now it's time to apply it. In the next
chapter--Day 4, "Building a CORBA Application"--you'll do just that, trandating IDL definitions into working
CORBA server and client applications.

Q&A

Q What'sthe point of having both sequence and array types?

A Array types are useful when the number of elementsin an array is fixed and known in advance. In
many instances, though, thisis not the case; arrays often vary in size as members are dynamically added
and removed. Conseguently, adynamically sizable array, such asthe IDL sequence, is often much more
convenient. For maximum flexibility, IDL offers both.

Q What are all those exceptions and when (or how) arethey raised?

A First of al, nondistributed methods have little need for many of the CORBA standard exceptions, but
they make alot more sense in a distributed environment. As mentioned previously, the standard
exceptions are generally not raised by any code that you will write; rather, the exceptionsin this set are
raised automatically by the ORB when an error condition occurs. Remember that all IDL methods
implicitly raise these exceptions, even the accessor/mutator methods generated by the IDL compiler for
each attribute.

http://www.informit.com/content/0672312085/element_004.shtml (14 of 16) [17.07.2000 18:31:11]

- Mastering the Interface Definition Language (IDL) From: Sams Teach Yourself CORBA in 14 Days

Q Why isn't (insert your favorite primitive data type here) supported?

A Because one primary goal of IDL isto be language-neutral, it isn't practical to support al primitive
datatypes contained in all languages. Rather than attempt to provide this level of support (nearly
impossible to achieve), IDL provides the most common and useful primitive data types.

Q How does an object modify one of its attributes when that attribute is declar ed to be readonly?

A If you're asking questions like this, you're definitely thinking ahead. When you learn about
implementation of IDL interfaces on Day 4, it will become clear how thisis accomplished. For the time
being, though, remember that the object implementing an interface has full accessto its own state. A
readonly attribute is mapped to a method of that object, and that method can return any value the object
wants. Typically, the implementing object will define actual attributes of its own that correspond to
attributes in the IDL interface, although thisisn't strictly necessary.

Q Because Java does not support multipleinheritance, how is multiple inheritance of IDL
interfaces achieved in Java?

A You'll see when you begin implementing IDL interfaces in Javathat the IDL language mapping for

Javamaps IDL interfaces to Javainterfaces. Although multiple inheritance of classesis not supported in
Java, multiple inheritance of interfacesis.

Workshop

The following section will help you test your comprehension of the material presented in this chapter and put
what you've learned into practice. You'll find the answersto the quiz in Appendix A.

Quiz

1. Define atype (using typedef) called temperatureSequence that is a sequence of sequences of floats
(yes, thisislegal).

2. Why might atype as described in the preceding question be useful ?

3. Why are exceptions useful ?

4. Why is the module construct useful ?

5. Name some practical uses for the octet data type.

6. Define an enumerated type containing the months of the year.

7. Why might a nonblocking remote method call be advantageous, compared to a blocking method call?
8. Imagine a compound data type with alarge number of data members. This data type will frequently be
used by a client application, which will generally need to access each of the data members. Would it be
more efficient to encapsulate this data type into a struct or an interface? Why?

9. Because an IDL method can return avalue, what is the purpose of out and inout parameter types?

10. Why is a oneway method unable to return any value to the caller? Can you think of a mechanism,
using oneway calls, to return aresult to the caller?

Exercises

1. Consider the following classes: Conduit, Faucet, FuseBox, Outlet, Pipe, WaterHeater, WaterPump, and
Wire. How would you partition these classes? What relationships, if any, are there between the partitions
you have created?

2. Create an interface that describes a clock/radio (which can set the hours, set the minutes, set the dlarm
time, and so on).

http://www.informit.com/content/0672312085/element_004.shtml (15 of 16) [17.07.2000 18:31:12]

- Mastering the Interface Definition Language (IDL) From: Sams Teach Yourself CORBA in 14 Days

<Back Contents Next>
Save to Mylnforml T

http://www.informit.com/content/0672312085/element_004.shtml (16 of 16) [17.07.2000 18:31:12]

http://www.informit.com/My/Add?isbn=0672312085&title=Sams+Teach+Yourself+CORBA+in+14+Days&category=Programming&topic=CORBA&chapter=2841&elementname=Mastering+the+Interface+Definition+Language+(IDL)
http://www.informit.com/about/
http://www.informit.com/press/
http://www.informit.com/about/advertising/
http://www.informit.com/legal/privacy/
http://www.informit.com/contact/
http://www.informit.com/legal/copyright/
http://www.informit.com/legal/privacy/

- Building a CORBA Application From: Sams Teach Yourself CORBA in 14 Days

ile they last! @

Your Hame

Hot Topics Yisual Basic Windows 2000 Windows MT Linu=/Open Source Cizco Knowledge Suite

Soluton Centers PragramlIT DatabazelT WebIT MetworkIT ConfiguralT

¥l Building a CORBA Application

Search
Search Tips

From: Sams Teach
Yourself CORBA in 14
SRl Days

R Author: Jeremy
(00)1419:Y Rosenberger

' 14 DAYS| Publisher: Sams

- More Information

<Back Contents Next>

Save to Mylnforml T

Rlylnformi T

InformlT E:tln re
Dowenloa Building a CORBA Server
o Defining the Server Interfaces
o Choosing an Implementation Approach
o Using the IDL Compiler

o Implementing the Server Interfaces

Click Here for
High-Tech

Johs! o Compiling and Running the Server
« Buildinga CORBA Client
developerWorks™ o Implementing the Client
I o Compiling and Running the Client
DPEC. we._
Based Tr'ﬂin?ng ° M\[
_ « Q&A
v
o Quiz
Gyt ToRIT o Exercises
News -

HLELEEA G Up to this point, you've spent most of your time learning about CORBA's Interface Definition Language (IDL).
You saw that IDL is used to define the interfaces of CORBA abjects; you've even created some IDL interfaces
of your own. Now it'stime to put your IDL knowledge to use by not only defining object interfaces, but also by
implementing those interfaces to build a CORBA server. This chapter will walk you through that process, from
defining object interfaces to running the server. The outline of the processisthis:

1. Define the server'sinterfacesusing IDL.

2. Choose an implementation approach for the server'sinterfaces. (You'll see that CORBA provides two
such approaches: inheritance and delegation.)

3. Usethe IDL compiler to generate client stubs and server skeletons for the server interfaces. (For now,
you'll only be concerned with the server skeletons.)

4, Implement the server interfaces.
5. Compile the server application.

6. Run the server application. (With any luck, everything will fall into place!)

Y our next task will be to build aclient that uses the services you implemented in the first part of this chapter.
Conceptually speaking, the process of building the client is much simpler; you only need to decide what you

want the client to do, include the appropriate client stubs for the types of server objects you want to use, and

implement the client functionality. Then you'll be ready to compile and run the client.

http://www.informit.com/content/0672312085/element_005.shtml (1 of 13) [17.07.2000 18:31:20]

http://www.informit.com/
http://ad.doubleclick.net/jump/www.informit.com/programit/;cat=developer;num=92
javascript:document.regularSearch.submit();
http://www.informit.com/search/tips/
http://ad.doubleclick.net/clk;1464039;4446282;i?http://www.informit.com/jobs
http://www.informit.com/news/
http://www.informit.com/downloads/
http://www.informit.com/store/
http://www.informit.com/itlibrary/
http://www.informit.com/edchoice/
http://www.informit.com/alphabook/
http://infobase.informit.com/
http://www.informit.com/My/Accounts
http://ad.doubleclick.net/jump/informit.com/sponsor-button/brassring/badge;sz=100x60
http://ad.doubleclick.net/jump/informit.com/sponsor-button/ibm/badge2;sz=88x31
http://www.informit.com/training/
http://www.recommend-it.com/p.e?415858
http://www.informit.com/news/
http://www.informit.com/downloads/
http://www.informit.com/programit/vb/
http://www.informit.com/networkit/windows2000/
http://www.informit.com/networkit/winnt/
http://www.informit.com/networkit/linux/
http://www.knowcisco.com/
http://www.informit.com/programit/
http://www.informit.com/databaseit/
http://www.informit.com/webit/
http://www.informit.com/networkit/
http://www.informit.com/configureit/
http://www.informit.com/My/Add?isbn=0672312085&title=Sams+Teach+Yourself+CORBA+in+14+Days&category=Programming&topic=CORBA&chapter=2842&elementname=Building+a+CORBA+Application
http://www.informit.com/product/0672312085

- Building a CORBA Application From: Sams Teach Yourself CORBA in 14 Days

Building a CORBA Server

Thefirst step in building a CORBA application is usualy to implement the server functionality. The reason for
thisisthat while a server can be tested (at least in alimited way) without aclient, it is generally much more
difficult to test a client without aworking server. There are exceptionsto this, of course, but typically you'll
need to at least define the server interfaces before implementing the client; server and client functionality can
then be developed in parallel. For the sake of simplicity, in this book you'll implement server functionality first,
followed by client functionality.

On ahigh level, to build the server you'll need to first define the server interfaces (which define the capabilities
that will be made available by the server and how those capabilities are accessed), implement those interfaces,
and finally compile and run the server. There are afew issues you'll encounter along the way, which will be
discussed in this section.

Defining the Server Interfaces

Thisiswhere you begin to apply the knowledge you assimilated on Day 3, "Mastering the I nterface Definition
Language (IDL)." There you learned much about IDL but had no real chance to apply that knowledge. Now you
can use that knowledge to transform a clean dlate into a system design.

A Few Words About System Design

Obviously, in order to build a system, one must first have an idea of what that system is supposed to
accomplish. Before you're ready to write asingle line of IDL, you must first have a notion of what you're trying
to achieve. Although the subject of system design is far beyond the scope of this book, on Day 5, "Designing
the System: A Crash Course in Object-Oriented Analysis and Design,” you'll be exposed to some of the basic
concepts of designing a system and mapping a system design into IDL. In this chapter, the work will be done
for you; in the real world, thisis seldom the case.

The Stock Market Server Example

At this point, it's preferable to examine a simple example to help you focus on the process of implementing a
CORBA server. A complex example would likely bog you down in various implementation details and is best
avoided until later.

Consider a stock market-related example: A serviceis desired that, when given astock symbol, will return the
value of that stock at that particular time. As an added convenience, the service will also return alist of al
known stock symbols upon request.

A cursory analysis of this scenario suggeststhat a St ock Ser ver interface could be defined that provides two
services (methods): get St ockVal ue() and get St ockSynbol s() . get St ockVal ue() should take a
St ockSynbol asaparameter and return a floating-point result (f | oat will probably do).

get St ockSynbol s() need not take any arguments and should return alist of St ockSynbol objects.

Note: During the process of determining St ockSer ver system capability, the St ock Sy nbol
class was inadvertently produced. This spontaneous generation of classes, often a by-product of
object-oriented analysis, can lead to a better understanding of how a particular system works.

Listing 4.1. StockMarket.idl.

1. // StockMarket.idl

2:

3: // The StockMarket nodul e consists of definitions useful
4: |/ for building stock market-rel ated applications.

5: nodul e StockMarket {

6:

7: /1 The StockSynbol type is used for synbols (namnes)
8: /1l representing stocks.

9: t ypedef string StockSynbol;

10:

11: /1 A StockSymbol List is sinply a sequence of

12: /1l StockSynbol s.

13: t ypedef sequence<StockSynbol > St ockSynbol Li st ;

14.

http://www.informit.com/content/0672312085/element_005.shtml (2 of 13) [17.07.2000 18:31:20]

- Building a CORBA Application From: Sams Teach Yourself CORBA in 14 Days

15: /1l The StockServer interface is the interface for a
16: /1 server which provides stock market information.
17: /1 (See the comrents on the individual methods for
18: /1 more information.)

19: interface StockServer {

20:

21: /1 getStockValue() returns the current val ue for
22. /1l the given StockSynbol. If the given StockSynbol
23: /1 is unknown, the results are undefined (this
24. /1 would be a good place to raise an exception).
25: fl oat get StockVal ue(in StockSynbol synbol);

26:

27: /'l get St ockSymbol s() returns a sequence of all
28: /1 StockSynbols known by this StockServer.

29: St ockSynbol Li st get St ockSynbol s() ;

30: };

31 };

Mapping this particular design to IDL is a clear-cut process; the final result, St ockMar et . i dl , appearsin
Listing 4.1. First, because it's good practice to group together related interfaces and typesinto IDL nodul es,
start by including al the definitionsin anodul e called St ockMar ket :

modul e St ockMar ket {

Next, consider the use of the St ockSynbol class. For the purposes of this example, it really doesn't require
any functionality over and abovethe st ri ng type. Thus, you can either substitutethe st r i ng type anywhere
that the St ockSynbol type would have been used, or you can uset ypedef to define St ockSynbol asa

st ri ng. Inacomplex system, using specific data types such as St ock Synmbol makes the system design
easier to comprehend. To reinforce this practice, uset ypedef to define St ockSynbol asastri ng:

typedef string StockSynbol;

Y ou're now ready to define the interface for the St ock Ser ver object:

interface StockServer {

Thefirst method in St ockSer ver isamethod that takesa St ockSynbol asinput and returnsaf | oat .
Expressing thisin IDL is uncomplicated:

fl oat get StockVal ue(in StockSynbol synbol);

Note: It's conceivable that a client could call get St ockVal ue() withaninvalid

St ockSynbol name. To handle this, get St ockVal ue() could (and probably should) raise an
exception when an invalid name is passed to it. For the sake of simplicity, though, this example
does not make use of exceptions.

The other St ock Ser ver method takes no arguments and returns alist of St ockSynbol s. Recall that IDL
offers two constructs to represent lists. the sequence and the array. Because the size of the list isunknown in
this case, it might be advantageous to use asequence. However, amethod cannot return asequence
directly; you'll first needtot ypedef asequence of St ockSynbol sto use with this method. For the sake
of convenience, add thet ypedef immediately following thet ypedef of the St ockSynbol type:

t ypedef sequence<St ockSynmbol > St ockSynbol Li st ;

You're now ready to add the get St ockSynbol s() method to the St ockSer ver interface. This method is
described in IDL asfollows:

St ockSynbol Li st get St ockSynbol s();

That's al the IDL you need for this example. Armed with the St ockMar ket . i dl file, you're now ready for
the next step: deciding how you'd like to implement these IDL definitions.

Choosing an Implementation Approach

Before actually implementing the server functionality, you'll first need to decide on an implementation approach
to use. CORBA supports two mechanisms for implementation of IDL interfaces. Developers familiar with
object-oriented concepts might recognize these mechanisms, or at least their names. These include the
inheritance mechanism, in which a class implements an interface by inheriting from that interface class, and the
delegation mechanism, in which the methods of the interface class call the methods of the implementing class

http://www.informit.com/content/0672312085/element_005.shtml (3 of 13) [17.07.2000 18:31:20]

- Building a CORBA Application From: Sams Teach Yourself CORBA in 14 Days

(delegating to those methods). These concepts areillustrated in Figures 4.1 and 4.2. Figure 4.2 also illustrates
that atie class can inherit from any class--or from no class--in contrast to the inheritance approach, in which the
implementation class must inherit from the interface class that it implements.

New Term: Implementation by inheritance consists of a base class that defines the interfaces of a particular
object and a separate class, inheriting from this base class, which provides the actual implementations of these
interfaces.

Implementation by delegation consists of a class that defines the interfaces for an object and then delegates their
implementations to another class or classes. The primary difference between the inheritance and delegation
approaches is that in delegation, the implementation classes need not derive from any class in particular.

A tieclass, or simply atie, isthe class to which implementations are delegated in the delegation approach.
Thus, the approach is often referred to as the tie mechanism or tying.

Most IDL compilers accept command-line arguments to determine which implementation approach to generate
code for. Therefore, before you use the IDL compiler to generate code from your IDL definitions, you'll want to
determine the approach you want to use. Consult your IDL compiler's documentation to determine which
command-line arguments, if any, the IDL compiler expects.

Figure 4.1. Implementation by inheritance.
Figure 4.2. Implementation by delegation.

How to Choose an Implmentation Approach

One question you might be asking by now is how to choose an implementation approach. In many cases, thisis
probably a matter of taste. However, there are certain cases that work well with a particular approach. For
example, recall that in the inheritance approach, the implementation class derives from a class provided by the
IDL compiler. If an application makes use of legacy code to implement an interface, it might not be practical to
change the classes in that legacy code to inherit from a class generated by the IDL compiler. Therefore, for such
an application it would make more sense to use the delegation approach; existing classes can readily be
transformed into tie classes.

Warning: After you've chosen an implementation approach and have written a great deal of code,
be prepared to stick with that approach for that server. Although it's possible to change from one
implementation approach to another, thisis avery tedious processif alot of code has aready been
written. Thisissue doesn't present itself very often, but you should be aware of it.

For the purposes of this example, either implementation approach will do. The example will use the delegation
approach; implementing the server using inheritance will be left as an exercise.

Note that you can usually mix and match the implementation and delegation approaches within a single server
application. Although you'll use only one approach per interface, you could choose different approaches for
different interfaces in the system. For example, if you had decided that the inheritance approach was the best
match for your needs, but you had a few legacy classes that mandated the use of the tie approach, you could use
that approach for those classes while using the inheritance approach for the remainder.

Using the IDL Compiler

Now that you have defined your system's object interfacesin IDL and have decided on an implementation
approach, you're ready to compile the IDL file (or files, in amore complex system).

Note: The method and command-line arguments for invoking the IDL compiler vary across
platforms and products. Consult your product documentation for specific instructions on using
your IDL compiler.

Recall that this example will use the delegation approach--also called the tie mechanism--so be sure to consult
your IDL compiler documentation for the appropriate command-line arguments (if any are required) to generate
the proper files and source code. For example, the command to invoke the IDL compiler included with Sun's
Java DL product isthis:

idltojava -fno-cpp -fclient -fserver StockMarket.idl

In this case, the IDL compilerisnamedi dl t oj ava. The- f no- cpp switch instructs the IDL compiler to not
invoke the C preprocessor before compiling thefile. The-f cl i ent and - f ser ver switchesinstruct the IDL

http://www.informit.com/content/0672312085/element_005.shtml (4 of 13) [17.07.2000 18:31:21]

javascript:popUp('elementLinks/01.jpg');
javascript:popUp('elementLinks/02.jpg');

- Building a CORBA Application From: Sams Teach Yourself CORBA in 14 Days

compiler to generate client stubs and server skeletons, respectively. For now, you could get by without the
-fcl i ent switch because you'll only be implementing the server, but because you'll want the client stubs
later, it will save time to generate them now.

The command to invoke the IDL compiler included in Visigenic's VisiBroker/C++ for Windows 95 is as
follows:

orbeline -h h StockMarket.idl

Here, the IDL compiler, named or bel i ne, generates client stubs and server skeletons for the

St ockMar ket . i dl file. The-c¢ cpp switch instructs the compiler to usethe. cpp filename extension for
C++ sourcefiles; similarly, - h h tellsthe compiler to usethe . h extension for header files. Y ou can, of
course, substitute your favorite filename extensions in place of these.

Tip: Aswith any utility run from the command line, before you can run the IDL compiler, you
might have to set the PATH variable in your system's environment to include the directory where
the IDL compiler resides. Generally, your CORBA product's documentation will tell you how to
set the PATH variable to include the proper directories.

Client Stubs and Server Skeletons

When the IDL compiler isinvoked, it generates code that conforms to the language mapping used by that
particular product. The IDL compiler will generate a number of files--some of them helper classes, some of
them client stub classes, and some of them server skeleton classes.

Note:Recall from Day 2 that client stubs for an interface are pieces of code compiled with client
applications that use that interface. These stubs do nothing more than tell the client's ORB to
marshal and unmarshal outgoing and incoming parameters. Similarly, server skeletons are snippets
of code that create the server framework. These skeletons pass incoming parameters to the
implementation code--written by you, the devel oper--and pass outgoing parameters back to the
client.

The names of the files generated by the IDL compiler are dependent on the language mapping used and
sometimes on command-line arguments passed to the IDL compiler. (For example, some IDL compilers accept
switches that specify prefixes and suffixes to be added to the class names.) The contents of these files will
remain the same, for the most part, regardless of the IDL compiler used (assuming the products conform to the
standard language mappings). For example, the output of the IDL compiler in IONA's Orbix/C++ will be
roughly the same as the output of Visigenic's VisiBroker/C++ IDL compiler. Similarly, the corresponding Java
products will output nearly the same source code.

Note: Strictly speaking, theterm "IDL compiler" isamisnomer. Whereas a compiler generally
converts source code to object code, the IDL compiler is more of atranslator: It converts IDL
source code to C++ source code, or Java source code, and so on. The generated code, along with
the implementations that you provide, are then compiled by the C++ compiler, or Java compiler,
and so on.

Implementing the Server Interfaces

After you have successfully used the IDL compiler to generate server skeletons and client stubs for your
application, you are ready to implement the server interfaces. The IDL compiler generates a number of files; for
each IDL i nt er f ace, the compiler will generate a source file and header file for the client stub and a source
file and header file for the server skeleton, resulting in four filesperi nt er f ace. (Thisisfor an IDL compiler
targeting C++; an IDL compiler targeting Java will, of course, not generate header files.) Additionally, the IDL
compiler can create separate directories for IDL nmodul es; it can also create additional files for helper classes.
Also, most IDL compilers allow you to specify the suffix to use for client stubs and server skeletons. For
example, the client stub files can be named St ockMar ket _c. h and St ockMar ket _c. cpp, or

St ockMar ket _st. hand St ockMar ket _st . cpp. Refer to your IDL compiler's documentation to
determine what filesit produces, what filenamesit uses, and how to change the default filename suffixes.

To keep the example as simple as possible, Javais used as the implementation language. Java was chosen for
this example because of itsrelative simplicity, particularly when developing CORBA applications. Of all the
languages commonly used for CORBA application development, Java probably getsin the way of the devel oper
the least, making it the best suited for an introductory example. Most of the remainder of this book will use C++
for example code, with the exception of the Java-specific Chapters 13 and 14.

http://www.informit.com/content/0672312085/element_005.shtml (5 of 13) [17.07.2000 18:31:21]

- Building a CORBA Application From: Sams Teach Yourself CORBA in 14 Days
Using Server Skeletons

The server skeleton, as you have learned, provides a framework upon which to build the server implementation.
In the case of C++, aserver skeleton is a set of classes that provides pure virtual methods (methods with no
implementations) or methods that delegate to methods in another class (the tie class discussed previously). You,
the developer, provide the implementation for these methods. In the case of Java, a server skeleton combines a
set of helper classes with an interface, for which you, again, provide the implementation.

Assuming you use Sun's Java IDL compiler to produce the server skeletons for your application, you will see
that the compiler produced a directory called St ockMar ket (corresponding to the name of the IDL nodul e
definedin St ockMar ket . i dl). Within this directory are a number of files containing client stub and server
skeleton definitions:

St ockSynbol Hel per. java

St ockSynbol Li st Hol der. j ava
St ockSynbol Li st Hel per. java
St ockServer. java

St ockSer ver Hol der . j ava

St ockSer ver Hel per. java
_StockServer Stub. java
_StockServer | npl Base. j ava

At this point, your only concern is with the server skeleton portion of thesefiles. In particular, note that the Java
interface describing the St ockSer ver servicesiscontained inthe St ockSer ver . j ava file. Its contents
appear in Listing 4.2. The St ockSer ver | npl Base. j ava file contains a hel per class from which you'll
derive your server implementation class; you need not concern yourself with its contents because it provides
functionality that works under the hood.

Listing 4.2. StockServer.java.

1. /*
2: * File: ./StockMarket/ StockServer.java
3: * From StockMarket.idl
4. * Date: Mon Jul 21 16:12:26 1997
5. ¢ By: D:\BI N\ DEVEL\ JAVA\ JAVAI DL\ BI N\ | DLTQJ~1. EXE Javal DL
6: * Thu Feb 27 11:22:49 1997
7. *
8:
9: package St ockMar ket ;
10: public interface StockServer
11: ext ends org. ong. CORBA. Ohj ect {
12: fl oat get StockVal ue(String synbol)
13: ;
14: String[] getStockSynbol s()
15: ;
16: }

Examining Listing 4.2, you see that the St ockSer ver interfaceis placed inthe St ockMar ket package.
Furthermore, you can see that this interface extends the or g. ong. CORBA. Ohj ect interface. All CORBA
object interfaces extend this interface, but you need not concern yourself with this interface's contents either.
Finally, you can see that the St ock Ser ver interface contains two methods that correspond to the IDL
methodsin St ockSer ver . i dl . Note, however, that the IDL types have been mapped to their Java
counterparts: St ockSymnbol , whichwast ypedef'edasan IDL stri ng, mapstoaJavaSt ri ng;

St ockSynbol Li st, whichwasasequence of St ockSynbol s, is mapped to aJavaarray of St ri ngs.
ThelDL f | oat , not surprisingly, is mapped to aJavaf | oat .

Writing the Implementation

The implementation for the St ock Ser ver isstraightforward. This section walks you through the
implementation (the example uses the class name St ockSer ver | npl , but you can name the implementation
class anything you want) line by line and explains what is happening at every step of the way.

Listing 4.3. StockServerimpl.java.

View Code

http://www.informit.com/content/0672312085/element_005.shtml (6 of 13) [17.07.2000 18:31:21]

javascript:popUp('elementLinks/element_005_code_1.html');

- Building a CORBA Application From: Sams Teach Yourself CORBA in 14 Days

Theentirelisting for St ockSer ver | npl . j ava appearsin Listing 4.3; the remainder of this section will
walk you through the file step by step, so that you can see the details of what's going on.

package StockMarket;

Becausethe St ockSer ver interfaceis part of the St ockMar ket module, the IDL compiler places the Java
class and interface definitions into the St ockMar ket package. For convenience, St ockSer ver | npl is
placed into this package as well. (If you're not familiar with Java or with packages, you can safely ignore this
bit of code for now.)

i nport java.util.Vector;

St ockSer ver | mpl will make use of the Vect or class. Thisi nport should look familiar to Java
developers dready. If you're not familiar with Java, thei nmpor t statement behaves much likethe#i ncl ude
preprocessor directivein C++; thej ava. uti | . Vect or classisacontainer classthat behaves as agrowable
array of elements.

i mport org. ong. CORBA. ORB;

i nport org. ong. CosNani ng. NaneConponent ;

i nport org. ong. CosNam ng. Nam ngCont ext ;

i mport org.ong. CosNam ng. Nanmi ngCont ext Hel per;

The classesbeing i mpor t ed here are commonly used in CORBA applications. The first, of course, isthe class
that provides the ORB functionality; the other classes are related to the CORBA Naming Service, which you'll
explore further on Day 12.

[l StockServerlnpl inplenments the StockServer IDL interface.
public class StockServerlnpl extends _StockServerl npl Base i mpl enents
St ockServer {

Giventhe St ockSer ver IDL interface, the IDL compiler generates a class called

St ockSer ver | mpl Base and aninterface called St ockSer ver . To implement the St ockSer ver IDL
interface, your St ockSer ver | npl classmust extend _St ockSer ver | npl Base and implement

St ockSer ver , which is exactly what is declared here:

/1 Stock synmbols and their respective val ues.
private Vector nyStockSynbol s;
private Vector nyStockVal ues;

St ockSer ver | mpl usesVect or sto store the stock symbols and their values.

/1 Characters from which StockSynbol nanes are built.

private static char ourCharacters[] ={ "A, "B, "C, "D, "E, F,
\G’ \HV \I'! \JI! \Kl1 \LI’ \MV \N'! \O! \P'1 \Q’ ‘Rl7

s, T, U, 'V, W, ‘X, Y, Z };

The our Char act er s array contains the set of characters from which stock symbols are built.

/1 Path nanme for StockServer objects.
private static String ourPathNane = "StockServer";

The our Pat hNane variable stores the pathname by which this St ock Ser ver object can be located in the
Naming Service. This can be any name, but for the purposes of this example, St ockSer ver workswell.

/1l Create a new StockServerlnpl.
public StockServerlnpl () {

mySt ockSynbol s = new Vector();
my St ockVal ues = new Vector();

Although constructors aren't apart of an IDL interface, the class implementing that interface will still have
constructors so that the server can create the implementation objects. St ockSer ver | npl hasonly a default
constructor, but like any other class, a class that implements an IDL interface can have any number of
constructors.

This part of the constructor creates Vect or sto hold the stock symbols and their respective values.
[l Initialize the synbols and values with sone random val ues.

for (int i =0; i < 10; i++) {

Rather arbitrarily, the St ockSer ver | npl creates ten stock symbols.

/1l Generate a string of four random characters.
StringBuffer stockSymbol = new StringBuffer(" ");
for (int j =0; j <4; j++) {

http://www.informit.com/content/0672312085/element_005.shtml (7 of 13) [17.07.2000 18:31:21]

- Building a CORBA Application From: Sams Teach Yourself CORBA in 14 Days

st ockSynbol . set Char At (j, ourCharacters[(int)(Math.random)
* 26f)1);

}
nmy St ockSynbol s. addEl enent (st ockSynbol .toString());

For each stock symbol, the St ockSer ver | npl creates a string of four random characters (chosen from the
preceding our Char act er s array). The four-character length, like the number of symbols, was chosen
arbitrarily. For the sake of simplicity, no checks are made for duplicate strings.

/[l Gve the stock a value between 0 and 100. In this exanple,
/[l the stock will retain this value for the duration of the
[application.

my St ockVal ues. addEl enent (new Fl oat (Mat h. random() * 100f));

}

Here, arandom value between 0 and 100 is given to each stock symbol. In this example, the stock will retain the
assigned value for aslong asthe St ockSer ver | nmpl runs.

View Code

Finally, the constructor prints out the stock symbols and their values.

/'l Return the current value for the given StockSynbol .
public float getStockValue(String synbol) {
[l Try to find the given synbol .
i nt stocklndex = nyStockSynbol s. i ndexOf (synbol) ;
if (stocklndex !'=-1) {
/1 Symbol found; return its val ue.
return ((Fl oat) nmySt ockVal ues. el enent At (st ockl ndex)).
f1 oat Val ue();
} else {
/1 Symbol was not found.
return Of;

}

Theget St ockVal ue() method takesa St ri ng, attemptsto find amatch in the ny St ockSynbol s data
member, and returns the value for the stock symbol (if found). If the stock symbol is not found, a zero valueis
returned.

Note:Naturaly, the get St ockVal ue() method isan excellent candidate to raise an
exception--if an invalid stock symbol were passed to the method, it could raise (for example) an
I nval i dSt ockSynbol Except i on rather than return zero, asit currently does. Thisisan
exercise at the end of the chapter.

/1l Return a sequence of all StockSynbols known by this StockServer.
public String[] getStockSynbol s() {

String[] synbols = new String[nmyStockSynbols. size()];

my St ockSynbol s. copyl nt o(synbol s) ;

return synbol s;

}
Theget St ockSymnbol s() method simply creates an array of St ri ngs, copies the stock symbols
(contained in my St ock Synbol s) into the array, and returns the array.

/1l Create and initialize a StockServer object.
public static void main(String args[]) {

Themai n() methodin St ockSer ver | npl createsa St ockSer ver | npl object, binds that object to a
naming context, and then waits for clients to call methods on that object.
try {

Because the methods that mai n() will later call might throw exceptions, those callsarewrapped inatry . . .
cat ch block.

/1 Initialize the ORB.
ORB orb = ORB.init(args, null);

Before doing anything with the ORB, the server application must first initialize the ORB.

http://www.informit.com/content/0672312085/element_005.shtml (8 of 13) [17.07.2000 18:31:21]

javascript:popUp('elementLinks/element_005_code_2.html');

- Building a CORBA Application From: Sams Teach Yourself CORBA in 14 Days

[/l Create a StockServerlnpl object and register it with the
/1 ORB.

St ockServer | mpl stockServer = new StockServerl npl ();

or b. connect (st ockServer);

Hereanew St ockSer ver | npl object is created and registered with the ORB.

/1l Get the root nam ng context.
org. ong. CORBA. bj ect obj = orb.
resolve initial _references("NaneService");
Nam ngCont ext nami ngCont ext = Nani ngCont ext Hel per. narrow obj) ;

Now for alittle black magic. The CORBA Naming Serviceis a service that allows CORBA objects to register
by name and subsequently be located, using that name, by other CORBA objects. As mentioned before, use of
the Naming Service will be described in detail on Day 12, but the sample client application in this chapter will
till need to be able to locate a server; therefore the Naming Service isintroduced here, though somewhat
prematurely. Consequently, in this chapter, don't worry if you don't understand all the details of the Naming
Service or how it is used.

In order for clients to connect to the St ockSer ver | npl , they must have some way of locating the service on
the network. One way to accomplish thisis through the CORBA Naming Service. Here, a Nami ngCont ext
object islocated by resolving areference to an object named NanmeSer vi ce.

/1 Bind the StockServer object reference in the nam ng

/'l context.

NaneConponent naneConponent = new NaneConponent (our Pat hNane,
")

NaneConponent path[] = { nanmeConponent };

nam ngCont ext . r ebi nd(path, stockServer);

Now the Nam ngCont ext object isasked to bind the St ockSer ver | npl object to the pathname defined
earlier (St ockSer ver). Clients can now query the Naming Service for an object by this name; the Naming
Service will return areferenceto this St ockSer ver | npl object.

/1 Wait for invocations fromclients.
java.l ang. Obj ect waitOnMe = new java.l ang. Qbj ect () ;
synchroni zed (wai t OnMe) {
wai t OnMe. wai t () ;
}

Becausethe St ockSer ver | npl object is now registered with the Naming Service, the only thing left todo is
to wait for clients to invoke methods on the object. Because the actual handling of these method invocations
occurs in a separate thread, the mai n() thread simply needs to wait indefinitely.

View Code

If any exceptions are thrown by any of the methods called, they are caught and handled here.

Compiling and Running the Server

Now you're ready to compile and run the server. Compiling the server applicationis simple. If you're using an
integrated devel opment environment, use that tool's "build" command (or equivalent) to build the application. If
you're using the JDK from the command line, change directories to the directory where St ockMar ket . i dl
islocated (there should also be adirectory called St ockMar ket contained in this directory). Then issue the
command

javac StockMarket\ StockServerlnpl.java

(You might have to substitute the appropriate directory separator for your platform in the preceding command.)
Thiswill compile the server implementation and all the source files it depends on.

Tip: Before compiling the server, make sure that your CLASSPATH contains the appropriate
directory or file for the CORBA classes. For Sun's Javal DL package, thefile (directory where
Javal DL isinstaled) / 1 i b/ cl asses. zi p will appear in the CLASSPATH. Consult your
CORBA product's documentation to determine your CLASSPATH setting.

As ssuming that the server application compiled correctly, you're about ready to run the server. Before you do
that, though, you need to run the Name Server. (Recall that the client application uses the CORBA Naming
Service to locate the server application; the Name Server provides the mechanism that makes this possible.)

http://www.informit.com/content/0672312085/element_005.shtml (9 of 13) [17.07.2000 18:31:21]

javascript:popUp('elementLinks/element_005_code_3.html');

- Building a CORBA Application From: Sams Teach Yourself CORBA in 14 Days

The exact method for running the Name Server varies from product to product, but the end result is the same.
For Sun'sJaval DL, simply running nameser v will bring up the Name Server.

When the Name Server is running, you're ready to run the server. Y ou can invoke the server with the command
java St ockMarket. St ockServer | npl

For the sake of simplicity, you'll want to run the Name Server and your server application on the same machine
for now. If everything works correctly, you will see output similar to Listing 4.4. The stock symbols and their
values will, of course, vary, but you will see output resembling Listing 4.4 without any exception messages
following the output.

Listing 4.4. Sample StockServer output.

1. Cenerated stock synbol s:
2 PTLF 72. 00064
3 SWPK 37.671585
4 CHHL 78.37782
5: JTUX 75. 715645
6: HUPB 41. 85024
7: OHQR 14. 932466
8 YCEX 64. 3376

9 U BP 75.80115
0 SI PR 91. 13683
1. XSTD 16. 010124

If you got this far, congratulations! Y ou have successfully designed, implemented, and deployed a CORBA
server application. After reveling in your success, feel free to terminate the application because you won't have
aclient to connect to it until the end of this chapter. Alternatively, you can leave the server running to save
yourself the trouble of restarting it later (or just to impress and amaze your friends).

Building a CORBA Client

In thefirst half of this chapter, you were |eft hanging with a server that couldn't do much because there were no
clients to connect to it. Now you'll remedy that unfortunate situation by implementing a client that will utilize
the services provided by the server you built. Because you've aready written and compiled the IDL interfaces
(and implemented them, for that matter), implementing the client will be amuch simpler process. Additionally,
clients are often (though not always) simpler than servers by nature, so they are easier to implement in that
regard aswell.

Implementing the Client

As mentioned already, implementing the client is a straightforward process. There are only a handful of
concepts involved: how to use client stubs in the client implementation, how to locate a server object, and how
to use the interfaces of a server object after it has been located.

Using Client Stubs

When you compiled St ockSer ver . i dl , the IDL compiler generated client stubs as well as server skeletons.
Because client stubs aren't used for server implementations, you ignored the stubs for the time being. Now, it's
time to use them. If you're curious, open the _St ockSer ver St ub. j ava fileand have alook at it. You'll see
afair amount of cryptic code along with two familiar methods:

public float getStockValue(String synbol) {

}
public String[] getStockSynbol s() {

}

The implementations for these methods, as discussed before, marshal the parameters through the ORB to the
remote object and then marshal the return value back to the client. (Thisiswhat all that cryptic-looking codeis
doing.)

Y ou really needn't concern yourself with the contents of _St ockSer ver St ub. j ava; al you need to know
isthat thisfile contains the client stub for the St ock Ser ver interface. The Java compiler is smart enough to

http://www.informit.com/content/0672312085/element_005.shtml (10 of 13) [17.07.2000 18:31:21]

- Building a CORBA Application From: Sams Teach Yourself CORBA in 14 Days

compilethisfile automatically, but if you were implementing a client in C++, you'd have to be sureto link the
client stub object with the rest of the client application.

The other thing to know about the client stub is that it specifies the actual interfaces for the server object. In
other words, you can see in the preceding example that the get St ockVal ue() method takesaJava St ri ng
as aparameter and returnsaJavaf | oat . Similarly, get St ockSynbol s() takesno parameters and returnsa
Javaarray of St ri ngs.

Locating a Server Object

Just as a server application is practically uselessif it cannot make its location known, a client application cannot
do useful work if it cannot locate services to use. Thisis where the CORBA Naming Service stepsin again.
After a server registers itself with the Name Server, clients can locate that server object through the Name
Server, bind to that server object, and subsequently call methods on the server object. Again, do not be
concerned if there are details of the Naming Service which escape you, asit will be discussed in greater detail
on Day 12.

Inthe St ockMar ket Cl i ent , binding to the server object takes placein theconnect () method, as shown
in Listing 4.5. This method first binds to the Name Server by looking for an object with the name

NaneSer vi ce. Upon successfully locating a Name Server, the client proceeds to bind to an object with the
name St ockSer ver , which incidentally is the same name you registered the St ockSer ver | npl under
(actually, the names must be the same if the example is to work successfully). After this object is bound, the
client isready to do some work.

Listing 4.5. Binding to the StockServer server.
View Code
Using Server Object Interfaces

Listing 4.6 shows an example of how the server object interfaces are used, after the client has bound the server
object. Asyou might expect, the client simply calls the server methods as it sees fit. Again, you can refer to the
client stub (_St ockSer ver St ub. j ava) or better yet, to the St ockSer ver interfacein

St ockSer ver . i dl to seethe method signatures for the St ock Ser ver . The usage of these methodsis
clear-cut, asillustrated in Listing 4.6.

Listing 4.6. Using the StockServer services.

1. // Do some cool things with the StockServer.
2: protected void doSonething() {

try {

/[l Get the valid stock synmbols fromthe StockServer.
String[] stockSynmbols = myStockServer. get St ockSynbol s();

3

4

5

6

7

8

9 /1 Display the stock synmbols and their val ues.
10: for (int i = 0; i < stockSynbols.length; i++) {
11: System out. println(stockSynmbol s[i] + " " +
12: my St ockSer ver. get St ockVal ue(st ockSynbol s[i]));
13
14
15

}
} catch (org.ong. CORBA. Syst enException ex) {
: Systemerr.println("Fatal error: " + ex);
16: }
17: }
In Listing 4.6, the St ockSer ver isfirst asked, through acall to get St ockSynbol s() , for alist of al
stock symbols recognized by the server. The client then iterates through the list of stock symbols and queries

the server, using get St ockVal ue() , for the value of each stock. Each stock symbol and its respective value
are printed to standard output.

Compiling and Running the Client

Theentirelisting for St ockMar ket Cl i ent . j ava appearsin Listing 4.7. Note that most of the work for the
clientisdoneintheconnect () and doSonet hi ng() methods, which you've already looked at.

http://www.informit.com/content/0672312085/element_005.shtml (11 of 13) [17.07.2000 18:31:21]

javascript:popUp('elementLinks/element_005_code_4.html');

- Building a CORBA Application From: Sams Teach Yourself CORBA in 14 Days

Listing 4.7. StockMarketClient.java.
View Code

Compiling the client application is an uncomplicated process. Like the server, the client can be compiled smply
with the command

javac StockMarket\ StockMarketCient.java

Again, ensure you are in the proper directory when compiling the client. Y ou should be in the same directory as
the one in which you compiled the server.

Assuming the client application compiled successfully, you're just about ready to run the application. First, start
the Name Service and the St ockSer ver application (asyou did previously), if they aren't running aready.
Then to execute the client application, type the command

j ava St ockMarket. St ockMar ket i ent

If the client runs successfully, you will see output similar to Listing 4.8.
Listing 4.8. StockMarketClient output.

Succesfully bound to a StockServer.
PTLF 72. 00064
SWPK 37. 671585
CHHL 78.37782
JTUX 75. 715645
HUPB 41. 85024
OHQR 14. 932466
YCEX 64. 3376
U BP 75.80115
10: SIPR 91.13683
11: XSTD 16.010124

ocoNIOaRONME

The stock symbols and their values will appear exactly as they appear in the server output.

Summary

In this chapter you started out by defining the interfaces for a CORBA server, using IDL. Y ou then
implemented the server using the inheritance approach (as opposed to the delegation approach) and learned a
little bit about using the CORBA Naming Service along the way. Y ou then created a simple client application
that used the services provided by the St ockSer ver application. In the process, you learned how to use the
Naming Serviceto locate the St ock Ser ver object and how the client stubs fit into the client application.
Finally, you ran the CORBA server and client together, creating what might be your very first distributed
CORBA application. Congratulations! Thisisno small feat.

What Comes Next?

This chapter concludes the first section of this book, which has dealt with basic CORBA architecture and
methodology. In the next section of the book, spanning Days 5 through 9, you'll design and build alarger, more
complex CORBA application, starting with some basic functionality and adding more capabilitiesto the
application in subsequent chapters. Y ou'll apply the same techniques you've aready learned; the only difference
will be that you'll deal with more complex IDL and thus more complex servers and clients. Y ou currently have
the basic knowledge required to build an entire CORBA application; the next days will give you the opportunity
to practice applying that knowledge to a more sophisticated system.

Q&A

Q I'm a C++ programmer, and I'm not sure| understand all the Java syntax.

A For the most part, Java syntax is very similar to C++, but Java introduces some constructs of its own.
Don't be overly concerned if you don't understand certain aspects of the language, as long as you can
grasp the concepts of what the codeis doing.

Q If I implement my server interfaces using theinheritance approach and later rewrite the server
to use the delegation approach, will | haveto rewrite my client(s) aswell?

http://www.informit.com/content/0672312085/element_005.shtml (12 of 13) [17.07.2000 18:31:21]

javascript:popUp('elementLinks/element_005_code_5.html');

- Building a CORBA Application From: Sams Teach Yourself CORBA in 14 Days

A Regardless of the approach used to implement the server, the client code remains the same. Therefore,
should you ever need to rewrite a server to use a different approach, rest assured that no changes will
have to be made to the clients.

Q How can the classesthat implement IDL interfaces have constructorswhen IDL doesn't specify
any?

A IDL only specifies public interfaces--that is, methods that can be used by other objects anywhere else
on the network. However, the class that implements an IDL interface can aso provide additional
methods, although such methods won't be visible anywhere outside the object's process space. Such
methods can be useful within the server application, though; constructors are an example of this. (Server
objects need to be created somehow.) So fed free to include additional methods (public, protected, and
private) in your server implementations if it makes sense to do so.

Workshop

The following section will help you test your comprehension of the material presented in this chapter and put
what you've learned into practice. Y ou'll find the answers to the quiz and exercisesin Appendix A.

Quiz
1. What is the purpose of server skeletons and client stubs?

2. Why does the server need to register the implementation object with the CORBA Naming Service?

3. Why do the client and server need to catch exceptions, especially when none are raised by the IDL
operations you defined?

Exercises

1. It was pointed out in the St ockMar ket examplethat it would be agood ideato raise an exception in
theget St ockVal ue() method if aninvalid St ockSynbol was passed in. Modify

St ockMar ket . i dl so that the method canraisean | nval i dSt ockSynbol Except i on. (You'll
also need to add a definition for this exception.)

2. Inthe St ockMar ket example, an implementation was provided that used the del egation approach.
Implement the St ock Ser ver to use the inheritance approach. (Extra credit: Also include the
exception-raising mechanism from the first exercise.)

<Back Contents Next>
Save to Mylnforml T

http://www.informit.com/content/0672312085/element_005.shtml (13 of 13) [17.07.2000 18:31:21]

http://www.informit.com/My/Add?isbn=0672312085&title=Sams+Teach+Yourself+CORBA+in+14+Days&category=Programming&topic=CORBA&chapter=2842&elementname=Building+a+CORBA+Application
http://www.informit.com/about/
http://www.informit.com/press/
http://www.informit.com/about/advertising/
http://www.informit.com/legal/privacy/
http://www.informit.com/contact/
http://www.informit.com/legal/copyright/
http://www.informit.com/legal/privacy/

- Designing the System: A Crash Course in Object-Oriented Analysis and Design From: Sams Teach Yourself CORBA in 14 Days

ile they last!
Y¥our Name Mi

Hot Topics Yisual Basic Windows 2000 Windows MT Linu=/Open Source Cizco Knowledge Suite

Soluton Centers PragramlIT DatabazelT WebIT MetworkIT ConfiguralT
® Exact Phrase

-yl Designing the System: A Crash Course in

Search
e Object-Oriented Analysis and Design
Rlylnformi T
From: Sams Teach
Yourself CORBA in 14
S Days
R Author: Jeremy
(00 1419.Y Rosenberger

w 14 DAYs | Publisher: Sams
: More Information

<Back Contents Next>

Save to MylnformI T

o What Is Object-Oriented Analysis and Design?
Introducing the Unified Modeling Language (UML)

Click Here for o History

High-Tech o Terminology and Symbols
Jobs!

0 Basic Methodology

= UNML summary
developerWorks o UML Summar
« TheBank Example

DPEC.we_ o Defining System Requirements and Capabilities
S I 0 Defining System Objects
* Je o Creating an Application Class Diagram
o For Further Study...
@m Top IT o« Summary
Hews o What Comes Next?
THCGWS I
o Workshop
0 Quiz
o Exercise

With a knowledge of CORBA basics--such as the concept of the Object Request Broker (ORB) and the
Interface Definition Language (IDL)--along with an understanding of the IDL language, you are ready to
develop and deploy CORBA -based applications. Y ou've already gained firsthand experience implementing a
simple CORBA server and client. Now you'll design, implement, and enhance a more sophisticated CORBA
application. To help you see what's ahead, the following road map is provided:

« Today you'll design the sample system, a scaled-down banking application. Because CORBA isan
object-oriented architecture, this chapter will introduce you to object-oriented analysis and design
concepts while working through the design of the system.

« OnDay 6, you'll map the system design into an IDL specification. Y ou'll see how system objects map to
IDL classes, how partitions map to IDL modules, and other aspects of the interface definition process.
You'l aso consider various CORBAservices and CORBAfacilities to see how they might fit into your
system design. Y ou'll then implement the basic capabilities of the banking application. You'll use the IDL
definitions you created as a starting point, from which you'll write separate implementations for the
server and client.

« OnDay 7, youll extend the basic capabilities of the application to include exception handling. Exception
handling provides error-checking capability, making the application implementation more robust.

http://www.informit.com/content/0672312085/element_006.shtml (1 of 11) [17.07.2000 18:31:26]

http://www.informit.com/
http://ad.doubleclick.net/jump/www.informit.com/programit/;cat=developer;num=92
javascript:document.regularSearch.submit();
http://www.informit.com/search/tips/
http://ad.doubleclick.net/clk;1464039;4446282;i?http://www.informit.com/jobs
http://www.informit.com/news/
http://www.informit.com/downloads/
http://www.informit.com/store/
http://www.informit.com/itlibrary/
http://www.informit.com/edchoice/
http://www.informit.com/alphabook/
http://infobase.informit.com/
http://www.informit.com/My/Accounts
http://ad.doubleclick.net/jump/informit.com/sponsor-button/brassring/badge;sz=100x60
http://ad.doubleclick.net/jump/informit.com/sponsor-button/ibm/badge2;sz=88x31
http://www.informit.com/training/
http://www.recommend-it.com/p.e?415858
http://www.informit.com/news/
http://www.informit.com/downloads/
http://www.informit.com/programit/vb/
http://www.informit.com/networkit/windows2000/
http://www.informit.com/networkit/winnt/
http://www.informit.com/networkit/linux/
http://www.knowcisco.com/
http://www.informit.com/programit/
http://www.informit.com/databaseit/
http://www.informit.com/webit/
http://www.informit.com/networkit/
http://www.informit.com/configureit/
http://www.informit.com/My/Add?isbn=0672312085&title=Sams+Teach+Yourself+CORBA+in+14+Days&category=Programming&topic=CORBA&chapter=2843&elementname=Designing+the+System:+A+Crash+Course+in+Object-Oriented+Analysis+and+Design
http://www.informit.com/product/0672312085

- Designing the System: A Crash Course in Object-Oriented Analysis and Design From: Sams Teach Yourself CORBA in 14 Days
Changes to the application begin in the IDL code and then propagate through the implementation code.

« On Day 8, the application will gain complexity as you add another CORBA client to the mix: the
Automated Teller Machine (ATM) client. CORBA applications usually include more than one client
component, so this chapter gives you some exposure to managing multiple clientsin a CORBA
application.

« OnDay 9, you'll wrap up the banking application example with one final enhancement: the capability to
"push” update information from the server to the client(s), using client callbacks.

What Is Object-Oriented Analysis and Design?

Although object-oriented technol ogies have existed for quite some time, the phrase "object-oriented" has gained
much popularity (along with buzzword status) in recent years. Indeed, the phrase is often bandied about with
reckless abandon, which serves to obscure its real meaning. To further confuse matters, it is used to describe
everything from devel opment environments to programming languages to databases.

So what does the term object-oriented really mean? The term seems to be thrown about indescriminately;
anything from programming languages to drawing tools might be labeled as "object-oriented." For the purposes
of this book, you will be interested primarily in three uses of object-oriented methodology: object-oriented
analysis (OOA), which deals with the design requirements and overall architecture of a system; object-oriented
design (OOD), which trandates a system architecture into programming constructs (such as interfaces, classes,
and method descriptions); and aobject-oriented programming (OOP), which implements these programming
constructs. So, for your purposes, object-oriented can be taken to mean the various methodol ogies, described
briefly herein, used to design and implement software. This chapter deals primarily with object-oriented
analysis. On Day 6 you'll work with object-oriented design; when implementing system functionality, you'll be
using object-oriented programming techniques.

Although this book introduces you to object-oriented analysis, design, and programming concepts, it does not
attempt to cover these topicsin detail. A number of books already written on these subjects provide a definitive
introduction to and explanation of these concepts. Time spent familiarizing yourself with these concepts would
be time well spent.

Introducing the Unified Modeling Language (UML)

The Unified Modeling Language (UML) is a powerful tool for expressing object-oriented designs. Devel oped
by Rational Software Corporation, UML is an evolution of previous modeling languages and techniques. A
description of UML, along with a set of linksto UML-related resources, appears on Rational's Web site at
http://ww.rational.com um /index. htm .

History

UML isan evolution of previous modeling languages and techniques. Prior to UML, many object-oriented
methodol ogies existed. Of these, the three major methodol ogies included Grady Booch's Booch 1993 method,
Jim Rumbaugh's Object Modeling Technique (OMT) method, and Ivar Jacobson's Object-Oriented Software
Engineering (OOSE) method. In October 1994, Booch and Rumbaugh joined forces to unify their methods,
resulting in what was called the Unified Method 0.8 in October 1995. Around that time they were joined by
Jacobson, merging the OOSE method with Booch and Rumbaugh's work to form UML 0.9 in June 1996. The
UML Partners consortium--consisting of companies such as Digital, Hewlett-Packard, IBM, Microsoft, Oracle,
Rational, and Unisys--was then formed to refine UML even further, resulting in UML 1.0 in January 1997. The
UML 1.0 documents were submitted for standardization to the Object Management Group (OMG)--the
organization responsible for the specification of CORBA standards.

Terminology and Symbols

The Unified Modeling Language is a highly visual language; in addition to words and text, it also consists (and
in fact primarily consists) of graphs and symbols. Perhaps one of the most important diagrams you will
encounter in object-oriented analysis and design is the class diagram, which in turn consists of notations for
classes, associations, and inheritance (among other things, but these are the three aspects you'll study here).

The Class Diagram

One important element of the Unified Modeling Language (or any modeling language, for that matter) isthe

http://www.informit.com/content/0672312085/element_006.shtml (2 of 11) [17.07.2000 18:31:26]

- Designing the System: A Crash Course in Object-Oriented Analysis and Design From: Sams Teach Yourself CORBA in 14 Days

class diagram. The class diagram, sometimes called (incorrectly) an object diagram or object model, describes
classes and their relationships to other classes in the system. The class diagram specifies only static
relationships--how classes are related to each other--and not dynamic relationships, such as when objects are
created or invoke services of other objects.

New Term: A class diagram graphically depicts the relationships between classes in a system. Depending on
the level of the diagram'’s scope, it may also describe the attributes and operations provided by each class.

The class diagram is one of the most important elements of an object-oriented methodology. It is essential to the
understanding of a complex system architecture and provides a great deal of insight into a system design.

Classes

Naturally, the existence of the class diagram implies the existence of the class. As you might expect, the classin
UML isanalogousto aclassin an object-oriented programming language such as Java or C++. A classhasa
name, zero or more attributes, and zero or more operations. Think of attributes as member data and operations
as member functions or methods. In a class diagram, a class description can take on one of the forms shown in
Figure5.1.

Figure5.1. UML class descriptions.

Figure 5.1 depicts three examples for the representation of aclass. In the first example, only the class nameis
visible. Thisform is suitable for a class diagram that focuses primarily on the relationships between classes. For
example, an extremely complex class diagram benefits from this type of simplification, especidly if the
diagram is only to be used to provide an overview of an entire system. The second example shows the class
name, its attributes, and its operations, but attributes and operations are listed by name only--types and
parameters are omitted. The third example shows a fully embellished class description, with class name,
attributes and their types, and operations with their parameters and return types. These types of class
descriptions are useful when detailed information about a system and its classesis required.

A class description can aso provide visibility modifiers for its attributes and operations. The visibility modifier,
which is optional, immediately precedes the attribute or operation that it describes. (When no visibility modifier
is given, the attribute or method is usually assumed to be public.) A description of each of these modifiers
appearsin Table 5.1.

Table 5.1 UML Visibility Modifiers.

|Symbol ’Description M eaning

+ Public attribute/operation [Public attributes and operations of a class are available to that class and
to any other class.

Protected attribute/operation [Protected attributes and operations of a class are available only to that

class and its subclasses,

- Private attribute/operation [Private attributes and operations of a class are available only to that
class, excluding even subclasses.

/ Derived attribute A derived attribute is an attribute that is dependent on another attribute.
For example, although a person's age can be considered an attribute, it is
dependent on the current date and the person's birth date. Derived
attributes can also be public, protected, or private.

$ Class attribute/operation A class attribute or operation can be accessed without an instance of the
class. Class attributes and operations are analogous to static class
membersin C++ or Java. Class attributes and operations can aso be
public, protected, or private.

Associations

A classtypically does not exist and act within a vacuum; generally it will interact with other classes aswell.
Thus, it can be said that a class has relationships to other classes. UML refers to these relationships as
associations. A class has an association with another class if it uses services of that classin some way.
Optionally, the association can be given a name; additionally, the roles that each class playsin an association
can be given names as well. Figure 5.2 illustrates the notation for an association, which isindicated by aline
drawn between two classes.

New Term: An association between two classes means that the classes are somehow related. Typically this

http://www.informit.com/content/0672312085/element_006.shtml (3 of 11) [17.07.2000 18:31:26]

javascript:popUp('elementLinks/01.jpg');

- Designing the System: A Crash Course in Object-Oriented Analysis and Design From: Sams Teach Yourself CORBA in 14 Days
means that one of the classes uses services of the other or has a member which is an instance of the other class.

An association can also have multiplicity, meaning that a certain number of one class can be associated to a
certain number of the other class. For example, Figure 5.2 indicates that a Cust oner can hold more than one
Account . Furthermore, an Account can be held by more than one Cust oner (asisthe case with joint
Account s). Finadly, an Account can be owned by only one Bank. Essentialy, there are three types of
multiplicities in relationships:

« A one-to-one association is an association between exactly one of each type of object.

« A one-to-many (or, conversely, many-to-one) association is an association between exactly one of one
type of object and zero or more of the other type.

« A many-to-many association is an association between zero or more of each type of object.

Figure 5.2. UML class associations.

New Term: Multiplicity refers to the number of classesinvolved in an association. Examples of multiplicity are
one-to-one, one-to-many, and many-to-many.

Specifying multiplicity is optional; thisinformation is sometimes omitted for the sake of clarity in high-level
class diagrams. However, you need to specify multiplicities of associations before implementing your design, as
the details of the implementation depend on this multiplicity information.

Inheritance

Inheritance is actually a specia case of an association. It has the same meaning as you would expect in an
object-oriented language; a class that inherits from (or derives from) another class (recall from Day 3 that thisis
referred to as the superclass) inherits the nonprivate attributes and methods of that superclass. Again recalling
from Day 3, remember that the derived class can be substituted wherever its base classisrequired (asa
parameter to a method call, for instance); this behavior is known as polymorphism.

In UML, inheritance is represented as an arrow drawn from the derived class to its base class. UML supports
the notion of multiple inheritance as well; in this case, arrows are drawn from the derived class to each of its
base classes. Examples of UML expressions of inheritance associations are illustrated in Figure 5.3.

Basic Methodology

Again, it isfar beyond the scope of this book to discuss object-oriented analysis and design methodologiesin
depth. However, agood first step in the analysis phase is to identify the objects, or classes, that compose the
system. Many objects in the system are easy to identify; one method isto first write a description of the system
and its function. When the description is complete, review it and look for nouns. When you encounter a noun,
chances are that it will represent an object in the system. For example, in the sentence " Customers hold
accountsin abank," potential object candidates are Cust oner , Account , and Bank. This process,
sometimes called object discovery, is very useful in understanding the scope of a particular system.

Figure5.3. UML inheritance associations.

After the candidate objects have been identified, you determine the relationships between the classes. These
relationships are often expressed in the form of verbs in the system description. In the preceding example, for
instance, you see that Cust oner s hold Account s, suggesting a relationship between these two classes.
Furthermore, you can seethat Account sare part of aBank, although it is not clear precisely what the
relationship is between an Account and aBank. Associations between classes don't have to be named,
although named associations often provide additional insight into the design of a system.

Note: If you infer from this process that classes ought to be named with nouns and associations
ought to be named with verbs, you are correct. This naming schemeis agenerally accepted
convention of abject-oriented analysis. Another convention isto give singular names to classes, for
example, Account rather than Account s.

After the classes and their associations have been identified, you'll want to spend some time determining the
attributes and operations within classes. This requires more thought than the first two steps, and chances are you
won't get it right the first time. In fact, the entire process is an iterative one. While identifying relationships
between classes, you might discover new classes, or while determining operations on objects, you might
discover new associations or new classes. In fact, your design might change drastically from start to finish; this

http://www.informit.com/content/0672312085/element_006.shtml (4 of 11) [17.07.2000 18:31:26]

javascript:popUp('elementLinks/02.jpg');
javascript:popUp('elementLinks/03.jpg');

- Designing the System: A Crash Course in Object-Oriented Analysis and Design From: Sams Teach Yourself CORBA in 14 Days

isanormal aspect of software design. Multiple iterations of this process help you create arobust design, and
creating a solid design early on will help you avoid headaches later on in the development phase. (It is often
observed that the later in the devel opment process a change needs to be made, the more costly that change will
be. Therefore, it isto your advantage to spend a good amount of time refining your design.)

UML Summary

UML isavery broad-reaching tool that encompasses not only the static design of a system (such as the class
diagram) but also the dynamic design (including use cases, state transition diagrams, and other tools). Because
this book can barely scratch the surface of UML and its functionality as adesign tool, you should explore either
the Rational Software Corporation Web site (provided at the beginning of this section) or one of several other
sources for more information on UML.

The Bank Example

The next several chapters center around a single example--an electronic banking system. In this chapter, you'll
use object-oriented analysis to define the abjects in the system and create an application object model. In
subsequent chapters, you'll implement the system'’s basic functionality and then implement additional
capabilities and robustness. In the end, you'll have built a complex (although still trivial by enterprise
application standards) CORBA application. Along the way, you'll discover some of the issuesinvolved in
building such a system.

The Bank application supports electronic banking. It allows for multiple banks, multiple accounts (checking
and savings), multiple customers, opening and closing accounts, and the withdrawal, deposit, and transfer of
funds between accounts. (More capabilities are added in later chapters, but the basic Bank application begins
with this functionality.)

Defining System Requirements and Capabilities

Thefirst step in designing any system isto determine what the system needs to do. Depending on the nature of
the application, this process can involve meeting with customers and/or potential users of the system,
conducting market research, or just providing a solution to a particular problem. Requirements often have to be
refined or clarified later, so don't be surprised if you find yourself revisiting this step again.

For the Bank example, the capabilities of the basic system are defined as follows:
« Supports multiple banks

« Supports multiple accounts within banks

« Supports multiple customers holding accounts

« Supports customers holding multiple accounts

« Supports the capability to open (create) new accounts

« Supports the capability to close (delete) existing accounts

« Supports the capability to enumerate a bank's accounts

« Supports the capability to determine an account's owner(s)

« Supports the capability to withdraw funds from an account

« Supports the capability to deposit fundsinto an account

« Supports the capability to transfer funds between accounts within a single bank
« Supports the capability to transfer funds between accounts in different banks

« Supports checking accounts (which don't gain interest)

http://www.informit.com/content/0672312085/element_006.shtml (5 of 11) [17.07.2000 18:31:27]

- Designing the System: A Crash Course in Object-Oriented Analysis and Design From: Sams Teach Yourself CORBA in 14 Days

« Supports savings accounts (which do gain interest)

Notice that each line item describes one capability; for instance, the capahilities to create and del ete accounts
compose separate line items. This convention facilitates the development of testing requirements because the
functionality described in each lineitem isindividually testable. Note also that when analyzing system
requirements, it is generally good practice to ensure that each capability isindeed testable. For example, a
requirement such as "Must be easy to use" is subjective and so probably not testable. Avoid vague requirements
like this; amore useful set of requirements would list specific user-interface features that one might consider

"easy to use."
Defining System Objects

Now that you have arrived at a set of system requirements, you are ready to determine what objects exist in the
system. As suggested previously, you do this by scanning the application description and requirements for
nouns. Nouns that you'll encounter are bank, account (specifically, checking account and savings account),
customer, and funds. All these are candidates for inclusion in the object model (or class diagram). One way to
determine whether a class should be created for a candidate is to ask yourself this question: Is there an identity
or behavior associated with this object? If the answer is yes, then the candidate should be an object. Try thistest
on your list of candidate objects:

« Bank: A bank doesindeed have identity; the Eighth Nationa Bank is distinguishable from the CORBA
Developers Credit Union. Furthermore, abank has associated behavior; it can open and close accounts on
behalf of customers, among other things. Therefore, you might conclude that Bank isindeed an object in
your system.

« Account: Accounts, like banks, have identity as well; they can be distinguished from each other. Also,
accounts have associated behavior; funds can be deposited in, withdrawn from, and transferred between
accounts. Therefore, Account will be an object in the system as well.

o Customer: Customers certainly have identity--John Doe can be distinguished from Joe Blow, the person
holding Social Security number 123-45-6789 can be distinguished from the person holding Social
Security number 234-56-7890, and so on. Customers don't have any associated behavior, at least for the
purposes of this application, but their identity alone suggests that Cust oner ought to be an object in the
system.

» Funds: Funds don't really have identity--one $150.00 amount is, practically speaking, indistinguishable
from another $150.00 amount. There is no behavior directly associated with funds either; they can be
deposited in, withdrawn from, and transferred between accounts, but thisis abehavior of the account
rather than the funds themselves. Finally, funds can be easily represented by a simple floating-point value
rather than by aclass. For these reasons, you probably do not want to include fundsin the application's
object model.

From this analysis, you can see that the system will include at least three major classes: Bank, Account , and
Cust oner . Now you need to focus your attention on the attributes and behaviors of such objects.

Bank

Severa of the system requirements suggest behaviors that should be included in the Bank class:
« Supports multiple banks.

« Although not actually a behavior of aBank, this capability requires that more than one Bank object can
exist. Furthermore, in a CORBA application, this requirement suggests that a mechanism exist that can
provide clients with visibility to Bank objects. One approach isto require Bank s to register with the
Naming Service so they can be located by clients; another approach isto create a separate
object--Bank Ser ver , for instance--that provides visibility to Bank objects. This application uses the
latter approach.

Note:In a C++ or Java application that does not use CORBA, you can very well provide a static
method of Bank that would return alist of Bank objects, which is a reasonable approach.
However, because CORBA abjects don't support static methods, an alternative approach--such as
those mentioned previously--is required.

« Supports multiple accounts within banks.

http://www.informit.com/content/0672312085/element_006.shtml (6 of 11) [17.07.2000 18:31:27]

- Designing the System: A Crash Course in Object-Oriented Analysis and Design From: Sams Teach Yourself CORBA in 14 Days

« Thisrequirement suggests that aBank maintain alist of its Account s, although thislist might not
necessarily be accessible to objects outside the Bank.

« Supports the capability to open (create) new accounts.

« Thisrequirement suggests that a Bank support an operation such ascr eat eAccount (), which
presumably will take asinput aCust orrer (or group of Cust oner s) and perhaps an opening balance
and will return anew Account object. In other words, Bank will provide the following operation:

creat eAccount (custoner : Custoner, openingBal ance : float) : Account
« Supports the capability to close (delete) existing accounts.

o Becausean Account must first exist in order to be deleted, this behavior could actually belong either to
the Bank classor to the Account class. For the sake of consistency with cr eat eAccount (), itis
included in the Bank class.

« del et eAccount (), asthisoperation might be called, doesn't require any information other than the
Account to be deleted, so its signature might look like this:

del et eAccount (account : Account) : void

Note: Y ou will often encounter situations like the preceding one, where there is no clear answer as
to where certain behavior should be placed. Use your best judgment, or sometimes even make an
arbitrary decision.

« Supports the capability to enumerate a bank's accounts.

« It wassuggested previoudly that a Bank would maintain alist of its Account s; this requirement
suggests that the Bank's Account s be made accessible to other objects. In area-world system, access
to Account information should probably be restricted, but because there is no such requirement in this
system (yet), this operation is straightforward:
get Accounts() : Account][]

o The[] notationindicatesthat | i st Account s() returnsan array of Account objects.

Additional attributes of a Bank might prove useful; for instance, the Bank should probably have a name and
perhaps an address. For this application, these attributes will be kept smple:

nanme : string
address : string

BankServer

BankSer ver isaclassthat was unanticipated in the preliminary analysis but popped up during your analysis
of the Bank class. The Bank Ser ver classisvery simple, its only job being to provide visibility to Bank
objects. In order to provide this capability, the following operations are required: Register a Bank with the
BankSer ver , unregister aBank from the BankSer ver , and list all Banks currently registered with the
BankSer ver . More formally, these operations are defined as follows:

regi sterBank(bank : Bank) : void
unr egi st er Bank(bank : Bank) : void
get Banks() : Bank][]

For the purposes of this application, no other capabilities are required of the Bank Ser ver class.
Account

The next class you will consider isthe Account . This classimplements agreat deal of the Bank application's
initial functionality. Hereis how the Account class meets the requirements of the system design:

« Supports multiple customers holding accounts.

« Thiscapability is supported by a many-to-one relationship between Cust oner sand Account s, but it
also impliesthat an Account object will support an operation that shows which Cust oner sare
associated with that Account :

get Custoners() : Customer|[]

http://www.informit.com/content/0672312085/element_006.shtml (7 of 11) [17.07.2000 18:31:27]

- Designing the System: A Crash Course in Object-Oriented Analysis and Design From: Sams Teach Yourself CORBA in 14 Days
« Supports customers holding multiple accounts.

« This capability, coupled with the requirement to support multiple customers holding accounts, implies a
many-to-many relationship between Cust oner sand Account s(rather than the many-to-one
relationship mentioned previously). However, the actual functionality related to this requirement belongs
inthe Cust orrer class.

« Supports the capability to determine an account's owner(s).

« Thiscapability implies an operation that returns the Cust oner s associated with agiven Account .
Incidentally, this operation was already provided previously.

« Supports the capability to withdraw funds from an account.

« The capability to withdraw funds from an Account would most likely come in the form of a
wi t hdr aw() operation, which takes the amount to be withdrawn as an argument. For the sake of
convenience, this operation will return the new balance of the Account :

wi thdraw(amount : float) : float
« Supports the capability to deposit fundsinto an account.

« Depositing funds has the same semantics as withdrawing funds; the amount to be deposited is an
argument, and the return value is the new balance of the Account :

deposit(anount : float) : float
« Supports the capability to transfer funds between accounts within a single bank.

« Transferring funds between Account sis slightly more complicated than simply depositing or
withdrawing funds. In this case, the second Account must also be specified. The amount of the
transaction must be specified aswell, of course. Aswiththedeposi t () andwi t hdraw() operations,
thet r ansf er () operation will return the new balance of the Account (meaning the Account from
which the funds are transferred):

transfer(other : Account, amount : float) : float
« Supports the capability to transfer funds between accounts in different banks.

« Thiscapability is already supported by thet r ansf er () operation because the Account passed to that
operation can belong to any Bank. Therefore, it is unnecessary to provide a separate operation for
transferring funds between Account sin different Banks.

« Supports checking accounts (which don't gain interest).

« Supports savings accounts (which do gain interest).

These requirements suggest that specializations of the Account classwill exist. In particular, you will use
Checki ngAccount and Savi ngsAccount . Although one could argue that the account typeis actually an
attribute of the Account class, for the purposes of this application, the Checki ngAccount and

Savi ngsAccount will be subclasses of Account . This approach makes sense because a

Savi ngsAccount has attributes and behaviors not applicableto a Checki ngAccount , and vice versa.
Because these classes exhibit different behaviors, it is probably better to create separate classes for each of
them.

Finally, the Account should probably contain some additional attributes to make it interesting. First, it should
have an account number so that it can be identified by a human customer (and also to identify the account on
printed checks); it would also be nice to retain the creation date of the account. Note that these capabilities were
not spelled out in the requirements, so you could technically do without them. However, they are likely to
become useful sooner or later, hence their inclusion here;

account Nunber : string

creationDate : date

get Account Nurber () : string

getCreationDate() : date

Notice that the operations listed here are redundant with the attributes. Thisisin keeping with the typical

http://www.informit.com/content/0672312085/element_006.shtml (8 of 11) [17.07.2000 18:31:27]

- Designing the System: A Crash Course in Object-Oriented Analysis and Design From: Sams Teach Yourself CORBA in 14 Days

practice of making attributes private and allowing access to those attributes through accessor methods.
Although you can choose not to follow this convention for non-CORBA applications, access to attributes of
CORBA objects always takes place through accessor methods. Remember, though, that one advantage to this
convention isthat it allows you, if you so desire, to restrict external access to object attributes to reading only.
Such isthe casein this example, as only accessors--no mutators--are provided. This ensures that attributes that
should be immutable--such as creation date and account number--cannot be altered.

CheckingAccount

Checki ngAccount , which derives from Account , provides additional attributes and behaviors. However,
at this point in the application design, Checki ngAccount adds nothing new to Account .

SavingsAccount

Savi ngsAccount , which also derives from Account , provides additional attributes and behaviors as well.
In particular, aSavi ngsAccount has an associated interest rate, along with an accessor and mutator for this
attribute:

interestRate : fl oat

getinterestRate() : float
setlnterestRate(newRate : float) : float
setl nterestRate()

returns the old interest rate as a convenience to the user.
Customer

The Cust oner inthisapplication isarelatively simple class because it is mostly a consumer of services
offered by other classes. Only one of the system requirements fallsto the Cust oner classsresponsibility.

« Supports customers holding multiple accounts.
<

« Because acustomer can hold multiple accounts, it makes sense that the Cust oner class would support
an operation that enumerates Account sheld by that Cust oner :

get Accounts() : Account][]

Additionally, to make the Cust oner interesting, afew attributes will be added to provide the Cust omer's
name, Social Security number (as a means of identification), address, and mother's maiden name (for security
reasons and just plain old tradition):

nane : string

soci al SecurityNunmber : string
address : string

not her sMai denNane : string

To keep things simple, the address attribute is ssmplified into a string rather than street address, city, state, ZIP
code, and so on. However, providing a separate Addr ess class (which could possibly have derived classes as
well) might not be a bad idea for a more robust system.

A Word About Object Identity

Notice that nowhere in the previously described classes is there any mention of attributes whose purposeisto
uniquely identify the object. (The possible exceptions are the Cust oner 's Social Security number and the
Account 'saccount number, which will be discussed in amoment.) Thisis because object-oriented analysis
makes the assumption that objects implicitly have unique identity, making an identity attribute redundant.
Therefore, at the analysislevel, classes should not contain attributes that exist solely to identify the object.

There are exceptions to thisrule. Most notably, a Cust oner hasasoci al Secur it yNunber --an attribute
that exists primarily to uniquely identify the Cust oner . However, thistype of identity attribute is often used
because it corresponds to areal-world concept. A person, for example, has a unique identity simply by virtue of
the fact that he or she exists. The Social Security number, because it is a ubiquitous method of identifying
people (at least in the U.S.A.), is often convenient to use in software applications.

Other identification attributes exist as well and are perfectly legitimate for use in an application design. Another
exampleis the account number in the Account class. Account numbers are often used to identify an account
on aprinted check or on a statement sent to the customer.

The key to understanding when identity attributes are appropriate is this: An artificia identity attribute has no

http://www.informit.com/content/0672312085/element_006.shtml (9 of 11) [17.07.2000 18:31:27]

- Designing the System: A Crash Course in Object-Oriented Analysis and Design From: Sams Teach Yourself CORBA in 14 Days

placein a class description, whereas an identity attribute that exists in the real world--such asa
soci al Securit yNumnber --is acceptable and even useful.

Creating an Application Class Diagram

Now that you've identified the components (classes) of the system and described their attributes and behaviors,
you're ready to put them together into a cohesive class diagram. The class diagram shows not only the classes
themselves (including, if desired, their attributes or operations) but also the relationships between classes.

Figure 5.4 showstheinitial class diagram for the Bank application. (You'll be making changesto the class
diagram from time to time as the system design evolves throughout the next few chapters.) Notice that this
diagram introduces the UML notation for class inheritance; the Savi ngsAccount and Checki ngAccount
classes both inherit from the Account class.

Again, it is stressed that the analysis and design phase is an iterative process. Y ou will often find yourself going
back and tweaking various aspects of the design as you discover features that were |eft out or as you learn
(stumble across) a more elegant way of doing things. Revisiting and making changes to work you've already
completed is quite normal in this stage of the game. Strive for the highest possible quality system design; when
you begin implementing the system, sweeping changes to the design become much more costly. Better to spend
more time on it now, during the design phase, when making changes is much cheaper.

Figure 5.4. The Bank application class diagram.

For Further Study...

Of course, there is much, much more to object-oriented analysis and design than is covered here. Also, avery
important part of object-oriented methodol ogy is the development of use cases, which describe scenariosin
which various parts of the system interact. These scenarios contain actors, such as a user or another object, that
act on other objects. Use cases describe how an actor interacts with the system, what the results are, and the
order in which these events occur. There are many possible use cases for a single scenario; for example, for a
given dialog box, there might be a use case for when the user enters valid data and a separate use case for when
the user entersinvalid data.

Another powerful tool of object-oriented analysis and design is the design pattern. Design patterns can be
thought of as building blocks for more complex object-oriented constructs. For instance, one common design
pattern--one with which you might already be familiar--is the model-view pattern. In this pattern, one object,
called amodel, represents a piece of data or concept. Another object, called aview, tellsamodel that it wantsto
receive updates whenever the model's state changes. An example of amodel classisa

Tenper at ur eSensor , which monitors the outdoor temperature. A view class, such as

Tenper at ur eDi spl ay, might be aview of the Tenper at ur eSensor class, meaning that when the
Tenper at ur eSensor detects achange in the outdoor temperature, it notifiesthe Tenper at ur eDi spl ay
of the change. The Tenper at ur eDi spl ay obtains and displays the new temperature information. A model
might have multiple views, aswell; in this case, the Tenper at ur eSensor notifies multiple

Tenper at ur eDi spl ays when the outdoor temperature changes.

A number of excellent books have long been available on subjects such as use cases, design patterns, and other
important object-oriented concepts. Again, you are encouraged to explore these topics in depth; knowledge of
such concepts pay off in designing any type of system--not just CORBA applications.

Summary

In this chapter, you took what was essentially a crash course in object-oriented analysis and design. Y ou learned
abit about the Unified Modeling Language, its notation, and the basic methodol ogies involved. Y ou applied
these concepts to the design of abasic Bank application. In the analysis and design phase, not much attention is
given to the details of implementation; in fact, it is recommended that you avoid implementation details at this
stage of application development. A system design that does not depend on such details enjoys greater
flexibility than a design that is dependent on the details of a particular implementation.

In the analysis and design phase, you performed three mgjor steps:
« Investigated and defined the requirements for the system.

« ldentified the potential classes that compose the system.

« Mapped the system requirements to class attributes and operations.

http://www.informit.com/content/0672312085/element_006.shtml (10 of 11) [17.07.2000 18:31:27]

javascript:popUp('elementLinks/04.jpg');

- Designing the System: A Crash Course in Object-Oriented Analysis and Design From: Sams Teach Yourself CORBA in 14 Days

« Created a class diagram that integrated the classes in the system into a coherent model.

What Comes Next?

In thefinal part of the design phase--on Day 6, "Implementing Basic Application Capabilities'--you'll trandate
the system design into an IDL specification. The IDL will be used as--you guessed it--a baseline for the system
implementation. Y ou'll then proceed to do exactly this--implement the system's basic capabilities. Future days
will be spent enhancing the basic functionality.

Q&A

Q In the Bank application, what'sto prevent someone from transferring funds between accounts
without authorization?

A The short answer is this: absolutely nothing. This application, being an oversimplification of a
real-world bank system, makes no attempts at providing security of any kind. Obviously, in a production
system, there would have to be security measures in place to prevent this sort of thing. (If you're truly
ambitious, design such a mechanism as an exercise.)

Q What use are use cases?

A Use cases are a powerful tool in system design; in addition to helping the system
architects/designers/devel opers better understand how the system works, the practice of building use
cases can often uncover scenarios that may not have been anticipated. Murphy's Law being what it is, a
user will likely uncover all unanticipated scenarios--usually with undesirable results--so it is always
better for the application designers to find them first.

Workshop

The following section will help you test your comprehension of the material presented in this chapter and put
what you've learned into practice. You'll find the answers to the quiz and exercise in Appendix A.

Quiz
1. Identify the potential objectsin the system described here: An ordering system allows customers to
order products from a particular company. Each order consists of one or more line items, each of which
identifies a quantity and a particular product. Each product, in turn, has an associated price.

2. What isUML and what isit good for?

3. For an order processing system design, one requirement given is "must be fast.” Is this areasonable
expression of this requirement, or could it be made better? If so, how?

Exercise

Modify the system design so that a Bank consists of Br anches, each of which owns some of the Cust orrer
Account s. Draw the class diagram for the modified design.

<Back Contents Next>
Save to Mylnforml T

http://www.informit.com/content/0672312085/element_006.shtml (11 of 11) [17.07.2000 18:31:27]

http://www.informit.com/My/Add?isbn=0672312085&title=Sams+Teach+Yourself+CORBA+in+14+Days&category=Programming&topic=CORBA&chapter=2843&elementname=Designing+the+System:+A+Crash+Course+in+Object-Oriented+Analysis+and+Design
http://www.informit.com/about/
http://www.informit.com/press/
http://www.informit.com/about/advertising/
http://www.informit.com/legal/privacy/
http://www.informit.com/contact/
http://www.informit.com/legal/copyright/
http://www.informit.com/legal/privacy/

- Implementing Basic Application Capabilities From: Sams Teach Yourself CORBA in 14 Days

ile they last! @

Your Hame

Hot Topics Yisual Basic Windows 2000 Windows MT Linu=/Open Source Cizco Knowledge Suite

Soluton Centers PragramlIT DatabazelT WebIT MetworkIT ConfiguralT
® Exact Phrase

O s o Implementing Basic Application

Search

Search Tips -

e Capabilities
Rlylnformi T

: From: Sams Teach
Yourself CORBA in 14
= Days
. ‘mul':rlr AuthOI’ . Jeremy

CORBA Rosenberger
w 14 DAYs | Publisher: Sams
- More Information

<Back Contents Next>

Save to Mylnforml T

InfarmlT Stare
Dol g

« Implementing Basic Bank Server Capabilities
o Implementing the BankServer Interface

Click Here for o Implementing the Bank Interface
ﬂﬂ;’“““ o Implementing the Account Interface
] o Implementing the CheckingAccount Interface

| mplementing the SavingsAccount | nterface

developerWorks™ :
« Implementing Basic Client Capahilities
DPEC.we_ o Implementing the Customer Interface
peradplEeinig o Implementing Additional Client Functionality
" A « Running the Examples
o Starting the CORBA Naming Service
o Starting the BankServer Component
@‘H rT"';p""g o Starting the Bank Component
THCGWS o Running the Client Application
o Summary
. Q&A
« Workshop
0 Quiz
o Exercise

On Day 5, "Designing the System: A Crash Course in Object-Oriented Analysis and Design," you mapped an
application design to a set of IDL interfaces that defined the structure on which that design would be realized.
Today you'll implement those interfaces, thus creating an operational set of servers and clients that implement
the basic capabilities of the Bank application. Y ou'll enhance the application with additional functionality in
future chapters, but in this chapter you'll concentrate on implementing the core set of features of the application.

Note: The examples in this chapter have been developed using Visigenic Software's
(http://wwv. vi si geni c. conl) VisiBroker/C++ product. Despite the existence of a
standard IDL language mapping for C++, various inconsistencies still exist between CORBA
products. If you are using adifferent product, such as IONA Technologies Orbix, you might need
to modify the sample code slightly, although these changes will be minimal. Consult your product
documentation for language mapping information if you experience difficulty compiling the
examples.

http://www.informit.com/content/0672312085/element_007.shtml (1 of 20) [17.07.2000 18:31:33]

http://www.informit.com/
http://ad.doubleclick.net/jump/www.informit.com/programit/;cat=developer;num=92
javascript:document.regularSearch.submit();
http://www.informit.com/search/tips/
http://ad.doubleclick.net/clk;1464039;4446282;i?http://www.informit.com/jobs
http://www.informit.com/news/
http://www.informit.com/downloads/
http://www.informit.com/store/
http://www.informit.com/itlibrary/
http://www.informit.com/edchoice/
http://www.informit.com/alphabook/
http://infobase.informit.com/
http://www.informit.com/My/Accounts
http://ad.doubleclick.net/jump/informit.com/sponsor-button/brassring/badge;sz=100x60
http://ad.doubleclick.net/jump/informit.com/sponsor-button/ibm/badge2;sz=88x31
http://www.informit.com/training/
http://www.recommend-it.com/p.e?415858
http://www.informit.com/news/
http://www.informit.com/downloads/
http://www.informit.com/programit/vb/
http://www.informit.com/networkit/windows2000/
http://www.informit.com/networkit/winnt/
http://www.informit.com/networkit/linux/
http://www.knowcisco.com/
http://www.informit.com/programit/
http://www.informit.com/databaseit/
http://www.informit.com/webit/
http://www.informit.com/networkit/
http://www.informit.com/configureit/
http://www.informit.com/My/Add?isbn=0672312085&title=Sams+Teach+Yourself+CORBA+in+14+Days&category=Programming&topic=CORBA&chapter=2844&elementname=Implementing+Basic+Application+Capabilities
http://www.informit.com/product/0672312085

- Implementing Basic Application Capabilities From: Sams Teach Yourself CORBA in 14 Days

Implementing Basic Bank Server Capabilities

The server functionality of the Bank application is encapsulated in three main interfaces: the Bank Ser ver ,
the Bank, and the Account . The Account interfaceis subdivided into two derived interfaces,

Checki ngAccount and Savi ngsAccount . Thisset of interfaces defines the core functionality of the
Bank application. After you provide implementations for these interfaces, you move on to implement the client
capabilities aswell. The sole interface implemented by the client isthe Cust orrer interface, used by the client
to access various bank services.

Implementing the BankServer Interface

Thefirst server interface to implement isthe Bank Ser ver . Recall that the purpose of the Bank Ser ver isto
enable clients to locate Bank objects. Bank Ser ver objects, in turn, are located by clients and Bank objects
through the CORBA Naming Service or another similar mechanism. When aBank object is created, it locates
and registers with aBank Ser ver ; in the same fashion, when the Bank object is ready to shut down, it
unregisters with the Bank Ser ver .

TheIDL for the BankSer ver interface (from Day 5) isdefined in Listing 6.1.

Listing 6.1. BankServer.idl.

1: // BankServer.idl

2:

3: #ifndef BankServer _idl

4. #define BankServer _idl

5:

6: #include "Bank.idl"

7:

8: // A BankServer provides clients with visibility to Bank objects.
9: interface BankServer {

10:

11: /!l Register the given Bank with this BankServer. The Bank wil |l
12: /1l be listed by getBanks() until unregisterBank() is called with
13: /1 that Bank.

14: voi d regi sterBank(in Bank bank);

15:

16: /1 Unregister the given Bank fromthis BankServer. |f the Bank
17: /1l was not previously registered, this operation does nothing.
18: voi d unregi sterBank(in Bank bank);

19:
20: /1 Return a list of all Banks currently registered with this
21: /1 BankServer.
22: BankLi st get Banks();
23. };
24.
25: #endif

It is up to you to provide implementations for ther egi st er Bank() , unr egi st er Bank() , and
get Banks() methods, aswell asthe constructor (or constructors) and destructor for this class.

Examining BankSer ver | npl . hinListing 6.2, noticefirst (in line 10) that the Bank Ser ver | npl class
extendsthe sk BankServer class. sk _BankSer ver isthe server skeleton for the Bank Ser ver
interface. If you were to examine the source file for this class, you would see that it provides pure virtual
methods corresponding to the IDL methods you defined earlier. Because it is a skeleton, though, it doesn't
provide any implementations for these methods; that is the job of the BankSer ver | npl class. Also, note that
the name BankSer ver | npl was chosen arbitrarily; you can name the class whatever you want, but it is
recommended that you devise and follow a naming convention for your implementation classes.

Listing 6.2. BankServerimpl.h.

/1 BankServerlnpl.h

1
2:
3. #ifndef BankServerlnpl _h
4: #define BankServerlnpl _h

http://www.informit.com/content/0672312085/element_007.shtml (2 of 20) [17.07.2000 18:31:33]

- Implementing Basic Application Capabilities From: Sams Teach Yourself CORBA in 14 Days

5:

6: #include <vector>

7:

8: #include "../BankServer_s. h"

9:

10: class BankServerlnpl : public _sk _BankServer {
11:

12: public:

13:

14: /1 Constructor.

15: BankServer | nmpl ();

16:

17: /] Destructor.

18: ~BankServer | nmpl ();

19:

20: /1l These nethods are described in BankServer.idl
21. virtual void registerBank(Bank_ptr bank);
22: virtual void unregisterBank(Bank_ptr bank);
23: virtual BankList* getBanks();

24

25: private:

26:

27: /1 This BankServer's list of Banks.

28: st d: :vector<Bank_ptr> myBanks;

29: };

30:

31: #endif

Al so, notice the foll ow ng:
#i ncl ude <vector>

and

/1 This BankServer's |ist of Banks.
std:: vect or <Bank_ptr> nyBanks;

If you guessed that the implementation utilizes C++'s Standard Template Library (STL), you are correct. Most
modern C++ compilersinclude STL; if yours doesn't, you can either obtain an implementation of STL or
modify the sample code to avoid STL. One source for STL implementationsis Gbj ect Space (at

htt p://ww. obj ect space. com), which provides an STL implementation for many platforms and
compilersfree of charge.

Further examining BankSer ver | npl . h, you'll seethat the IDL methods defined previously map to the
following C++ methods:

virtual void registerBank(Bank _ptr bank);
virtual void unregisterBank(Bank_ptr bank);
virtual BankList* getBanks();

Notice in particular that the Bank references are mapped to the Bank_pt r type, and the BankLi st to
BankLi st *. Other than these changes and the appearance of thevi rt ual keyword (which is unnecessary
for CORBA implementation classes but usually preferable), the C++ method definitions strongly resemble their
IDL counterparts.

Listing 6.3 contains the implementation class Bank Ser ver | npl . cpp, which provides the implementation
for the _sk_BankSer ver interface.

Listing 6.3. BankServerimpl.cpp.
View Code

Of particular interest in this class are the following highlights:

BankSer ver | npl . cpp makes use of STL-provided algorithms and functions, as evidenced by the
#i ncl ude directivesin lines5 and 6.

Thel sBankEqual class, occupying lines 8 through 16, is an encapsulation of afunction that compares two
Bank references for equality (that is, they both refer to the same Bank object). The equality test is performed

http://www.informit.com/content/0672312085/element_007.shtml (3 of 20) [17.07.2000 18:31:33]

javascript:popUp('elementLinks/element_007_code_1.html');

- Implementing Basic Application Capabilities From: Sams Teach Yourself CORBA in 14 Days

throughthe i s_equi val ent () method, which returns a TRUE (nonzero) result if its object and the
argument object indeed refer to the same object.

Note: According to the CORBA specification, _i s_equi val ent () might actually return
FALSE even if two object references are equivalent. The only guarantee made by the CORBA
specificationisthat if _i s_ equi val ent () returns TRUE, then the object references are
equivalent; otherwise, they may or may not be equivalent. (See the CORBA specification
document for more information.)

Ther egi st er Bank() method (lines 28-34) simply adds the given Bank to the BankSer ver | npl 's
internal list of Banks (in the my Banks member). Note the use of the Bank classs_dupl i cat e() method,
which increments the reference count of the given Bank object by one. Thisindicatesto the Bank object that
the BankSer ver | npl intendsto retain areference to that object. The reference count for an object, in turn,
simply maintains a count of outstanding references to that object. (Y ou'll see later how the Bank Ser ver | npl
releases its reference to the Bank object.)

Now you'll examinetheunr egi st er Bank() method in severa parts.

Thefirst part of unr egi st er Bank() , inlines 36-52, iterates through the Bank Ser ver | npl 'sinterna list
of Banks (again, stored in the myBanks member). Thei sBankEqual classdiscussed earlier isused to
determine equality of Bank references; in thisexample, thest d: : fi nd_i f () method usesan

i sBankEqual object to compare object references. This step is hecessary so that when aBank is
unregistered, the BankSer ver | npl can removeit fromitsinternal list of Banks.

Inthelast part of unr egi st er Bank() , lines 54-56, the given Bank isfirst removed from myBanks, viathe
erase() method. Then BankSer ver | npl indicatesto the Bank that it is no longer keeping a reference to
that Bank by callingthe _r el ease() method. _r el ease() isthe counterpart tothe _dupl i cat e()
method mentioned previoudly; _r el ease() decrements the reference count of an object. When that object's
reference count reaches zero, the object can be (but not necessarily) destroyed. Because the

BankSer ver | npl increments aBank's reference count when it registers and decrements the Bank's
reference count when it unregisters, the net change of the Bank's reference count after it has registered and later
unregistered is zero.

Onitsown, the BankSer ver | npl class doesn't do anything useful. To realize its capability, you must
provide code that createsaBankSer ver | npl and makesit available to other objects on the network. Thisis
donein BankSer ver Mai n. cpp, which appearsin Listing 6.4.

Listing 6.4. BankServerMain.cpp.

1: // BankServer Mai n. cpp
2:
3: #include "BankServerlnmpl.h"
4: #include <iostream h>
5:
6: int main(int argc, char *const *argv) {
7.
8: /1 Initialize the ORB and BOA
9: CORBA: : ORB var orb = CORBA:: ORB_init(argc, argv);
10: CORBA: : BOA var boa = orb->BOA init(argc, argv);
11:
12: /1l Create a BankServerlnpl object.
13: BankServer| npl bankServer;
14:
15: /1 Notify the BOA that the BankServerlnpl object is ready.
16: boa- >obj i s ready(&bankServer);
17:
18: /1 Wait for CORBA events.
19: cout << "BankServer ready." << endl;
20: boa->i npl _i s_ready();
21:
22: /1 When this point is reached, the application is finished.
23: return O;
24. }

The first thing a CORBA application must do isinitialize its environment, that is, its Object Request Broker

http://www.informit.com/content/0672312085/element_007.shtml (4 of 20) [17.07.2000 18:31:33]

- Implementing Basic Application Capabilities From: Sams Teach Yourself CORBA in 14 Days

(ORB) and Basic Object Adapter (BOA). Thisis accomplished through the ORB_i ni t () and BOA_i ni t ()
methods in lines 8-10.

After the ORB and BOA are initialized, other CORBA objects can be created and made available to the
network. Thisis done on a per-object basisusing theobj _i s_ready() method (in lines 15-16).

The preceding code notifiesthe BOA that the Bank Ser ver | npl object is ready to be used by other objects
on the network. The BOA also providesthei npl _i s_r eady() method, which you see used in lines 18-20.

Thei npl _i s_ready() method notifiesthe BOA that the application is ready to receive events. Typically,
i mpl _i s_ready() will wait for events for an implementation-dependent period of time; usually, thisis
configurable by the application developer. For instance, i mpl _i s_r eady() can process events until the
application isinterrupted, or it can terminate the application after a predetermined amount of time has
elapsed--an hour, for instance--without any events being received.

Now that the Bank Ser ver interface has been implemented, you can turn your attention to the interface that
interacts with the Bank Ser ver : the Bank interface.

Implementing the Bank Interface

The Bank interface, as you recall from Day 5, describes the services provided by a Bank--generally, the
manipulation of Account swithin that Bank. The IDL for the Bank interface is defined as shown in Listing
6.5.

Listing 6.5. Bank.idl.
View Code

Here, you'll need to provide implementations for nane() and addr ess() --which have both accessor and
mutator forms for the nane and addr ess attributes--along with cr eat eAccount (),

del et eAccount (), and get Account s(), aswell asthe constructor (or constructors) and destructor for
this class.

After looking at BankSer ver | npl . h (back in Listing 6.2), nothing in Bank| npl . h should be too
surprising (see Listing 6.6). Again, the mapping of IDL methods to C++ methods s straightforward (although
you'll notice the use of the CORBA: : Fl oat typethat the IDL f | oat type mapped to), and the Bank| npl
makes use of STL in much the same way as BankSer ver | npl .

Listing 6.6. Bankimpl.h.
View Code

You haven't seen it yet, but BankMai n. cpp defines agloba variable called boa (seeline 14 of Listing 6.7),
which is areference to the Basic Object Adapter used by the application. Although the simplicity of a global
boa variable makes it appropriate for a sample application, in a production application you want a cleaner
mechanism for sharing the reference to the BOA.. For example, you can provide a class that makes the BOA
available through a static member, or you can write class constructors to take a BOA as an argument.
Regardless of how you accomplish this, there will sometimes be a need for various objects in an application to
access the BOA. (In this example, aBank| npl needsto call obj _i s_r eady() onAccount objectsthat it
creates.)

Listing 6.7. Bankimpl.cpp.
View Code

Here are the highlights from Bank| npl . cpp (refer to Listing 6.7).

Notice that when a string is returned by a CORBA method, asin the first form of the name() method (seelines
51-54), it must be done in the proper manner. When a CORBA method returns a string, it must use the

CORBA: : st rdup() method (note that thisis not the same as the standard library st r dup() method) on that
string. Using CORBA:: : st rdup() allows the application to free the memory used by the string after it has
been marshaled back to the caller. The preceding example demonstrates this for the name() accessor method;
you will notice that the addr ess() accessor method is similar.

Also, examine the last few lines of thecr eat eAccount () method (see lines 101-104).

Notice that when anew Account object is created, you must inform the BOA that the object isready, again
usingtheobj _i s_ready() method. (Thisiswhy the Bankl npl object needs visibility to the BOA.) Note

http://www.informit.com/content/0672312085/element_007.shtml (5 of 20) [17.07.2000 18:31:33]

javascript:popUp('elementLinks/element_007_code_2.html');
javascript:popUp('elementLinks/element_007_code_3.html');
javascript:popUp('elementLinks/element_007_code_4.html');

- Implementing Basic Application Capabilities From: Sams Teach Yourself CORBA in 14 Days

aso that before the newly created Account object is passed back to the caler, its reference count is
incremented by the _dupl i cat e() method. Thisisimportant because when an object reference is passed
back to acaller (either asareturn value or asan out ori nout parameter), the reference count is decremented.
Therefore, when returning a CORBA object reference in this manner, you must always _dupl i cat e() the
object reference before returning it.

The remainder of Bankl npl . cpp will be recognized by C++ programmers or remembered from
BankSer ver | npl . cpp. Like BankSer ver | npl , the Bankl npl must also be accompanied by a bit of
extra code to start up the Bank| npl and make it available to the rest of the network. This code can be seenin
Listing 6.8.

Listing 6.8. BankMain.cpp.
View Code

A key difference between Bank Ser ver Mai n. cpp and BankMai n. cpp isthat, whereasaBankSer ver
doesn't need to locate and connect to other objects, a Bank needs to locate aBank Ser ver and register with it.
Thisis accomplished by the code in lines 33-43.

TheBankSer ver:: bi nd() cal attemptsto bind, or connect, to aBankSer ver object. Optionally,

_bi nd() can specify aname of an object to connect to, but when the name is omitted, _bi nd() will attempt
to connect to any available object of the requested type. If the _bi nd() attempt fails, a

CORBA: : Except i on isthrown, then caught, and its contents printed to the console.

Note: Although the _bi nd() functionality isavailablein severa ORB products (including IONA
Technologies Orbix and Visigenic's VisiBroker products), it is not included in the CORBA
standard. In any case, the _bi nd() mechanism is probably unsuitable for large-scale production
systems anyway; you'll most likely want to use the CORBA Naming Service or Trader Serviceto
locate objects on the network. (See Day 12 for a more in-depth discussion of the CORBAservices.)

If the application successfully bindsto aBankSer ver object, it will register the Bank withit, asin lines
44-52.

Here, r egi st er Bank() istheremote method of the BankSer ver interface. Aswith all remote methods,
regi st er Bank() canthrow aCORBA: : Except i on, and thus this exception should be caught by the
application. In this case, the exception is caught and an error message printed.

A Bank object is essentially afactory for Account objects, and the implementations of the Account and its
derived interfaces are what you will study next.

Implementing the Account Interface

The Account interface defines the capabilities of a generic bank account, such as the withdrawal and deposit
of funds. The IDL for the Account interfaceis defined as shownin Listing 6.9.

Listing 6.9. Account.idl.

1: // Account.idl

2.

3. // Forward declaration of Account interface.
4: interface Account;

5.

6: #ifndef Account _idl

7. #define Account _idl

8:

9: // sequence of Accounts

10: typedef sequence<Account> AccountLi st;
11:

12: #include "Custoner.idl"

13:

14: // An Account is an entity owned by a Bank and held by a Custoner
15: // (or nultiple Customers). An Account has a bal ance which can be
16: // affected by deposits and wi t hdrawal s.

17: interface Account {

19: /! This Account's account nunber.

http://www.informit.com/content/0672312085/element_007.shtml (6 of 20) [17.07.2000 18:31:33]

javascript:popUp('elementLinks/element_007_code_5.html');

- Implementing Basic Application Capabilities From: Sams Teach Yourself CORBA in 14 Days

20: readonly attribute string account Nunber;

21:

22: /1 This Account's creation date.

23: readonly attribute string creationDate;

24:

25: /1 This Account's current bal ance.

26: readonly attribute float bal ance;

27

28: /!l Return a |ist of Customers who hold this Account.
29: Cust oner Li st get Custoners();

30:

31: /1 Wthdraw the given anmount fromthis Account. Returns the new
32: /1 account bal ance.

33: float withdrawm(in fl oat amount);

34:

35: /1 Deposit the given anount into this Account. Returns the new
36: /1 account bal ance.

37: float deposit(in float armount);

38: };

39:

40: #endi f

Thus, you'll need to provide implementations for the following methods: account Nunber (),

creati onDat e(), andbal ance(), which are accessors for theaccount Nurber, cr eat i onDat e,
and bal ance attributes, respectively, aswell asget Cust onmer s() ,wi t hdraw(),anddeposit(),
aong with the constructor (or constructors) and destructor for this class. The header file for the implementation
(Account | npl . h) appearsin Listing 6.10, followed by the implementation itself (Account | npl . cpp)in
Listing 6.11.

Listing 6.10. Accountimpl.h.

1. // Accountlnpl.h

g; #i f ndef Accountlnpl _h

4: #define Accountlnpl_h

2; #i nclude "../Account_s. h"

ég cl ass Accountlnpl : public _sk Account {

10: // Al'l ow Checki ngAccount| nmpl and Savi ngsAccount| npl access to the
11: // protected constructor.

12: friend class Checki ngAccount| npl ;

13: friend class Savi ngsAccount | npl;

14.

15: public:

16:

17: /1 Destructor.

18: ~Account I npl () ;

19:

20: /1 These nethods are described in Account.idl.

21: virtual char* account Nunber();

22: virtual char* creationbDate();

23: virtual CORBA:: Fl oat bal ance();

24. virtual CustonerlList* getCustoners();

25: virtual CORBA::Float w thdraw(CORBA: : Fl oat anount);
26: virtual CORBA:: Fl oat deposit(CORBA:: Fl oat armount);
27

28: protected:

29:

30: /1l Constructor.

31: /1

32: /1 account Nunmber - Account nunber.

33: /1 creationDate - Account creation date.

http://www.informit.com/content/0672312085/element_007.shtml (7 of 20) [17.07.2000 18:31:33]

- Implementing Basic Application Capabilities From: Sams Teach Yourself CORBA in 14 Days

34 // initialBalance - Initial Account bal ance.
35; // custoner - Initial Account owner

36: Account | npl (const char* account Nunber, const char* creationDate,
37: CORBA: : Fl oat initial Balance, Custoner_ptr custoner);
38:

39: private:

40:

41 // Default constructor.

42: Account | mpl () ;

43:

44; /!l This Account's account nunber.

45; char* myAccount Nunber

46:

47: // This Account's creation date.

48: char* myCreationDat e;

49:

50: /1 This Account's current bal ance.

51: CORBA: : Fl oat nyBal ance;

52:

53: /1 This Account's owners.

54: Cust oner Li st nyOmners;

55: };

56:

57: #endif

Listing 6.11. Accountimpl.cpp.

1: // Accountlnpl.cpp

2:

3: #include "Accountl nmpl.h"

4.

5: #include <string.h>

6:

7: |/ Constructor.

8: /1

9: // account Nunber - Account nunber.

10: // creationDate - Account creation date.

11: // initialBalance - Initial Account bal ance.

12: // custonmer - Initial Account owner.

13: Account I npl::Account| npl (const char* account Nunber, const char?*
14: creationbDate, CORBA::Float initial Balance, Customer _ptr
15: custoner) : myAccount Nunber (st rdup(account Nunber)),
16: myCr eati onDat e(strdup(creationDate)),

17: myBal ance(i niti al Bal ance), myOmers() {

18:

19: /] Add the Custoner to the owner |ist.
20: nyOmners. |l ength(1);
21: myOamners[0] = Custoner:: duplicate(custoner);
22. }
23:
24: |/ Default constructor.
25: Account I npl:: Accountlnpl () : myAccount Nunber (NULL),
26: myCreati onDat e(NULL), myBal ance(0.0), myOwers() {
27:
28: }
29:

30: // Destructor.
31: Accountlnpl::~Accountlnmpl () {

32:

33: free(myAccount Nurber) ;
34 free(nmyCreationDate);
35: }

36:

37: char* Account | npl::account Nurber () {

http://www.informit.com/content/0672312085/element_007.shtml (8 of 20) [17.07.2000 18:31:33]

- Implementing Basic Application Capabilities From: Sams Teach Yourself CORBA in 14 Days

38:

39: return CORBA: : strdup(nyAccount Nunber) ;
40: }

41

42: char* Accountlnpl::creationDate() {

43:

44 return CORBA:: strdup(nmyCreationbDate);
45: }

46:

47: CORBA:: Fl oat Accountlnpl:: bal ance() {

48:

49: return nyBal ance;

50: }

51:

52: CustonerlList* Accountlnpl::getCustoners() {
53:

54: return &myOmners;

55: }

56:

57. CORBA:: Fl oat Accountlnpl::w thdraw(CORBA:: Fl oat amount) ({
58:

59: myBal ance -= anount;

60:

61: return nyBal ance;

62: }

63:

64. CORBA:: Fl oat Accountlnpl::deposit(CORBA: : Fl oat anmount) {
65:

66: myBal ance += anount;

67:

68: return nyBal ance;

69: }

Implementing the CheckingAccount Interface

The Checki ngAccount interfaceisthe easiest interface to implement because it doesn't define any
additional methods. The IDL definition for the Checki ngAccount interfaceis shownin Listing 6.12.

Listing 6.12. CheckingAccount.idl.

/1 Checki ngAccount . i dl

#i f ndef Checki ngAccount _i dl
#defi ne Checki ngAccount _idl

#i ncl ude " Account. i dl

/' A Checki ngAccount is an Account which supports checking. It

/1 does not gain any interest, as its sibling, the SavingsAccount,
10: // does.

11: interface CheckingAccount : Account {

ooNoaRrObMERE

12:

13: };

14

15: #endif

Again, because there are no attributes or methods defined as part of the Checki ngAccount interface, thereis
little to do for the implementation class. Simply providing an empty constructor and destructor is sufficient. The
implementation for the Checki ngAccount interface can be seenin Listings 6.13 and 6.14.

Listing 6.13. CheckingAccountimpl.h.

1. // Checki ngAccountInpl.h
2:

http://www.informit.com/content/0672312085/element_007.shtml (9 of 20) [17.07.2000 18:31:33]

- Implementing Basic Application Capabilities From: Sams Teach Yourself CORBA in 14 Days

3: #ifndef Checki ngAccount!| npl _
#defi ne Checki ngAccount | npl _ h

4:
5:
6: #include "../CheckingAccount_s. h"
7. #include "Accountlnpl.h"

8

9

cl ass Checki ngAccount I nmpl : public _sk_Checki ngAccount {

11: public:

12:

13: /1 Constructor.

14: /1

15: /1l account Nunber - Account number.

16: /1 creationDate - Account creation date.

17: /1 initial Balance - Initial Account bal ance.

18: /1 custoner - Initial Account owner

19: Checki ngAccount | npl (const char* account Nunber, const char*
20: creationDate, CORBA::Float initial Bal ance, Customer_ptr
21; custoner);

22.

23: /1 Destructor.

24. ~Checki ngAccount | npl () ;

25:

26: /] These nethods are described in Account.idl.

27: virtual char* account Number();

28: virtual char* creationbDate();

29: virtual CORBA:: Fl oat bal ance();

30: virtual Custonerlist* getCustoners();

31 virtual CORBA:: Fl oat wi thdraw CORBA: : Fl oat anount);
32: virtual CORBA::Fl oat deposit(CORBA: : Fl oat anpunt);
33:

34. private:

35:

36: /1 Default constructor.

37: Checki ngAccount I mpl () ;

38:

39: /1 My associated Accountl| npl object.

40: Account | npl nyAccount;

41: 1},

42:.

43: #endif

Listing 6.14. CheckingAccountimpl.cpp.

1: // Checki ngAccount | npl . cpp

2.

3: #include "Checki ngAccount | nmpl . h"

4:

5. // Constructor.

6: //

7. /1 account Nunber - Account nunber.

8. // creationDate - Account creation date.

9: // initialBalance - Initial Account bal ance.

10: // customer - Initial Account owner.

11: Checki ngAccount | npl : : Checki ngAccount | npl (const char* account Nunber,
12: const char* creationDate, CORBA::Float initialBal ance
13: Custoner _ptr custoner) : myAccount (account Nurmber

14: creationbDate, initialBalance, custoner) {

15:

16: }

17:

18: // Default constructor.
19: Checki ngAccount | npl : : Checki ngAccount | nmpl () : myAccount (NULL, NULL,
20: 0.0, Custoner::_nil()) {

http://www.informit.com/content/0672312085/element_007.shtml (10 of 20) [17.07.2000 18:31:34]

- Implementing Basic Application Capabilities From: Sams Teach Yourself CORBA in 14 Days

21:
22:
23:
24.
25:
26:
27:
28:
29:
30:
31:
32:
33:
34
35:
36:
37:
38:
39:
40:
41
42:
43:
44
45:
46:
47:
48:
49:
50:
51:
52:
53:
54.
55:
56:
57:

LoNoaROME

}

/1 Destructor.
Checki ngAccount | npl : : ~Checki ngAccount | mpl () {

}
char* Checki ngAccount | npl :: account Nunber () {

return myAccount . account Nurber () ;

}

char* Checki ngAccount | npl::creationDate() {

return nmyAccount. creationbDate();

}
CORBA: : Fl oat Checki ngAccount | npl : : bal ance() {

return nyAccount. bal ance();

}

Cust oner Li st* Checki ngAccount | mpl : : get Custoners() {

return nmyAccount. get Cust omers();

}
CORBA: : Fl oat Checki ngAccount I npl : : wi t hdraw(CORBA: : Fl oat anount) {

return nmyAccount . wi t hdraw amount) ;

}
CORBA: : Fl oat Checki ngAccount | npl : : deposi t (CORBA: : Fl oat amount) {

return nmyAccount. deposit (anmount);

}

Implementing the SavingsAccount Interface

The Savi ngsAccount interface is more complicated than the Checki ngAccount interface and so
requires a bit more effort to implement. The Savi ngsAccount IDL definition isshownin Listing 6.15.

Listing 6.15. SavingsAccount.idl.

/1 Savi ngsAccount . i dl

#i f ndef Savi ngsAccount _i dI
#define Savi ngsAccount i dl

#i ncl ude " Account. i dl

/'l A SavingsAccount is an Account which supports savi ngs
/1 account semantics, such as gaining interest.
i nterface Savi ngsAccount : Account {

/1 This Account's interest rate.
readonly attribute float interestRate;

/1 Set this Account's interest rate to the given rate.
/!l Returns the previous rate.
float setlnterestRate(in float rate);

http://www.informit.com/content/0672312085/element_007.shtml (11 of 20) [17.07.2000 18:31:34]

- Implementing Basic Application Capabilities From: Sams Teach Yourself CORBA in 14 Days
20: #endif

For the Savi ngsAccount implementation class, you need to defineget i nt er est Rat e() (an accessor
for thei nt er est Rat e attribute), set | nt er est Rat e() , and the class constructor (or constructors) and
destructor. The implementation class appearsin Listings 6.16 and 6.17.

Listing 6.16. SavingsAccountimpl.h.

1. // SavingsAccountlnpl.h

2.

3. #ifndef SavingsAccountlnpl _h

4: #define SavingsAccount!|nmpl _h

5:

6: #include "../SavingsAccount_s. h"

7: #include "Accountlnpl.h"

8:

9: class SavingsAccountlnpl : public Accountlnpl {

10:

11: public:

12:

13: /1 Constructor.

14: /1

15: /] account Nunmber - Account nunber.

16: /] creationDate - Account creation date.

17: /1l initialBalance - Initial Account bal ance.

18: /1 custoner - Initial Account owner

19: /] interestRate - Initial Account interest rate.
20: Savi ngsAccount | npl (const char* account Nurmber, const char*
21: creationDate, CORBA::Float initialBalance, Custoner_ptr
22: custoner, CORBA::Float interestRate);

23:

24. /1 Destructor.

25: ~Savi ngsAccount | mpl () ;

26:

27: /1 These nethods are described in Account.idl.

28: virtual char* account Number();

29: virtual char* creationDate();

30: virtual CORBA::Fl oat bal ance();

31: virtual CustonerlList* getCustoners();

32: virtual CORBA:: Fl oat w thdraw(CORBA: : Fl oat anount);
33: virtual CORBA:: Fl oat deposit(CORBA:: Fl oat anount);
34:

35: /1l These nethods are described in SavingsAccount.idl.
36: virtual CORBA::Float interestRate();

37: virtual CORBA:: Float setlnterestRate(CORBA: . Float rate);
38:

39: private:
40:
41: /1 Default constructor.
42. Savi ngsAccount | npl ();
43:
44 /
/1l This Account's interest rate.
45: CORBA: : Fl oat nyl nt erest Rat e;
46:
47: /'l My associated Accountl| npl object.
48: Account | npl nmyAccount;
49: };

50:

51: #endif

Listing 6.17. SavingsAccountimpl.cpp.

1. // SavingsAccount| nmpl.cpp

http://www.informit.com/content/0672312085/element_007.shtml (12 of 20) [17.07.2000 18:31:34]

- Implementing Basic Application Capabilities From: Sams Teach Yourself CORBA in 14 Days

#i ncl ude "Savi ngsAccount | npl . h"

/'l Constructor.

/1

!/ account Nunmber - Account nunber.

/'l creationDate - Account creation date.

/!l initialBalance - Initial Account bal ance.
/!l custonmer - Initial Account owner.
/] interestRate - Initial Account interest rate.

Savi ngsAccount | npl : : Savi ngsAccount | npl (const char* account Nunber
const char* creationDate, CORBA::Float initial Bal ance,
Custoner _ptr customer, CORBA:: Float interestRate)
myAccount (account Nunber, creationbDate, initial Bal ance,
custoner), nylnterestRate(interestRate) {

}

/1 Default constructor.
Savi ngsAccount | npl : : Savi ngsAccount I npl () : nyAccount (NULL, NULL
0.0, Customer:: _nil()), mylnterestRate(0.0) {

}

/] Destructor.
Savi ngsAccount | npl : : ~Savi ngsAccount I mpl () {

}
char* Savi ngsAccount | npl : : account Nunber () {

return nmyAccount . account Number () ;

}

char* Savi ngsAccount | npl::creationDate() {

return myAccount. creationbDate();

}

CORBA: : Fl oat Savi ngsAccount | npl : : bal ance() {

return nmyAccount. bal ance();

}
Cust oner Li st* Savi ngsAccount | npl : : get Cust oners() {

return myAccount . get Cust onmers();

}

CORBA: : Fl oat Savi ngsAccount | npl ::wi t hdraw(CORBA: : Fl oat anmount) {

return myAccount . w t hdraw(anount) ;

}

CORBA: : Fl oat Savi ngsAccount | npl : : deposi t (CORBA: : Fl oat anount) {

return nyAccount. deposit (anmount);

}

CORBA: : Fl oat Savi ngsAccount I npl::interestRate() {

return nyl nterestRate;

http://www.informit.com/content/0672312085/element_007.shtml (13 of 20) [17.07.2000 18:31:34]

- Implementing Basic Application Capabilities From: Sams Teach Yourself CORBA in 14 Days

65:
66: CORBA:: Fl oat Savi ngsAccount|npl::setlnterestRate(CORBA::Float rate) {
67:

68: CORBA: : Fl oat oldlinterestRate = nyl nterestRate;
69:

70: myl nterest Rate = rate,;

71:

72: return ol dl nterestRate,;

73: }

Implementing Basic Client Capabilities

Now that you have implemented the basic capabilities of the CORBA server for the Bank application, you're
ready to begin working on the basic client capabilities. Since most of the work is done by the server in this
application, you'll find the client to be fairly simple by comparison.

Implementing the Customer Interface

The Cust oner interface encapsulates the attributes and behaviors of aCust oner of aBank. For the most
part, this interface serves as a container for Account objects. The IDL definition for the Cust oner interface
isshownin Listing 6.18.

Listing 6.18. Customer.idl.

1: // Customer.idl

2:

3: /! Forward declaration of Custoner interface.
4: interface Custoner;

5:

6: #ifndef Custoner _idl

7. #define Custoner _idl

8:

9: // sequence of Custoners
10: typedef sequence<Custoner> CustonerlList;
11:
12: #include "Account.idl"
13:

14: // A Custoner can hold one or nore Accounts. Presunably, the
15: // Custoner is what drives the rest of this application.
16: interface Custoner {

17:

18: /1 This Custoner's nane.

19: attribute string naneg;

20:

21: /1 This Custoner's Social Security nunber.

22. readonly attribute string social SecurityNunber;
23:

24: /1 This Customrer's address.

25: attribute string address;

26:

27: /1 This Custoner's nother's maiden nane.

28: readonly attribute string nothersMi denNarne;
29:

30: /1 Return a list of Accounts held (or co-held) by this
31: /1 Custoner.

32: Account Li st get Accounts();

33: };

34:

35: #endif

Y ou need to implement get nane(), set nanme(), get soci al Securit yNurber (), get addr ess(),
set Addr ess(), and get not her sMai denNane() , which are the accessors and mutators for various
attributes of Account , along with get Account s() and the class constructor (or constructors) and

http://www.informit.com/content/0672312085/element_007.shtml (14 of 20) [17.07.2000 18:31:34]

- Implementing Basic Application Capabilities From: Sams Teach Yourself CORBA in 14 Days
destructor. The implementation for Cust orrer | npl appearsin Listings 6.19 and 6.20.

Listing 6.19. Customerimpl.h.

1: // Custonerlnpl.h

2:

3: #ifndef Customerlnpl_h

4: #define Customrerlnpl _h

5:

6: #include "../Custoner_s.h"

7:

8: class Custonerlnpl : public _sk_Customer {

9:

10: public:

11:

12: /1 Constructor.

13: 11

14: /1 name - Customer's nane.

15: /'l social SecurityNunber - Customer's Social Security numnber.
16: /] address - Custoner's address.

17: /1 not hershai denNane - Custoner's nother's mai den nane.
18: Cust oner | npl (const char* nane, const char* social SecurityNunber,
19: const char* address, const char* nothersMai denNane);
20:

21: /1 Destructor.

22: ~Cust omrer I mpl () ;

23:

24: /1 These nethods are described in Customer.idl
25: virtual char* nane();

26: virtual void name(const char* val);

27: virtual char* social SecurityNunber();

28: virtual char* address();

29: virtual void address(const char* val);

30: virtual char* nothersMi denNane();

31 virtual AccountList* getAccounts();

32:

33: private:

34:

35: /1 Default constructor.

36: Custonerl npl ();

37:

38: /1 This Customner's nane.

39: char* myNane;
40:
41: /1l This Customer's Social Security number.
42: char* nmnySoci al SecurityNunber;
43:
44. /1 This Custoner's address.
45; char* myAddress;
46:
47: /1 This Custoner's nother's naiden nane.
48: char* myMot her sMai denNane;
49:

50: /1 This Customer's Accounts.

51: Account Li st myAccounts;

52: };

53:

54: #endif

Listing 6.20. Customerimpl.cpp.

1. // Custonerlnpl.cpp
2:
3: #include "Custonerlnpl.h"

http://www.informit.com/content/0672312085/element_007.shtml (15 of 20) [17.07.2000 18:31:34]

- Implementing Basic Application Capabilities From: Sams Teach Yourself CORBA in 14 Days

#i ncl ude <string. h>

/1 Constructor.
/1
/1l name - Customer's nane.
/1 social SecurityNunber - Customer's Social Security nunber.
/] address - Custoner's address.
/1 not her sMai denNanme - Custoner's nother's mai den nane.
Custoner| npl :: Custonerl npl (const char* nane, const char*
soci al SecurityNunber, const char* address, const char*
nmot her sMai denNane) : nyNanme(strdup(nane)),
mySoci al Securi t yNumber (st rdup(soci al SecurityNumnber)),
myAddr ess(strdup(address)),
my Mot her sMai denNane(st r dup(not her sMai denNane)) ,
myAccount s() {

}

/1 Default constructor.

Custoner | npl :: Customer | npl () : myName(NULL),
mySoci al SecurityNumber (NULL), myAddress(NULL),
my Mot her sMai denNarme(NULL), myAccounts() {

}

/1 Destructor.
Custoner | npl :: ~Custoner I npl () {

free(myNane) ;
free(nySoci al SecurityNunber);
free(myAddress);

fr ee(myMot her sivai denNane) ;

}

char* Custonerlnpl::nanme() {

return CORBA:: strdup(nyNane);
}

voi d Custonerlnpl::name(const char* val) {

free(myNane) ;
myName = strdup(val);
}

char* Customer!| npl::social SecurityNunber () {

return CORBA:: strdup(nySoci al SecurityNunber);
}

char* Customerl|npl::address() {

return CORBA:: strdup(nmyAddress);
}

voi d Customerlnpl::address(const char* val) {

free(nyAddress);
myAddress = strdup(val);

}

char* Custonerl npl:: not her sMai denNane() {

http://www.informit.com/content/0672312085/element_007.shtml (16 of 20) [17.07.2000 18:31:34]

- Implementing Basic Application Capabilities From: Sams Teach Yourself CORBA in 14 Days

67:

68: return CORBA: : strdup(myMt hersiMai denNane) ;
69: }

70:

71. AccountList* Custonerlnpl::getAccounts() {

72:

73: return &myAccounts;

74. }

Implementing Additional Client Functionality

In addition to the Cust omer interface, any useful client needs to implement additional functionality. An
examination of the Cust oner implementation will suggest to you why thisis so: Although the implementation
allowsaCust oner tointeract with various other components of the Bank application (such as Bank and
Account objects), thereisno functionality in the Cust omer implementation that directs the client
application to actually do something. Therefore, any client application will not consist solely of the Cust onrer
interface implementation but will add extrafunctionality that performs useful work.

Listing 6.21 contains a sample client application that creates anew Cust oner object, opensanew Account
with a Bank, and then performs some operations on that Account (adeposit and awithdrawal). This
application is very simple and not very interactive (it obtains all of its parameters from the command line), but it
demonstrates how operations on CORBA objects are invoked.

Listing 6.21. NewCustomerMain.cpp.

View Code

Running the Examples

Now that you've implemented all the server and client components of the Bank application, you're ready to try
it out. Running the application consists of the following steps:

1. Start the CORBA Naming Service--or asimilar type of service--which will be required by the
BankSer ver when it starts up.

2. Start theBank Ser ver server. The BankSer ver will register itself with the Naming Service.

3. Start one or more Bank servers. Upon startup, each Bank server will locate aBank Ser ver through
the Naming Service and register itself with the BankSer ver .

4. Run the NewCust oner client application. The NewCust oner application will create a new
Cust oner and Account , verifying that the Bank and Bank Ser ver objects are working correctly.

Starting the CORBA Naming Service

Generally, before starting any CORBA applications, you first need to invoke the mechanism by which the
application components can find each other. Sometimes thisis a CORBA Naming Service (which you'll use
later); other timesit's a simple executable included with the CORBA product you are using. Because the
method by which these executables are invoked varies from one product to the next, you'll want to consult your
product's documentation to determine how thisis done.

For Visigenic's VisiBroker, you'll want to run the provided osagent utility. Running the utility issimple; at
the command line, smply type the following:

osagent

Theosagent utility produces no output, but it begins a new process (which appears as an icon on the taskbar
if you're using Windows 95 or Windows NT 4.0). The process--often referred to as a daemon in
UNIX-speak--is called the ORBeline Smart Agent and allows CORBA applications using VisiBroker to locate
each other.

Note:Asdirected in the VisiBroker documentation, you'll want to ensure that the VisiBroker bi n
directory isin your system's PATH environment variable. (The method for adding directories to the
PATH varies between systems; consult the VisiBroker or system documentation to determine how
thisis accomplished.) Other products work similarly; it's often convenient to place the software's
bi n directory into your system's PATH.

http://www.informit.com/content/0672312085/element_007.shtml (17 of 20) [17.07.2000 18:31:34]

javascript:popUp('elementLinks/element_007_code_6.html');

- Implementing Basic Application Capabilities From: Sams Teach Yourself CORBA in 14 Days

Starting the BankServer Component

After you start the Naming Service (or ORBeline Smart Agent, in the case of VisiBroker), begin the
BankSer ver application component. The Bank Ser ver must be run before any other components of the
application because Cust oner sneed to connect to Banks, which in turn need to connect to Bank Ser ver s.

To start the Bank Ser ver , first change to the directory where the Bank Ser ver executable resides. (If you're
using Microsoft's Visual C++, the compiler by default places the executable in a directory under the project
directory called Debug or Rel ease, depending on the version of the executable you compiled.) Type the
following at the command prompt:

BankSer ver

Y ou will seethis output:
BankServer ready.

The BankSer ver isnow running and listening for incoming requests; you can now advance to starting a
Bank server component.

Starting the Bank Component

To start the Bank component, open a separate command window. (UNIX users can "background" the
BankSer ver application and use the same window, but for the sake of clarity, application components should
be run in separate windows, at least for now).

To start the Bank component, change to the directory where the Bank executable islocated, as you did with
the Bank Ser ver component. Then choose a name for the Bank (any name will do), for example, "First
Bank." The name of the Bank can contain spaces, but if it does, you have to quote the name so the application
perceivesit as asingle parameter. Using the name "First Bank," type the following at the command prompt:

Bank "First Bank"

Likethe BankSer ver component, the Bank component does not produce much output at this time--simply
the following:

Bank "First Bank" ready.

The Bank component is now ready for client components to connect to it, so you're ready for the next step.

Running the Client Application

Again, open a new command window and change to the directory containing the executable to start the client
application component. For the NewCust orrer component, you need the following Cust orrer information
for parameters. name, Social Security number, address, and mother's maiden name. Again, parameters can
contain spaces, as long as you surround each parameter with quotations. For example:

View Code

The output of the client component will be the following:

NewCust oner: Creating new Custoner:
nane: Jereny Rosenberger
Soci al Security nunber: 123456789
address: 123 Main Street, Denver, CO 12345
not her' s mai den name: Stroustrup
NewCust oner: Connected to Bank "First Bank".
NewCust oner: Opened new Account:
account nunber: Account 00000000
creation date: Sep 28 1997
account bal ance: 0
NewCust oner: Perform ng transactions.
Deposi ting $250. 00; new bal ance is $250
W t hdr awi ng $500. 00; new bal ance is $-250 (\Woops!)

When you get this far, congratulations! Y ou have successfully developed and run afully functional CORBA
application.

http://www.informit.com/content/0672312085/element_007.shtml (18 of 20) [17.07.2000 18:31:34]

javascript:popUp('elementLinks/element_007_code_7.html');

- Implementing Basic Application Capabilities From: Sams Teach Yourself CORBA in 14 Days

Summary

In this chapter you started with an IDL specification, implemented the interfaces described in that specification,
and created server and client executables that communicated by using those interfaces. Along the way you
learned about some other aspects of CORBA applications.

« CORBA providesthe _duplicate() and_rel ease() methodsto track usage of CORBA objects.
Although CORBA doesn't specify it, reference counting is atypical mechanism which isrealized by the
use of these methods.

« CORBA serversindicate that their objects are ready (or the server itself isready) by caling the
obj _is_ready() andi npl _i s_ready() methodsin the Basic Object Adapter (BOA).

« CORBA clients connect to server objects by binding to them, using the _bi nd() method (a nonstandard
method used in the examples in this chapter) or via an appropriate CORBAservice (which you'll explore
later on Day 12). After an object is bound, the client can call methods on that object just asif the object
were local.

Next you'll concentrate on enhancing the Bank example by adding new functionality and robustness to the
application components. On Day 7, you'll add exception handling code to the application. Exceptions allow the
application more flexibility in handling error conditions--a concept familiar to C++ and Java programmers. For
this application, it would be useful if an attempt to withdraw funds from an Account that did not have such
funds available signalled an error. (Recall from the example output that in the current application, withdrawing
from an Account with insufficient funds simply makes the Account balance go negative.) One task you'll
take on in the next chapter isto add an exception which traps this condition.

Q&A
Q Why do CORBA objects need to bereference counted?

A In anon-distributed application, it is a simple matter to determine when an object is no longer required
(in other words, no longer referenced by any other object) and thus destroy it, removing it from memory.
In fact, some languages, such as Java, provide this functionality--known as garbage collection--as a
feature built into the language. Distributed applications, however, make the issue of destroying unused
objects more complicated because it is difficult to determine which objects are in use by other
(potentially remote) objects. CORBA thus provides the reference counting mechanism to facilitate the
tracking of object usage. Another method of achieving thisisfor each object to occasionally "ping" the
objectsiit references, updating reference counts as necessary. However, this approach can be problematic,
depending on the number of objectsin the system.

Q Okay, | under stand reference counting now, but what if a client application crashes and thus
_rel ease() isnever called? Isthe object never destroyed?

A Indeed, the reference counting system employed by CORBA is not without its flaws, and thisis one of
them. If aclient application that references a remote object crashes, r el ease() will not be called
enough times on that object, and thus the object's reference count will never reach zero. There are design
patterns (which you'll learn about on Day 10) that deal with issues such asthis; the basic approach isfor
serversto evict objects into a database or persistent store after they have been unused for a preset period
of time. If the object isrequired again, it can be retrieved from the persistent store or re-created in some
other fashion.

Workshop

The following section will help you test your comprehension of the material presented in this chapter and put
what you've learned into practice. You'll find the answers to the quiz and exercise in Appendix A.

Quiz

1. It was noted earlier that _i s_equi val ent () isnot guaranteed to return TRUE when two object
references refer to the same object. Can you think of a mechanism that would more reliably determine
whether two references refer to the same object? (For ssimplicity, assume the objects are of the same

type.)

http://www.informit.com/content/0672312085/element_007.shtml (19 of 20) [17.07.2000 18:31:34]

- Implementing Basic Application Capabilities From: Sams Teach Yourself CORBA in 14 Days

2. What would happenif _r el ease() were not called on an object which had earlier been
_duplicate()d?

3. Why does NewCust orrer Mai n. cpp haveatry ... catch (const
CORBA: : Excepti on& ex) block?

Exercise

Modify the client application so that it prints the names of the Cust onmer swho are associated with the
Account that was created. (The single Cust omer printed should be the same Cust oner whose information

was entered on the command line.)
<Back Contents Next>
Saveto Mylnforml T

http://www.informit.com/content/0672312085/element_007.shtml (20 of 20) [17.07.2000 18:31:34]

http://www.informit.com/My/Add?isbn=0672312085&title=Sams+Teach+Yourself+CORBA+in+14+Days&category=Programming&topic=CORBA&chapter=2844&elementname=Implementing+Basic+Application+Capabilities
http://www.informit.com/about/
http://www.informit.com/press/
http://www.informit.com/about/advertising/
http://www.informit.com/legal/privacy/
http://www.informit.com/contact/
http://www.informit.com/legal/copyright/
http://www.informit.com/legal/privacy/

- Using Exceptions to Perform Error Checking From: Sams Teach Yourself CORBA in 14 Days

ile they last!
Y¥our Name Mi

® Exact Phrase
O All words

Search
Search Tips

Rlylnformi T

InfarmlT Stare
Dol g

Click Here for
High-Tech
Jobs!

developerWorks™

DPEC we—

Based Training

W ciick to
Recommaend-it.

-@m TopIT
Hews

TGOS

Hot Topics Yisual Basic Windows 2000 Windows MT Linu=/Open Source Cizco Knowledge Suite

Soluton Centers PragramlIT DatabazelT WebIT MetworkIT ConfiguralT

Editors’ Choice

Using Exceptions to Perform Error
Checking

From: Sams Teach
Yourself CORBA in 14
e = Days

R Author: Jeremy
(00)1419:Y Rosenberger

w 14 DAYS | Publisher: Sams

- More Information

<Back Contents Next>

Save to Mylnforml T

« Defining Exceptions for the Application
o Exceptionsin BankServer

o Exceptionsin Bank

o Exceptionsin Account

o Exceptions in CheckingAccount
o Exceptionsin SavingsAccount
o Exceptionsin Customer
o Modifying Server IDL to Use Exceptions
« Modifying Server Code to Throw Exceptions

o BankServerlmpl

o Accountimpl
o CheckingAccountlmpl

o SavingsAccountlmpl

0 Bankimpl
« Madifying Client Code to Catch Exceptions
« Running the Enhanced Example

e« Summary

o Q&A

« Workshop
0 Quiz

o Exercises

On Day 6, you created abasic CORBA application from a set of IDL specifications. The application
implemented some basic functionality but lacked robustness; for example, the client component of the
application demonstrated that it was possible to withdraw from an Account an amount greater than the
Account 's balance (without any sort of overdraft capability). In this chapter, you'll enhance the application to
better handle error conditions (such as attempting to withdraw too many funds from an Account).

Defining Exceptions for the Application

To intelligently add error-checking capability to the application, you need to go back through the design, look at

http://www.informit.com/content/0672312085/element_008.shtml (1 of 17) [17.07.2000 18:31:47]

http://www.informit.com/
http://ad.doubleclick.net/jump/www.informit.com/programit/;cat=developer;num=92
javascript:document.regularSearch.submit();
http://www.informit.com/search/tips/
http://ad.doubleclick.net/clk;1464039;4446282;i?http://www.informit.com/jobs
http://www.informit.com/news/
http://www.informit.com/downloads/
http://www.informit.com/store/
http://www.informit.com/itlibrary/
http://www.informit.com/edchoice/
http://www.informit.com/alphabook/
http://infobase.informit.com/
http://www.informit.com/My/Accounts
http://ad.doubleclick.net/jump/informit.com/sponsor-button/brassring/badge;sz=100x60
http://ad.doubleclick.net/jump/informit.com/sponsor-button/ibm/badge2;sz=88x31
http://www.informit.com/training/
http://www.recommend-it.com/p.e?415858
http://www.informit.com/news/
http://www.informit.com/downloads/
http://www.informit.com/programit/vb/
http://www.informit.com/networkit/windows2000/
http://www.informit.com/networkit/winnt/
http://www.informit.com/networkit/linux/
http://www.knowcisco.com/
http://www.informit.com/programit/
http://www.informit.com/databaseit/
http://www.informit.com/webit/
http://www.informit.com/networkit/
http://www.informit.com/configureit/
http://www.informit.com/edchoice/
http://www.informit.com/My/Add?isbn=0672312085&title=Sams+Teach+Yourself+CORBA+in+14+Days&category=Programming&topic=CORBA&chapter=2845&elementname=Using+Exceptions+to+Perform+Error+Checking
http://www.informit.com/product/0672312085

- Using Exceptions to Perform Error Checking From: Sams Teach Yourself CORBA in 14 Days

each method, determine what error conditions can occur in each method, and determine whether the error
condition should be handled by the method itself or thrown (raised in CORBA lingo) back to the client to be
handled. In this section, you'll analyze each IDL interface again, determining what exceptions can be thrown
and from where.

Note:When a method throws an exception back to its caller, CORBA refersto thisaction asraising
an exception. However, many languages--particularly Java and C++--refer to this as throwing an
exception. Because both terms have identical meaning and are commonly used, you will see them
used interchangeably throughout this chapter.

Exceptions in BankServer

You'l start by adding exception-handling capability to the Bank Ser ver interface. For your review (and
convenience), Listing 7.1 containsthe original BankSer ver . i dl from Day 6, which you'll then modify with
the exception-handling definitions.

Listing 7.1. Original BankServer.idl.

1. // BankServer.idl
2:
3. #ifndef BankServer idl
4: #define BankServer _idl
5:
6: #include "Bank.idl"
7
8: // A BankServer provides clients with visibility to Bank objects.
9: interface BankServer {
10:
11: /1 Register the given Bank with this BankServer. The Bank w ||
12: /1 be listed by getBanks() until unregisterBank() is called with
13: /1 that Bank.
14: voi d regi sterBank(in Bank bank);
15:
16: /1l Unregister the given Bank fromthis BankServer. |f the Bank
17: /1l was not previously registered, this operation does nothing.
18: voi d unregi sterBank(in Bank bank);
19:
20: /1l Return a list of all Banks currently registered with this
21: /1 BankServer.
22: BankLi st get Banks();
23: };
24
25: #endif

Starting your analysis with the Bank Ser ver interface, you can see that three methods can potentially throw
exceptions. Thefirst method, r egi st er Bank() (lines 11-14), can conceivably throw an exception if an
attempt is made to register aBank that is already registered. Make a nhote of this exception; you can call it

I nval i dBankExcept i on (it isagood practice to make exception names as self-explanatory as possible).
Moving on to the next method, unr egi st er Bank() (lines 16-18), you can seethat it is possible that a Bank
that was never registered with the Bank Ser ver can attempt to unregister. Similarly, this method might throw
anl nval i dBankExcepti on. Finally, get Banks() (lines20-22) need not throw any exception; if no
Banks are registered with the Bank Ser ver , it can ssmply return an empty BankLi st .

Your analysis of the Bank Ser ver interface has turned up two methods that raise exceptions. The new
signatures for these methods, modified to raise the exceptions described previoudly, are as follows:

voi d regi sterBank(in Bank bank)

rai ses (InvalidBankException);
voi d unregi sterBank(in Bank bank)

rai ses (InvalidBankException);

http://www.informit.com/content/0672312085/element_008.shtml (2 of 17) [17.07.2000 18:31:47]

- Using Exceptions to Perform Error Checking From: Sams Teach Yourself CORBA in 14 Days
Exceptions in Bank

Y ou can now move on to the Bank interface, the next interface to which you'll be adding exception-handling
capability. Again, the original Bank. i dl listing from Day 6 reappearsin Listing 7.2.

Listing 7.2. Original Bank.idl.
View Code

The Bank interface contains three methods: cr eat eAccount () (lines 26-30), which need not throw any
exceptions; del et eAccount () (lines 32-34), which throws an exception if the specified Account object
does not exist in the Bank; and get Account s() (lines 36-37), which also need not throw any exceptions.

Again using a self-explanatory exception name, the modified del et eAccount () signature looks like this:

voi d del et eAccount (i n Account account)
rai ses (Ilnvali dAccount Excepti on);

Exceptions in Account

Listing 7.3 contains the Account interface (again making a reappearance from Day 6), the next candidate for
adding exception raising.

Listing 7.3. Original Account.idl.

1: // Account.idl

2.

3: // Forward declaration of Account interface.
4: interface Account;

5.

6: #ifndef Account _idl

7. #define Account _idl

8:

9: // sequence of Accounts

10: typedef sequence<Account> AccountLi st;
11:

12: #include "Custoner.idl"

13:

14: // An Account is an entity owned by a Bank and held by a Custoner
15: // (or nultiple Custonmers). An Account has a bal ance which can be
16: // affected by deposits and wi thdrawal s.

17: interface Account {

18:

19: /1 This Account's account nunber.

20: readonly attribute string account Nunber;

21:

22: /1 This Account's creation date.

23: readonly attribute string creationbDate;

24.

25: /1 This Account's current bal ance.

26: readonly attribute fl oat bal ance;

27:

28: /!l Return a |ist of Customers who hold this Account.
29: Cust oner Li st get Custoners();

30:

31 /1 Wthdraw the given anmount fromthis Account. Returns the new
32: /1 account bal ance.

33: float withdrawm(in fl oat amount);

34.

35: /1l Deposit the given anount into this Account. Returns the new
36: /] account bal ance.

37: float deposit(in float anount);

38: };

39:

40: #endi f

http://www.informit.com/content/0672312085/element_008.shtml (3 of 17) [17.07.2000 18:31:48]

javascript:popUp('elementLinks/element_008_code_1.html');

- Using Exceptions to Perform Error Checking From: Sams Teach Yourself CORBA in 14 Days

Analyzing the Account interface's methods, in lines 28-29 you encounter get Cust oner s() , which need
not throw any exceptions (again, an empty list can be returned if there are no Cust oner s, even though this
should never happen). Lines 31-33 contain thewi t hdr aw() method, which throws an exception if insufficient
funds are available in the specified account. Finally, deposi t () (lines 35-37) throws an exception if an
invalid amount is specified (for instance, a negative amount). Actually, wi t hdr aw() throws an exception
when given an invalid amount, as well.

This analysis leads to the following method signatures:

float withdrawm(in fl oat amount)
rai ses (InvalidAnobunt Excepti on,
I nsuf ficient FundsException);

fl oat deposit(in float anount)
rai ses (Ilnvali dAnmount Exception);

Exceptions in CheckingAccount

Because the Checki ngAccount interface adds no new methods to the Account interface, no additional
analysisis necessary to determine exception raising for thisinterface. For your review, the listing for
Checki ngAccount . i dl reappearsin Listing 7.4.

Listing 7.4. Original CheckingAccount.idl.

/I Checki ngAccount . i dl

#i f ndef Checki ngAccount _i dl

#def i ne Checki ngAccount _i dl

#i ncl ude "Account.idl"

/1 A CheckingAccount is an Account which supports checking. It

// does not gain any interest, as its sibling, the SavingsAccount,
/'l does.

i nterface Checki ngAccount : Account {

1

#endi f

Exceptions in SavingsAccount
Listing 7.5 reproduces the Savi ngsAccount . i dl listing from Day 6.

Listing 7.5. Original SavingsAccount.idl.

1: // SavingsAccount.idl

2:

3. #ifndef SavingsAccount _idl

4: #define Savi ngsAccount _i dI

5:

6: #include "Account.idl"

7.

8: // A SavingsAccount is an Account which supports savings
9: // account semantics, such as gaining interest.

10: interface Savi ngsAccount : Account {

11:

12: /1 This Account's interest rate.

13: readonly attribute float interestRate;

14.

15: /1l Set this Account's interest rate to the given rate.
16: /1 Returns the previous rate.

17: float setlnterestRate(in float rate);

18: };

19:
20: #endif

The Savi ngsAccount interface defines one additional method, set | nt er est Rat e() (lines 15-17),
which can throw an exception if aninvalid rate (for example, anegative one) is specified. In the interest of not
using too many different exception names, you can reusethe | nval i dAnount Except i on from the
preceding Account interfaces:

http://www.informit.com/content/0672312085/element_008.shtml (4 of 17) [17.07.2000 18:31:48]

- Using Exceptions to Perform Error Checking From: Sams Teach Yourself CORBA in 14 Days

float setlnterestRate(in float rate)
rai ses (Invali dAnmount Exception);

Exceptions in Customer

The Cust oner interface defines only one method, get Account s(), which need not raise any exceptions.
For your review, the original Cust oner . i dl appearsin Listing 7.6.

Listing 7.6. Original Customer.idl.

1. // Customer.idl

2.

3. // Forward declaration of Custoner interface.
4: interface Custonmer;

5:

6: #ifndef Customer_idl

7. #define Custoner _idl

8:

9: // sequence of Custoners

10: typedef sequence<Custoner> CustonerlList;
11:

12: #include "Account.idl"

13:

14: // A Custoner can hold one or nore Accounts. Presunably, the
15: // Custoner is what drives the rest of this application.
16: interface Custoner {

17:

18: [l This Custoner's nane.

19: attribute string nane;

20:

21: /1l This Customer's Social Security number.

22: readonly attribute string social SecurityNunber
23:

24: /1 This Custoner's address.

25; attribute string address;

26:

27: /1l This Custoner's nother's naiden nane.

28: readonly attribute string nothershMai denNane;
29:

30: /1 Return a list of Accounts held (or co-held) by this
31: /1 Custoner.

32: Account Li st get Accounts();

33: };

34:

35: #endif

Modifying Server IDL to Use Exceptions

Much of the work of adding exceptions has already been done (adding ther ai ses clauses to the methods that
throw exceptions). However, you did not yet define the exceptions themselves. For the sake of simplicity,
define al exceptionsin asinglefile--Except i ons. i dl , which can be#i ncl uded from other IDL files.
Excepti ons. i dl appearsinListing 7.7.

Listing 7.7. Exceptions.idl.

/1 Exceptions.idl

#i f ndef Exceptions_idl
#define Exceptions_idl

/1 This exception is thrown when an invalid anmount is passed to a
/! method; for instance, if an account is asked to deposit a
/1 negative anmobunt of funds.

NN R

http://www.informit.com/content/0672312085/element_008.shtml (5 of 17) [17.07.2000 18:31:48]

- Using Exceptions to Perform Error Checking From: Sams Teach Yourself CORBA in 14 Days

9: exception InvalidAnmount Exception {

10:

11: };

12:

13: // This exception is thrown when an invalid Account is passed to a
14: // nmethod expecting an Account object.

15: exception InvalidAccount Exception {

16:

17: };

18:

19: // This exception is thrown when an invalid Bank is passed to a
20: // nmethod expecting a Bank object.

21. exception InvalidBankException {

22:

23. };

24:

25. // This exception is thrown when there are insufficient funds to
26: // cover a transaction; for instance, if a withdrawal attenpts to
27: |1 renove nore funds than are available in an account.

28. exception InsufficientFundsException {

29:

30: };

31:

32: #endif

Modifying each IDL file to reflect the changes is a simple matter. Listings 7.8-7.13 show the modified IDL files
for each interface, with the changes from the original versions highlighted in bold.

Listing 7.8. Modified BankServer.idl.

1: // BankServer.idl

2:

3: #ifndef BankServer _id

4. #define BankServer id

5:

6: #include "Bank.idl"

7: #include "Exceptions.idl"

8:

9: // A BankServer provides clients with visibility to Bank objects.
10: interface BankServer {

11:

12: /1 Register the given Bank with this BankServer. The Bank w ||
13: /1l be listed by getBanks() until unregisterBank() is called with
14: /1 that Bank.

15: voi d registerBank(in Bank bank)

16: rai ses (InvalidBankException);

17:

18: /1l Unregister the given Bank fromthis BankServer. |f the Bank
19: /1 was not previously registered, this operation does not hing.
20: voi d unregi sterBank(in Bank bank)

21: rai ses (InvalidBankException);

22:

23: /!l Return a list of all Banks currently registered with this
24. /1 BankServer.

25: BankLi st get Banks();

26: };

27:

28: #endif

Listing 7.9. Modified Bank.idl.
View Code

Listing 7.10. Modified Account.idl.

http://www.informit.com/content/0672312085/element_008.shtml (6 of 17) [17.07.2000 18:31:48]

javascript:popUp('elementLinks/element_008_code_2.html');

- Using Exceptions to Perform Error Checking From: Sams Teach Yourself CORBA in 14 Days

/!l Account.idl

/1 Forward decl arati on of Account interface.
i nterface Account;

#i f ndef Account _idl
#define Account _idl

/'l sequence of Accounts
10: typedef sequence<Account> AccountLi st;

12: #include "Custoner.idl"
13: #include "Exceptions.idl"

15: // An Account is an entity owned by a Bank and held by a Custoner
16: // (or multiple Customers). An Account has a bal ance which can be
17: /] affected by deposits and wi t hdrawal s.

18: interface Account ({

19:

20: /1 This Account's account nunber.

21: readonly attribute string account Nunber;

22.

23: /1 This Account's creation date.

24. readonly attribute string creationDate;

25:

26: /1 This Account's current bal ance.

27: readonly attribute float bal ance;

28:

29: [/l Return a list of Custonmers who hold this Account.
30: Cust omer Li st get Customers();

31:

32: /!l Wthdraw the given anmount fromthis Account. Returns the new
33: /1 account bal ance.

34 float withdraw(in fl oat anpunt)

35: rai ses (Invali dAnount Excepti on,

36: I nsuf fici ent FundsExcepti on);

37:

38: /1l Deposit the given anount into this Account. Returns the new
39: /1l account bal ance.

40: fl oat deposit(in float anount)

41: rai ses (Invali dAnount Exception);

42: };

43:

44: #endif

Listing 7.11. Modified CheckingAccount.idl.

/1 Checki ngAccount . i dl

#i f ndef Checki ngAccount _i dl
#defi ne Checki ngAccount _i dl

#i ncl ude "Account.idl"

/1 A CheckingAccount is an Account which supports checking. It

/] does not gain any interest, as its sibling, the SavingsAccount,
10: // does.

11: interface Checki ngAccount : Account {

ocoNoOREONME

12:

13: };

14:

15: #endi f

http://www.informit.com/content/0672312085/element_008.shtml (7 of 17) [17.07.2000 18:31:48]

- Using Exceptions to Perform Error Checking From: Sams Teach Yourself CORBA in 14 Days
Listing 7.12. Modified SavingsAccount.idl.

/] SavingsAccount . idl

#i f ndef Savi ngsAccount _i dI
#define Savi ngsAccount i dl

#i ncl ude "Account.idl"
#i ncl ude "Exceptions.idl"

oNoaRrOhE

/1 A SavingsAccount is an Account which supports savings
10: // account semantics, such as gaining interest.
11: interface Savi ngsAccount : Account {

12:

13: /1 This Account's interest rate.

14: readonly attribute float interestRate;
15:

16: /1l Set this Account's interest rate to the given rate.
17: /!l Returns the previous rate.

18: float setlnterestRate(in float rate)

19: rai ses (Invali dAnount Exception);
20: };

21:

22. #endif

Listing 7.13. Modified Customer.idl.

/] Customer.idl

/! Forward declaration of Custoner interface.
i nterface Custoner

#i f ndef Custoner _idl
#define Customer _idl

ocoNOOREWONME

/1 sequence of Custoners
10: typedef sequence<Customer> CustomerlList;

12: #include "Account.idl"
14: // A Custoner can hold one or nore Accounts. Presunably, the

15: // Custoner is what drives the rest of this application.
16: interface Customer {

17:

18: [l This Custoner's nane.

19: attribute string nane;

20:

21: /1 This Customer's Social Security numnber.

22: readonly attribute string social SecurityNunber;
23:

24: /1 This Custoner's address.

25; attribute string address;

26:

27: /1 This Custoner's nother's naiden nane.

28: readonly attribute string nothersMi denNarne;
29:

30: /!l Return a list of Accounts held (or co-held) by this
31: /1 Custoner.

32: Account Li st get Accounts();

33: };

34:

35: #endif

After you have modified the IDL interface definitions to raise the proper exceptions in the proper methods, you

http://www.informit.com/content/0672312085/element_008.shtml (8 of 17) [17.07.2000 18:31:48]

- Using Exceptions to Perform Error Checking From: Sams Teach Yourself CORBA in 14 Days

can recompile the IDL files to generate new client stubs and server skeletons. When you have generated those,
you can begin modifying the code to use the new exceptions.

Modifying Server Code to Throw Exceptions

The IDL interface definitions specify which exceptions can be thrown by which methods, but they don't specify
when, or under what circumstances, those exceptions are thrown. Thus, after modifying the IDL definitions, you
need to modify the server code to throw the proper exception at the proper time.

BankServerimpl

Y ou can start with the simpler server, the Bank Ser ver . Recall that the Bank Ser ver interface contains two
methods that raise exceptions. r egi st er Bank() and unr egi st er Bank() . The changes need to be made
inBankSer ver | npl . h aswell asBankSer ver | npl . cpp asthey appear in Listings 7.14 and 7.15, again
highlighted in bold.

Note:In C++, it islegal for amethod to throw an exception without declaring that it does so (with
thet hr ow clause in the method signature). However, this practice is considered poor style in some
circles. It is recommended that al exceptions thrown by a C++ method be declared in that method's
header; this makes it more apparent to the caller of the method that a particular set of exceptions
might be raised. (Unlike C++, Java enforces this practice.)

Listing 7.14. Modified BankServerimpl.h.

1. // BankServerlnpl.h
2:
3: #ifndef BankServerlnpl _h
4. #define BankServerlnpl _h
5:
6: #include <vector>
7.
8: #include "../BankServer_s. h"
9:
10: cl ass BankServerlnpl : public _sk_BankServer ({
11:
12: public:
13:
14: /1 Constructor.
15: BankServer | npl (const char* nane);
16:
17: /1 Destructor.
18: ~BankServer | mpl ();
19:
20: /1 These nethods are described in BankServer.idl
21. virtual void registerBank(Bank_ptr bank) throw
22: (I nval i dBankExcepti on);
23. virtual void unregisterBank(Bank_ptr bank) throw
24: (I nval i dBankExcepti on);
25: virtual BankList* getBanks();
26:
27: private:
28:
29: /1 Default constructor.
30: BankServer | nmpl () ;
31:
32: /1 This BankServer's list of Banks.
33: st d::vector<Bank_ptr> mnmyBanks;
34 };
35:
36: #endif

Listing 7.15. Modified BankServerlmpl.cpp.

http://www.informit.com/content/0672312085/element_008.shtml (9 of 17) [17.07.2000 18:31:48]

- Using Exceptions to Perform Error Checking From: Sams Teach Yourself CORBA in 14 Days
View Code

Note that the pre-exception version of r egi st er Bank() did nothing when aclient attempted to register a
duplicate Bank object. The new and improved version, however, treats this as an error condition; a duplicate
Bank registration resultsinan | nval i dBankExcept i on being thrown. Similarly, unr egi st er Bank()
now throwsan | nval i dBankExcept i on when aclient attempts to unregister aBank that is not registered
with the Bank Ser ver .

Accountimpl

Having dealt with the Bank Ser ver implementation, you can now turn your attention to the various interfaces
contained in the Bank application, starting with Account | npl . h and Account | npl . cpp. Aswith
BankSer ver | nmpl . h, modify the method signaturesin Account | npl . h to specify the exceptions thrown
by Account | npl methods. Similarly, Account | npl . cpp will specify the conditions under which those
exceptions are thrown. The modified Account | npl . h and Account | npl . cpp appear in Listings 7.16 and
7.17.

Listing 7.16. Modified Accountimpl.h.

1. // Accountlnpl.h

g #i f ndef Accountlnpl _h

4: #define Accountlnpl _h

g #i nclude "../Account_s. h"

é cl ass Accountlnpl : public _sk Account {

10: // Al ow Checki ngAccount | npl and Savi ngsAccount | npl access to the
11: // protected constructor.

12: friend class Checki ngAccount | npl ;

13: friend class Savi ngsAccount | npl;

14.

15: public:

16:

17: /1 Destructor.

18: ~Account | npl () ;

19:

20: /1l These nethods are described in Account.idl.

21: virtual char* account Nunber();

22: virtual char* creationbDate();

23: virtual CORBA:: Fl oat bal ance();

24: virtual Custonerlist* getCustoners();

25: virtual CORBA:: Fl oat w thdraw(CORBA: : Fl oat anount) throw
26: (I'nval i dAmmount Exception, | nsufficient FundsException);
27: virtual CORBA:: Fl oat deposit(CORBA: : Fl oat anmount) throw
28: (I'nval i dAnount Excepti on);

29:

30: protected:

31:

32: /1 Constructor.

33: /1

34: /1 account Nunmber - Account nunber.

35: /1 creationDate - Account creation date.

36: /1 initialBalance - Initial Account bal ance.

37: /1 custoner - Initial Account owner

38: Account | npl (const char* account Nunber, const char*

39: creationDate, CORBA:.:Float initial Bal ance, Custoner_ptr
40: custoner);

41

42: private:

43:.

44: /1 Default constructor.

45: Account I nmpl () ;

http://www.informit.com/content/0672312085/element_008.shtml (10 of 17) [17.07.2000 18:31:48]

javascript:popUp('elementLinks/element_008_code_3.html');

- Using Exceptions to Perform Error Checking From: Sams Teach Yourself CORBA in 14 Days

46:

47: // This Account's account nunber.
48: char* myAccount Nunber ;

49:

50: // This Account's creation date.
51: char* myCreati onDat e;

52:

53: /! This Account's current bal ance.
54. CORBA: : Fl oat nyBal ance;

55:

56: // This Account's owners.

57: Cust oner Li st nyOmners;

58: };

59:

60: #endif

Listing 7.17. Modified Accountimpl.cpp.
View Code

The modified wi t hdr aw() method in Account | mpl first checks the amount that the client wishes to
withdraw. If the amount is negative, it isrejected by thewi t hdr aw() method, and an

I nval i dAnount Except i on isthrown. If the amount is non-negative, the Account balanceis checked to
see whether sufficient funds are available to withdraw the requested amount. (Recall that overdraft protection is
not a current feature of the system.) If there are insufficient funds to cover the withdrawal, wi t hdr aw()
throwsan | nsuf fi ci ent FundsExcepti on.

Thedeposi t () method of Account | npl workssimilarly; an| nval i dAnount Except i on isthrown if
the caller attempts to deposit a negative amount into an Account (which would really be awithdrawal). Any
amount can be deposited into an Account , so thereis no need for deposi t () to ever throw an

I nsuf fici ent FundsExcepti on.

CheckingAccountimpl
Listings 7.18 and 7.19 contain further changes required to add exception capahility to the Bank application.

Listing 7.18. Modified CheckingAccountimpl.h.

1. // CheckingAccountlnpl.h

2.

3: #ifndef CheckingAccountlnpl _h

4: #define Checki ngAccount!nmpl _h

5:

6: #include "../CheckingAccount_s. h"

7: #include "Accountlnmpl.h"

8:

9: class Checki ngAccountlnpl : public _sk_Checki ngAccount {
10:

11: public:

12:

13: /1l Constructor.

14: /1

15; /1 account Nunber - Account nunber.

16: /] creationDate - Account creation date.

17: /1l initialBalance - Initial Account bal ance.

18: [/l custoner - Initial Account owner

19: Checki ngAccount | mpl (const char* account Nunber, const char*
20: creationDate, CORBA:.:Float initial Balance, Customer_ptr
21: cust oner);

22.

23: /1 Destructor.

24. ~Checki ngAccount | npl () ;

25:

26: /1l These methods are described in Account.idl.

http://www.informit.com/content/0672312085/element_008.shtml (11 of 17) [17.07.2000 18:31:48]

javascript:popUp('elementLinks/element_008_code_4.html');

- Using Exceptions to Perform Error Checking From: Sams Teach Yourself CORBA in 14 Days

27: virtual char* account Number();

28: virtual char* creationbDate();

29: virtual CORBA:: Fl oat bal ance();

30: virtual CustonerlList* getCustoners();

31 virtual CORBA:: Fl oat w thdraw(CORBA:: Fl oat anount) throw
32: (I'nval i dAmount Exception, | nsufficientFundsExcepti on);
33: virtual CORBA:: Fl oat deposit(CORBA: : Fl oat anmount) throw
34. (I nval i dAmmount Excepti on) ;

35:

36: private:

37:

38: /1 Default constructor.

39: Checki ngAccount | npl () ;

40:

41: /1 My associated Accountl npl object.

42: Account | mpl myAccount ;

43: };

44:

45: #endi f

Listing 7.19. Modified CheckingAccountimpl.cpp.

1: // Checki ngAccount | npl.cpp
2:
3: #include "Checki ngAccount | npl . h"
4.
5: // Constructor.
6: //
7: |/ account Nunber - Account nunber.
8: [/ creationDate - Account creation date.
9: // initialBalance - Initial Account bal ance.
10: // custoner - Initial Account owner.
11: Checki ngAccount | npl : : Checki ngAccount | mpl (const char* account Nunmber,
12: const char* creationDate, CORBA::Float initial Bal ance
13: Custoner _ptr customer) : nyAccount (account Number,
14: creationbDate, initialBal ance, custoner) {
15:
16: }
17:
18: // Default constructor.
19: Checki ngAccount | npl : : Checki ngAccount I nmpl () : myAccount (NULL, NULL,
20: 0.0, Customer:: _nil()) {
21:
22. }
23:
24: [] Destructor.
25: Checki ngAccount | npl : : ~Checki ngAccount | npl () {
26:
27. '}
28:
29: char* Checki ngAccount | npl ::account Nunber () {
30:
31 return nyAccount. account Nunber () ;
32: }
33:
34: char* Checki ngAccountlnpl::creationDate() {
35:
36: return nmyAccount. creationbDate();
37}
38:
39: CORBA:: Fl oat Checki ngAccount | npl:: bal ance() {
40:
41. return nmyAccount. bal ance();
42: '}

http://www.informit.com/content/0672312085/element_008.shtml (12 of 17) [17.07.2000 18:31:48]

- Using Exceptions to Perform Error Checking From: Sams Teach Yourself CORBA in 14 Days

43:

44: CustonerLi st* Checki ngAccount | npl :: get Cust oners() {

45:

46: return nmyAccount. get Customers();

47: }

48:

49: CORBA: : Fl oat Checki ngAccount | npl :: wi t hdr awm({ CORBA: : Fl oat anpunt)
50: throw (1 nval i dAmount Exception, Insufficient FundsExcepti on)
51: {

52:

53: return myAccount . w t hdraw(anount) ;

54 }

55:

56: CORBA:: Fl oat Checki ngAccount | npl : : deposit (CORBA: : Fl oat anpunt)
57: throw (I nval i dAmount Excepti on) ({

58:

59: return nmyAccount. deposit (amount);

60: }

Again, thewi t hdraw() anddeposi t () methods can throw thel nval i dAnount Excepti on or

I nsuf fici ent FundsExcepti on,orthel nval i dAnount Except i on, respectively. Note, however,
that none of these exceptions are explicitly thrown within the methods themselves. Recall that the

wi t hdraw() anddeposi t () operationson the ny Account member (whichisan Account | npl object)
can throw these exceptions. Because these exceptions are not caught by the methods in

Checki ngAccount | npl , the exceptions are simply passed back to the caller of the

Checki ngAccount | npl method.

SavingsAccountimpl

The changesfor Savi ngsAccount | npl , asshown in Listings 7.20 and 7.21, closely resemble the changes
madein Checki ngAccount | npl .

Listing 7.20. Modified SavingsAccountimpl.h.

1: // SavingsAccountlnpl.h

2:

3: #ifndef SavingsAccountlnpl _h

4: #define Savi ngsAccount|npl _h

5:

6: #include "../SavingsAccount_s. h"

7. #include "Accountlnpl.h"

8:

9: class SavingsAccountlnpl : public Accountlnpl {

10:

11: public:

12:

13: /1 Constructor.

14: /1

15: /1l account Nunber - Account nunber.

16: /1 creationDate - Account creation date.

17: /1 initialBalance - Initial Account bal ance.

18: /] custoner - Initial Account owner

19: /1l interestRate - Initial Account interest rate.
20: Savi ngsAccount | npl (const char* account Nurmber, const char*
21: creationDate, CORBA::Float initial Bal ance, Custoner_ptr
22: custoner, CORBA::Float interestRate);
23:

24. /1 Destructor.

25: ~Savi ngsAccount | npl () ;

26:

27: /1l These nmethods are described in Account.idl.
28: virtual char* account Nunber();

29: virtual char* creationDate();
30: virtual CORBA:: Fl oat bal ance();

http://www.informit.com/content/0672312085/element_008.shtml (13 of 17) [17.07.2000 18:31:48]

- Using Exceptions to Perform Error Checking From: Sams Teach Yourself CORBA in 14 Days

31: virtual CustomerlList* getCustoners();

32: virtual CORBA:: Fl oat w thdraw(CORBA: : Fl oat anpunt) throw
33: (I nval i dAmmount Excepti on, | nsufficient FundsException);
34: virtual CORBA:: Fl oat deposit(CORBA: : Fl oat anmount) throw
35: (I nval i dAmmount Excepti on) ;

36:

37: /1 These nmethods are described in Savi ngsAccount.idl.

38: virtual CORBA:.:Float interestRate();

39: virtual CORBA::Float setlnterestRate(CORBA:: Float rate) throw
40: (I nval i dAmount Excepti on) ;

41:

42: private:

43:

44. /1 Default constructor.

45: Savi ngsAccount I npl ();

46:

47: /1 This Account's interest rate.

48: CORBA: : Fl oat nyl nterest Rate;

49:

50: /1 My associated Accountl npl object.

51: Account | npl myAccount;

52: };

53:

54: #endif

Listing 7.21. Modified SavingsAccountimpl.cpp.
View Code

The changesinthew t hdraw() and deposit () methodsin Savi hgsAccount | npl copy their
counterpartsin Checki ngAccount | npl exactly. In addition, theset | nt er est Rat e() methodis
modified to disallow negative interest rates (which would correspond to a savings account that 1oses money
over time). If aclient attempts to set a negative interest rate for the Savi ngsAccount , an

I nval i dAmobunt Except i on isthrown.

BankIimpl

The final server component to modify isthe Bankl npl itself. Only asingle method, del et eAccount (), is
modified to throw an exception. The modified Bank| npl . h and Bank| npl . cpp appear in Listings 7.22 and
7.23.

Listing 7.22. Modified Bankimpl.h.

View Code

Listing 7.23. Modified Bankimpl.cpp.
View Code

Thelogicindel et eAccount () isidentical to that seen previously in BankSer ver | npl 's
unr egi st er Bank() method: If aclient attemptsto delete an Account that does not exist in the Bank,
del et eAccount () throwsan| nval i dAccount Excepti on.

Congratul ations--you have successfully completed the enhancements to the server side of the Bank application!

Modifying Client Code to Catch Exceptions

So far you've seen only half the picture. Now that the server code has been modified to throw exceptions on
given occasions, the client code must be modified to handle those exceptions when they are raised. Although
exception-handling code often permeates a client application, you'll see relatively little exception-handling code
here, due to the simplicity of the Bank application's client.

First of all, note that no changes are required to Cust orrer | npl . h or Cust oner | npl . cpp. Methodsin
the Cust oner | npl class neither raise nor catch any exceptions, and thus no changes are necessary to these
source files. However, NewCust ormrer Mai n. cpp--the end-user client application--needs to catch various

http://www.informit.com/content/0672312085/element_008.shtml (14 of 17) [17.07.2000 18:31:48]

javascript:popUp('elementLinks/element_008_code_5.html');
javascript:popUp('elementLinks/element_008_code_6.html');
javascript:popUp('elementLinks/element_008_code_7.html');

- Using Exceptions to Perform Error Checking From: Sams Teach Yourself CORBA in 14 Days

exceptions. Just to make things interesting, NewCust orrer Mai n. cpp performs some illegal actions on
purpose, just to demonstrate the exception mechanism. The modified NewCust onmer Mai n. cpp appearsin
Listing 7.24.

Listing 7.24. Modified NewCustomerMain.cpp.
View Code

Notice the additional t r y and cat ch statements appearing in lines 85-93 and 99-110in

NewCust oner Mai n. cpp. Earlier, t ry and cat ch were used to catch CORBA: : Except i ons, now there
are user exceptions to check for aswell. The first of these appears with the use of thewi t hdr aw() method,;
note that $250.00 was deposited to the Account , but the program attempts to withdraw $500.00. Expect to see
an exception thrown here when the application isrun. Also, notethat del et eAccount () iscaledtwicefor
the same Account (onceinline 97 and againin line 104). Thefirst call will be successful, but expect the
second to result in another exception being thrown because the Account , having already been deleted, no
longer existsin the Bank. In the next section, you'll verify that the program results are what you expect.

Note:In this example, thefirst call to del et eAccount () isnot containedinatry ...
cat ch block for I nval i dAccount Except i on. Although this behavior might be acceptable
for this application--because the exception would be handled by thecat ch (const
CORBA: : Excepti on ex) handler--you might consider wrapping the call into itsownt ry

cat ch block. The arrangement of these exception handlersis highly dependent on the intent
of the application, but there will be few times when you'll want a user exception to be handled by a
catchall exception handler such asthe CORBA: : Except i on handler in the previous example.
Good exception-handling techniques come with practice and with careful design.

Running the Enhanced Example

Congratul ations--you have now successfully added an exception-handling mechanism to the Bank application!
All that remains now is to compile and run the application to verify that the results are what you expect. Make
sure you run the IDL compiler on all the new and modified IDL source files; also, your IDL compiler might
require special command-line arguments to generate code for exception handling. (Incidentally, Visigenic's
VisiBroker for C++, version 3.0, does not.) Also, check your C++ compiler's settings to ensure that exception
handling is enabled (some compilers don't enable this feature by default).

The order for starting the application components is the same as on Day 6: First start the Naming Service (or
osagent, inthe case of VisiBroker), followed by the Bank Ser ver server, the Bank server, and finadly the
NewCust oner client application.

Again, starting the Bank Ser ver application results in the following output:
BankServer ready.

On seeing this message, start a Bank server, which produces output similar to the following:
Bank "First Bank" ready.

Meanwhile, the Bank Ser ver will have output this:
BankServer| npl: Registering Bank "First Bank".

Y ou are now ready to start the NewCust oner application, which produces output similar to the following:

NewCust oner: Creating new Customer:
nane: Jereny Rosenberger
Soci al Security nunber: 123456789
address: 123 Main Street
not her' s mmi den nane: Sans
NewCust oner: Connected to Bank "First Bank".
NewCust oner: Opened new Account:
account nunber: Account 00000000
creation date: Cct 14 1997
account bal ance: 0
NewCust oner: Perform ng transactions.
Deposi ting $250. 00; new bal ance is $250
Wt hdrawi ng $500.00...; new balance is $
NewCust oner: Exception caught: Insufficient funds
Del eti ng Account.

http://www.informit.com/content/0672312085/element_008.shtml (15 of 17) [17.07.2000 18:31:48]

javascript:popUp('elementLinks/element_008_code_8.html');

- Using Exceptions to Perform Error Checking From: Sams Teach Yourself CORBA in 14 Days

Attenpting to cause an exception by del eti ng Account again.
NewCust oner: Exception caught: Invalid Account (as expected)

Meanwhile, you might notice the following output from the Bank server:

Bankl nmpl : Creating new Checki ngAccount for Custoner Jereny Rosenberger.
Accountlnmpl: Insufficient funds to wthdraw specified anount.
Bankl npl : Del eti ng Account "Account 00000000".

Is this the output you expect? Recall that NewCust oner opensanew Account with the information given on
the command line, deposits $250 into that account, and then attempts to withdraw $500. Sure enough,

NewCust oner reportsthat the Account had insufficient funds for the withdrawal (thanksto the

I nsuf fici ent FundsExcept i on). Furthermore, you'd expect to see trouble from the attempt to delete the
same Account twice. Sure enough, NewCust orrer indicates that it tried to delete an invalid Account the
second timedel et eAccount () wascalled. In other words, the exception mechanism worked!

Summary

In this chapter, you modified the Bank application to handle exceptions. Y ou started by determining what
exceptions might reasonably be raised in various parts of the application, and you modified the IDL interfaces
of the application to use those exceptions. At this point, you specified what exceptions could be raised by what
methods. Y ou then modified the corresponding C++ header and implementation files for the CORBA server
components, specifying the exact conditions under which a particular exception would be thrown. Finally, you
wrote a CORBA client application that could handle those exceptions intelligently. The net result is an
application that demonstrates a robust design, in the sense that it can deal with exceptional situations--that is,
circumstances that should not occur during normal application execution.

Note: Although in this book you designed and built aworking application before giving a thought
to exception handling, typically you will think about exceptions at the same time that you design
an application. When deciding which methods belong in an interface, also think about how those
methods might be used erroneously, and what mechanisms--in the form of exceptions--might be
used to communicate error conditions back to the client. You'll always be able to go back and add
exception handling later, but it iswise to at least think about such issues early on in the application
development phase.

In the next few chapters you'll continue to modify the Bank application, adding still more functionality. On
Day 8, in particular, you will define additional requirements for the system--the capability to support
Automated Teller Machines (ATMs). Of course, you'll only be dealing with virtual ATMs rather than real ones,
but this will expose you to the devel opment process with anon-trivial CORBA application.

Q&A

Q How do | know whether an abnormal condition isimportant enough to warrant an exception? In
other words, should exceptions be reserved only for fatal error conditions?

A There are two schools of thought regarding exceptions. One camp suggests that exceptions should be
used only to signal a serious error condition--if an exception occurs, the best an application can hope to
doisclean up and try to exit gracefully. The alternative approach--and the one that CORBA architecture
seems to embrace--is that exceptions might be used to signal just about any abnormal condition. For
instance, in the example from this chapter, an account having insufficient funds for awithdrawal is hardly
fatal to the application--it simply requires the current transaction to be aborted. This approach can be
taken to an extreme, however. Because CORBA exceptions can propagate across networks, they can
potentially incur a great amount of overhead compared to native C++ exceptions. As with anything else,
use exceptions judiciously.

Q How do | choose exception names?

A Exception names should be self-describing; that is, an exception name should succinctly describe the
specific condition being handled. On the other hand, though, exception names shouldn't be so specific
that you find yourself defining multiple exceptions that have almost the same meaning. For instance,

I nval i dDeposi t Amount Excepti on, | nval i dW t hdr awal Anount Excepti on,

I nval i dTr ansf er Amount Excepti on, | nval i dl nt er est Rat eAnmount Except i on, and so
on could reasonably be merged into asingle | nval i dAnmount Except i on, whose name still provides

http://www.informit.com/content/0672312085/element_008.shtml (16 of 17) [17.07.2000 18:31:48]

- Using Exceptions to Perform Error Checking From: Sams Teach Yourself CORBA in 14 Days
enough information to determine what triggered the exception.

Workshop

The following section will help you test your comprehension of the material presented in this chapter and put
what you've learned into practice. You'll find the answers to the quiz and exercises in Appendix A.

Quiz
1. What does it mean to raise (or throw) an exception?
2. What does it mean to catch an exception?

3. Why are exceptions useful ?

Exercises

1. Modify the following interface definition so that appropriate exceptions are raised in appropriate
places.

exception | nvalidNunber Exception { };

exception Nol nconi ngCal | Exception { };

exception Not O f HookException { };

i nterface Tel ephone {

voi d of f Hook() ;

voi d onHook();

voi d di al Nunber (i n string phoneNunber);

void answerCall ();

|

2. Implement the interface from Exercise 1, raising the appropriate exceptions under the appropriate
conditions. (Most of the methods probably won't do anything, except for di al Nurrber () , which will
likely check the validity of the given phone number).

<Back Contents Next>
Save to Mylnforml T

http://www.informit.com/content/0672312085/element_008.shtml (17 of 17) [17.07.2000 18:31:48]

http://www.informit.com/My/Add?isbn=0672312085&title=Sams+Teach+Yourself+CORBA+in+14+Days&category=Programming&topic=CORBA&chapter=2845&elementname=Using+Exceptions+to+Perform+Error+Checking
http://www.informit.com/about/
http://www.informit.com/press/
http://www.informit.com/about/advertising/
http://www.informit.com/legal/privacy/
http://www.informit.com/contact/
http://www.informit.com/legal/copyright/
http://www.informit.com/legal/privacy/

- Adding Automated Teller Machine (ATM) Capability From: Sams Teach Yourself CORBA in 14 Days

ile they last!
Y¥our Name Mi

® Exact Phrase
O All words

Search
Search Tips

Rlylnformi T

InfarmlT Stare
Dol g

Click Here for
High-Tech
Jobs!

developerWorks™

DPEC we—

Based Training

-
bl click to
Recommaend-it.

-@m TopIT
Hews

TGOS

Hot Topics Yisual Basic Windows 2000 Windows MT Linu=/Open Source Cizco Knowledge Suite

Soluton Centers PragramlIT DatabazelT WebIT MetworkIT ConfiguralT

Adding Automated Teller Machine (ATM)
Capability

From: Sams Teach
Yourself CORBA in 14
e Days

v it Author: Jeremy
(0(0)1417.Y Rosenberger

w 14 DAYs | Publisher: Sams
- More Information

<Back Contents Next>

Save to MylnformI T

« Defining Additional Reguirements

« Moadifying the Class Diagram

o Two New Classes: ATM and ATMCard

o Modifying Existing Classes

o Two New Exceptions. AuthorizationException and InvalidATM Exception
« Modifying the IDL Specification
« Implementing the New Functionality

o Enhancing the BankServer

o Enhancing the Bank

o Implementing the ATM Server

o Implementing the ATM Client

« Running the Application
« Summary
o Q&A
o Workshop
0 Quiz

0 Exercise

On Day 7, you started with the basic Bank application and made the first set of enhancementsto it, adding
error-checking functionality through the CORBA exception mechanism. The end result was an application with
the same basic functionality that you implemented on Day 6 but with more robust error handling. Today you'll
build on that same application, adding more features. Specifically, you'll define the interface for avirtua
Automated Teller Machine (ATM) device and enhance the Bank application to interact with this device. The
process you'll follow isthis:

« Define additional requirements. The original requirements for the Bank application said nothing about
ATMs, so you will modify the requirements to define this new feature.

« Modify the system design. Adding ATM functionality will result in a number of new classes being added
to the system. You'll identify these classesin the analysis and design phase. (Revisiting this phase will
reinforce the concept that software design is an iterative process.)

« Modify the IDL definitions. After you have defined the new classes to be added and have modified some
existing classes, you'll create or update the interface definitions for those classes.

« Implement the new functionality. After the design isfinished and realized in IDL, you'll be ready to
implement the new functionality and see how the new application works.

http://www.informit.com/content/0672312085/element_011.shtml (1 of 14) [17.07.2000 18:32:06]

http://www.informit.com/
http://ad.doubleclick.net/jump/www.informit.com/programit/;cat=developer;num=92
javascript:document.regularSearch.submit();
http://www.informit.com/search/tips/
http://ad.doubleclick.net/clk;1464039;4446282;i?http://www.informit.com/jobs
http://www.informit.com/news/
http://www.informit.com/downloads/
http://www.informit.com/store/
http://www.informit.com/itlibrary/
http://www.informit.com/edchoice/
http://www.informit.com/alphabook/
http://infobase.informit.com/
http://www.informit.com/My/Accounts
http://ad.doubleclick.net/jump/informit.com/sponsor-button/brassring/badge;sz=100x60
http://ad.doubleclick.net/jump/informit.com/sponsor-button/ibm/badge2;sz=88x31
http://www.informit.com/training/
http://www.recommend-it.com/p.e?415858
http://www.informit.com/news/
http://www.informit.com/downloads/
http://www.informit.com/programit/vb/
http://www.informit.com/networkit/windows2000/
http://www.informit.com/networkit/winnt/
http://www.informit.com/networkit/linux/
http://www.knowcisco.com/
http://www.informit.com/programit/
http://www.informit.com/databaseit/
http://www.informit.com/webit/
http://www.informit.com/networkit/
http://www.informit.com/configureit/
http://www.informit.com/My/Add?isbn=0672312085&title=Sams+Teach+Yourself+CORBA+in+14+Days&category=Programming&topic=CORBA&chapter=2846&elementname=Adding+Automated+Teller+Machine+(ATM)+Capability
http://www.informit.com/product/0672312085

- Adding Automated Teller Machine (ATM) Capability From: Sams Teach Yourself CORBA in 14 Days

Defining Additional Requirements
First of dl, asareview, recal that on Day 5 you defined the following system requirements for the Bank
application:
« Supports multiple banks
« Supports multiple accounts within banks
« Supports multiple customers holding accounts
« Supports customers holding multiple accounts
« Supports the capability to open (create) new accounts
« Supports the capability to close (delete) existing accounts
« Supports the capability to enumerate a bank's accounts
« Supports the capability to determine an account's owner(s)
« Supports the capability to withdraw funds from an account
« Supports the capability to deposit funds into an account
« Supports the capability to transfer funds between accounts within a single bank
« Supports the capability to transfer funds between accountsin different banks

« Supports checking accounts (which don't gain interest)

« Supports savings accounts (which do gain interest)

The original requirements said nothing about the support of Automated Teller Machines (ATMs). But what if
you want to modify the application to support the ATM concept? Certainly it is possible to add this capability to
the application; this chapter demonstrates just how to do this.

To add ATM capability, you first define a set of requirements that describes exactly what functionality is
necessary. To support ATM functionality, the requirements might look something like this:

« Supports the capability for a customer to deposit funds into an existing account through an ATM

Supports the capability for a customer to withdraw funds from an existing account through an ATM

« Supports the capability for a customer to obtain the balance of an existing account through an ATM

« Supports the capability for an ATM to authorize customers through the use of an ATM card and a
Personal Identification Number (PIN)

« Supports the capability for an ATM card to access multiple accounts belonging to a customer in a
particular bank

In other words, an ATM provides three basic functions: depositing funds, withdrawing funds, and obtaining
account balances. The ATM is accessed viaan ATM card that, in conjunction with the customer's PIN,
authorizes that customer to access the account (or accounts) for which the ATM card is authorized.

Of course, you won't be dealing with an actual ATM; rather, you'll be simulating the operation of an ATM

through IDL interfaces. The operation of the ATMwill thus be greatly simplified compared to an actual ATM,
which must interface with a cash dispenser, video screen, keypad input, network, and other components. Y our
ATMinterface will abstract the entire ATM, assuming that these components all work together as a single unit.

http://www.informit.com/content/0672312085/element_011.shtml (2 of 14) [17.07.2000 18:32:06]

- Adding Automated Teller Machine (ATM) Capability From: Sams Teach Yourself CORBA in 14 Days
Modifying the Class Diagram

Now that you've identified the requirements associated with providing ATM functionality, you're ready to
decide which existing classes in the system need to be modified, which classes need to be added, and what the
new classes should do.

Two New Classes: ATM and ATMCard

Naturally, the expansion of the Bank application to include ATM functionality introduces some new classes
into the system. An obvious classis the ATMitself; another classis ATMCar d--the device the customer uses to
identify himself or herself to the ATM. Now, take alook at the operations that these classes must support.
Recall that the ATMneeds to support deposit, withdraw, and account balance operations, in addition to
authenticating the customer through the ATM card. ATMCar d, in turn, needs to indicate the accounts that it is
authorized to use, ought to support the capability to add and remove accounts to and fromitslist of authorized
accounts, and--for the purposes of this application, anyway--must include the PIN associated with that
ATMCar d as amember dataitem.

The interface for the ATMclass looks like this:

name : string
wi thdraw(card : ATMCard, account : Account, pin : integer,
anount : float) : float
deposit(card : ATMCard, account : Account, pin : integer,
amount : float) : float
get Bal ance(card : ATMCard, account : Account, pin : integer)
fl oat

Note that each of the operations in the ATMclass requires an ATMCar d to identify the customer and the
Account sfor which he or she is authorized access, an Account on which to operate, and api n (which for
the purposes of this application is simply an integer) to authenticate the customer.

ATMCar d'sinterface resembles the following:

pin : integer

get Accounts() : Account[]

addAccount (account : Account) : void
renoveAccount (account : Account) : void

i sAut hori zed(account : Account) : bool ean

Modifying Existing Classes

Of course, you can't just create the ATMand ATMCar d classes and expect the ATMcapability to be integrated
with the rest of the application; you must also modify some of the existing classes. For example, an ATMCar d
has to come from somewhere; typicaly, it isissued by aBank. Also, aCust orrer would have some
knowledge of the ATMCar d because the ATMCar d isintended to be used by Cust oner sin the first place.
Finally, aCust oner should be able to locate and access ATMs, so it would be reasonabl e to modify
BankSer ver to provide locations of ATMs aswell as Banks.

First, consider the Bank class, which must be able to issue ATMCar dsto Cust oner s. A reasonable way to
achieve this functionality is to add the following method to Bank:

i ssueATMCard(pin : integer, account : Account) : ATMCard

Here, it is assumed that when the ATMCar d isissued, aninitia pi n will be set; that ATMCar d will also be
authorized initially to access the given Account . Note that for this application, it is the responsibility of the
caller (presumably aCust oner) to retain the ATMCar d after it is created.

Cust oner, again, should be modified to become aware of ATMCar ds so that aCust orer can make use of
them. It turns out that the only addition required to Cust onrer isaninterna list of the ATMCar ds held by that
Cust oner ; for the sake of convenience, you might add a method that enables other objectsto access that list
of ATMCar ds. However, for the purposes of this application, you can assume that other objects don't need
access to this information (besides, people don't usually share information about their ATM cards with other
people!). For your purposes, no changes are required to the Cust orrer interface itself (changesto the

Cust oner implementation come later).

Finally, Bank Ser ver should be modified to facilitate access to ATMs as well as Banks. Recall the operations
provided in the BankServer interface that enable accessto Banks:

http://www.informit.com/content/0672312085/element_011.shtml (3 of 14) [17.07.2000 18:32:06]

- Adding Automated Teller Machine (ATM) Capability From: Sams Teach Yourself CORBA in 14 Days

regi st er Bank(bank : Bank) : void
unr egi st er Bank(bank : Bank) : void
get Banks() : Bank[]

It seems reasonable to mimic this interface for ATMs, yielding the following operations:
regi sterATMatm: ATM : void

unregi sterATMatm: ATM : void

get ATMs() : ATM]

The modified class diagram--expanded to include the new ATMand ATMCar d classes, along with the modified
Bank class--appearsin Figure 8.1.

Figure 8.1. The modified Bank application class diagram.

Two New Exceptions: AuthorizationException and InvalidATMEXxception

The operationsin the ATMclass suggest the need for a new exception. To meet this need, define anew
exception (call it Aut hori zat i onExcept i on) that can be thrown by any of the ATMmethods. Later, you'll
implement these methods to raise an Aut hor i zat i onExcept i on if thereisa problem authenticating the
customer (for example, the customer-supplied PIN doesn't match the pi n stored in the ATMCar d) or
authorizing the customer (for example, if the Account passed to amethod in ATMis not authorized on the
given ATMCar d).

Also, recall the new methods added to the Bank Ser ver interface. Because they essentially duplicate the
Bank-related operations, which raise | nval i dBankExcept i ons, it follows that there ought to be an
analogous exception for the ATMrelated operations. Therefore, you'll want to define the

I nval i dATMEXcept i on, whichisused just as you might expect.

Modifying the IDL Specification

The modification of the IDL specifications is straightforward. Start with the modified Bank interface, which
appearsin Listing 8.1 with changes highlighted in bold.

Listing 8.1. Modified Bank.idl.
View Code

Turn your attention to the modified Except i ons. i dl , which now contains the newly created
Aut hori zati onExcepti on andl nval i dATMEXxcept i on. The modified file appearsin Listing 8.2.

Listing 8.2. Modified Exceptions.idl.

1. // Exceptions.idl
2:
3: #ifndef Exceptions_idl
4: #define Exceptions_idl
5:
6: // This exception is thrown when an authorization fails; for
7 I/ instance, if a Custoner-entered PIN does not match the PIN for
8: // the supplied ATMCard.
9: exception Authorizati onException {
10:
11: };
12:

13: // This exception is thrown when an invalid amount is passed to a
14: // method; for instance, if an account is asked to deposit a

15: // negative anmount of funds.

16: exception InvalidAmunt Exception {

18: };
20: // This exception is thrown when an invalid Account is passed to a

21: // nmethod expecting an Account object.
22. exception InvalidAccount Exception {

http://www.informit.com/content/0672312085/element_011.shtml (4 of 14) [17.07.2000 18:32:06]

javascript:popUp('elementLinks/01.jpg');
javascript:popUp('elementLinks/element_011_code_1.html');

- Adding Automated Teller Machine (ATM) Capability From: Sams Teach Yourself CORBA in 14 Days

23:

24: };

25:

26: // This exception is throwm when an invalid Bank is passed to a
27. |/ nmethod expecting a Bank object.

28: exception InvalidBankException {

29:

30: };

31:

32: // This exception is thrown when an invalid ATMis passed to a
33: // nethod expecting an ATM obj ect .

34: exception |nvalidATMEXception {

35:

36: };

37:

38: // This exception is thrown when there are insufficient funds to
39: // cover a transaction; for instance, if a withdrawal attenpts to
40: // remove nore funds than are available in an account.

41: exception InsufficientFundsException {

42:

43: };

44

45: #endif

Now consider the IDL mappings for the newly created classes ATMand ATMCar d, which appear in Listings 8.3
and 8.4. There are no surprisesin the IDL interface definitions; al member data and methods map to IDL as
you might expect.

Listing 8.3. ATM.idl.
/[l ATMid

/! Forward declaration of ATMinterface
i nterface ATM

#i f ndef ATM.i dI
#define ATM.i dl

ocoNoORWONME

/'l sequence of ATMs
10: typedef sequence<ATM> ATM.i st;

12: #include "Account.idl"
13: #include "ATMCard.idl"
14: #include "Exceptions.idl"

16: // An ATMis used to (indirectly) access Accounts. Each operation
17: // through the ATMis verified through the ATMCard gi ven; for

18: // exanple, an Account being operated on nust be authorized by the
19: // given ATMCard.

20: interface ATM {

21:

22: /1 This ATM s nane.

23: attribute string naneg;

24:

25: /1 Wthdraw the given anmount fromthe gi ven Account. Returns
26: /1l the new account balance. If the given ATMCard i s not

27: /1 authorized on the given Account, or the given PIN does not
28: /1 match the ATMCard's PIN, this operation does nothing.

29: float withdraw(in ATMCard card, in Account account, in short
30: pin, in float amount) raises (AuthorizationException
31: I nval i dAnount Excepti on, Insufficient FundsException);
32:

33: /1 Deposit the given anount into the given Account. Returns the
34: /1l new account balance. If the given ATMCard is not authorized

http://www.informit.com/content/0672312085/element_011.shtml (5 of 14) [17.07.2000 18:32:06]

- Adding Automated Teller Machine (ATM) Capability From: Sams Teach Yourself CORBA in 14 Days

35: /1 on the given Account, or the given PIN does not match the
36: /1 ATMCard's PIN, this operation does nothing.

37: float deposit(in ATMCard card, in Account account, in short
38: pin, in float amount) raises (AuthorizationException
39: I nval i dAnount Excepti on);

40:

41: /1 Return the current bal ance of the given Account. If the

42. /1 given ATMCard is not authorized on the given Account, or the
43: /1 given PIN does not nmatch the ATMCard's PIN, this operation
44 /1 does not hi ng.

45: fl oat getBal ance(in ATMCard card, in Account account, in short
46: pin) raises (AuthorizationException);

47: 1},

48:

49: #endif

Listing 8.4. ATMCard.idl.
/1 ATMCard. i dI

/! Forward declaration of ATMCard interface.
i nterface ATMCar d;

#i f ndef ATMCard_i dl
#define ATMCard_i dl

CoNIOaRWONME

/1l sequence of ATMCards
10: typedef sequence<ATMCar d> ATMCar dLi st ;

12: #include "Account.idl"”
13: #include "Exceptions.idl"

15: // An ATMCard is used to access an ATM It maintains a |list of
16: // Accounts which it is authorized to access, as well as a PIN
17: // which nust be provided when the ATMCard i s used.

18: interface ATMCard {

19:

20: /1 This ATMCard's PIN.

21: attribute short pin

22:

23: /1 List all Accounts which this ATMCard is authorized to use.
24. Account Li st get Accounts();

25:

26: /1 Add the given Account to the list of Accounts which this
27: /1 ATMCard is authorized to use.

28: voi d addAccount (i n Account account)

29: rai ses (InvalidAccount Exception);

30:

31 /!l Renmove the given Account fromthe list of Accounts which
32: /1 this ATMCard is authorized to use.

33: voi d renmoveAccount (i n Account account)

34: rai ses (InvalidAccount Exception);

35:

36: /!l Return true if the given Account is authorized on this
37: /1 ATMCar d.

38: bool ean i sAut hori zed(in Account account);

39: };

40:

41: #endi f

This concludes the analysis and design portion of the ATM functionality enhancements; you're now ready to
begin implementing the changes in the code itself.

http://www.informit.com/content/0672312085/element_011.shtml (6 of 14) [17.07.2000 18:32:06]

- Adding Automated Teller Machine (ATM) Capability From: Sams Teach Yourself CORBA in 14 Days

Implementing the New Functionality

To implement the ATMrelated enhancements, you must modify the implementation files to provide the new
functionality. Asaquick overview, the changes you need to make are as follows:

« Enhancethe BankSer ver . Essentialy, everything that the Bank Ser ver currently does for Banks,
you will extend it to do for ATMs as well.

» Enhance the Bank. In addition to requiring the capability to issue ATMCar ds, the Bank also provides
the implementation for the ATMCar d aswell.

« Implement the ATMserver. Essentially, the ATMaccepts transaction requests from Cust omrer s, validates
the Cust oner 's authorization against an ATMCar d, and, if authorized, forwards the requests to the
appropriate Account s.

« Implement the ATMclient. This application is an extension of the previous Bank client, modified to
create an Account and subsequently access that Account through an ATMrather than directly.

Enhancing the BankServer

Thefirst step in the implementation of ATM functionality is to enhance the Bank Ser ver to support ATMVs as
well as Banks. Because the support is exactly the same for each type of object (for example, ATMs and Banks
can both register and unregister with the Bank Ser ver), the ATMre ated methods can be copied almost
directly from their Bank-related counterparts. The necessary modifications to the Bank Ser ver
implementation files appear in Listings 8.5-8.7, with changes from the previous version highlighted in bold.

Listing 8.5. BankServerimpl.h.

1: // BankServerlnpl.h

2:

3: #ifndef BankServerlnpl _h

4: #define BankServerlnpl _h

5:

6: #include <vector>

7:

8: #include "../BankServer_s.h"

9:

10: cl ass BankServerlnpl : public _sk_BankServer ({

11:

12: public:

13:

14: /1 Constructor.

15: BankServer | npl (const char* nane);

16:

17: /1 Destructor.

18: ~BankServer | nmpl ();

19:

20: /'l These nethods are described in BankServer.idl
21: virtual void registerBank(Bank_ptr bank) throw
22: (I nval i dBankExcepti on);

23: virtual void unregisterBank(Bank _ptr bank) throw
24: (I nval i dBankExcepti on);

25: virtual BankList* getBanks();

26: virtual void registerATM ATM ptr atm throw
27: (I nval i dATMEXCepti on);

28: virtual void unregisterATM ATM ptr atm throw
29: (I nval i dATMEXCepti on) ;
30: virtual ATM.ist* get ATMs();
31:
32: private:
33:
34: /1 Default constructor.
35: BankServer | mpl () ;

http://www.informit.com/content/0672312085/element_011.shtml (7 of 14) [17.07.2000 18:32:06]

- Adding Automated Teller Machine (ATM) Capability From: Sams Teach Yourself CORBA in 14 Days

36:

37: /1 This BankServer's |ist of Banks.
38: st d::vector<Bank_ptr> myBanks;

39:

40: /1 This BankServer's list of ATMs.
41: std::vector <ATM ptr> nmyATMs;

42: 1},

43:

44: #endif

In Listing 8.5, note the similarity between ther egi st er Bank() method (lines 21-22) and the

regi st er ATM) method (lines 26-27), as well as the other pairs of corresponding methods. Also, just asthe
BankServer | npl usesast d: : vect or <Bank_pt r > to store references to Bank objects (as seenin lines
37-38), it now usesast d: : vect or <ATM pt r > to store references to ATMobjects (lines 40-41).

Listing 8.6 illustrates the further similarities between the previously existing method implementationsin
BankSer ver | npl and the ATMrelated methods being added. The implementations are exactly the same,
with references to Bank s changed to references to ATMs, and so on. (Because the semantics of the operations
are the same for ATMs as for Banks, it isn't surprising that the implementations are nearly identical.)

Listing 8.6. BankServerimpl.cpp.
View Code

Asshown in Listing 8.7, no changes are necessary to Bank Ser ver Mai n. cpp; the BankSer ver application
starts up in exactly the same way it did on Day 7.

Listing 8.7. BankServerMain.cpp.

1. // BankServer Mai n. cpp
2.
3: #include "BankServerl npl.h"
4: #include <iostream h>
5:
6: int main(int argc, char *const *argv) {
7.
8: /1 Initialize the ORB and BOA
9: CORBA: : ORB_var orb = CORBA: : ORB_init(argc, argv);
10: CORBA: : BOA var boa = orb->BOA init(argc, argv);
11:
12: /1l Create a BankServer|npl object.
13: BankServer | npl bankServer (" BankServer");
14.
15: /1 Notify the BOA that the BankServerlnpl object is ready.
16: boa- >obj _i s_ready(&bankServer);
17:
18: /1 Wait for CORBA events.
19: cout << "BankServer ready." << endl;
20: boa->i nmpl _is_ready();
21:
22: /1 When this point is reached, the application is finished.
23: return O;
24: }

Enhancing the Bank

In Listings 8.8 and 8.9, the Bankl npl classislargely unchanged, except for the addition of

i ssueATMCar d() inlines 32-33. This method accepts arequest to issue an ATMCar d for agiven Account .
i ssueATMCar d() first checksthe Account object to see whether it existsin this Bank. If it does, the
ATMCar d isissued; if not, an | nval i dAccount Except i on isthrown.

Listing 8.8. Bankimpl.h.

View Code

http://www.informit.com/content/0672312085/element_011.shtml (8 of 14) [17.07.2000 18:32:06]

javascript:popUp('elementLinks/element_011_code_2.html');
javascript:popUp('elementLinks/element_011_code_3.html');

- Adding Automated Teller Machine (ATM) Capability From: Sams Teach Yourself CORBA in 14 Days
Listing 8.9. Bankimpl.cpp.
View Code

Thelogic of ATMCar dI npl (Listings 8.10 and 8.11) isvery similar to that in Bankl npl ; addAccount (),
renoveAccount (), and get Account s() areimplemented in exactly the same way asthey arein

Bank! npl (with the exception that r enbveAccount () andaddAccount () cal i sAut hori zed() to
determine whether the Account isinthelist of Account s, rather than duplicate this functionality).

Listing 8.10. ATMCardImpl.h.

1: // ATMCardlnpl.h

2:

3. #ifndef ATMCardlnpl _h

4: #define ATMCardl npl _h

5:

6: #include <vector>

7.

8: #include "../ATMCard_s. h"

9:

10: class ATMCardl npl : public _sk_ATMCard {

11:

12: public:

13: /1 Constuctor.

14; /1

15: [l pin - the initial PINto use for this ATMCard.

16: /1 initial Account - the Account for which this ATMCard is
17: /1l initially authorized.

18: ATMCar dl npl (CORBA: : Short pin, Account_ptr initial Account);
19:

20: /1 Destructor.

21: ~ATMCar dl mpl () ;

22.

23: /1 These nethods are described in ATMCard.idl.

24. virtual CORBA:: Bool ean i sAut hori zed(Account ptr account);
25: virtual CORBA:: Short pin();

26: virtual void pin(CORBA: : Short val);

27 virtual void renpveAccount (Account _ptr account) throw
28: (I nval i dAccount Excepti on);

29: virtual void addAccount (Account ptr account) throw
30: (I nval i dAccount Excepti on);
31: virtual AccountlList* getAccounts();
32:
33: private:
34:

35: /1 Default constructor.

36: ATMCar dl npl () ;

37:

38: /1l This ATMCard's PI N

39: CORBA: : Short nyPIN,
40:
41: /1 Alist of Accounts on which this ATMis authorized.
42: std::vector<Account _ptr> nyAccounts;
43: 1},
44:
45: #endi f

Listing 8.11. ATMCardImpl.cpp.
View Code

Because nothing different needs to be done when aBank| npl object is created, no changes are necessary from
the original BankMai n. cpp, but, for good measure, it appearsin Listing 8.12.

Listing 8.12. BankMain.cpp.

http://www.informit.com/content/0672312085/element_011.shtml (9 of 14) [17.07.2000 18:32:06]

javascript:popUp('elementLinks/element_011_code_4.html');
javascript:popUp('elementLinks/element_011_code_5.html');

- Adding Automated Teller Machine (ATM) Capability From: Sams Teach Yourself CORBA in 14 Days
View Code

Implementing the ATM Server

The implementation of ATM npl (seeListings 8.13 and 8.14) is clear-cut. The ATM npl simply forwards
requests to withdraw fundsinto an Account , to deposit fundsinto an Account , and to get the current balance
of an Account . Each operation uses the ATMCar d to authorize the transaction, and if the ATMCar d approves,
the transaction is forwarded to the Account . Because the transaction itself is performed by the Account , the
implementations for wi t hdr aw() , deposi t (), andget Bal ance() aresimple.

Listing 8.13. ATMImpl.h.

1: // ATMnpl.h
2:
3: #ifndef ATM npl _h
4: #define ATM npl _h
5:
6: #include "../ATM s. h"
7:
8: class ATM npl : public _sk_ATM {
9:
10: public:
11: /1 Constuctor.
12: /1
13: /[l name - the nane of this ATM
14: ATM npl (const char* nane);
15:
16: /1 Destructor.
17: ~ATM npl () ;
18:
19: /] These nethods are described in ATMidl .
20: virtual char* nane();
21: virtual void nanme(const char* val);
22: virtual CORBA:: Fl oat w thdraw(ATMCard _ptr card, Account ptr
23: account, CORBA:: Short pin, CORBA::Float anmount) throw
24. (Aut hori zati onException, | nvali dAmunt Excepti on,
25: I nsuf fici ent FundsExcepti on);
26: virtual CORBA:: Fl oat deposit(ATMCard _ptr card, Account ptr
27 account, CORBA:: Short pin, CORBA::Float anobunt) throw
28: (Aut hori zati onException, |nvali dAmount Excepti on);
29: virtual CORBA:: Fl oat getBal ance(ATMCard _ptr card, Account ptr
30: account, CORBA:: Short pin) throw
31 (Aut hori zati onException);
32:
33: private:
34:
35: /| Default constuctor.
36: ATM npl () ;
37:
38: /1 This ATM s nane.
39: char* nyNane;
40: };
41:
42: #endi f

Listing 8.14. ATMImpl.cpp.
View Code

Again, the implementation in ATMVRI n. cpp isonethat can be mostly borrowed from somewhere else. In this

case, because an ATMinteracts with the Bank Ser ver much the same way as a Bank does, you can borrow the
code from BankMai n. cpp and modify it slightly (to create and register an ATM npl rather than a

Bankl npl). ATMVRI n. cpp appearsin Listing 8.15, but compare it with BankMai n. cpp (see Listing 8.12)

http://www.informit.com/content/0672312085/element_011.shtml (10 of 14) [17.07.2000 18:32:06]

javascript:popUp('elementLinks/element_011_code_6.html');
javascript:popUp('elementLinks/element_011_code_7.html');

- Adding Automated Teller Machine (ATM) Capability From: Sams Teach Yourself CORBA in 14 Days
and notice the similarity.

Listing 8.15. ATMMain.cpp.
View Code

Note that in line 36 the _bi nd() method call reappears. Again, while this functionality appearsin many
ORBs, it is not standard CORBA. On Day 12 you'll replace this call to the nonstandard _bi nd() with the use
of the CORBA Naming Service, but in the meantime, you'll continue to use _bi nd() for the sake of
simplicity.

Implementing the ATM Client

The next step isto implement a client application that uses the newly added ATMfunctionality. The client can
be similar in function to the Bank Cl i ent application from previous chapters, except that rather than accessing
an Account directly, it will do so through the ATMinterface. The implementation of the ATMCl i ent appears
in Listing 8.16.

Listing 8.16. ATMClientMain.cpp.
View Code

ATMC i ent . cpp ismoreinvolved than the NewCust oner . cpp application from the previous chapters
(refer to Listing 8.16). It might be instructive to step through the code to see exactly what is going on:

Thefirst three#i ncl udes (lines 3-6) will look familiar to you by now. Because the ATMCl i ent isaclient of
aBank, aBankSer ver , and an ATM the header files for those client stubs are#i ncl uded aswell in lines
8-10.

Inthefirst few lines of mai n() (lines 12-20), the ATMCl i ent first checks the number of arguments passed
on the command line. The five arguments are the Cust omrer 's name, Socia Security number, address, mother's
maiden name, and Personal |dentification Number (PIN). If the number of argumentsis not correct, the program
exits.

Inlines 22-31, ATMCl i ent setsitsinternal parameters to the values passed on the command line and then
initializes the ORB and BOA.. (This section of code almost exactly duplicates the corresponding code in the
NewCust oner application.)

Next, ATMCl i ent createsaCust onrer object (lines 33-41) and registersit with the BOA (lines 43-44).
Because there are no changes to the Cust oner interface from Day 7, the creation of aCust oner objectis
exactly the same asin NewCust oner .

ATMC i ent 'snext step, in lines 46-60, isto locate aBank Ser ver object and bind to it (in line 50). If a
BankSer ver cannot be located, the ATMCl i ent cannot continue and thus exits (a condition handled by the
cat ch construct in lines 51-58).

Inlines 62-75, ATMC i ent getsthelist of available Banksand ATMs from the BankSer ver it previously
located. Again, if there isa problem retrieving this information, the ATMCI i ent exits.

Next, inlines 77-94, ATMCl i ent chooses the first Bank and ATMthat occur in the lists received from the
BankSer ver . If thereisn't at least one of each available (the actual checks are made in lines 79 and 85),
ATMC i ent exits.

The next step isto open an Account with the chosen Bank, using the Cust orrer object created previously,
which the ATMCI i ent accomplishesin lines 96-109. In lines 111-119, ATMCl i ent prints out some statistics
of the Account --account number, creation date, and current balance (which should be zero).

Inlines 121-133, ATMC i ent requests an ATMCar d from the Bank, using the pi n that was passed on the
command line. Because the ATMCar d is being issued for the Account just opened by the same Bank, don't
expecttoget anl nval i dAccount Except i on here, but just as a safe practice, ATMCl i ent triestocat ch
this exception anyway in line 126.

ATMC i ent proceedsto perform afew transactions on the Account , such as depositing and withdrawing
funds, asin lines 135-157. Like the NewCust omer application, ATMCl i ent attempts to withdraw too much
from the Account (inline 146), elicitingan | nsuf fi ci ent FundsExcept i on (caught in line 154).

Next, in lines 159-183, ATMCl i ent performs another transaction; thistime it attempts to make a deposit into
the Account , but using the wrong PIN. (It obtains an incorrect PIN by taking the PIN and adding oneto it, as

http://www.informit.com/content/0672312085/element_011.shtml (11 of 14) [17.07.2000 18:32:06]

javascript:popUp('elementLinks/element_011_code_8.html');
javascript:popUp('elementLinks/element_011_code_9.html');

- Adding Automated Teller Machine (ATM) Capability From: Sams Teach Yourself CORBA in 14 Days

can be seeninline 173.) As expected, this causesan Aut hor i zat i onExcept i on to beraised (whichis
caught in line 174).

Finally, inlines 185-211, the ATMCl i ent deletesthe Account . Again, because the Account was created by
the same Bank that ATMCl i ent usesto delete the Account , don't expect the

I nval i dAccount Except i on to bethrown, but the cat ch isadded anyway, for good measure. Like its
predecessor, ATMCl i ent aso attempts to delete the Account twice (line 194) for the purpose of
demonstrating the | nval i dAccount Except i on (caught in line 195).

Running the Application

After you've successfully compiled the various application components, you're ready to run them together to see
the results. Ason Day 7, start by running the Bank Ser ver application; type the following:

BankSer ver

Again, the output of BankSer ver will bethis:
BankServer ready.

You're now ready to start the Bank application. Actually, you can start the ATMapplication first because Bank
and ATMabjects are independent of each other (but both depend on locating aBank Ser ver object). Start the
BankSer ver by typing this:

BankServer "First Bank"

which in turn outputs this:
Bank "First Bank" ready.

Meanwhile, the Bank Ser ver will have output this:
BankServer | npl: Registering Bank "First Bank".

Then you'll want to start the ATMapplication:
ATM "First Bank ATM

The ATMapplication displays the following:
ATM "First Bank ATM ready.

The BankSer ver aso pipesinwith this message:
BankServerlnpl: Registering ATM "First Bank ATM'.

Finally you're ready to run the ATMCl i ent application. Y ou can do so by typing
View Code

The ATMC i ent will then do its magic, displaying the following:

View Code

All thiswill go by very quickly, but after it's all over, you'll be able to go to the other application windows and
see some evidence of what transpired here. Looking first at the Bank Ser ver application, you'll see this (with
new output messages highlighted in bold):

BankServer ready.
BankServerInpl: Returning list of 1 Banks.
BankServerlnpl: Returning list of 1 ATMs.

Recalling the implementation of Bank Ser ver | npl , you will notice that these messages are displayed when
theget Banks() and get ATMs() methods are called.

Turning your attention now to the Bank application, you'll see the following messages:

Bank "First Bank" ready.

Bankl npl : Creating new Checki ngAccount for Custoner Jereny Rosenberger.
Account I npl : Insufficient funds to withdraw specified anmount.

Bankl npl : Del eti ng Account "Account 00000000".

Bankl npl: Attenpted to delete invalid Account.

Examining the output of the Bank application, you can trace the actions of the ATMCl i ent application: A
new Checki ngAccount iscreated; at some point later, an unsuccessful attempt is made to withdraw funds
from the Account , and later the Account isdeleted. Recall also that the ATMCl i ent , like the

http://www.informit.com/content/0672312085/element_011.shtml (12 of 14) [17.07.2000 18:32:06]

javascript:popUp('elementLinks/element_011_code_10.html');
javascript:popUp('elementLinks/element_011_code_11.html');

- Adding Automated Teller Machine (ATM) Capability From: Sams Teach Yourself CORBA in 14 Days

NewCust oner application before it, attempts to delete the Account twice, and a message to this effect is
also displayed by the Bank application.

You will recall that the ATMCl i ent also attempted to perform atransaction with the incorrect PIN. Notice that
there is no such message to that effect here; indeed, the Bank never even saw the transaction attempt because
the ATMblocked the transaction from occurring when the Cust orrer could not be authorized by the

ATMCar d.

Finally, turn your attention to the output of the ATMapplication:

ATM "First Bank ATM ready.
ATM Aut hori zi ng Account for deposit.

Aut hori zati on succeeded; forwardi ng deposit request to Account.
ATM Aut hori zing Account for w thdrawal .

Aut hori zati on succeeded; forwarding withdrawal request to Account.
ATM Aut hori zi ng Account for deposit.

Aut hori zati on succeeded; forwardi ng deposit request to Account.
ATM Aut hori zing Account for w thdrawal .

Aut hori zation fail ed.

The output from the ATMprovides the most insight into what the ATMCl i ent is doing. Each operation,
whether successful or not, islogged by the ATMapplication. As you see, each transaction is successful except
the last, in which the ATMCl i ent deliberately attempts to use the wrong PIN for the transaction.

Summary

In this chapter, you added a fair amount of functionality to the Bank application. Most of it was added in the
form of a new system component, the ATMapplication, and its counterpart, the ATMCar d. Y ou also modified
the other components of the system to work with the ATM Notably, the Bank Ser ver was modified to enable
ATMs to register, the Bank was modified to issue ATMCar ds on request, and, of course, the NewCust oner
application was revised to use an ATMand ATMCar d for all its transactions. This chapter gives you the
opportunity to work with a more complex CORBA application, involving a number of components that interact
with each other.

On Day 9, you'll implement the final installment of the Bank application. So far, the client portion of the
application (NewCust oner yesterday, ATMCl i ent today) controls most of the process. In other words, the
server components spend their time waiting for a transaction to be initiated by the client component. Thisis
commonly referred to as a pull model because the client "pulls' information from the servers asit is needed.

On Day 9, you'll add a new capability: Through callbacks, the server components can "push” messagesto the
client. In other words, if a server (for instance, a Bank) wants to send a message to the Cust omrer , it won't
have to wait for the Cust orrer to pull that information from the Bank ; it can push the information to the
Cust oner at any time. Thisisuseful if the Cust ormer subscribes through the Bank to a service that, for
example, periodically provides stock updates.

Q&A

Q It seemsto methat the ATMinterfaceislittle morethan a pass-through for Cust oner sto access
their Account s.

A If you noticed this property of the ATMinterface, give yourself a pat on the back. The ATMdoesn't
actually introduce any new functionality to the application--at least where Account operations are
concerned--but simply provides another way to access Account s.

Q If thisapplication wereto actually be deployed, wouldn't security be a major issue? For instance,
it lookslikeit would be easy to guess a customer's PIN through brute force.

A If you're asking this question, you've no doubt observed the complete lack of a security mechanismin
the application (other than the PIN mechanism itself). Of course, in a production application, you'd need
to make additional security considerations to prevent password snooping, brute force attacks, and so on.
(Y ou might want to use the CORBA Security Service or your own mechanisms to implement and enforce
security policies.)

http://www.informit.com/content/0672312085/element_011.shtml (13 of 14) [17.07.2000 18:32:06]

- Adding Automated Teller Machine (ATM) Capability From: Sams Teach Yourself CORBA in 14 Days

Workshop

The following section will help you test your comprehension of the material presented in this chapter and put
what you've learned into practice. You'll find the answers to the quiz and exercise in Appendix A.

Quiz
What are the four steps you'll typically follow to make enhancements to a CORBA application?
Exercise

Add an operation to the ATMinterface that allows funds to be transferred between Account s. Be sureto
provide appropriate exceptions as well.

<Back Contents Next>
Save to Mylnforml T

http://www.informit.com/content/0672312085/element_011.shtml (14 of 14) [17.07.2000 18:32:06]

http://www.informit.com/My/Add?isbn=0672312085&title=Sams+Teach+Yourself+CORBA+in+14+Days&category=Programming&topic=CORBA&chapter=2846&elementname=Adding+Automated+Teller+Machine+(ATM)+Capability
http://www.informit.com/about/
http://www.informit.com/press/
http://www.informit.com/about/advertising/
http://www.informit.com/legal/privacy/
http://www.informit.com/contact/
http://www.informit.com/legal/copyright/
http://www.informit.com/legal/privacy/

- Using Callbacks to Add Push Capability From: Sams Teach Yourself CORBA in 14 Days

ile they last!
Y¥our Name Mi

Hot Topics Yisual Basic Windows 2000 Windows MT Linu=/Open Source Cizco Knowledge Suite

Soluton Centers PragramlIT DatabazelT WebIT MetworkIT ConfiguralT

Yl Using Callbacks to Add Push Capability

Search
Search Tips

== From: Sams Teach

=¥ Yourself CORBA in 14
SRl Days
R Author: Jeremy
(00)1419:Y Rosenberger
' 14 DAYS| Publisher: Sams
- More Information

<Back Contents Next>

Save to Mylnforml T

Rlylnformi T

InformlT E:tln re
D02 « Defining Additional Requirements
« Madifying the Class Diagram

o Modifying Existing Classes
« Modifying the IDL Specification

Click Here for ; ; ;
High-Tech « Implementing the New Functionality
Johs! o Enhancing the Bankimpl
o Enhancing the Customerlmpl
developerWorks™ o Enhancing the ATMClient
I « Running the Application
DBEEdC-W%h— « ldeasfor Future Enhancements
ased Training
_ o Summar
o
« Workshop
Top IT ;
@lﬂ Neows o Quiz
o Exercises

TGOS

On Day 8, "Adding Automated Teller Machine (ATM) Capability," you continued devel opment of the sample
Bank application by adding Automated Teller Machine (ATM) capabilities. Now, you'll make the final
enhancements, this time adding push capability.

Note: Although push appears to be one of the latest buzzwords in the industry (particularly where
the Internet is concerned), the concept has been around for quite some time. (The Internet is simply
one of the more visible applicationsfor it.) Client/server applications typically follow the pull
model, in which the client pulls information from the server when it so desires (in other words, the
client initiates the transaction). In the push model, the server pushes information to the client--that
is, the server initiates the transaction. For example, when a stock price changes, a server can push
the updated information to its clients. Push can be much more efficient than pull when information
is updated infrequently, especially when there are a number of clientsin a system.

Push capability can be utilized in many ways, but in the Bank application you'll useit to implement an account
update system. Through this system, customers receive account balance updates every minute. (Of course, this
would probably be uselessin an actual bank application, but it servesto demonstrate the concept.) The process
you'll follow isthe same as in the previous chapter:
« Define additional requirements. Modify the system requirements to specify a requirement for the account
update capability.

« Modify the system design. Trandlate the additional requirements into changesin system design, again
reinforcing the notion of software design as an iterative process.

http://www.informit.com/content/0672312085/element_012.shtml (1 of 8) [17.07.2000 18:32:15]

http://www.informit.com/
http://ad.doubleclick.net/jump/www.informit.com/programit/;cat=developer;num=92
javascript:document.regularSearch.submit();
http://www.informit.com/search/tips/
http://ad.doubleclick.net/clk;1464039;4446282;i?http://www.informit.com/jobs
http://www.informit.com/news/
http://www.informit.com/downloads/
http://www.informit.com/store/
http://www.informit.com/itlibrary/
http://www.informit.com/edchoice/
http://www.informit.com/alphabook/
http://infobase.informit.com/
http://www.informit.com/My/Accounts
http://ad.doubleclick.net/jump/informit.com/sponsor-button/brassring/badge;sz=100x60
http://ad.doubleclick.net/jump/informit.com/sponsor-button/ibm/badge2;sz=88x31
http://www.informit.com/training/
http://www.recommend-it.com/p.e?415858
http://www.informit.com/news/
http://www.informit.com/downloads/
http://www.informit.com/programit/vb/
http://www.informit.com/networkit/windows2000/
http://www.informit.com/networkit/winnt/
http://www.informit.com/networkit/linux/
http://www.knowcisco.com/
http://www.informit.com/programit/
http://www.informit.com/databaseit/
http://www.informit.com/webit/
http://www.informit.com/networkit/
http://www.informit.com/configureit/
http://www.informit.com/My/Add?isbn=0672312085&title=Sams+Teach+Yourself+CORBA+in+14+Days&category=Programming&topic=CORBA&chapter=2847&elementname=Using+Callbacks+to+Add+Push+Capability
http://www.informit.com/product/0672312085

- Using Callbacks to Add Push Capability From: Sams Teach Yourself CORBA in 14 Days

« Modify the IDL definitions. Create or update the interface definitions for new classes or classes that have
changed since the previous iteration.

« Implement the new functionality. After the design is finished and then realized in IDL, implement the new
functionality and see how the new application works.

Defining Additional Requirements

Recall the system requirements for the Bank application from Day 8. Asyou did when you added ATM
capability to the application, you'll define a set of requirements that describes the desired functionality. For the
account update capability, assume the following requirements:

« Supports the capability for a server to send account balance updates periodically and automatically to
customers

« Supports the capability for customers to request the account update feature

The requirements are straightforward; they formalize the functionality already described. Note that there is only
arequirement to request the account update feature; there is no requirement to cancel the feature. Adding such a
capability is not difficult, but to keep the sample application simple, this feature is omitted. (Perhapsit would
make a good exercise...)

Modifying the Class Diagram

Again, you're ready to trandlate a modified set of requirements into an updated system design. Thistime, you
won't need to create any additional classes, and you'll need to modify some existing classes only slightly.

Modifying Existing Classes

The modifications required to add account updating to the application are clear-cut. First, aCust onmer must
subscribe to the service, so the Bank must be modified to enable this. The only information required to
subscribe to the service isthe Account , so the method should take this as a parameter. No other parameters are
strictly necessary; the Bank can obtain the Cust omer (s) from the Account when necessary. Also, no return
valueisrequired. The signature for the new method is this:

request Updat eServi ce(account : Account) : void

The other requirement is to add a method to the Cust orrer class that enables the Bank to send updates when
necessary. So that the Cust oner knowswhich Account the updateisfor (Cust oner scan have multiple
Account s, after al), the Account should be a parameter. With just the Account information, the

Cust oner can determine the current balance, but for the sake of convenience, the method will take the
balance as a parameter aswell. Again, no return value is necessary--and just for fun, make the method oneway
aswell, so the Bank will be able to send updates without having to wait for responses from the Cust oner s.
Hereisthe signature for the method:

updat eAccount Bal ance(account : Account, balance : float) : void

Note:For theupdat eAccount Bal ance() operation, using the oneway calling mechanismis
areasonable choice. Recall that the oneway mechanism is unreliable--that is, delivery of oneway
messages is not guaranteed. Thisis acceptable for updat eAccount Bal ance() because the
account update messages are not considered critical. In other words, if an occasional update
message is not delivered, the impact on the operation of the application is minimal.

Appearing in Figure 9.1 is the modified class diagram for the Bank application, reflecting these additions.

Figure 9.1. The modified Bank application class diagram.

Modifying the IDL Specification

Ason Day 8, the modifications to the IDL interface specifications are obvious. Start with the modified Bank
interface, appearing in Listing 9.1, with changes highlighted in bold.

Listing 9.1. Modified Bank.idl.

http://www.informit.com/content/0672312085/element_012.shtml (2 of 8) [17.07.2000 18:32:15]

javascript:popUp('elementLinks/01.jpg');

- Using Callbacks to Add Push Capability From: Sams Teach Yourself CORBA in 14 Days
View Code

Note that the changesto Bank. i dl are minimal, consisting only of the new r equest Updat eSer vi ce()
method. Also, notice that thel nval i dAccount Except i on comesinto play again here, in case an
Account is passed that does not belong to the Bank.

The other changes are made to Cust oner . i dl , which appearsin Listing 9.2.

Listing 9.2. Modified Customer.idl.

1: // Custoner.idl

2.

3: // Forward declaration of Custoner interface.
4: interface Custonmer;

5:

6: #ifndef Custoner_idl

7. #define Custoner idl

8:

9: // sequence of Custoners
10: typedef sequence<Customner> CustomerlList;
11:
12: #include "Account.idl"
13:

14: // A Custoner can hold one or nore Accounts. Presunably, the
15: // Custoner is what drives the rest of this application.
16: interface Custonmer {

17:

18: /1 This Custonmer's nane.

19: attribute string naneg;

20:

21. /1 This Customer's Social Security numnber.

22: readonly attribute string social SecurityNunber;

23:

24. /1l This Customer's address.

25; attribute string address;

26:

27: /1 This Custoner's nother's naiden nane.

28: readonly attribute string nothershMi denNarne;

29:

30: /1 Return a list of Accounts held (or co-held) by this
31: /1l Custoner.

32: Account Li st get Accounts();

33:

34: /1 Send an update nessage to this Customer regarding the given
35: /1 Account and its new bal ance.

36: oneway voi d updat eAccount Bal ance(i n Account account, in float
37: bal ance) ;

38: };

39:

40: #endif

Again, changesto Cust oner . i dl areminimal, adding only theupdat eAccount Bal ance() method.
Note the use of the oneway modifier, indicating that when this method is called, it will return to the caller
immediately.

Y ou're now ready to proceed with the changes to the implementation itself.

Implementing the New Functionality

Implementing the account update functionality is also a ssimple process. Given that only two methods have been
added to the entire system, there are only a couple of steps involved:

« Implement r equest Updat eSer vi ce() intheBankl npl class. The Bankl npl must keep track of
al Account sfor which the service is activated; when it comes time to send update messages to the
Account s Cust oner s, theBankl npl can simply traversethislist of Account s.

http://www.informit.com/content/0672312085/element_012.shtml (3 of 8) [17.07.2000 18:32:15]

javascript:popUp('elementLinks/element_012_code_1.html');

- Using Callbacks to Add Push Capability From: Sams Teach Yourself CORBA in 14 Days

« Implement updat eAccount Bal ance() intheCust oner | npl class. This method can be astrivia
as simply printing a message indicating the Account and its new balance.

Enhancing the Bankimpl

First, you'll modify Bankl npl to providether equest Updat eSer vi ce() functionality. Asaready
mentioned, the Bank| npl must maintain alist of Account sfor which the automatic update serviceis
activated. You'll see how thisisdonein Listing 9.3, Bank| npl . h, with changes highlighted in bold.

Listing 9.3. Bankimpl.h.
View Code

In Bankl npl . h, note the addition of ther equest Updat eSer vi ce() method and the

mySubscri bedAccount s datamember. my Subscri bedAccount s isaC++ Standard Template Library
vect or, just likethe myAccount s member, which contains all the Account sheld by a particular Bank. In
Listing 9.4, Bankl npl . cpp, you'll observe how the elements of mySubscr i bedAccount s are managed.

Listing 9.4. Bankimpl.cpp.

View Code

Warning: Bankl npl . cpp, asit appearsin Listing 9.4, introduces the use of threads in the server
application. Depending on your operating system, however, the file will not compile as listed.
Bank! npl . cpp makes use of the Win32 APIsfor using threads, so it will compile on Windows
95 and NT. Users of other platforms, particularly UNIX platforms, need to modify the code
dlightly to use the thread API (such as POSIX threads) for their operating system. Thisisatrivial
matter because only one new thread is created in the Bank| npl . cpp implementation.

Also, as areminder, the code presented here is not thread-safe--for the sake of clarity, no checks
are made to ensure that both threads don't access the ny Subscri bedAccount s vector
simultaneously. This non-thread-safe code works for demonstration purposes, but for a production
system, you'll definitely want to ensure that all code is thread-safe when using multithreading in an
application.

Now take a closer look at Listing 9.4. The first thing you'll notice, in lines 31-60, is the addition of afunction
called updat eAccount Thr eadFuncti on() that executesin a second thread.

First of al, asyou can seein lines 31-34, updat eAccount Thr eadFunct i on() expectsitsargument to be
apointer to an STL vector of Account s (you'll seelater that thisis the argument with which the functionis
actualy called).

What is happening in lines 36-37 is that the thread is being set up to run for aslong as the server application is
running (hence, thewhi | e (1), which will never exit). Also, the loop is set up to sleep for 60,000
milliseconds (one minute) between executions.

Every minute, the f or statement in line 41 will cause the thread to iterate through its list of Account s(lines
43-46), and then to iterate through each of the Customers belonging to those Accounts, as you can seein lines
47-51. Also, in line 51 you see that the updat eAccount Bal ance() message is sent to each of the

Cust oner s.

Finally, if for some reason an exception is thrown by the remote method call, it isignored, as you can seein
lines 52-56. (updat eAccount Thr eadFunct i on() catchesthe exception but does nothing with it.)

Enhancing the Customerimpl

The enhancementsto Cust oner | npl aresimple. Cust oner | npl need only accept the
updat eAccount Bal ance() message and print a message indicating the new Account baance. The
modified Cust orrer | nmpl . h and Cust orrer | mpl . cpp appear in Listings 9.5 and 9.6.

Listing 9.5. Customerimpl.h.

1. // Custonerlnpl.h
2.

http://www.informit.com/content/0672312085/element_012.shtml (4 of 8) [17.07.2000 18:32:15]

javascript:popUp('elementLinks/element_012_code_2.html');
javascript:popUp('elementLinks/element_012_code_3.html');

- Using Callbacks to Add Push Capability From: Sams Teach Yourself CORBA in 14 Days

#i f ndef Custorer!|npl _h
#define Custonerlnpl _h

3

4

5:

6: #include "../Custoner_s.h"
7. #include "../ATMCard_c. h"
8

9

cl ass Custonerlnpl : public sk _Custoner {
11: public:
12:
13: /1 Constructor.
14: /1
15: /1l name - Custonmer's nane.
16: /1 social SecurityNunber - Custoner's Social Security nunber.
17: /] address - Custoner's address.
18: /1 not her sMai denNane - Customer's nother's mai den nane.
19: Cust oner | npl (const char* nane, const char* social SecurityNunber,
20: const char* address, const char* nothersMai denNane);
21:
22: /] Destructor.
23: ~Cust orer | npl () ;
24.
25: /1 These nmethods are described in Custoner.idl.
26: virtual char* nane();
27: virtual void name(const char* val);
28: virtual char* social SecurityNunber();
29: virtual char* address();
30: virtual void address(const char* val);
31 virtual char* nothersMi denName();
32: virtual AccountList* getAccounts();
33: virtual void updateAccount Bal ance(Account ptr account, CORBA:
34. Fl oat bal ance);
35:
36: private:
37:
38: /1 Default constructor.
39: Cust oner | mpl () ;
40:
41: /1 This Custoner's nane.
42: char* myNane;
43:
44: /1l This Customer's Social Security number.
45: char* nySoci al SecurityNunber;
46:
47: /1 This Custorer's address.
48: char* myAddress;
49:
50: /1 This Custoner's nother's maiden nane.
51: char* myMot her sMai denNane;
52:
53: /1 This Custoner's Accounts.
54: Account Li st myAccounts;
55:
56: /1l This Custoner's ATMCards.
57: ATMCar dLi st nyATMCar ds;
58: };
59:
60: #endif

Listing 9.6. Customerimpl.cpp.

View Code

http://www.informit.com/content/0672312085/element_012.shtml (5 of 8) [17.07.2000 18:32:15]

javascript:popUp('elementLinks/element_012_code_4.html');

- Using Callbacks to Add Push Capability From: Sams Teach Yourself CORBA in 14 Days

Enhancing the ATMClient

The modificationsto ATMCl i ent Mai n. cpp are easy to follow (see Listing 9.7). The only additions are that
the ATMCl i ent now requests the account update service from the Bank when the Account is created, and
when the ATMO i ent isfinished, it waits for two minutes to give the Bank achance to call

updat eAccount Bal ance() onceor twice beforethe ATMCO i ent exits. (Like Bankl npl , ATMC i ent
uses the Win32 API to cause the current thread to sleep; again, non-Windows devel opers need to substitute the
appropriate method call here.)

Listing 9.7. ATMClientMain.cpp.

View Code

Running the Application

Once again, you're ready to run the modified application. The process is exactly the same asin the previous
chapter, but the output from the various applications will be dlightly different, as you would expect. Again, start
by running the Bank Ser ver application:

BankSer ver

Again, the output of the Bank Ser ver will bethis:
BankServer ready.

Y ou're now ready to start the Bank application
Bank "First Bank"

which, again, will output this:
Bank "First Bank" ready.

Meanwhile, the Bank Ser ver will output this:
BankServer | npl: Regi stering Bank "First Bank".

Now you'll start the ATMapplication:
ATM "First Bank ATM

The ATMapplication will display the following:
ATM "First Bank ATM' ready.

The BankSer ver , again, will output the message:
BankServer | npl: Registering ATM "First Bank ATM.

Finally, you're ready to run the ATMCl i ent application. Y ou can do so by typing the following:
View Code

The ATMO i ent will again display the following:
View Code

At this point, the ATMCl i ent will sleep for two minutes while waiting for messages from the Bank. Be
patient, and the ATMCl i ent will eventually output

Custonerlnpl: Received account update:
New bal ance is $750

All thiswill go by very quickly, but after it's all over, you can go to the other application windows and see some
evidence of what transpired here. Looking first at the Bank Ser ver application, you'll see this (with new
output messages highlighted in bold):

BankServer ready.
BankServerInpl: Returning list of 1 Banks.
BankServerlnpl: Returning list of 1 ATMs.

The output of the other applications will be the same as last time, except for the Bank application. Turn your
attention to the window in which the Bank is running and you will see the following, familiar output:

Bank "First Bank" ready.

Bankl npl : Creating new Checki ngAccount for Custoner Jereny Rosenberger.

http://www.informit.com/content/0672312085/element_012.shtml (6 of 8) [17.07.2000 18:32:15]

javascript:popUp('elementLinks/element_012_code_5.html');
javascript:popUp('elementLinks/element_012_code_6.html');
javascript:popUp('elementLinks/element_012_code_7.html');

- Using Callbacks to Add Push Capability From: Sams Teach Yourself CORBA in 14 Days

Accountlnpl: Insufficient funds to w thdraw specified anount.
Bankl npl : Del eti ng Account "Account 00000000".
Bankl npl: Attenpted to delete invalid Account.

Stay tuned for afew moments, and you will see the following (if it took you a minute or so to bring the Bank
output window up, this might already be on your screen):

Bankl nmpl : Updati ng Accounts.

Recall that this message is output just before the second thread in the Bank application sends the update
messagesto all the Account owners.

ldeas for Future Enhancements

Y ou've only begun to scratch the surface of what can be done with CORBA. Asfar asthe Bank applicationis
concerned, there are a number of possible enhancements. As you progress into advanced CORBA topicsin the
upcoming days, you'll make afew more enhancements to the Bank application, but the possibilities for

enhancements are limitless. If you want to further experiment with the Bank application, here are afew ideas:

« Savi ngsAccount saready support an interest rate, but the interest is never added to the account
balances. Implement a mechanism--probably using a separate thread in the Bank application--that
periodically adds interest to each Savi ngsAccount .

« Checki ngAccount stypically feature overdraft protection; that is, withdrawing a greater amount than
is available in the account automatically dipsinto the customer's line of credit.

« Asmentioned numerous times before, the sample code presented here is not thread-safe. Modify the code
so that it is thread-safe.

« Add anew type of account--perhaps a mutual fund or stock market account. As an added feature, make it
possible for customers to subscribe to a service that will automatically inform them--using push
messaging--of the account's performance.

Again, the possibilities for enhancements are endless. Adding features or robustness to the Bank application on
your own will help you to hone your skills for developing CORBA applications.

Summary

Today you added a simple capability to the Bank application--for the Bank server to push updated information
to the bank customers. Although the implementation for this capability is simple, the potential of the push
architecture is very great. Indeed, as this book is being written, a number of companies are vying to create the
de facto standard for pushing content to users on the Internet.

Y ou were aso reminded--albeit briefly--of the importance of writing thread-safe code in a multithreaded
environment. Although this book takesa"do as| say, not as| do" approach to writing thread-safe code, it is
very important that when writing multithreaded applications, you take care to ensure thread safety. In asample
application with only one user, thread safety is not likely to be an issue because chances are small that two
threads will use the same data at the same time. However, in a production system--particularly an
enterprisewide system--the penalty for writing non-thread-safe code can be stiff, usually resulting in the
corruption of data.

On Day 10 you'll shift gearsinto some more advanced CORBA topics--a number of design issues that are
involved with CORBA, along with a few suggestions about how to deal with those issues. Y ou'll get a small
break from further developing the Bank application, but the example does return in future chapters when you
study additional advanced CORBA topics, such as the use of the Dynamic Invocation Interface (DII),
CORBAservices and CORBA(facilities, and using Java with CORBA.

Q&A

Q What'sthe big deal about push technology anyway?

A Properly implemented, a push architecture can save users the trouble of actively searching for desired
information. (However, if the application goes overboard with the information pushed to the user, the
user might suffer from the new problem of information overload.) Also, push technology has the potential

http://www.informit.com/content/0672312085/element_012.shtml (7 of 8) [17.07.2000 18:32:15]

- Using Callbacks to Add Push Capability From: Sams Teach Yourself CORBA in 14 Days

to conserve system resources. Information can be delivered to users asit is updated (as opposed to
requiring users to periodically check for updated data, which can be inefficient if the data doesn't change
very often).

Q It seemsto methat push method calls can almost always be oneway calls. | sthisaccurate?

A To the extent that the pushed information is not considered essential for the purposes of the
application, thisistrue. Using oneway calls allows for more efficient server implementations (because
the server does not have to wait for areply from the clients), at the expense of reliability of message
delivery. In the case of a server that delivers account balance updates or stock quote updates to casua
subscribers, it usually doesn't matter if an occasional update message islost. When the information being
updated is considered essential, oneway is usually not a good choice.

Workshop

The following section will help you test your comprehension of the material presented in this chapter and put
what you've learned into practice. You'll find the answers to the quiz and exercises in Appendix A.

Quiz

1. Why does the issue of thread safety become important in the sample application developed in this
chapter?

2. Instead of using oneway methodsto notify clients of updates, can you think of another way to
efficiently send update messages to clients? (Hint: Multithreading could come in handy here.)

Exercises
1. It was noted earlier in the chapter that no facility currently existsto cancel the automatic account
update service. Provide an IDL method signature for such an operation. Don't forget to include
appropriate exceptions, if any.

2. Implement the account update cancellation method from Exercise 1.

<Back Contents Next>
Save to Mylnforml T

http://www.informit.com/content/0672312085/element_012.shtml (8 of 8) [17.07.2000 18:32:15]

http://www.informit.com/My/Add?isbn=0672312085&title=Sams+Teach+Yourself+CORBA+in+14+Days&category=Programming&topic=CORBA&chapter=2847&elementname=Using+Callbacks+to+Add+Push+Capability
http://www.informit.com/about/
http://www.informit.com/press/
http://www.informit.com/about/advertising/
http://www.informit.com/legal/privacy/
http://www.informit.com/contact/
http://www.informit.com/legal/copyright/
http://www.informit.com/legal/privacy/

- Learning About CORBA Design Issues From: Sams Teach Yourself CORBA in 14 Days

ile they last!
Y¥our Name Mi

Hot Topics Yisual Basic Windows 2000 Windows MT Linu=/Open Source Cizco Knowledge Suite

Soluton Centers PragramlIT DatabazelT WebIT MetworkIT ConfiguralT
® Exact Phrase

© Ao Learning About CORBA Design Issues

Search
Search Tips

From: Sams Teach
Yourself CORBA in 14
SRl Days

R Author: Jeremy
(00)1419:Y Rosenberger

' 14 DAYS| Publisher: Sams

- More Information

<Back Contents Next>

Save to Mylnforml T

Rlylnformi T

InformlT E:tln re

Divwen| o o IDL Creep

o Single-Threaded Applications
o Server Applications
o Client Applications

Click Here for ; ; P
High-Tech o Mixed Server/Client Applications
Johs! o Object Lifetime
o Lack of Pass-by-Value Semantics
developerWorks™ o Rogue Wave ORBstreams.h++
I o Using CORBA structs
DBE Edc-"."‘ih— o Using Conversion Constructors
ased Training
_ « CORBA and X Window System
0 Single-Threaded Applications Using CORBA and X
o Multithreaded Applications Using CORBA and X
Top IT .
Gt o Summary
« Q&A
THOOMNS « Workshop
o Quiz

By now you have probably determined for yourself that CORBA is a complex architecture. Like any complex
architecture, CORBA comes with its own set of issues that affect the design and implementation of CORBA
systems. For example, the fact that all interfacesin CORBA are specified in IDL has an effect on developers
who want to integrate existing systems with CORBA--usually, IDL interfaces have to be written for a number
of existing classes (not atrivial undertaking). This chapter introduces you to such design issues and offers
suggestions on how to deal with them.

IDL Creep

Theterm IDL creep does not refer to that guy in the office down the hall who thinks he knows everything about
the Interface Definition Language. Rather, it isaterm coined to refer to the tendency for IDL to permeate a
system design--and permeate it does. Think about it: For a class to be understood by CORBA, itsinterface must
be expressed in IDL. Furthermore, if the classes referenced or otherwise used by that class also need to be
accessibleto CORBA components, then those classes must also have their interfaces expressed in IDL.
Consequently, it is not uncommon for most, if not all, classes in a system to require IDL specifications.

If you're designing an application from the ground up, having to define IDL interfaces for most (or even al)
classesisn't terribly demanding. However, if you're converting an existing application to CORBA, the process
can be an arduous one indeed. Because the existing classes were probably not written with CORBA--or a
distributed architecture of any kind--in mind, the interfaces for those classes might have to be modified

http://www.informit.com/content/0672312085/element_013.shtml (1 of 9) [17.07.2000 18:32:29]

http://www.informit.com/
http://ad.doubleclick.net/jump/www.informit.com/programit/;cat=developer;num=92
javascript:document.regularSearch.submit();
http://www.informit.com/search/tips/
http://ad.doubleclick.net/clk;1464039;4446282;i?http://www.informit.com/jobs
http://www.informit.com/news/
http://www.informit.com/downloads/
http://www.informit.com/store/
http://www.informit.com/itlibrary/
http://www.informit.com/edchoice/
http://www.informit.com/alphabook/
http://infobase.informit.com/
http://www.informit.com/My/Accounts
http://ad.doubleclick.net/jump/informit.com/sponsor-button/brassring/badge;sz=100x60
http://ad.doubleclick.net/jump/informit.com/sponsor-button/ibm/badge2;sz=88x31
http://www.informit.com/training/
http://www.recommend-it.com/p.e?415858
http://www.informit.com/news/
http://www.informit.com/downloads/
http://www.informit.com/programit/vb/
http://www.informit.com/networkit/windows2000/
http://www.informit.com/networkit/winnt/
http://www.informit.com/networkit/linux/
http://www.knowcisco.com/
http://www.informit.com/programit/
http://www.informit.com/databaseit/
http://www.informit.com/webit/
http://www.informit.com/networkit/
http://www.informit.com/configureit/
http://www.informit.com/My/Add?isbn=0672312085&title=Sams+Teach+Yourself+CORBA+in+14+Days&category=Programming&topic=CORBA&chapter=2848&elementname=Learning+About+CORBA+Design+Issues
http://www.informit.com/product/0672312085

- Learning About CORBA Design Issues From: Sams Teach Yourself CORBA in 14 Days

somewhat to mesh well with IDL. Although the modifications themselves might not require a great deal of
effort, remember that if the interface of an object changes, any code that uses that object might have to be
modified aswell. This cascade effect can easily turn afew interface changesin arelatively few classesinto a
frustrating mess of changes throughout an application.

This scenario doesn't even take into consideration the possibility that the non-CORBA application’'s very
architecture might not be amenable to the CORBA architecture. In particular, CORBA's current lack of the
capability to pass objects by value can especially affect the design of an application (discussed later in this
chapter). Sometimes, modifying an existing application to use CORBA can be like trying to fit a square peg into
around hole.

Themoral isthat IDL is pervasive--it has away of creeping into a system design and slowly taking it over. This
isnot necessarily abad thing in itself, but it can potentially make the "CORBAtization™ of legacy applications a
difficult prospect. Be prepared to write IDL for any classin an application that might need to be shared between
application components.

It is not always possible to avoid introducing IDL into most classes of an existing application without entailing
asignificant redesign of portions (or al!) of the application. However, when designing an application from the
ground up, there is one guideline in particular for minimizing the impact of IDL on the rest of the application:
Pay close attention to which classes will likely need to be shared between application components and which
will not. The underlying classes (e.g., classes that aren't part of any interfaces between components) generally
will not require IDL interfaces.

Single-Threaded Applications

Although most modern operating systems support multithreaded applications--that is, applications in which
multiple threads of control might be executing in a single program at the same time--the use of multithreading is
still limited. There are several reasons for this. Not all operating systems fully support threading, not all
developers use the later versions of operating systems, which do support threading, and not all developers feel
comfortable with it anyway. In addition, using multiple threads in applications introduces new issues--not the
least of which is the need to manage concurrent access to objects--that complicate application design and
development. Consequently, the use of multithreading is not as widespread as it could be.

CORBA does not force devel opersinto a multithreaded development paradigm; indeed, it is perfectly feasible
to create single-threaded CORBA applications. However, due to the nature of the operation of distributed
applications, great care must be taken when designing and developing CORBA applications for a
single-threaded environment. This chapter tells you why, covering issues on both the server and client ends of
the application.

Server Applications

The justification for using multiple threads in server applicationsis simple: A CORBA server might have
multiple clients accessing it at any given time. If the server is single-threaded, it can only process a request from
one client at atime--if another client attempts to access the server while the server is busy processing a second
client's request, the first client must wait until the server isfinished (see Figure 10.1). The obvious disadvantage
to this architecture isthat if the server performs transactions that take time to complete, the apparent
responsiveness of the system (as far asthe end users are concerned) suffers.

Figure 10.1. Sngle-threaded server operation.

One approach to mitigating this problem is to employ the use of multiple serversin an application. Normally, an
enterprise-scal e application employs multiple servers anyway, for reasons such as load balancing and
redundancy. However, it is simply not practical to provide a server per concurrent client, given the amount of
overhead required by each server application. It is much more efficient for a single server to handle multiple
simultaneous clients, and thisis precisely the capability afforded by a multithreaded architecture.

In amultithreaded server architecture (see Figure 10.2), rather than process only one client request at atime, the
server can start a new thread of execution for each transaction. Because there is always athread listening for
new requests, other clients no longer need to wait for the server to complete a transaction before it can accept
the next one. The result is that the server appears more responsive because it can respond immediately to
incoming requests.

Figure 10.2. Multithreaded server operation.

http://www.informit.com/content/0672312085/element_013.shtml (2 of 9) [17.07.2000 18:32:29]

javascript:popUp('elementLinks/01.jpg');
javascript:popUp('elementLinks/02.jpg');

- Learning About CORBA Design Issues From: Sams Teach Yourself CORBA in 14 Days

Although the multithreaded architecture can create the illusion of better server performance by enhancing server
responsiveness, the architecture does not magically make servers faster. If the server is processing severa
transactions simultaneously, the speed at which each transaction is processed is likely to decrease relativeto a
server processing only one transaction at atime. (Multithreaded applications can be more efficient than
single-threaded applications, however, so a server processing only one transaction at atime might not be twice
asfast as a server processing two transactions simultaneously.) So, although the use of multithreading is not
intended to replace the use of multiple servers, it is usualy preferable to deploy multiple multithreaded servers
than multiple single-threaded servers. Furthermore, in most cases, fewer multithreaded servers are required to
deliver the same end user responsiveness.

Because multithreading does not come for free, it isimportant to understand when it is appropriate. Managing
multiple threads, especially when it is necessary (asit often is) to prevent multiple threads from simultaneously
accessing the same data, can result in costly overhead. Consequently, on a machine with asingle CPU, adding
multiple threads to an application that is already CPU-bound will only make it slower (although response time
toindividual clients, as discussed previously, might still improve). On the other hand, on a multiprocessing
machine, because each thread can potentialy run on its own CPU, performance when using multithreading
might increase, even on a CPU-bound application. Where multiprocessing truly shines, however, isin
I/O-bound server applications or in applications that act as clients and servers simultaneously (as you will seein
the next section). In an 1/0-bound server application with multiple client connections, the likelihood that a given
thread will be blocked while waiting for 1/0 increases. Hence, other threads will be given the opportunity to do
useful work, thus using the available CPU(s) more efficiently.

The bottom line regarding the use of threadsin CORBA serversisthis: If the server can process transactions
quickly enough so that response time is not a concern, a single-threaded server will probably suffice. If the
response time of a single-threaded server is not adequate, the use of multithreading is probably a better
aternative. Note that thisistrue only if the server does not also act asaclient. If it performs both roles, there
might be additional issuesinvolved, asyou will soon see.

Client Applications

Unlike a server application, a client application does not need to concern itself with providing a reasonable
response time to other clients. In most cases, when a client calls aremote method on a server, it is perfectly
reasonable for the client to wait for the server's response before continuing. Thisistrue aslong as one
assumption holds true--that the client application isa pure client; that is, the application does not create any
CORBA objects and pass references to those objects to other applications.

Mixed Server/Client Applications

The guidelines for the use of threads in pure servers (applications that behave as servers only, never as clients)
are clear-cut: If the response time requirements warrant it, multithreading is preferred; otherwise, single
threading is adequate. The guidelines for pure clients are simple as well: Under most circumstances,
multithreading is not required. Therefore, you can conclude that single-threaded architectures are adequate for
most CORBA applications. If your applications were all pure servers and clients, you'd be right.

When an application demonstrates behaviors of a server and a client--call it a mixed server/client application for
lack of a better term--the design issues associated with using a single-threaded architecture become insidious.
Illustrated in Figure 10.3 isthe basic problem: If a single-threaded, mixed server/client application passes one of
its objects to a second application in a remote method call, and the second application, in turn, tries to access the
object passed to it, both applications become blocked.

Figure 10.3. Single-threaded mixed server/client application operation.

Of course, this problem is neatly solved by the use of multithreading in the mixed server/client application, as
illustrated in Figure 10.4. If multithreading is not an option for whatever reason, another solution is required.
The remainder of this section discusses potential solutions to the problemsinvolved in developing
single-threaded applications that need to assume the roles of both client and server.

Presented here are two useful design patterns for designing CORBA applications using only single-threaded
components. Again, the use of multithreading is probably the cleanest method of implementing CORBA
applications, but when multithreading is not an option, you will want to consider one of these design patterns.

Object Factory Pattern

Recall that single-threaded applications that are pure servers or pure clients don't suffer from the deadlock
problem illustrated in Figure 10.3.

http://www.informit.com/content/0672312085/element_013.shtml (3 of 9) [17.07.2000 18:32:29]

javascript:popUp('elementLinks/03.jpg');

- Learning About CORBA Design Issues From: Sams Teach Yourself CORBA in 14 Days

The Object Factory pattern capitalizes on this property of pure client and pure server applications by moving
functionality to the appropriate component of the application, resulting in application components that are either
pure clients or pure servers.

Note: In the Object Factory design pattern, afactory object isresponsible for creating objects of a
particular type. For example, the Bank object can be thought of as an Account factory, since
Banks are responsible for creating all Account objectsin the system.

Figure 10.4. Multithreaded mixed server/client application operation.

To understand how thisis feasible, consider the following scenario: A client wishesto call aremote method on
aserver. The method takes a particular type of object as a parameter; call it aWidget. Now assume that the
Widget is created by the client. If the client were to pass a Widget that it created to the server through aremote
method, and that method attempted to call a method on the Widget, the result would be a deadlock scenario, as
described in Figure 10.3. These are the typical application semantics over which single-threaded applications
stumble. It would be most useful if these types of semantics could be achieved in away that worked with
single-threaded applications.

Thisiswhere the Object Factory pattern stepsin (see Figure 10.5). This pattern takes the place of the object
creation step. Rather than create the Widget itself, the client requests the Factory (which is the same object as
the server whose method the client wishes to invoke) to create the Widget on the client's behalf. The client can
then manipulate the Widget, if desired, and can finally invoke the desired remote method on the server, passing
the Widget as a parameter. Now, because the Widget exists in the same address space as the rest of the server,
the server can manipulate the Widget as it seesfit.

Figure 10.5. Object Factory pattern.

The Object Factory pattern boasts the advantage of enabling single-threaded clients to pass objects as
parameters to remote methods. This capability comes at a price: The server must provide methods for creating
every type of CORBA object that a client might want to create. Although providing implementations for these
methodsis simple, it can be tedious, particularly in applications containing large numbers of classes. Also, it
can be more inconvenient for clientsto call additional methods to create objects rather than to directly use
constructors, athough thisinconvenience might be minimal. These drawbacks, however, are often outweighed
by the advantages offered by the Object Factory pattern.

Exclusive oneway Call Pattern

Another approach to creating harmony between single-threaded applications and CORBA iswhat you might
call the Exclusive oneway Call pattern. This pattern calls for the exclusive use of oneway invocations
throughout the application. Because oneway methods don't block, the deadlock issue associated with
single-threaded CORBA applicationsis eliminated. However, this advantage comes at a price, as you'll soon
find out.

Note: The Exclusive oneway Call design pattern calls for the exclusive use of oneway methods
for communication between CORBA objects.

Note: For areview of CORBA oneway methods, refer to Day 3, "Mastering the Interface
Definition Language (IDL)."

The exclusive use of oneway method calls throughout a CORBA application exacts a potentially stiff penalty:
First, the concept of a clearly laid-out program flow islost. Consider atypical client application. Thereis
generaly awell-defined flow of control through the program. That is, there is a main method--it might very
well be C/C++/Javas mai n() --at which the program begins and proceeds to call other methods. Usually, the
flow of the program can be determined by tracing the sequence of method calls. In other words, the behavior of
the application is at |east somewhat predictable because the execution flow can be traced relatively easily.

Using oneway methods exclusively, however, radically alters the landscape of an application, asillustrated in
Figure 10.6. Instead of awell-defined flow of control traceable throughout the application, the client features a
series of seemingly digointed oneway methods. The exchange between client and server, rather than following
the familiar pattern of "client calls server/server returns result” is transformed into avolley of oneway calls
from one application to the other. The client starts by calling a method on the server. That method, when
completed, calls amethod on the client that performs the second step in the application. That method, in turn,

http://www.informit.com/content/0672312085/element_013.shtml (4 of 9) [17.07.2000 18:32:29]

javascript:popUp('elementLinks/04.jpg');
javascript:popUp('elementLinks/05.jpg');

- Learning About CORBA Design Issues From: Sams Teach Yourself CORBA in 14 Days
calls another method on the server, which eventually calls a method on the client, and so on.

Again, because each method called is oneway, there is no blocking due to the client or server being busy.
Consequently, each application is free to pass any CORBA objects--including objects created by itself--without
fear of blocking. The downside of this architecture is that because the flow of control is now shared between
two applications, it is much more difficult to trace.

Another penalty that must be paid by devel opers wanting to use the Exclusive oneway Call pattern stems from
acharacteristic of oneway methods which you should recall--namely, that oneway messages are not
guaranteed to be delivered to their destination. Building an entire application based on this mechanism is certain
to be atrying experience, primarily because if there are any methods in the application which require reliable
delivery, the devel oper must implement a mechanism to determine whether aoneway method call actually
executed successfully. In other words, the developer essentially must implement reliable delivery semantics on
top of the unreliable oneway mechanism, in addition to implementing all the usual application functionality.

Figure 10.6. Exclusive oneway Call pattern.

To summarize the Exclusive oneway Call design pattern, it should be stressed that this pattern would be
extremely difficult to implement for most real-world production systems. Consequently, developers are strongly
encouraged to pursue a different method of marrying client and server functionality in a single-threaded
application if at all possible.

Object Lifetime

In a non-distributed application, management of object lifetimeis anon-issue: When the application is finished
using an object, it simply destroysit. With garbage-collected languages like Java, the devel oper does not even
need to write code to do this--the application handles it automatically. If the application crashes, the memory
used by its objectsis reclaimed by the operating system. Because all objects are self-contained in the
application, there are no issues associated with object lifetime.

In adistributed application, circumstances are different. An application might use objects that are local to the
application--that is, objects that live in the same address space as the application--or it might use remote objects,
which might reside in a different process on the same machine or on a different machine somewhere on the
network. Many CORBA ORB products use reference counting for managing object lifetime--a mechanism
which works well when applications behave normally. Although the use of areference-counting mechanismis
not dictated by CORBA, itsinclusion into some major ORB products merits some discussion here. Recall that

in such a reference-counting mechanism, object references are duplicated--that is, their reference count is
incremented--when the reference is passed to an application. Similarly, when an application is finished using an
object, it releases the object reference, that is, decrements the reference count. When the reference count reaches
zero, the object is no longer in use and can safely be destroyed.

But what happens when an application holding an object reference crashes before it can release that object
reference? Thisis where the reference-counting mechanism begins to break down. Under these circumstances,
the object's reference count never reaches zero, and thus the object is never destroyed. This can be thought of as
asort of memory leak in a distributed application. Consequently, devel opers might need to think beyond the
reference counting mechanism and consider a contingency mechanism that picks up where reference counting
leaves off.

Because a distributed application cannot truly know when al other applications are finished using its objects
(because it doesn't know whether any of those applications have crashed), a mechanism over and above the
basic reference-counting mechanism is required. Such a mechanism manages the lifetime of CORBA objects,
automatically determining whether an object isin use and, if not, destroying that object. But how does this
mechanism determine whether an object is still in use? Actually, it can only guess. To understand how such a
mechanism works, consider the following case study.

One such mechanism, known as the Evictor, manages object lifetime by tracking the usage of each CORBA
object within a server (each CORBA server would contain its own Evictor). When an object has not been in use
for a predetermined period of time (for example, aday), the Evictor evicts that object. Although it's possible for
the eviction process to simply destroy the unused object, recall that the Evictor does not know for certain that
the object isno longer in use. It is possible that one of the clients using that object could be dormant for a period
of time, and if the object were destroyed, the client, on waking up, would no longer be able to access that object.
To accommodate this possibility, the Evictor does not actually destroy a CORBA aobject after a period of
non-use but evictsit into a persistent store, such as a database. If that object is needed later, it can be resurrected
from the persistent store. All this occurs transparently to clients, which are completely unaware that objects are
being evicted and resurrected as necessary.

http://www.informit.com/content/0672312085/element_013.shtml (5 of 9) [17.07.2000 18:32:29]

javascript:popUp('elementLinks/06.jpg');

- Learning About CORBA Design Issues From: Sams Teach Yourself CORBA in 14 Days

Of course, a mechanism such as the Evictor, rather than enabling potentially unused objects to consume
memory in a server process's address space, simply moves the unused objects to some form of persistent
storage. The result is that unused objects till exist somewhere--in this case, the persistent storage rather than
the server application address space. Using persistent storage for this purpose, in addition to offering the
advantage of freeing up a server machine's memory resources, provides for simpler maintenance. That is, the
objectsin persistent storage can be cleaned up periodically, perhaps as a part of the system's periodic
maintenance cycle. Purging the database of unused objects in this way would not require system administrators
to bring down the server, thus enhancing the server availability.

Lack of Pass-by-Value Semantics

Perhaps one of the trickiest issues associated with CORBA development is that CORBA does not currently
support the capability to pass objects by value. (This limitation is expected to be removed in alater version of
CORBA; see Appendix C, "What Lies Ahead? The Future of CORBA," for more details on this and other future
enhancements to the CORBA architecture.) Sometimesit isfar more efficient for a server to return an object by
value to aclient so that the client can act on the object locally rather than call a series of remote methods--each
of which incurs the overhead of executing a method remotely--on the object. See Figure 10.7 for an illustration
of this scenario.

Clearly, if aclient isto invoke a large number of methods on an object, it is preferable, in terms of efficiency, to
act on alocal copy of the object rather than aremote one. Thisis particularly true if the parameters or return
value of the method(s) are complex values. Such values are even more expensive to transmit across the
network, asis the case with remote methods.

If passing objects by value is sometimes a good idea, but CORBA doesn't offer the capability, then isn't the
entire discussion a moot point anyway? Asit turns out, even though CORBA doesn't offer this capability
directly, there are several approaches that emulate this behavior.

Rogue Wave ORBstreams.h++

Rogue Wave Software offers a product that enables CORBA applications to pass C++ objects by value. The
product, which builds on Rogue Wave's Tool s. h++ product, provides the capability to pass many of the
Tool s. h++ classes by value, aswell as user-defined classes that derive from certain Tool s. h++ classesor
conform to the proper Rogue Wave-supplied interfaces.

Figure 10.7. Pass-by-reference ver sus pass-by-value.

ORBst r eans. h++ does have some disadvantages. For one, it only supports C++. (If you're implementing a
CORBA application entirely in C++--which isn't altogether unlikely--this probably isn't of concern to you.)
Also, the product currently supports only one ORB--IONA Technologies Orbix--further limiting your choice of
development tools. Finally, because ORBst r eans. h++ builds on the Tool s. h++ product, you might be
saddled with additional baggage associated with using Tool s. h++, if you didn't originally plan on using that
product. For al its drawbacks, however, ORBst r eans. h++ isagood stopgap solution to the current lack of
pass-by-value capability in CORBA.

Using CORBA structs

Another approach to achieving a pass-by-vaue-like behavior is the strategic use of CORBA st r uct s. For
each CORBA interface that needs to be passed by value, the developer createsast r uct that contains
members corresponding to all the data members of the class implementing the interface. After thesest r uct s
are defined, the mechanism works something like this:

1. A method that ordinarily usesinterface types for parameters and return value instead uses the
corresponding st r uct types.

2. Before calling such amethod, the client creates st r uct versions of the objects it wants to pass by
value. It then invokes the method with these parameters.

3. The server creates objects corresponding to the st r uct s (if necessary), performsits processing, and
creates st r uct sfor any output parameters or return values that are to be passed by value.

4. The client receives the output parameters and/or return value from the server and, if necessary, creates
objectsthat correspond to the st r uct parameters.

http://www.informit.com/content/0672312085/element_013.shtml (6 of 9) [17.07.2000 18:32:29]

javascript:popUp('elementLinks/07.jpg');

- Learning About CORBA Design Issues From: Sams Teach Yourself CORBA in 14 Days

There are afew disadvantages to this approach. The most significant is that inheritance is not a feature of

st r uct s; therefore, polymorphism is not supported. In other words, if a particular method takes a certain kind
of st ruct asaparameter, it is not possible to pass another type of st r uct inits place. Referring to the Bank
example, thisis akin to creating a Checki ngAccount object and passing it back in the place of an Account
parameter. However, the CORBA any type might be of use here, at the expense of increased complexity.

Using Conversion Constructors

A third approach that emulates pass-by-value capability in CORBA is to pass an object normally, but then for
the client (or server, depending on whether the object is an input or output parameter) to copy the object's state
immediately on receipt. The processis as follows:

1. A client calls amethod on a server, which returns an object reference. The server smply returns the
object reference as usual.

2. On receiving the object reference, the client creates a new object of the same type, copying the remote
object's state into the local one. Thisis generally done through the use of a constructor that takes the
remote abject as an argument, converting that object into alocal one (hence the term conversion
constructor.)

3. The client releases the remote object and continues working with the local one.

Compared to the st r uct approach, the conversion constructor approach has the advantage of being ableto
work with objects of inherited class types. Additionally, this approach does not require the development of
separate IDL interfacesand st r uct s—-it is possible to use the exact same implementation classes for local and
remote objects. One potentia disadvantage to this mechanism is that the local object must call a number of
methods on the remote object to obtain itsinitial state (often preferential to making a number of remote calls
over the life of the object). Furthermore, this approach requires that for an object to be passed by value, its
interface must provide methods that enable its entire state to be read by another object. This requirement goes
against the concept of encapsulation, one of the goals of object-oriented design. It might also require the
developer to write more code.

CORBA and X Window System

One last issue involves the use of CORBA with applications written for the X Window System. In both
single-threaded and multithreaded applications, using CORBA and X raises a number of concerns.

Single-Threaded Applications Using CORBA and X

The primary issue in writing single-threaded applications that use CORBA and X isthat both these products try
toinstall what is known as an event loop. An event loop is what the name suggests: aloop in the application
code (actually in the windowing system code which is linked with the application code, in the case of X) that
waits for an event, processesiit, and loops back to wait for another event, and so on, ad nauseum. Such an event
loop exists for X aswell asfor CORBA. In the case of X, the event loop receives and processes events from the
X server; in the case of CORBA, the event loop processes events from other CORBA applications. In either
case, the event loop is the main loop of the application, designed such that it expectsto be running in its own
thread all the time. Therein lies the problem with single-threaded applications: Both CORBA and X expect to
use their own event loops, each of which expectsto be run in its own thread, but there is only one thread in the
application.

Fortunately, ORB products usually have a mechanism for integrating the CORBA event loop with an X event
loop. In these cases, the CORBA events are registered with the X event loop, so the single-event loop can
handle events for both products. Y ou can refer to your product's documentation for more information on how
thisis accomplished.

Multithreaded Applications Using CORBA and X

In amultithreaded environment, it is perfectly viable to run separate event loops for X and CORBA, so the
issues applying to single-threaded applications don't apply to multithreaded applications. However, there are a
couple of issues to be aware of: Older revisions of X--versions prior to X11R6.1--are not thread-safe and
therefore must be used with care in a multithreading environment. This means that the devel oper must take
additional stepsto ensure that multiple threads don't access X library calls at the same time. (As of X11R6.1,
however, X isthread-safe and does not suffer from this restriction.)

A related issue is Motif, acommon user interface library for X. As of the time of thiswriting, thereis not yet a

http://www.informit.com/content/0672312085/element_013.shtml (7 of 9) [17.07.2000 18:32:29]

- Learning About CORBA Design Issues From: Sams Teach Yourself CORBA in 14 Days

thread-safe version of the Motif library. Thus, even with the thread-safe X11R6.1 or greater, developers still
need to take care that multiple threads don't execute Motif library calls at the same time. As aresult, integrating
CORBA with aMotif application in a multithreaded environment, at least with the current version of Matif,
takes as much effort as integrating CORBA with a non-thread-safe X library in amultithreaded environment.

Integrating multithreading, CORBA, and non-thread-safe X and/or Moatif is certainly possible, although you can
expect it to take some work. All non-thread-safe calls need to be wrapped in methods that ensure that only one
thread can call such amethod at any given time. One way of ensuring this is through a thread queue, a
mechanism enabling multiple threads to be queued (in other words, wait in line) for access to non-thread-safe
code. Asthread-safe versions of X and Motif proliferate, thiswill become less of an issue, but for now, CORBA
developers should be aware.

Summary

Today you examined several issues associated with developing CORBA applications. The most significant are
those associated with developing CORBA applications in a single-threaded environment and those raised by
CORBA's current lack of pass-by-value capability. You also learned a few, and by no means an exhaustive list
of, workarounds for these issues.

On Day 11, you'll move on to the next topic in advanced CORBA development: use of the Dynamic Invocation
Interface (DI1). The DIl enables CORBA applications to learn about each other dynamically (in other words, at
runtime) and access newly discovered services.

Q&A

Q If non-trivial single-threaded CORBA applicationsraise so many design issues, why wouldn't
someone just use multithreading?

A Although multithreading is often the preferable alternative to wrestling with the issues raised by
single-threaded applications, there are times when multithreading simply isn't available, such as when
single-threading is dictated by choices of other applications or development tools. It is for cases such as
these that the design pattern ns dealing with single-threaded applications are intended.

Q It was mentioned earlier in the chapter that some CORBA productsimplement reference
counting to manage object lifetime. What other way can this be accomplished?

A Another mechanism that can be used to manage object lifetimeis for each remote object to have a
heartbeat. Other objects, or the ORBs themselves, can ping each remote object to determine whether that
object is till alive. If an object doesn't respond to the ping within a preset period of time, the other object
can assume that the application containing that object has crashed. (Asit turns out, a mechanism similar
to thisone is used by other ORB-like products such as Microsoft's DCOM and ObjectSpace's Voyager.)

Workshop

The following section will help you test your comprehension of the material presented today and put what
you've learned into practice. You'll find the answersto the quiz in Appendix A. On most days, afew exercises
will accompany the quiz; today, because no real "working knowledge" material was presented, there are no
exercises.

Quiz

1. What isthe mgjor issue associated with mixing client and server functionality in a single-threaded
CORBA application?

2. How can the use of reference counting in a CORBA application lead to problems?

3. Which version of X11 (the X Window System) would be required to safely run multithreaded X -based
applications?

4. Why isthe capability to pass objects by value sometimes useful ?

5. Why isit usualy inadvisable to use the Exclusive oneway Call design pattern introduced earlier in

http://www.informit.com/content/0672312085/element_013.shtml (8 of 9) [17.07.2000 18:32:29]

- Learning About CORBA Design Issues From: Sams Teach Yourself CORBA in 14 Days
this chapter?

<Back Contents Next>
Save to Mylnforml T

http://www.informit.com/content/0672312085/element_013.shtml (9 of 9) [17.07.2000 18:32:29]

http://www.informit.com/My/Add?isbn=0672312085&title=Sams+Teach+Yourself+CORBA+in+14+Days&category=Programming&topic=CORBA&chapter=2848&elementname=Learning+About+CORBA+Design+Issues
http://www.informit.com/about/
http://www.informit.com/press/
http://www.informit.com/about/advertising/
http://www.informit.com/legal/privacy/
http://www.informit.com/contact/
http://www.informit.com/legal/copyright/
http://www.informit.com/legal/privacy/

- Using the Dynamic Invocation Interface (DIlI) From: Sams Teach Yourself CORBA in 14 Days

ile they last!
Y¥our Name Mi

® Exact Phrase
O All words

Search
Search Tips

Rlylnformi T

InfarmlT Stare
Dol g

Click Here for
High-Tech
Jobs!

developerWorks™

DPEC we—

Based Training

-
bl click to
Recommaend-it.

-@m TopIT
Hews

THCONYS

Hot Topics Yisual Basic Windows 2000 Windows MT Linu=/Open Source Cizco Knowledge Suite

Soluton Centers PragramlIT DatabazelT WebIT MetworkIT ConfiguralT

Using the Dynamic Invocation Interface (DIl)

From: Sams Teach
Yourself CORBA in 14
= Days

R Author: Jeremy
(00)1419:Y Rosenberger

' 14 DAYS| Publisher: Sams
- More Information

<Back Contents Next>

Save to Mylnforml T

Introducing the Dynamic Invocation Interface
o The Purpose of DIl
o Comparison with Static Interfaces/IDL

Using DII: An Overview

o Introducing the Request

o Anysand TypeCodes: A Review

o Reguest and Reply Options
o DIl Example

o Summary

o Q&A

« Workshop
0 Quiz

On Day 10, "Learning About CORBA Design Issues,” you took a short break from devel oping the sample
Bank application to study some design issues raised by the CORBA architecture. As you saw, using CORBA
sometimes requires you to rethink parts (or al!) of the design of some applications because CORBA introduces
some restrictions of its own.

Today you'll continue your hiatus from the sample Bank application--this time to study a simple client that
accesses a server object through the Dynamic Invocation Interface (DII). DIl enables a client to access services
without having been compiled with aclient stub for those services. (Recal in the past that with your
applications you had to compile and link client stubs that used CORBA object services.) How does this work?
The DIl enables CORBA clients to discover interfaces dynamically (in other words, at runtime rather than
compile time) and invoke methods on objects that implement those interfaces. Today you'll learn about DIl and
why it is useful, and then you'll see how a client application isimplemented to use DI services.

Introducing the Dynamic Invocation Interface

Until now, the CORBA clients you've implemented have been static in some respect, aware of only the
interfaces whose client stubs had been included with the rest of the client application at compile time. Thus, the
BankC i ent and ATMCl i ent applications only knew about the Bank interface, the ATMinterface, the
Account interface, and so on. For the purposes of the Bank application, static knowledge of interfaces works
well; there is no reason for a client to access other types of objects unknown to it at compile time. However,
there are times when more dynamic client applications are called for, and thisis where DIl comesin. (You'll see
very soon the situations which call for the capability provided by DIl.)

It should be stressed that the Dynamic Invocation Interface could quite possibly be the least useful feature of
CORBA. You'll seelater in this chapter that there are only a handful of types of applications which really
benefit from using DII; in a@most al other cases, chances are that you'll never have to use DII. However, for the
sake of completeness--and just in case, by some freak chance, you might ever find yourself needing to useit--a
discussion of DIl isincluded here.

http://www.informit.com/content/0672312085/element_014.shtml (1 of 7) [17.07.2000 18:32:42]

http://www.informit.com/
http://ad.doubleclick.net/jump/www.informit.com/programit/;cat=developer;num=92
javascript:document.regularSearch.submit();
http://www.informit.com/search/tips/
http://ad.doubleclick.net/clk;1464039;4446282;i?http://www.informit.com/jobs
http://www.informit.com/news/
http://www.informit.com/downloads/
http://www.informit.com/store/
http://www.informit.com/itlibrary/
http://www.informit.com/edchoice/
http://www.informit.com/alphabook/
http://infobase.informit.com/
http://www.informit.com/My/Accounts
http://ad.doubleclick.net/jump/informit.com/sponsor-button/brassring/badge;sz=100x60
http://ad.doubleclick.net/jump/informit.com/sponsor-button/ibm/badge2;sz=88x31
http://www.informit.com/training/
http://www.recommend-it.com/p.e?415858
http://www.informit.com/news/
http://www.informit.com/downloads/
http://www.informit.com/programit/vb/
http://www.informit.com/networkit/windows2000/
http://www.informit.com/networkit/winnt/
http://www.informit.com/networkit/linux/
http://www.knowcisco.com/
http://www.informit.com/programit/
http://www.informit.com/databaseit/
http://www.informit.com/webit/
http://www.informit.com/networkit/
http://www.informit.com/configureit/
http://www.informit.com/My/Add?isbn=0672312085&title=Sams+Teach+Yourself+CORBA+in+14+Days&category=Programming&topic=CORBA&chapter=2849&elementname=Using+the+Dynamic+Invocation+Interface+(DII)
http://www.informit.com/product/0672312085

- Using the Dynamic Invocation Interface (DIlI) From: Sams Teach Yourself CORBA in 14 Days

The Purpose of DIl

As stated earlier, DIl enables a CORBA client application to discover interfaces at runtime. This means that
such a client application can be compiled with no client stubs at all, thus having no prior knowledge of any type
of CORBA server object. (The client need not discover all server interfaces dynamically, though; it can be
compiled with client stubs for some interfaces and find other interfaces dynamically.) In any case, DIl isthe
enabling feature of CORBA that lets clients use services of objects that were unknown to the client at compile
time. (Note that the use of DIl only applies to aclient; when a server method isinvoked, that server has no
knowledge of whether a method was invoked via the conventional static mechanism or through DII.)

So why isthe Dynamic Invocation Interface useful ? After al, shouldn't the designer of an application know
what kind of objects the application will need to access? In most cases, thisis true, but some types of
applications, although uncommon, do benefit from the capability to discover new object types and use them.
There are at least two practical examples: a CORBA design tool and a generic object browser application.

A Hypothetical CORBA Design Tool Using DIl

One potential usefor DIl isin adesign tool for creating CORBA applications. Such atool would have access to
the IDL interfaces used to create the CORBA objects, because developers don't generally deal with CORBA
objects for which they have no source code or IDL. However, because you can never be sure what developers
are going to do, it would be a nice touch for the tool to have the capahility to discover existing CORBA
interfaces and generate client code to use those objects. The tool could also enable the developer to plug in
CORBA server objects based on either their IDL interfaces or the interfaces as determined through DIl (much
as controls can be plugged in to devel opment tools such as Visua Basic and JavaBeans-aware Java
development tools).

A Generic Object Browser Using DlI

Another possible use for the Dynamic Invocation Interface isin an esoteric, but sometimes practical,
application: one that browses objects on the network. There are many reasons why you might want to do thisin
some types of applications. For example, envision an automated test application that discovers objects, learns
their interfaces, and invokes each method in the interface with a set of dummy parameters. The results could
then be recorded and later analyzed to determine objects’ compliance with atest plan. Because the test
application would discover object interfaces dynamically using DI, it would not need to be recompiled to
handle new types of objects, making it useful as a generic testing tool.

Y et another type of object browsing tool could look for objects that implement particular methods and then
enable a user to access those objects. Thiswould be helpful if aparticular design called for a set of standard
methods that should be implemented by all objects in the system, but for some reason it did not define a base
class from which all interfaces would derive (thisis not always possible when mixing together interfaces from
various sources, such as different products or different projects). For example, if each object wereto definea
ki Il Obj ect () method, an object browser could use DIl to look for objects that defined such a method,
which would in turn enable users to kill objects at will. Although thisisatrivial example, it sets the stage for a
more complex set of methods that could, for example, provide remote system administration features.

Taking this idea one step further, it would be possible to design a Web object browser that could browse
objects, instead of Web pages consisting of static HTML, Dynamic HTML, Java applications, and so on.
Objects could support a basic interface and also, optionally, offer additional capabilitiesin the form of methods
that the browser could discover through DIl. Because such an application would most likely be interactive, the
user could determine which methods were interesting through inspection. In fact, a clever browser application
could determine which methods are interesting, based on their names and parameter lists.

Asafina example, consider an interpreted scripting language such as Perl or Tcl (or some other fictitious
scripting language). DIl could be used to interface such alanguage with CORBA objects. When a script
accessed an operation on a CORBA object, the interpreter could use DIl to "assemble" aremote method
invacation from the IDL interface definition, pass the proper arguments to the method, and return the result to
the script. Here the language interpreter would essentially replace the IDL compiler, which as you should recall
isusually responsible for interfacing CORBA objects with various languages. However, the language
interpreter would also have to become an IDL compiler of sorts, since it would have to translate IDL definitions
into DIl method calls.

Comparison with Static Interfaces/IDL

By now it has been established that DIl offers at |east one advantage over the conventional static process of

http://www.informit.com/content/0672312085/element_014.shtml (2 of 7) [17.07.2000 18:32:42]

- Using the Dynamic Invocation Interface (DIlI) From: Sams Teach Yourself CORBA in 14 Days

invoking methods on objects. Y ou have also seen some potential applicationsin which DIl would prove useful.
Although this range of applicationsis admittedly limited, DIl isinstrumental in making them possible--without
DIl, such applications could not exist at al. To review the advantages of DI|I:

« A client need not be aware of server interfaces at compile time; in fact, the interface definition for the
server object does not need to even exist at the time that the client is compiled. This makes possible
enormous flexibility in applications using DI (if you can find an application that requires such
flexibility).

« The DIl offers several options for obtaining return parameters from a method. The client application can
obtain the result normally, invoke the method using oneway semantics (even if the interface's IDL did
not declare the method as oneway, athough this may not be advisable), or poll for aresult. These
options enable even greater flexibility in DIl applications than in their static invocation-making
counterparts.

There are, however, some disadvantages associated with using the Dynamic Invocation Interface:

« Applications using DIl are more complex than their client stub-using counterparts. Thisis because a
method call through DIl must push each of the input arguments one at a time, invoke the method, and
then pull each of the return arguments back. If thisis done by hand, it can be atedious and error-prone
process.

« While static type-checking capability is built into the static method invocation mechanism, there
essentially is none for DIl method calls. Consequently, subtle differences in interface definitions may
cause an application to inadvertently invoke incorrect methods--even if the application code compiles
correctly! Such errors can be difficult to track down, making them especially insidious.

« Because each argument to a method must be pushed one at atime, additional overhead isincurred in each
DIl method call.

« Of course, there is also the overhead associated with the actual discovery of interfaces. A DIl client will
typically need to "negotiate” with a server (or anumber of servers) to locate the interface (or interfaces)
in which that client isinterested.

Using DII: An Overview

Now that you know what the DI is designed for, you need to see how it is used. The process of issuing aDlI|
method invocation differs from issuing a static method invocation, as you might expect. There are three major
concepts associated with using the DII: the Request object, the use of Anysand Ty peCodes (which you will
recall from Day 3), and available options for sending requests and receiving replies.

Introducing the Request

The Request isa"pseudo-object” (that is, it does not represent a CORBA object, but isimplemented as an
object as far as the implementation language is concerned) that invokes a method on a CORBA object. To
invoke amethod using DII, you first obtain areference to the object on which the method is to be invoked.
Then, using the object'sr equest () orcreat e_r equest () method, you create aRequest object.
Depending on which method you choose, you populate the Request with arguments, return types, and
exceptions, using theadd_val ue() andresul t () methods of the Request object. Then you invoke the
method (using one of the methods discussed later in this section) and finally retrieve the result of the method
invocation (again using one of the methods discussed later).

The purpose of the Request isto encapsulate input parameters to method invocations and return result values
from them. A Request can be created in one of two ways, depending on how you intend to use the Request .
(Note that aRequest object can be used for only one method invocation on one object; to call a method twice,
call two separate methods on the same object, or to call methods on two different objects, you need to create
two Request objects.) The two methods for creating aRequest object are as follows:

« Invokether equest () method on the CORBA object. Ther equest () method takes the name of the
method to be invoked as a parameter, for instance, r equest (" get Banks") . You then call
add_val ue() onthereturned Request object to add input parameters. Finaly, you call resul t ()
onthe Request object to specify the type of the return parameter.

« Invokethecr eat e_request () method on the CORBA object. This method takes several parameters

http://www.informit.com/content/0672312085/element_014.shtml (3 of 7) [17.07.2000 18:32:42]

- Using the Dynamic Invocation Interface (DIlI) From: Sams Teach Yourself CORBA in 14 Days

that populate the Request object before it isreturned. The arguments used in the call to
creat e_request () canbereused, possibly enhancing performance.

Anys and TypeCodes: A Review

Y ou recall from Day 3 the discussion about the Any and TypeCode types. An object of type Any can contain
any type of object; aTypeCode is an object that describes an object's type. An Any consists of aTypeCode
(describing the type of the Any) and the value itself. Most likely, when using the DI, you'll obtain TypeCodes
through the ORB methodscreat e_struct _tc() andcreat e_exception_tc().

Another object you'll encounter when using DIl isthe NVLi st (NV stands for Named Value). An NVLi st isa
list of corresponding names, values, and flags that specify whether itsvalueisani n or out parameter. The
values stored in the NVLi st are Anys. When using ther equest () method of an object to generate a
Request , you simply add the argumentsone at atime using add_val ue() ; however, when using the
creat e_request () method, you usean NVLi st to specify the input arguments to the method being called.
In either case, the return value from the method invocation is always supplied in an NVLi st .

Request and Reply Options

A variety of options exist for sending aRequest to a CORBA object. After the Request psuedo-object is
created and the arguments for the method are specified, you invoke the method in one of the following ways:

o Call thei nvoke() method onthe Request . This method behavesin away you're most likely
accustomed to (with non-oneway calls), blocking until the reply is received.

o Call thesend_def erred() method onthe Request . This method invokes the request but returns
immediately; you can then retrieve the reply using one of the following methods:

o Cadl thesend_oneway() method on the Request . You should do thisonly if the method being
invoked is declared asaoneway method in the IDL definition.

o Youcanasousesend _multiple requests_deferred() and
send_nul ti pl e_requests_oneway() onthe ORB to invoke a number of methods on
different objectsin parallel.

Depending on how amethod isinvoked, there are several possible ways to obtain the results of the method
invocation:

« First, call theenv() method onthe Request to determine whether an exception was raised. If there
was ho exception, call ther esul t () method on the Request object to obtain the NVLi st that
contains the results of the method invocation. Use this method if you invoked the method using the
i nvoke() method onthe Request .

o Call thepol | _response() method onthe Request to periodically check for aresponse from the
method invocation. After pol | _response() indicatesthat the result has been received or the client
wants to block while waiting for the result, call theget _r esponse() method on the Request object.
Use this method if you invoked the method using the send_def er r ed() method.

« Of coursg, if you used thesend_oneway() method, thereisno return result, and thus you don't call
any method to get it.

Now that you're familiar with the process of invoking a method via DI, it'stime for an example.

DIl Example

Using DIl in asimple example is more straightforward than it might sound. Y ou can obtain an object reference
in much the same way as you have in the past, using the ORB'sbi nd() mechanism (keeping in mind that

bi nd() , while being nonstandard, is useful for developing simple examples). However, the object reference
you obtain will be a generic object reference, pointing to a generic CORBA: : Cbj ect , rather than an instance
of aspecific object type. The following are some highlights from a CORBA client that uses DII:

CORBA: : ORB ptr orb;
CORBA: : bj ect _ptr hel |l oWorl d;

Of course, first of all, you need a pointer to an ORB object. Y ou also want a pointer to the object to which you'll
be connecting. In this case, the object is afictitious "Hello World" object, featuring a single method

http://www.informit.com/content/0672312085/element_014.shtml (4 of 7) [17.07.2000 18:32:42]

- Using the Dynamic Invocation Interface (DIlI) From: Sams Teach Yourself CORBA in 14 Days

hel | oWor | d() that takesa CORBA: : St ri ng asaparameter and returns a CORBA: : Long. The method
does not raise any exceptions (but remember that a CORBA System Exception can be raised by any remote
method). Note that the pointer to the Hel | oWor | d object isageneric CORBA: : Obj ect pointer.

CORBA: : NanedVal ue_ptr resultVal;
CORBA: : Any_ptr resultVal Any;
CORBA: : Long returnVal ue = 0;
CORBA: : Request _ptr request;
CORBA: : Any string;

Next, you need afew other pointers. One holds the NanedVal ue returned by the DIl method invocation.
Another pointer holds the Any value contained in the NanedVal ue. A CORBA: : Long variableis created to
hold the actual return value. Also, apointer is created to hold the Request object returned by thei nvoke()
call. Finally, apointer is created to hold the input parameter (which isthe string" Hel | o Wor 1 d").

orb = CORBA: : ORB init(argc, argv);

Y ou should be familiar with this call by now; it simply initializes the ORB. This much isthe samein aDl|
application asin a static invocation application.

try {
hel l owbrl d = orb->bind("1DL: Hel | oWorl d: 1.0");

} catch (const CORBA:: Exception& ex) {
cout << "Could not bind to HelloWwrld" << endl;
cout << ex << endl;
return 1;

}

Now the client application attempts to bind to the desired Hel | oWor | d object. Note that, because the
application does not have aclient stub for the Hel 1 oWor | d object, rather than use the

Hel | oWor | d: : _bi nd() method, it usesthe ORB: : bi nd() method with adightly revised syntax to obtain
areferenceto aHel | oWor | d object.

try {
request = hell oWorl d->_request("hell oWrl d");

string <<= "Hello Wrld";
CORBA: : NVLi st_ptr arguments = request->argunents();
ar gurrent s- >add_val ue("string", string, CORBA:: ARG IN);

The client application asksthe Hel | oWbr | d object to create aRequest object by calling ther equest ()
method. The name of the method that the client wants to invoke on the Hel | oWbr | d object isthe

hel | oWor | d() method, which is used as the parameter to ther equest () method. Then the client getsa
parameter list (an NVLi st) from the Request object through itsar gurrent s() method and proceeds to
populate the NVLi st with the single argument to the hel | oWor | d() method: a CORBA: : St ri ng with the
vaue" Hel | o Wor | d". Thisargument is added as an input parameter using the add_val ue() method on
the NVLi st .

resultVal = request->result();

resul tVal Any = result->val ue();

resul t Any->replace(CORBA:: tc _long, &esultVal);
} catch (const CORBA:: Exception& ex) {

cout << "Could not create request" << endl;

cout << ex << endl;

return 1;

}

Before submitting the Request , the client must do one more thing: Specify the expected return type for the
method. As the method is expected to return a CORBA: : Long, the TypeCode for thistype is pushed into the
result. To do this, theclient callsr esul t () onthe Request object, getstheval ue() (whichisan Any)
from the result, and sets the type and value of the Any returned to be CORBA: : Long. Theclient is now ready
to invoke the method through DI|I.

View Code

Finally, the client invokesthe hel | oWbr | d() method on the Hel | oWér | d object through thei nvoke()
method on the Request . The client then checks for any exceptions that were raised by calling env() onthe
Request object and checking the returned environment by calling except i on() . If thiscall returnsa
non-NULL result, then an exception was raised by the method call, and the exception is reported. If thereisno
exception, the client can call val ue() onthe Any that was previoudly returned by ther esul t () method,

http://www.informit.com/content/0672312085/element_014.shtml (5 of 7) [17.07.2000 18:32:42]

javascript:popUp('elementLinks/element_014_code_1.html');

- Using the Dynamic Invocation Interface (DIlI) From: Sams Teach Yourself CORBA in 14 Days

casting the value of the Any (obtained by calling val ue()) to a CORBA: : Long, which iswhat the type of the
Any should be.

Compared to the equivalent static invocation, you can see that the Dynamic Invocation Interface is much more
involved. It isfor this reason that most CORBA devel opers avoid the DII; the added flexihility often does not
justify the added programming complexity. When the functionality offered by the DIl isrequired, DIl is
necessary; otherwise, it is probably best left alone.

It is probably worth reiterating once more that most devel opers will never need to touch DII. Aside from the
sort of examples provided earlier in this chapter, DIl is not useful for most applications, and would generally
only add unnecessary complexity to most applications. If you're devel oping tools--such as development and
system management tools--that need to work with unknown CORBA objectsin a generic way, you might find
DIl useful; otherwise, you'll find that it provides little, if any, benefit.

Summary

Today you learned a new way to invoke methods on remote CORBA objects--through the Dynamic Invocation
Interface (DI1). You also learned about the advantages and disadvantages of the DIl mechanism compared to
the traditional method of static invocation, as well as some potential practical applications of the Dl
mechanism. Y ou then learned how to employ the DIl features in an application, witnessing firsthand its extreme
complexity compared to the static invocation to which you're accustomed.

On Day 12, "Exploring CORBAservices and CORBAfacilities," you'll explore the next in the series of

advanced CORBA topics--the use of CORBAservices and CORBAfeacilities. Because a great number of features
are offered by these services, there is space in this book for only a short description of each. However, you will
aso return to the sample Bank application and get the opportunity to integrate the use of a
CORBAservice--namely, the CORBA Naming Service--with the Bank application.

Q&A
QI think | need touseDII.

A You don't. Actualy, this answer is only partly tongue-in-cheek. DIl invites many opportunities for
confusion and difficult-to-trace errors in your application development efforts. Unless you're developing
an application similar to those described in the examplesin this chapter and absolutely need to take
advantage of afeature offered by DI, it isamost certain that you don't want to even think about DI|.

Q If DIl isso usdless for most applications, why doesthe CORBA specification bother with it in the
first place?

A Inthe early days of CORBA, there were two camps with opposing views regarding how methods

should be invoked. From one camp's view evolved the static invocation mechanism, and from the other
camethe DII.

Workshop

The following section will help you test your comprehension of the material presented today and put what
you've learned into practice. You'll find the answers to the quiz in Appendix A. On most days, afew exercises
will accompany the quiz; today, because no real "working knowledge" material was presented, there are no
exercises.

Quiz
1. Would you expect DIl to be useful to most CORBA application developers? Why or why not?
2. What are the advantages of DIl over static method invocation?
3. What are the disadvantages of DIl compared to static method invocation?

<Back Contents Next>
Save to Mylnforml T

http://www.informit.com/content/0672312085/element_014.shtml (6 of 7) [17.07.2000 18:32:42]

http://www.informit.com/My/Add?isbn=0672312085&title=Sams+Teach+Yourself+CORBA+in+14+Days&category=Programming&topic=CORBA&chapter=2849&elementname=Using+the+Dynamic+Invocation+Interface+(DII)

- Using the Dynamic Invocation Interface (DIlI) From: Sams Teach Yourself CORBA in 14 Days

http://www.informit.com/content/0672312085/element_014.shtml (7 of 7) [17.07.2000 18:32:42]

http://www.informit.com/about/
http://www.informit.com/press/
http://www.informit.com/about/advertising/
http://www.informit.com/legal/privacy/
http://www.informit.com/contact/
http://www.informit.com/legal/copyright/
http://www.informit.com/legal/privacy/

- Exploring CORBAservices and CORBAfacilities From: Sams Teach Yourself CORBA in 14 Days

ile they last! @

Your Hame

® Exact Phrase
O All words

Search
Search Tips

Rlylnformi T

InfarmlT Stare
Dol g

Click Here for
High-Tech
Jobs!

developerWorks™

DPEC we—

Based Training

W ciick to
Recommaend-it.

-@m TopIT
Hews

TGOS

Hot Topics Yisual Basic Windows 2000 Windows MT Linu=/Open Source Cizco Knowledge Suite
Soluton Centers PragramlIT DatabazelT WebIT MetworkIT ConfiguralT

Exploring CORBAservices and
CORBATfacilities

<Back Contents Next>
Save to Mylnforml T

From: Sams Teach
Yourself CORBA in 14
2 | Days

v it Author: Jeremy
(0(0)1417.Y Rosenberger

w 14 DAYs | Publisher: Sams
- More Information

« CORBASservices
o Concurrency Control Service

o Event Service

o Externalization Service
o Licensing Service

o Life Cycle Service

o Naming Service

o Object Trader Service

o Persistent Object Service
o Property Service

o Query Service
o Relationship Service

o Security Service
o Time Service

o Transaction Service
CORBAfacilities
o Horizontal Facilities
o Vertical Market Facilities
Enhancing the Bank Example with CORBAservices
o Choosing CORBASservices

o Implementing the New Functionality
o Running the Application

e« Summary

o Q&A

« Workshop
0 Quiz

o Exercises

By now you are very familiar with the basic mechanisms provided by CORBA to enable the development of
distributed object-oriented applications. The ORB mechanism facilitates the communication between CORBA
objects and enabl es objects to |ocate each other, and the BOA provides the core functionality for all CORBA
objects.

http://www.informit.com/content/0672312085/element_015.shtml (1 of 10) [17.07.2000 18:32:47]

http://www.informit.com/
http://ad.doubleclick.net/jump/www.informit.com/programit/;cat=developer;num=92
javascript:document.regularSearch.submit();
http://www.informit.com/search/tips/
http://ad.doubleclick.net/clk;1464039;4446282;i?http://www.informit.com/jobs
http://www.informit.com/news/
http://www.informit.com/downloads/
http://www.informit.com/store/
http://www.informit.com/itlibrary/
http://www.informit.com/edchoice/
http://www.informit.com/alphabook/
http://infobase.informit.com/
http://www.informit.com/My/Accounts
http://ad.doubleclick.net/jump/informit.com/sponsor-button/brassring/badge;sz=100x60
http://ad.doubleclick.net/jump/informit.com/sponsor-button/ibm/badge2;sz=88x31
http://www.informit.com/training/
http://www.recommend-it.com/p.e?415858
http://www.informit.com/news/
http://www.informit.com/downloads/
http://www.informit.com/programit/vb/
http://www.informit.com/networkit/windows2000/
http://www.informit.com/networkit/winnt/
http://www.informit.com/networkit/linux/
http://www.knowcisco.com/
http://www.informit.com/programit/
http://www.informit.com/databaseit/
http://www.informit.com/webit/
http://www.informit.com/networkit/
http://www.informit.com/configureit/
http://www.informit.com/My/Add?isbn=0672312085&title=Sams+Teach+Yourself+CORBA+in+14+Days&category=Programming&topic=CORBA&chapter=2850&elementname=Exploring+CORBAservices+and+CORBAfacilities
http://www.informit.com/product/0672312085

- Exploring CORBAservices and CORBAfacilities From: Sams Teach Yourself CORBA in 14 Days

The functionality provided by the ORB and the BOA aoneis not nearly enough on which to build robust,
enterprise-class-distributed applications. Additional capabilities would definitely be advantageous--such as
directory services, persistent object capability, a transaction mechanism, user interface and presentation
facilities, and so on--regardless of the industry in which they are used. Many industries--such as health care,
finance, and telecommunications--require applications that are especially well-suited to CORBA, so
functionality that caters to these vertical marketsis agood idea. Asit turns out, the OMG offers such horizontal
and vertical functionality in the form of CORBAservices and CORBAfacilities.

Y ou've aready been introduced, abeit briefly, to CORBAservices and CORBAfacilities. Today you'll learn
about these in greater detail, as well as get the chance to apply some of the CORBA services to the Bank
application you've been developing.

CORBAservices

The Object Management Architecture (OMA), of which CORBA is apart, defines a number of services that are
useful to applicationsin general. These services range from the nearly indispensable Naming Service to higher
level services such as the Transaction Service. Aswith all its specifications (including CORBA), the Object
Management Group (OMG) does not define the implementations for these services but provides the interfaces
by which the services are offered. It is up to the various CORBA product vendors to supply implementations.
Note that products implementing CORBA services are often provided separately from CORBA ORB products
and that implementation of CORBAservicesis not necessary for CORBA 2 compliance.

This section briefly describes each of the CORBAservices. In Appendix B, "CORBA Tools and Utilities," you'll
see which vendors are currently providing implementations for these services.

Concurrency Control Service

The Concurrency Control Service provides an interface for managing concurrency in shared CORBA objects.
Thisis done through the use of locks, severa types of which are supported by the service. For example,
readers-writer locks are supported, as are intention locks. Developers who have worked with multithreaded
applications are probably familiar with the features provided by the Concurrency Control Service.

Event Service

The Event Service provides a mechanism through which CORBA objects can send and receive events. The
service includes such features as these:

« Reliable delivery, which (simply put) ensures that an event will reach its destination(s)
« Support for push and pull models of event delivery
« Anonymous messaging, when suppliers need not know the identities of event consumers, or vice versa

« Event channels, amechanism similar to publish/subscribe, through which consumers can subscribe to
certain types of events

Externalization Service

The Externalization Service provides interfaces for externalizing (that is, serializing) and internalizing objects.
When an object is externalized, it can be internalized within the same process or a different process. In addition,
objects can be externalized into a portable file format (one that is defined with the Externalization Service
Specification). One possible application for the Externalization Service isin a pass-by-value mechanism for
CORBA objects.

Licensing Service

The Licensing Service enables the provider to define policies that control the use of services. The service
supports three types of licensing policies:

« Time enables alicenseto set a start date, expiration date, and duration.

« Value mapping enables licensing based on units (resource usage metering, number of concurrent users,
and so on).

http://www.informit.com/content/0672312085/element_015.shtml (2 of 10) [17.07.2000 18:32:47]

- Exploring CORBAservices and CORBAfacilities From: Sams Teach Yourself CORBA in 14 Days
« Consumer assigns services for use by a particular user or machine.

Facilities like those provided by the Licensing Service will become more widely used as concepts such as
pay-as-you-go or rentable software are realized. For example, an occasional user of image editing software
might pay per use of a certain image filter. As aframework for electronic commerce becomes available, it is
possible that you'll see more software made availablein thisway.

Life Cycle Service

The Life Cycle Service offersfacilities for creating, deleting, copying, and moving CORBA objects. The
service a so supports the notion of an object factory, which isa CORBA object that creates other CORBA
objects.

Naming Service

The Naming Service enables CORBA objects to register and be located by name. This service uses the notion of
anaming context, which contains a set of unique names. The Naming Service also supports a federated
architecture, meaning that name servers can be distributed across the network and work in conjunction with
each other.

Y ou recall that, as a part of the standard bind mechanism, CORBA objects are given names by which other
objects can look them up. Although you can think of this feature as a miniature Naming Service, the actual
Naming Service is much more scalable.

Object Trader Service

The Trader Service, like the Naming Service, enables other objects to locate CORBA objects. Rather than use a
name to locate an object, aclient object looks for services based on operation names, parameters, and result

types.

The major difference between the Trader Service and the Naming Service is analogous to the difference
between the yellow pages and the white pages of a telephone directory. The Naming Service can be thought of
as the white pages, in which you look up a particular serviceif you know its exact name. The Trader Service, on
the other hand, resembles the yellow pages, in which you locate a service, based on its location, function, or
even name. For example, in the white pages you can look up "Bob's Dry Cleaning;" in the yellow pages you can
look for al dry cleaning servicesin, say, Littleton, Colorado. In the Bank example from previous chapters, an
application might use the Naming Service to locate a Bank by its name (such as FirstBank) or use the Trader
Service to locate objects by function (such as a bank or an ATM).

Persistent Object Service

The Persistent Object Service provides a set of interfaces for managing the persistence of objects. Typically,
implementations for this service are provided by database vendors.

Persistent objects are objects that persist over a period of time; that is, the lifetime of the object can transcend
the lifetime of any one application. While not in use, the object resides in a persistent store, such as a database
or aflat file; the object can then be retrieved, or resurrected, when needed. For example, a document created by
aword processor can be thought of as a persistent object because the word processor application can be closed
and run again later, allowing the document to be retrieved. In a CORBA application, it will sometimes be useful
to provide persistent capability to CORBA objects. For example, in the sample Bank application, the Bank
objects could conceivably be persistent objects. A Bank could be resurrected as needed, and then when it is no
longer processing transactions, it could be put to sleep, meaning that its state could be stored in a database until
the Bank was needed again.

Property Service

The Property Service enables objects to define sets of properties, which are name/value pairs. The namein a
pair isssimply a CORBA string; the value isa CORBA any. Access to properties can be restricted. For
example, a property can be read-only or fixed.

The use of propertiesto describe abjects is becoming more widespread, particularly as object models such as
JavaBeans gain momentum. A large application, or set of applications, could define a number of standard
properties for its objects, thereby potentialy easing management. For example, if the Bank application defined
alocation property for each object, the location of Banks, ATMs, Cust oner s, and other objects could be
determined in auniform way anywhere in the application code.

http://www.informit.com/content/0672312085/element_015.shtml (3 of 10) [17.07.2000 18:32:47]

- Exploring CORBAservices and CORBAfacilities From: Sams Teach Yourself CORBA in 14 Days
Query Service

The Query Service supports the use of queries on objects. Queries can contain predicates that specify objectsto
act on, based on attribute values. The service also supports object indexing as well as nested queries. Query
capability provides database-like semantics to CORBA objects. Just as an application can perform queries on
tables and rowsin arelational database, the Query Service alows an application to perform queries on CORBA
objects.

Relationship Service

The Relationship Service enables the representation of relationships between objects. It provides for full
constraint checking of relationship type and cardinality (one-to-many, one-to-one, and so on) and also worksin
conjunction with the Life Cycle Service to copy, move, and remove related objects. Managing relationships
between aobjects s, of course, possible without the Relationship Service, but this service reduces the complexity
of managing complex relationships.

Security Service

The Security Service specifies the interfaces for security features:
« ldentification and authentication of users, which verify that a user iswho he or she claimsto be.

« Authorization and access control determine which users are enabled access to which services or objects.
« Security auditing, which provides records of users' actions.

« Security of communication, which includes authentication of users to services (and vice versa), integrity
protection, and confidentiality protection.

« Non-repudiation, which provides capabilities similar to those offered by digital signatures; that is, the
origin of data or the receipt of data can be proven irrefutably.

« Administration of various security policies.

Security is aparamount issue in a number of applications; for example, in a production bank application,
virtually all aspects of the system must be made secure, from authentication and identification of customersto
security of communication between banks and ATMs.

Time Service

The Time Service enables a user to obtain the current time; it can determine event ordering and can generate
events based on timers.

Transaction Service

The Transaction Service provides the interfaces to support transaction capabilities. It supports flat and nested
transaction models as well as external TP monitors. Transaction services can also interoperate with each other.

Transaction semantics are an integral part of almost every non-trivial application. For example, in the sample
Bank application, to coordinate atransfer between accounts at different banks, a transaction should be initiated
that would cause the banks involved either to both commit the transaction or to both abort the transaction;
otherwise, inconsistent data (such as account balances) would result.

CORBAfacilities

CORBAfacilities cover both horizontal facilities (features useful to al types of CORBA applications across
various industries) and vertical facilities (functionality that is especially useful to applications within particular
vertical markets and industries). Horizontal facilities include user interface and system management facilities
because this functionality is useful to most types of applications, regardless of the industry in which they are
used. Vertical facilities might include, for example, general ledger and amortization functionality for use within
the accounting industry, or automated shop floor control facilities for use in the manufacturing industry. Like
CORBAservices, the OMG only specifies the interfaces for these facilities; the implementations, where
applicable, are provided by CORBA vendors. Additionally, some CORBAfacilities only suggest interfaces to be

http://www.informit.com/content/0672312085/element_015.shtml (4 of 10) [17.07.2000 18:32:47]

- Exploring CORBAservices and CORBAfacilities From: Sams Teach Yourself CORBA in 14 Days

used for particular services and types of applications.

Horizontal Facilities

The horizontal CORBAfacilities are categorized into four types of facilities: user interface, information
management, systems management, and task management. These categories are further broken down into other
facilities (listed in the next section). Again, horizontal facilities are advantageous to al types of applications,
regardless of industry. For example, most applications require user interfaces, methods of information storage
and retrieval, security facilities, workflow and process management, and so on.

User Interface Common Facilities

The User Interface Common Facilities cover al that relates to user interfaces, from the tools used to develop
them to the way they are presented to the user. CORBAfacilities defines the following components of user
interfaces: User Interface Syleisthe "look and feel" presented to the user by the application. User Interface
Enablers present the user interface to the user. Enablers are grouped into the following facilities:

« Rendering Management, for abstracting user interface objects
« Compound Presentation, for displaying compound documents

« User Support, for spell checking, online help, and so on

Work Management System maintains a user's work environment and consists of the user's desktop, single
sign-on to the system, and information used by the user. Task and Process Automation enables users to write
scripts to automate their tasks and use workflows.

Information Management Common Facilities

The Information Management Common Facilities consist of the following: Information Modeling deals
primarily with the way datais structured.

Information Storage and Retrieval includes databases, information retrieval systems, and repositories.

Information Interchange enables the exchange of data between users and between applications, consisting of the
Compound Interchange Facility, the Data Interchange Facility, and the Information Exchange Facility. Data
Encoding and Representation deals with how information is stored, down to the bit level, if necessary. The
primary reason for addressing thisis to enable portability of data between applications, processes, hardware and
software architectures, and so on.

Systems Management Common Facilities

The Systems Management Common Facilities provide interfaces for system administration. Policy Management
controls the creation, deletion, and modification of manageable components.

Quality of Service Management supports the selection of service levels for availability, performance, reliability,
and recovery.

Instrumentation provides the capability to gather and analyze data regarding system load, object location,
system responsiveness, and so on.

Data Collection includes capabilities such as logging and data archival.

Security provides for the management of security of system resources.

Coallection Management enables administrators to deal with collections of objects to be managed.
Instance Management enables objects to be associated with other objects for management purposes.

Scheduling Management enables tasks to be performed in a controlled manner (for example, to occur at a
certain time or as aresponse to a particular event).

Customization enables objects to be extended dynamically while retaining type safety. Event Management
provides for various manipulations of eventsin the system.

Task Management Common Facilities

Task Management Common Facilities support the processing of user tasks. Among the Task Management
Common Facilities are the following: Workflow provides management and coordination of objects that are part

http://www.informit.com/content/0672312085/element_015.shtml (5 of 10) [17.07.2000 18:32:47]

- Exploring CORBAservices and CORBAfacilities From: Sams Teach Yourself CORBA in 14 Days

of awork process, for example, a purchase process. It supports production-based workflows as well as ad hoc
(coordination-based) workflows.

Agent supports both static and mobile agent types. Although the definition and discussion of the use of agents
are beyond the scope of this chapter, the agent-related facilities include the Content Service, the
Communication Service, the Message Service, the Basic Information Services, the Simple Query Services, the
Multi-Response Query Services, the Assertion Services, the Generation Services, the Capability Definition
Services, the Natification Services, the Networking Services, the Facilitation Services, the Database Services,
the Adaptation Services, the Error Correction Services, the Automatic Re-Transmission Services, the
Registration Service, Security Services, and Management Services. (The sheer number of services suggests that
the topic of agentsis far beyond the scope of this book.)

Rule Management provides for the specification and processing of rules, which in turn are based on events,
conditions, and actions. Automation provides the capability to use scripts and macros to manipulate
large-grained CORBA objects.

Vertical Market Facilities

In addition to the horizontal services and facilities offered by the OMA, there are also a number of vertical
CORBAfacilities--facilities intended for the unique requirements of specific markets. Also, the OMG
continually adds new Vertical Market Facilities, depending on the interest in a particular speciaty area. The
remainder of this section gives abrief overview of the Vertical Market Facilities specifications available at the
time of thiswriting.

Note: Although now a part of the OMG's Facilities Architecture, the Vertical Market Facilities are
largely being superceded by work done by the OMG's various Domain Task Forces. Each of these
Task Forces produces specifications for the vertical application domain to which it isassigned. An
overview of the work completed (or in progress) by the Task Forces at the time of thiswriting
appearsin Appendix C, "What Lies Ahead? The Future of CORBA."

Imagery supports the access and interchange of imagery and related data.

Infor mation Super highways consists of a set of networks, protocols, and rules, information repositories
connected through these networks, and a collection of tools for transparent access to thisinformation.

Manufacturing represents the integration of manufacturing functions and resources with other aspects of the
business enterprise.

Distributed Simulation supports distributed simulations of air traffic control, video games and entertainment,
and other needs.

Qil and Gas Industry Exploration and Production provides afoundation for defining specifications for
exploration and production (E& P). Requirements for E& P include dealing with large quantities of data,
complex agorithms, and long-term data storage.

Accounting provides an interoperable approach to accounting interfaces and seeks to remove the complexity
from accounting service providers and end users.

Application Development covers the selection, development, building, and evolution of the applications needed
to support an enterprise's information systems strategy. Mapping provides a cohesive means of manipulating the
flow of data from databases through constructed analysis modulesinto either presentation tools or secondary
data applications.

Enhancing the Bank Example with CORBAservices

Of course, today wouldn't be complete without a discussion and example of how to integrate CORBA services
and CORBAfacilities with the Bank example. This section will do just that. First, you'll examine which
CORBAservices are of use to the Bank application; then, you'll modify the application to employ those
services. Thereisn't room in this chapter (or this book, for that matter) to make use of all the CORBAservices
and CORBAfacilities that might be applicable, so you will focus on just a couple.

Choosing CORBAservices

Now, briefly review the available CORBAservices for amoment and analyze the suitability of each serviceto
the Bank application:

http://www.informit.com/content/0672312085/element_015.shtml (6 of 10) [17.07.2000 18:32:47]

- Exploring CORBAservices and CORBAfacilities From: Sams Teach Yourself CORBA in 14 Days

« The Concurrency Control Service. Becauseit is quite feasible that objects in the Bank application
(particularly Banks) might be accessed by different objects simultaneously, the use of the Concurrency
Control Service has merit. However, the type of concurrency used might be better serviced by the
Transaction Service.

« The Event Service. If the Bank application were to expand to include messages other than those used by
the account update service added on Day 9, "Using Callbacks to Add Push Capability," the Event Service
would prove beneficial.

« The Externalization Service. Externalization of objectsisn't aterribly important feature to the Bank
application.

« TheLicensing Service. Bank services are generally not licensed, so you can safely overlook the Licensing
Service for the purposes of the Bank application.

« The Life Cycle Service. The Bank application would theoretically benefit from the use of the Life Cycle
Service but is served well enough by the standard CORBA mechanisms for managing object life cycle.

« The Naming Service. If the Bank application were to grow into a highly distributed system, it would
benefit greatly from the use of the Naming Service. Rather than use the standard CORBA hind
mechanism, you could locate Bank s through a federated Naming Service.

« The Object Trader Service. Because the Bank application components are well-known and localized, it is
unlikely that components will need to locate objects based on the services they provide. The Trader
Service is geared more towards applications that require richer facilities for locating services. (Had the
scope of the Bank application been more extensive, it might have been worthwhile to provide the
capability to look up Banks based on location, for example.)

o The Persistent Object Service. The Persistent Object Service would be worthwhile, for example, to a
Bank that needsto store customer and account datain persistent storage while the information isnot in
use.

« The Property Service. Although the Property Service can be used, for example, to represent customer or
account information, it is not particularly advantageous to the Bank application.

« The Query Service. Asit stands, the Bank application would not benefit greatly from the Query Service.
However, if reporting tools were devel oped to work with the Bank application, the Query Service would
prove useful.

» The Relationship Service. For the Bank application, thereislittle value in using the Relationship Service
to model the relationships between objects (for example, between Banks and Account s or between
Cust oner sand Account s). However, if new objects were added that might increase the complexity of
relationships, the Relationship Service would be helpful.

« The Security Service. Because a Bank needsto be a highly secure institution, the Security Serviceis
indispensable to a production Bank application. Numerous aspects of the Security Service can be
utilized, such as user identification and authorization, security auditing, communication security, and
non-repudiation. The Security Serviceis a perfect choice for the Bank application.

« The Time Service. The Time Service is vauable; it ensures that various Banks are in sync with each
other with respect to time.

« The Transaction Service. The Transaction Service is another service that is highly useful to aBank
application. In particular, the interoperability with a TP monitor can coordinate transactions between
Account sand between Banks.

Looking at the CORBA services from the perspective of what would provide the most utility for the Bank
application, the answer would probably be the Security Service and the Transaction Service. However, looking
at the services from the perspective of what's readily available (and what space is available in this book) a more
practical choice would be the Naming Service.

http://www.informit.com/content/0672312085/element_015.shtml (7 of 10) [17.07.2000 18:32:47]

- Exploring CORBAservices and CORBAfacilities From: Sams Teach Yourself CORBA in 14 Days

Implementing the New Functionality

Deciding where to use the functionality provided by the Naming Service is easy. The Naming Service can
replace the use of the standard CORBA hind mechanism; rather than bind to objects directly by name, CORBA
objects can use the Naming Service to look up other abjects. In the Bank application, the only object that is
located in this manner isthe Bank Ser ver ; al other server objects (Banks and ATMs) are located through the
BankSer ver itself. Because these changes aren't major, they fit well within the scope of this chapter.

Using the CORBA Naming Service

Rather than bind directly to the Bank Ser ver using the CORBA bind mechanism, application components
instead bind to a Naming Context and then use that Naming Context to resolve a Bank Ser ver by name. A
Naming Context object makes the functionality of the CORBA Naming Service available to applications. Note
that the Naming Context is simply a CORBA object: Itsinterface is expressed in IDL, and it is manipulated by
an application just as any other CORBA object is.

New Term: A Naming Context is simply a collection of naming structures that associate names with either
CORBA object references or other Naming Contexts. Taken together, these collections of associations form a
hierarchical naming structure that CORBA objects use to locate other objects.

Note: In previous chapters, you built on the application source code developed in the preceding
chapter. This chapter is an exception, however, using the code from Day 9, not Day 11, asa
baseline. This spares you the complexity of using the DIl and CORBAservicesin the same
application.

The first modification to the Bank application isto change the Bank Ser ver application so that it registers
itself with the Naming Service. None of the changes, to either the Bank Ser ver or any other application
component, need to be made in the object implementations themselves. The only changes required are in the
mai n section of each application, where the object is created. The first such modifications, in

BankSer ver Mai n. cpp, are highlighted in bold in Listing 12.1.

Listing 12.1. BankServerMain.cpp.
View Code

Note the process of binding the object to the Naming Service. Previously, a hame was not required for the
BankSer ver ; now the BankSer ver takesits name as acommand-line argument. The BankSer ver then
locates the default Naming Context (created by the Naming Service when it is started), creates a Nane entry
corresponding to the Bank Ser ver object, and finally binds to the Naming Service using that Nanre entry.
Note also that the ki nd of the object, which can be any arbitrary string, usesthe name " BankSer ver ".

Now direct your attention to the next file to be changed, BankMai n. cpp, in Listing 12.2. Again, rather than
bind directly to aBankSer ver , the Bank (and, smilarly, the ATM) locates aBank Ser ver object through
the Naming Service. Note that when the Nane object is created, it isgiventhel D of " BankSer ver 1" and
theki nd of " BankSer ver " . This meansthat the Bank expects to connect to an object whose ki nd is
"BankSer ver" (which you can verify isthe case in Bank Ser ver Mai n. cpp, Listing 12.1) and whose | D
is"BankSer ver 1" . Becausethe BankSer ver getsits| D (also called the Nane) from the command line,
you'll want to start the Bank Ser ver with the argument " BankSer ver 1" when the time comes.

Listing 12.2. BankMain.cpp.
View Code

The changes for ATMVRI n. cpp, similar to thosein BankMai n. cpp, appear in Listing 12.3. Y ou will readily
see that the two implementations are nearly identical.

Listing 12.3. ATMMain.cpp.
View Code

The modified ATMCl i ent Mai n. cpp, appearing in Listing 12.4, demonstrates similar changes. Again, the
ATMO i ent searches the Naming Service for an object named " BankSer ver 1" of type" BankSer ver".
The remaining code for ATMO i ent Mai n. cpp isunchanged.

Listing 12.4. ATMClientMain.cpp.

http://www.informit.com/content/0672312085/element_015.shtml (8 of 10) [17.07.2000 18:32:47]

javascript:popUp('elementLinks/element_015_code_1.html');
javascript:popUp('elementLinks/element_015_code_2.html');
javascript:popUp('elementLinks/element_015_code_3.html');

- Exploring CORBAservices and CORBAfacilities From: Sams Teach Yourself CORBA in 14 Days
View Code

That'sit for modifications--you're now ready to run the modified code.

Running the Application

The various components of the Bank application should be run in exactly the same manner as on Day 9, with
one exception: Before running anything else, you need to start the CORBA Naming Service and let it create a
default Naming Context. To do thiswith Visigenic'simplementation of the Naming Service, type the following:

NaneExt F <factory nane> <l ogfil e>

For the purposes of the Bank application, the following will do just fine:
NanmeExt F NaneServer nani ng. | og

The output of the Naming Service application will be the Interoperable Object Reference (IOR) assigned to the
Naming Service. Y our output will vary but will look something like this:

| OR 012020203700000049444c3a6f 72672e6f 6d672f 436f 734e616d696e672f 457
874656e6465644e€616d696e67436f 6e74657874466163746f 72793a312e30002002
0000000153495680000000010101201400000069767939362e626577656Cc6c6€657
42e636f 6d005750f 8f f 010000005300000001504d43000000003700000049444c3a
6f 72672e6f 6d672f 436f 734€616d696e672f 457874656€6465644€616d696€67436
f6e74657874466163746f 72793a312e3000200b0000004€616d6553657276657200
2000000000000000006f 000000010100200e0000003135332e33362e3234302e373
90002065300000001504d43000000003700000049444c3a6f 72672e6f 6d672f 436f
734e616d696e672f 457874656€6465644e616d696e67436f 6e74657874466163746
f72793a312e3000200b0000004e€616d6553657276657200

Y ou're now ready to run the application as you did on Day 9. Because you didn't modify any of the
functionality, the output of all the application components will be exactly the same.

Summary

In this chapter you became aware of the many CORBA services and CORBAfacilities specified by the OMG.
Y ou also determined which of the CORBA services are appropriate for use with the Bank application from
previous chapters. Finally, you modified the Bank application to use some of the features offered in the
CORBA Naming Service.

Additional information on the CORBAservices (the information provided in this chapter is a condensed version)
isavailable from the OMG's Web siteat ht t p: / / www. ong. or g/ .

On Day 13, you'll shift gears again, this time turning your attention to the Java programming language/platform.
Asyou are no doubt aware, the CORBA architecture spans many programming languages, of which Javais just
one. However, Javais an especially interesting language to use with CORBA, given such features as interfaces
and garbage collection (features you'll learn more about, if you're not aready familiar with them). The next
chapter, "Developing for the Internet Using CORBA and Java," briefly introduces you to the Java programming
language and discusses the use of Javawith CORBA. Finally, on Day 14, "Web-Enabling the Bank Example
with Java," you'll apply Javaand CORBA development to the Web, deploying an applet-based front end to the
Bank application with which you're so familiar by now.

Q&A

Q| didn't see any mention of vertical CORBAfacilitiesfor [insert my pet industry here]. Isthe
OMG neglecting us?

A The OMG is act tively working in an ever-increasing number of vertical domains. If you are interested
in developing standard facility interfaces for a particular industry, you should contact the OMG for more
information.

Q What isthat weird-looking | OR thing anyway?
A The Interoperable Object Reference is a string that uniquely identifies a CORBA object. The IOR is

defined in such away that any vendor's ORB can accept an |OR and resolve it, yielding the object's
location. Generally, you won't need to deal with these, though occasionally they can be a convenient

http://www.informit.com/content/0672312085/element_015.shtml (9 of 10) [17.07.2000 18:32:47]

javascript:popUp('elementLinks/element_015_code_4.html');

- Exploring CORBAservices and CORBAfacilities From: Sams Teach Yourself CORBA in 14 Days

mechanism for objects to locate each other. Because they are plain strings, they are easily transmitted
across a network, stored in afile, and so on.

Q When using the Naming Service, the application componentshad the D, " BankSer ver 1",
hardcoded. Could | make the applications sear ch the Naming Service for aregistered
BankSer ver instead?

A Yes. The Naming Context supportsal i st () operation that returnsaBi ndi ngLi st and

Bi ndi ngl t er at or, which in turn can be used to iterate over the contents of the Naming Context. In
thisway, objects are located by name or by type, or the application simply uses the first object that is
found. Although the Naming Service can be used for this purpose, a better choice might be to use the
Trader Service, which isintended for precisely this use.

Workshop

The following section will help you test your comprehension of the material presented in this chapter and put
what you've learned into practice. You'll find the answers to the quiz and exercises in Appendix A.

Quiz
1. Who defines the specifications for CORBAservices and CORBAfacilities?
2. Who provides the implementations for CORBA services and CORBAfacilities?

3. What CORBAservices and/or CORBAfe&cilities, if any, must a vendor provide with an ORB product in
order to be considered CORBA 2.0-compliant?

4. Why are vertical market facilities useful ?

Exercises

1. Provide an overview of how the Object Trader Service could be used to replace the Bank Ser ver in
the sample Bank application.

2. Describe how the Event Service could be used within the Bank application (hint: consider the
automatic account update feature added on Day 9). What would be the benefit of using this approach?

3. (Extra Credit) If you have any products available to you that implement one or more CORBA services,
try to integrate the functionality provided by a service of your choice with the sample Bank application.
(See the section of this chapter labeled "Choosing CORBAservices' to determine which services might
integrate well with the sample application.) Because of the numerous possibilities available to you, no
answer is provided for this exercise.

<Back Contents Next>
Save to Mylnforml T

http://www.informit.com/content/0672312085/element_015.shtml (10 of 10) [17.07.2000 18:32:47]

http://www.informit.com/My/Add?isbn=0672312085&title=Sams+Teach+Yourself+CORBA+in+14+Days&category=Programming&topic=CORBA&chapter=2850&elementname=Exploring+CORBAservices+and+CORBAfacilities
http://www.informit.com/about/
http://www.informit.com/press/
http://www.informit.com/about/advertising/
http://www.informit.com/legal/privacy/
http://www.informit.com/contact/
http://www.informit.com/legal/copyright/
http://www.informit.com/legal/privacy/

- Developing for the Internet Using CORBA and Java From: Sams Teach Yourself CORBA in 14 Days

ile they last!
Y¥our Name Mi

Hot Topics Yisual Basic Windows 2000 Windows MT Linu=/Open Source Cizco Knowledge Suite

Soluton Centers PragramlIT DatabazelT WebIT MetworkIT ConfiguralT
® Exact Phrase

© Al word . . .
Search Editors’ Choice
Search Tips

yiformiT Developing for the Internet Using CORBA
hsBoo and Java

=8 From: Sams Teach

=1 Yoursef CORBA in 14
= . Days
' il Author: Jeremy
(00)1419:Y Rosenberger

w 14 DAYS | Publisher: Sams
- More Information

<Back Contents Next>

Save to Mylnforml T

Click Here for
High-Tech
Jobs!

Introducing Java
Discovering the Symbiosis Between CORBA and Java

o Architectural Similarities
developeriWorks™ 0 CORBA Versus JavaRMI|

o Other Considerations
« Developing a CORBA Application in Java: An Overview
_ o Using the IDL Compiler
o Implementing the Server Functionality
o Implementing the Client Functionality
@“-"‘ mapmg o Running the Application
o Summary

THEGWS N
« Workshop
0 Quiz

DPEC we—

Based Training

On Day 12 "Exploring CORBA services and CORBAfacilities," you first studied the various CORBAservices
and CORBAfacilities and learned what sort of functionality is provided by these specifications. Y ou then got a
crack at modifying the Bank application to use the CORBA Naming Service. By now, the Bank application
has grown into a complex system.

Today you'll take a step back with the Bank application in terms of functionality, but you'll step outin a
completely new direction at the same time. Taking the baseline Bank application from Day 9, "Using Callbacks
to Add Push Capability," you'll port the application to Java (not as hard as it might sound). In case you're not
familiar with Java already, this chapter first gives you a picture of what Javais all about, along with insights
into the relationship between Java and CORBA. Java and CORBA are avery good match for each other, and
you'll find out why.

Introducing Java

Javais gtill arelative newcomer to the computer industry, but this language-cum-platform has aready seen
significant increases in maturity and utility, both in the reliability of the platform itself (in most cases) and in the
availability of development tools. Since itsintroduction in 1995 (when it metamorphosed from its predecessor,
known as Oak), Java has enjoyed explosive growth, and despite some legal squabbles at the time of thiswriting,
its growth is continuing.

http://www.informit.com/content/0672312085/element_016.shtml (1 of 14) [17.07.2000 18:32:52]

http://www.informit.com/
http://ad.doubleclick.net/jump/www.informit.com/programit/;cat=developer;num=92
javascript:document.regularSearch.submit();
http://www.informit.com/search/tips/
http://ad.doubleclick.net/clk;1464039;4446282;i?http://www.informit.com/jobs
http://www.informit.com/news/
http://www.informit.com/downloads/
http://www.informit.com/store/
http://www.informit.com/itlibrary/
http://www.informit.com/edchoice/
http://www.informit.com/alphabook/
http://infobase.informit.com/
http://www.informit.com/My/Accounts
http://ad.doubleclick.net/jump/informit.com/sponsor-button/brassring/badge;sz=100x60
http://ad.doubleclick.net/jump/informit.com/sponsor-button/ibm/badge2;sz=88x31
http://www.informit.com/training/
http://www.recommend-it.com/p.e?415858
http://www.informit.com/news/
http://www.informit.com/downloads/
http://www.informit.com/programit/vb/
http://www.informit.com/networkit/windows2000/
http://www.informit.com/networkit/winnt/
http://www.informit.com/networkit/linux/
http://www.knowcisco.com/
http://www.informit.com/programit/
http://www.informit.com/databaseit/
http://www.informit.com/webit/
http://www.informit.com/networkit/
http://www.informit.com/configureit/
http://www.informit.com/edchoice/
http://www.informit.com/My/Add?isbn=0672312085&title=Sams+Teach+Yourself+CORBA+in+14+Days&category=Programming&topic=CORBA&chapter=2851&elementname=Developing+for+the+Internet+Using+CORBA+and+Java
http://www.informit.com/product/0672312085

- Developing for the Internet Using CORBA and Java From: Sams Teach Yourself CORBA in 14 Days

For those unfamiliar with the Java language/platform, the best way to learn about it isto visit the Web page of
the JavaSoft division of Sun Microsystemsat ht t p: / / ww. j avasoft. com or to peruse one of numerous
texts available on the language. What these sources will tell you is that Javais characterized by the following:

« An object-oriented language whose syntax resembles a simplified C++; it borrows various concepts from
other languages such as Smalltalk and Objective C.

« A compiler that translates Java source code into a platform-neutral format known as bytecode. The
bytecode files, also known as class files, can be distributed to various machines and executed by the Java
runtime environment (see the next bullet).

« A runtime environment that insulates Java applications from the underlying hardware and operating
system. To this aspect, Java applications mostly owe their cross-platform portability.

» A set of classlibraries encompassing a variety of capabilities, from file and socket 1/0, to multimedia and
3D, to graphical user interface objects.

« The capability to be run inside a Web browser as an applet. An applet is an application that, in addition to
being run inside a Web browser (as a component to aWeb page, perhaps), is subject to various security
restrictions. Security is a feature built into the Java language that makes this possible and makes Java
particularly well suited to Internet-based applications.

Java has the potential to make the operating system into a commodity, providing a consistent APl across all
platforms. Whether this potential will ever be realized remains to be seen. Javais not perfect, of course, and still
must face challenges in the way of performance, portability, and, of course, political opposition. For the time
being, however, it appearsthat Javais here to stay, and asit turns out, Javais very well suited for usein
CORBA application devel opment.

Discovering the Symbiosis Between CORBA and Java

Why do CORBA and Java make a good match for each other? How is this so? What does the CORBA
architecture have to offer the Javalanguage/platform, and vice versa? What symbiosis exists between the two?
This section discusses some of the factors that make development with CORBA and Java an attractive
proposition.

Architectural Similarities

To Java programmers, developing in CORBA feels surprisingly natural and intuitive, almost asif Java and
CORBA were designed for each other. (Of course, thisisn't the case; Java and CORBA have completely
separate design goals.) Most responsible for the near seamlessness between Java and CORBA are the
similaritiesin architecture:

« CORBA'snpdul e construct, which groups together interfaces that perform related tasks, is analogous to
Javaspackage construct.

« Java's garbage-collected memory management model eases application development in general, and the
development of CORBA applicationsis no exception. Such niceties as not having to manage strings
passed across CORBA interfaces make the CORBA developer'slife just alittle bit easier.

« Java's exception model also works well with CORBA. Unlike C++, Java forces methods to handle
exceptions or explicitly throw them (and declare this in the method signature). Therefore, CORBA
exceptions are easier to use without the worry of exceptions falling through the cracks.

« Last, but perhaps the most convenient, is the almost direct correspondence between Java's use of
interfaces and CORBA's. Mapping CORBA interfaces to C++ classes can become hairy at times; the
mapping to Javainterfaces is much cleaner.

CORBA Versus Java RMI

Those familiar with Java are already aware of its Remote Method Interface (RMI) feature. The functionality
provided by RMI isvery CORBA-like; indeed, both CORBA and RMI share the common goal of enabling the
development of distributed, object-oriented applications. Other than some superficial architectural similarities,
CORBA and RMI are quite different, and, thus, each is better suited for different purposes.

http://www.informit.com/content/0672312085/element_016.shtml (2 of 14) [17.07.2000 18:32:52]

- Developing for the Internet Using CORBA and Java From: Sams Teach Yourself CORBA in 14 Days

One mgjor difference between CORBA and RMI isthat, whereas CORBA is language-independent, RMI is
limited to Java only. Thisisamajor consideration when choosing an architecture, even for an application
implemented entirely in Java. Although such an application can use RMI, an architect must consider the
possible need for a system to interact in the future with other, non-Java applications. However, Sun has
indicated that later versions of RMI will be interoperable with 110OP (CORBA's Internet Inter-ORB Protocol) so
interoperability between the RMI and CORBA architectures might not be far away.

CORBA daso holds an advantage over RMI in terms of robustness. Not only has CORBA had a number of years
head start on RMI, but also CORBA provides a more enterprise-ready solution. Whereas RMI consists of a
communications layer and simple naming services, CORBA is part of an architecture that offers many more
services valuable for devel oping enterprise-class applications. (Review Chapter 12 for an overview of the
services and facilities provided by the Object Management Architecture.) Offering capabilities such as
hierarchical naming services, transaction management facilities, event services, and awealth of vertical market
facilities, CORBA holds a clear advantage over RMI in terms of robustness.

CORBA does not hold all the cards, though; RMI currently has at least one significant advantage over the
CORBA architecture. Because RMI is a Java-only technology, it can take advantage of features of the Java
platform. Most notably, RMI integrates seamlessly with Java's Object Serialization technology, enabling objects
to be passed by value (as well as by reference) between remote components. In addition, not only can objects be
passed by value, but aso, because Java employs a platform-independent bytecode, new classes can be sent
across the network via RMI for use by client or server components. The capability to dynamically (at runtime)
introduce new classes into a system opens up awealth of potential for new breeds of applications.

Other Considerations

Other factors exist that lend credibility to the marriage of Javaand CORBA.. Perhaps one of the most
compelling features of Javaisits portability--the capability to run on various types of computer hardware and
operating systems. One characteristic you're certain to find in a distributed application is the need to run on a
variety of hardware and OS platforms. Also, thereislikely greater diversity on the client end of the application,
where numerous types of desktop machines abound--from low-end Network Computers, to midrange PCs, to
high-end UNIX workstations. Certainly, being able to deliver client applications on all potential end-user
platformsis aboon to developers of enterprise-class applications. Thisiswhat Java offersto CORBA: the
capability to write a client-side application once and run it on a multitude of platforms. (As Java continuesto
make strides in performance and robustness, it will see more use on the server side of distributed applications,
but that's another story.)

Not only does CORBA benefit from Java by gaining cross-platform client applications, but also Java gains from
CORBA. The benefit to Javais that CORBA offers cross-language interoperability. Recall that Java's Remote
Method Invocation facility works only between Java applications,; to communicate with non-Java applications,
developers must implement their own communications layer, possibly involving low-level network sockets.
CORBA makes this unnecessary, providing an object-oriented abstraction that enables Java applications to
communicate with applications written in ailmost any language.

Developing a CORBA Application in Java: An Overview

Developing a CORBA application in Javais not unlike developing the same application in C++. You still use an
IDL compiler to trandate IDL definitions into server skeletons and client stubs; the only difference is that the
compiler generates Java code rather than C++ code. The process, however, remains the same.

To develop the Java version of the Bank application presented in this chapter, you need a few additional tools:

« A CORBA product that supports Java. The example in this chapter (and the next, "Web-Enabling the
Bank Example with Java") uses Visigenic Software's VisiBroker for Java, but you can also use other
products, such as Sun's Java IDL or IONA Technologies OrbixWeb, with little or no modification to the
provided code.

« A Javadevelopment tool. This can be an Integrated Development Environment (IDE) such as Microsoft's
Visual J++ or Symantec's Café or Visual Café, or it can be the Java Development Kit (JDK) from Sun.
Depending on the CORBA product you choose, you need atool that supports JDK 1.1 or higher, but you
might be able to get by with JDK 1.0.2.

« A machine (or machines) capable of running these products. Chances are, though, that if you have the
products, you probably have the machine, too.

http://www.informit.com/content/0672312085/element_016.shtml (3 of 14) [17.07.2000 18:32:52]

- Developing for the Internet Using CORBA and Java From: Sams Teach Yourself CORBA in 14 Days
When you have al these items, you're ready to begin developing in Java.

Using the IDL Compiler

As dready mentioned, the use of the IDL compiler is exactly the same when you're writing a CORBA
application in C++ or in Java. The command to run the IDL compiler, though, might be different. For the
compiler included with VisiBroker for Java, use the following command:

i dl 2j ava -package idl d obal filenane

wheref i | enamne isthe name of the IDL file to be compiled. Also, herethe - package i dl A obal switch
tellsthe IDL compiler to place the generated code into adirectory named i dl A obal , and the generated Java
classeswill beplacedinthei dl G obal package. The VisiBroker IDL compiler will generate code for both
servers and clients.

War ning: Before attempting to use the Java IDL compiler, make sure you have installed the
product according to the vendor's documentation. In particular, you need to set the PATH and
CLASSPATH environment variables. For example, VisiBroker requires

Vi si Br oker -di rectory/ vbj 30. j ar to be added to the CLASSPATH. If you encounter
errors when trying to use the IDL compiler, consult your vendor's documentation.

To prepare for development of the Java Bank application, copy the IDL source files from Day 9 into a new
directory, and then compile them with the Java IDL compiler. It's convenient to create a batch file, shell script
file, or Makef i | e to perform this step automatically. When you complete this step, you will have adirectory
namedi dl A obal containing anumber of fileswiththe. j ava extension. Y ou're now ready to proceed with
development, starting with the server functionality.

Implementing the Server Functionality

Because you have made no changes to the Bank application, other than using a different development
language, the architecture has not altered from previous chapters. Consequently, all the application components
will look very familiar to you by now.

BankServer

The BankSer ver isnow implemented in two files, BankSer ver | npl . j ava and BankSer ver Mai n.
j ava, appearing in Listings 13.1 and 13.2, respectively. Also, thereisthe file CORBAAI gori t hns. | ava,
which contains some utility methods, appearing in Listing 13.3.

Listing 13.1. BankServerimpl.java.
View Code
Listing 13.2. BankServerMain.java.
View Code

Listing 13.3. CORBAAIgorithms.java.

1. // CORBAAl gorithms.|ava

2.

3. package util;

4.

5: inmport java.util.Enuneration;

6: inmport java.util.Vector;

7.

8: public class CORBAAl gorithns {

9:
10: /!l Return true if the given Vector contains the gi ven CORBA
11: /!l object, that is, if there is an elenent in the Vector for
12: /1 which obj._is_equivalent() returns true.
13: public static bool ean contai ns(Vector vector, org.ong. CORBA
14: oj ect obj) {
15:
16: Enuneration e = vector. el enents();

http://www.informit.com/content/0672312085/element_016.shtml (4 of 14) [17.07.2000 18:32:52]

javascript:popUp('elementLinks/element_016_code_1.html');
javascript:popUp('elementLinks/element_016_code_2.html');

- Developing for the Internet Using CORBA and Java From: Sams Teach Yourself CORBA in 14 Days

17:

18: whil e (e. hashoreEl enents()) {

19: if (obj._is_equival ent((org.ong. CORBA. Object)e.

20: next El enent ())) {

21:

22: /!l A match was found.

23: return true;

24. }

25: }

26:

27: /1 A match was not found.

28: return fal se;

29: }

30:

31 /!l Renmove the first element fromthe given Vector for which the
32: /1 obj. _is_equivalent() returns true for that elenent. If no
33: /1l such elenment is found, this method does nothing.

34: public static void renoveEl enent (Vector vector, org.ong. CORBA
35: Chj ect obj) {

36:

37: Enuneration e = vector.elenments();

38:

39: whil e (e. hasMoreEl enents()) {

40: or g. ong. CORBA. Ohj ect cobj = (org.ong. CORBA. (bj ect) e.
41: next El enent () ;

42: if (obj._is _equivalent(cobj)) {

43:

44. /1 A match was found; renove the el enent.

45: vect or. renoveEl enent (cobj);

46: return;

47: }

48: }

49: }

50: }

Thelogic of the Bank Ser ver implementation isidentical to its C++ counterpart. Here are some highlights of
the Java implementation.

Thei nport statement in Java, as seenin lines 3-12 of Listing 13.1, isadistant cousin to C++'s#i ncl ude
preprocessor directive. The#i ncl ude directive imports information about other classesinto a sourcefile;
Javasi mport statement servesthe same purpose. Note that thei nmport statement uses the fully qualified
class name of the class--that is, the class's package name plus the class nameitself. For instance, the
Enuner at i on class from the preceding listingsisinthej ava. uti | package.

Note thei nport sof classesinthei dl G obal package (inlines6 and 7 of Listing 13.1). These are the
classes generated by the IDL compiler in the previous step.

Now noticethe cl ass declaration in line 14. In the Java language mapping for IDL, implementation classes
for CORBA interfaces extend a certain base class. For the BankSer ver | npl class, thisbase classis
i dl d obal . _BankServer | npl Base.

Vect or (or more specifically, j ava. uti | . Vect or) isabuilt-in Java class that provides the semantics of a
resizable array. The BankSer ver | npl usesVect or sto store the Banks and ATMs that register with the
BankSer ver , asseenin lines 16-20.

Note that in the constructor for Bank Ser ver | npl (appearing in lines 22-28), acall ismadeto super ().
Thisis aspecial method name denoting a constructor in the superclass (in this case,

_BankSer ver | npl Base) that accepts the given arguments (or argument, in this case). Also, note that the
BankSer ver | npl constructor creates the two Vect or s declared earlier.

The remainder of the BankSer ver | npl implementation is self-explanatory. Y ou'll now move on to
BankSer ver Mai n. j ava, which createsaBankSer ver | npl and registers the object in the CORBA
environment.

Now turn your attention to Listing 13.2. Note first thei nmport statements appearing in line 3 and 4. These
i npor t statements import two important classes in a CORBA application: the Basic Object Adapter (BOA)

http://www.informit.com/content/0672312085/element_016.shtml (5 of 14) [17.07.2000 18:32:52]

- Developing for the Internet Using CORBA and Java From: Sams Teach Yourself CORBA in 14 Days
and the Object Request Broker (ORB). In amoment, you'll see what they are used for.

Y ou might have already guessed this, but static class membersin Java (such as those that appear in lines 8 and
9) behavelike st at i ¢ membersin C++: They are available independently of a particular instance of that class.

Every Javaapplication must haveapubl i ¢ static void mai n() inatleast one class (actualy, every
classcan haveamai n() method, but only one can invoke the application at any given time). This method
awaystakesStri ng[] ar gs asaparameter (or the semantically equivalent St ri ng args[]). The
mai n() method of BankSer ver Mai n beginsin line 11.

Before any CORBA objects are created, the ORB and BOA must beinitialized, as shown in lines 13-17.

Thenthe BankSer ver | npl object is created and registered with the BOA, throughtheobj i s_ready()
method, as seenin lines 19-23.

Thei npl _i s_ready() method, calledinline 27, enters the CORBA event loop, passing incoming CORBA
events to the appropriate objects.

Finally, inlines 28-35, acat ch handler is added in case exceptions are thrown by any of the methods called.
Thetry. .. cat ch mechanism worksthe samein Javaasin C++.

CORBAAI gori t his. j ava, appearing in Listing 13.3, contains a couple of useful methods.

Note the use of the package statement in line 3. This indicates that the CORBAAI gor i t hns class belongsto
theut i | package.

Note also that cont ai ns() , which beginsin line 10, isdeclared asast at i ¢ method. Such methods behave
the same asin C++--that is, they exist independently of any object instance and are invoked as freestanding
functions rather than as methods on objects.

Asseenin lines 16-29, this method iterates through the provided Vect or , searching for an object for which
_is_equival ent () (astandard CORBA method) returnst r ue. The next method, r enoveEl enent (),
behaves similarly.

Warning: Remember that the _i s_equi val ent () method returnst r ue if it is known that
two object references refer to the same object. It ispossiblefor _i s _equi val ent () toreturn
f al se evenif two references are in fact equivalent; the only guarantee is that the method will
never returnt r ue if the references are not equivalent. Use this method with caution.

Bank

Listings 13.4-10 contain the definitions of the Java classes that implement the Bank functionality. You'll see
that the functionality provided by these classes mirrors their counterparts from previous chapters.

Listing 13.4. Accountimpl.java.
View Code

Listing 13.5. ATMCardImpl.java.
/1 ATMCardl npl . j ava

i mport java.util.Enuneration,;
i mport java.util.Vector;

i mport idl dobal.Account;

i mport idldobal.lnvalidAccount Excepti on;

oxNoORONE

10: inport util.CORBAAl gorithnms;

12: public class ATMCardl npl extends idl d obal._ ATMCardl npl Base {

14: /1 This ATMCard's Personal Identification Nunber (PIN).

15: private short nyPI N

16:

17: /1 The Accounts which are authorized for use with this ATMCard.

http://www.informit.com/content/0672312085/element_016.shtml (6 of 14) [17.07.2000 18:32:52]

javascript:popUp('elementLinks/element_016_code_3.html');

- Developing for the Internet Using CORBA and Java From: Sams Teach Yourself CORBA in 14 Days

18:
19:
20:
21:
22:
23:
24
25:
26:
27:
28:
29:
30:
31:
32:
33:
34.
35:
36:
37:
38:
39:
40:
41
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54.
55:
56:
57:
58:
59:
60:
61:
62:
63:
64
65:
66:
67:
68:
69:
70:
71:
72:
73:
74.
75:
76:
77
78:
79:
80:

private Vector nyAccounts;
publ i c ATMCardl npl (short pin, Account initial Account) {

myPI N = pin;
myAccounts = new Vector();
myAccount s. addEl enent (i nitial Account. _duplicate());

}
private ATMCardl mpl () {

nyPIN = O;
myAccounts = new Vector();

}
public void pin(short pin) {

myPI N = pin;
}

public short pin() {

return nyPIN;

public Account[] getAccounts() {

Account[] list = new Account[myAccounts. size()];
myAccount s. copylnto(list);

Enureration e = nyAccounts. el enents();

whil e (e. hasMoreEl ements()) {
((Account)e. nextEl ement()). _duplicate();

}

return |ist;

public void addAccount (Account account) throws
I nval i dAccount Excepti on {

if (isAuthorized(account)) {

/1 Account has already been added, so throw an
/'l exception.
t hrow new I nval i dAccount Excepti on();

}

/1 Add the created Account at the end of the I|ist.
myAccount s. addEl enent (account. duplicate());

public void renmpveAccount (Account account) throws
I nval i dAccount Exception {

if (!'isAuthorized(account)) {

/1 lInvalid Account; throw an excepti on.
t hrow new I nval i dAccount Exception();

}

/1 Delete the given Account.
CORBAAI gori t hns. r enmoveEl enent (myAccounts, account);

http://www.informit.com/content/0672312085/element_016.shtml (7 of 14) [17.07.2000 18:32:52]

- Developing for the Internet Using CORBA and Java From: Sams Teach Yourself CORBA in 14 Days

81: account. _rel ease();

82: }

83:

84: publ i ¢ bool ean i sAut hori zed(Account account) {

85:

86: return CORBAAl gorithms. contai ns(myAccounts, account);
87: }

88: }

Listing 13.6. CheckingAccountimpl.java.

1. // CheckingAccountlnpl.java
2:
3: inmport idl dobal.Custoner;
4.
5: inport idldobal.InsufficientFundsExcepti on;
6: inport idldobal.lnvalidAmunt Excepti on;
7:
8: public class Checki ngAccountl npl extends idld obal.
9: _Checki ngAccount | npl Base {
10:
11: /1 The Accountlnpl to which nost of this Checki ngAccountlnpl's
12: /1 functionality is del egated.
13: private Accountl npl myAccount;
14:
15: publ i c Checki ngAccount | npl (String account Nunber, String
16: creationDate, float initialBalance, Custoner custoner)
17: {
18:
19: myAccount = new Account | mpl (account Nunber, creati onDat e,
20; i nitial Bal ance, custoner);
21: }
22:
23: prot ect ed Checki ngAccount !l nmpl () {
24:
25: }
26:
27: public String account Nurmber () ({
28:
29: return nyAccount . account Nunber () ;
30: }
31:
32: public String creationDate() {
33:
34: return nyAccount. creati onDate();
35: }
36:
37: public float balance() {
38:
39: return nyAccount. bal ance();
40: }
41:
42. public Custoner[] getCustoners() {
43:
44: return nyAccount. get Cust oners();
45: }
46:
47. public float withdrawfloat amount) throws
48: I nval i dAnount Excepti on, InsufficientFundsException {
49:
50: return nyAccount.w t hdraw anount) ;
51: }
52:
53: public float deposit(float amount) throws

http://www.informit.com/content/0672312085/element_016.shtml (8 of 14) [17.07.2000 18:32:52]

- Developing for the Internet Using CORBA and Java From: Sams Teach Yourself CORBA in 14 Days

54: I nval i dAmount Excepti on {

55:

56: return nyAccount. deposit (amunt);
57: }

58: }

Listing 13.7. SavingsAccountimpl.java.

1. // SavingsAccountlnpl.java
2:
3: inmport idl dobal.Custoner;
4:
5: inport idldobal.InsufficientFundsExcepti on;
6: inport idl dobal.lnvalidAmunt Excepti on;
7.
8: public class SavingsAccountl npl extends idl d obal.
9: _Savi ngsAccount | npl Base {
10:
11: /1 The Accountlnpl to which nost of this SavingsAccountlnpl's
12: /1 functionality is del egated.
13: private Accountl npl myAccount;
14.
15: /1 This account's interest rate.
16: private float nylnterestRate;
17:
18: publ i c Savi ngsAccount| npl (String account Nunber, String
19: creationDate, float initialBalance, Custoner custoner,
20: float interestRate) {
21:
22: myAccount = new Account | npl (account Nunber, creationDate,
23: i nitial Bal ance, custoner);
24: nylnterestRate = interestRate;
25: }
26:
27: protected Savi ngsAccount | nmpl () {
28:
29: }
30:
31: public String account Nunmber () {
32:
33: return nyAccount. account Number () ;
34: }
35:
36: public String creationDate() {
37:
38: return nyAccount. creati onDate();
39: }
40:
41: public float balance() {
42:
43: return nyAccount. bal ance();
44 }
45:
46: public Custoner[] getCustoners() {
47
48: return nyAccount. get Cust oners();
49: }
50:
51: public float wi thdraw(float anount) throws
52: I nval i dAnount Excepti on, InsufficientFundsException {
53:
54 return nyAccount.w t hdraw anount) ;

http://www.informit.com/content/0672312085/element_016.shtml (9 of 14) [17.07.2000 18:32:52]

- Developing for the Internet Using CORBA and Java From: Sams Teach Yourself CORBA in 14 Days

55: }

56:

57: public float deposit(float anpunt) throws
58: I nval i dAmount Exception {

59:

60: return nyAccount. deposit (amount);

61: }

62:

63: public float interestRate() ({

64:

65: return nyl nterestRate,;

66: }

67:

68: public float setlnterestRate(float rate) throws
69: I nval i dAnount Exception {

70:

71. /1 Disallow negative interest rates and throw an exception
72: [l if this is attenpted.

73: if (rate < 0.0) {

74:

75: t hrow new | nval i dAnount Exception();
76: }

77:

78: float oldinterestRate = nylnterestRate;
79: mylnterest Rate = rate;

80: return ol dl nterestRate;

81: }

82: }

Listing 13.8. Bankimpl.java.
View Code
204: }

Listing 13.9. UpdateAccountThread.java.

1. // Updat eAccount Thread. j ava

2.

3: inmport java.util.Enuneration

4: inport java.util.Vector;

5:

6: inport idldobal.Account;

7: inport idl dobal.Custoner

8.

9: public class UpdateAccount Thread extends Thread {
10:

11: /1 The Accounts to be updated by this thread.
12: Vect or myAccounts;

13:

14: publ i ¢ Updat eAccount Thr ead(Vect or accounts) {
15:

16: myAccounts = accounts;

17: }

18:

19: prot ect ed Updat eAccount Thread() {
20:
21: }
22.
23: public void run() {
24:
25: /1 Do this forever (or until the thread is killed).
26: while (true) {

http://www.informit.com/content/0672312085/element_016.shtml (10 of 14) [17.07.2000 18:32:52]

javascript:popUp('elementLinks/element_016_code_4.html');

- Developing for the Internet Using CORBA and Java From: Sams Teach Yourself CORBA in 14 Days

27:

28: /] Sleep for one minute between updates.

29: try {

30: sl eep(60000) ;

31 } catch (InterruptedException ex) {

32: }

33:

34. /1 lterate through each Account..

35: Enunmeration e = nmyAccounts. el enent s();

36: whil e (e.hasMreEl ements()) {

37: Account account = (Account)e. nextEl enment();

38:

39: /] lterate through each Customer associated with
40: /1 the Account..

41: Custoner[] customers = account. get Custoners();
42: for (int i = 0; i < custonmers.length; i++) {

43:

44: try {

45: /1 Send an update nessage to each Custoner.
46: custoners[i].updat eAccount Bal ance(account,
47: account. bal ance());

48: } catch (Exception ex) {

49:

50: /1 lgnore any exceptions that occur.

51: }

52: }

53: }

54: }

55: }

56: }

Listing 13.10. BankMain.java.
View Code

Here are highlights from the various classes that implement the Bank server application. First, note the
implementation for get Cust onmer s() inAccount | npl . j ava (refer to lines 60-71 of Listing 13.4).

Notice the relative simplicity with which objects are copied from Vect or s into arrays. First, an array of the
appropriate sizeis created (in line 62), and the contents of the Vect or are copied into it with a single method
cal: copyl nto() (line63). Because these are outbound CORBA objects, they must be _dupl i cat e() d,
which isthe reason for the subsequent iteration acrossthe Vect or , asin lines 65-68.

Next, note the constructor of Bank| npl (lines 34-46 of Listing 13.8).

In the constructor, an Updat eAccount Thr ead object is created (which you'll get acloser look at in a
moment) and started. For ssimple threads, thisis all that Javarequires: Create a Thr ead object, and call
start () onthat object. Now, look at the Updat eAccount Thr ead itsdlf, beginning in line 9 of Listing
13.9.

One way to implement threads in Javaisto create a class that derivesfromj ava. | ang. Thr ead (or simply
Thr ead), as Updat eAccount Thr ead does. The next step isto implement ther un() method. The actual
workings of the Updat eAccount Thr ead. r un() method are self-explanatory.

Finally, noticein BankMai n. j ava how an application binds to a CORBA object (refer to Listing 13.10).
Again, the ORB isinitialized (lines 31-33).

Sometime after the ORB and BOA areinitialized, Bank Mai n usesthebi nd() method of
BankSer ver Hel per tobindtoaBankSer ver object, asin line 41. (Recall again that bi nd() is
nonstandard and is used here for simplicity.)

ATM

The implementation of the ATMserver, consisting of ATM npl . j ava and ATMVRI n. j ava, appearsin
Listings 13.11 and 13.12. Thisis clear-cut and contains no surprises.

http://www.informit.com/content/0672312085/element_016.shtml (11 of 14) [17.07.2000 18:32:52]

javascript:popUp('elementLinks/element_016_code_5.html');

- Developing for the Internet Using CORBA and Java From: Sams Teach Yourself CORBA in 14 Days
Listing 13.11. ATMImpl.java.

View Code
Listing 13.12. ATMMain.java.

View Code

Implementing the Client Functionality

The client pieces-Cust oner | npl . j ava and ATMC i ent Mai n. j ava--carry over amost exactly from
their C++ counterparts. The implementations appear in Listings 13.13 and 13.14, respectively.

Listing 13.13. Customerimpl.java.
View Code
Listing 13.14. ATMClientMain.java.

View Code

Running the Application

Except for being ported to Java, the application is precisely the same as on Day 9. The output, save for slight
differences between formatting in C++ and Java, is nearly identical. The only difference isthe way the
application components are invoked (the exception being that, if you're using a Java development tool that
produces native executables, thereis no difference at all in the way the components are invoked).

Start by running the Bank Ser ver application:
j ava BankServer Mai n

Again, the output of the Bank Ser ver isthis:
BankServer ready.

You're now ready to start the Bank application:
j ava BankMain "First Bank"

which, again, outputs this:
Bank "First Bank" ready.

Meanwhile, the Bank Ser ver will have output this:
BankServer | npl: Registering Bank "First Bank".

Then you start the ATMapplication:
java ATMMai n "First Bank ATM

The ATMapplication displays the following:
ATM "First Bank ATM ready.

The BankSer ver , again, outputs the message:
BankServerl npl: Registering ATM "First Bank ATM'.

Finally, you're ready to run the ATMCl i ent application. Y ou can do so by typing the following:
View Code

The ATMCl i ent again displays the following:

View Code

At this point, the ATMCl i ent dlegps for two minutes while waiting for messages from the Bank. Be patient,
and the ATMCl i ent will eventually output this:

Custonerl npl: Recei ved account update:
New bal ance is $750.0

All this goes by very quickly. After it's over, you can go to the other application windows and see some

http://www.informit.com/content/0672312085/element_016.shtml (12 of 14) [17.07.2000 18:32:52]

javascript:popUp('elementLinks/element_016_code_6.html');
javascript:popUp('elementLinks/element_016_code_7.html');
javascript:popUp('elementLinks/element_016_code_8.html');
javascript:popUp('elementLinks/elemennt_016_code_9.html');
javascript:popUp('elementLinks/element_016_code_10.html');
javascript:popUp('elementLinks/element_016_code_11.html');

- Developing for the Internet Using CORBA and Java From: Sams Teach Yourself CORBA in 14 Days

evidence of what transpired here. Looking first at the Bank Ser ver application, you'll see this (with new
output messages highlighted in bold):

BankServer ready.

BankServerlnpl: Returning list of 1 Banks.

BankServerlnpl: Returning list of 1 ATMs.

The output of the other applicationsis the same as last time, except for the Bank application. Turn your
attention to the window in which the Bank is running and you will see the following familiar output:

Bank "First Bank" ready.

Bankl nmpl : Creating new Checki ngAccount for Custoner Jereny Rosenberger.
Accountlnmpl: Insufficient funds to w thdraw specified anount.

Bankl nmpl : Del eti ng Account "Account 00000000".

Bankl npl: Attenpted to delete invalid Account.

Stay tuned for afew moments, and you will see the following (if it took you a minute or so to bring the Bank
output window up, this might already be on your screen):

Bankl npl : Updati ng Accounts.

Recall that this message is output just before the second thread in the Bank application sends the update
messagesto all the Account owners.

Summary

Today you were first introduced to the Java language/platform; you then ported the Bank application from C++
to Java. Thiswas a pretty straight port: Most of the code could be translated almost line for line from C++. If
you're already familiar with Java, this should have been afairly trivial exercise. If you're new to Java, you've
learned a bit about the language and, more importantly, witnessed the ease with which CORBA applications are
implemented in Java.

Because the port of the Bank application from C++ to Java didn't add anything novel, you might have found
this exercise uninteresting. However, on Day 14, "Web-Enabling the Bank Example with Java," the Java port
will be developed further, so read on.

On Day 14, you'll take the Java version of the Bank application to its next logical step. Because one of Java's
strengths isits capability to deploy graphical applications through Web browsers to end users, it makes senseto
develop agraphical front end to the Bank application, rather than continue with the (rather boring)
character-based interface. Thisis exactly what you'll do on the next and final day of this book. This exercise
will give you insight into what can be accomplished using CORBA and Java.

Q&A

Q | thought Java wasjust for making cute animations on Web pages. What gives?

A Although Javainitially rose in popularity because of its suitability for the Web, and the first-generation
Java development tools were mostly geared toward devel oping simple Web appl ets, Javais much more
than alanguage for writing cute but useless software. Indeed, Javais entirely suitable for general-purpose
software development, much like C++. Java's integration with CORBA is atestament to the fact that Java
isnot just atoy programming language.

Q Much of the Java codein this chapter looks an awful lot like the C++ code from the previous
chapters. Isthistypical?

A Becausethereisagood dea of similarity in the syntax of C++ and Java, it is hot uncommon for simple
applications in Javato strongly resemble their C++ counterparts. When the application starts making use
of various class libraries, however, the apparent similarity will quickly end.

Workshop

The following section will help you test your comprehension of the material presented in this chapter and put
what you've learned into practice (there are no exercises for this chapter; they'll return in the next). You'l find
the answersto the quiz in Appendix A.

http://www.informit.com/content/0672312085/element_016.shtml (13 of 14) [17.07.2000 18:32:53]

- Developing for the Internet Using CORBA and Java From: Sams Teach Yourself CORBA in 14 Days
Quiz

1. Which IDL construct resembles Java's package?
2. What is an advantage of Java Remote Method Invocation (RMI) over CORBA? Of CORBA over

RMI?
3. Why might a developer want to use Javato develop a CORBA application?

<Back Contents Next>
Save to Mylnforml T

http://www.informit.com/content/0672312085/element_016.shtml (14 of 14) [17.07.2000 18:32:53]

http://www.informit.com/My/Add?isbn=0672312085&title=Sams+Teach+Yourself+CORBA+in+14+Days&category=Programming&topic=CORBA&chapter=2851&elementname=Developing+for+the+Internet+Using+CORBA+and+Java
http://www.informit.com/about/
http://www.informit.com/press/
http://www.informit.com/about/advertising/
http://www.informit.com/legal/privacy/
http://www.informit.com/contact/
http://www.informit.com/legal/copyright/
http://www.informit.com/legal/privacy/

- Web-Enabling the Bank Example with Java From: Sams Teach Yourself CORBA in 14 Days

ile they last!
Y¥our Name Mi

® Exact Phrase
O All words

Search
Search Tips

Rlylnformi T

Click Here for
High-Tech
Jobs!

developerWorks™

DPEC we—

Based Training

-
bl click to
Recommaend-it.

-@m TopIT
Hews

TGOS

Hot Topics Yisual Basic Windows 2000 Windows MT Linu=/Open Source Cizco Knowledge Suite

Soluton Centers PragramlIT DatabazelT WebIT MetworkIT ConfiguralT

Editors’ Choice

Web-Enabling the Bank Example with Java

From: Sams Teach
Yourself CORBA in 14
Sz Days

' T Author: Jeremy
(0(0)1417.Y Rosenberger

w 14 DAYs | Publisher: Sams

- More Information

<Back Contents Next>

Save to Mylnforml T

Developing the BankAppl et
0 |Implementing the Server Functionality

o Implementing the Client Functionality
Running the Applet

o Using appletviewer

o Using aWeb Browser
o Summary
o Q&A
« Workshop

0 Quiz

o Exercise

On Day 13, "Developing for the Internet Using CORBA and Java," you were introduced to the Java
programming language and proceeded to port the Bank application from C++ to Java. The porting process was
straightforward, due to the similarities between C++ and Java and the fact that you didn't add any new
functionality to the application when you ported it. The result was a CORBA application that behaved exactly
like its predecessor, with no new bells or whistles.

Today, you'll take the Java version of the Bank example to its next logical evolutionary step. One of Java's
greater potentialsisin the development of graphical user interfaces (GUIs), and in this chapter you'll explore
Java's capabilitiesin that area. Of course, the subject of developing GUIs in Javawould by itself fill an entire
book, so many of the details are omitted here. By the end of today, though, you will have built afunctional Java
applet that provides a GUI version of the functionality formerly provided by the ATMCl i ent portion of the
Bank application.

Developing the BankApplet

The process for developing the applet varies slightly from processes in previous chapters, primarily due to the
inclusion of a GUI interface instead of the previous command-line interfaces. Here is the process you'll follow

this time around:
« Implement the server functionality. Asit turns out, you don't have to make any changes to the existing
server components.

« Implement the client functionality. Y ou'll replace the former ATMCl i ent with a Java applet called, ever
so originally, Bank Appl et .

http://www.informit.com/content/0672312085/element_017.shtml (1 of 11) [17.07.2000 18:32:57]

http://www.informit.com/
http://ad.doubleclick.net/jump/www.informit.com/programit/;cat=developer;num=92
javascript:document.regularSearch.submit();
http://www.informit.com/search/tips/
http://ad.doubleclick.net/clk;1464039;4446282;i?http://www.informit.com/jobs
http://www.informit.com/news/
http://www.informit.com/downloads/
http://www.informit.com/store/
http://www.informit.com/itlibrary/
http://www.informit.com/edchoice/
http://www.informit.com/alphabook/
http://infobase.informit.com/
http://www.informit.com/My/Accounts
http://ad.doubleclick.net/jump/informit.com/sponsor-button/brassring/badge;sz=100x60
http://ad.doubleclick.net/jump/informit.com/sponsor-button/ibm/badge2;sz=88x31
http://www.informit.com/training/
http://www.recommend-it.com/p.e?415858
http://www.informit.com/news/
http://www.informit.com/downloads/
http://www.informit.com/programit/vb/
http://www.informit.com/networkit/windows2000/
http://www.informit.com/networkit/winnt/
http://www.informit.com/networkit/linux/
http://www.knowcisco.com/
http://www.informit.com/programit/
http://www.informit.com/databaseit/
http://www.informit.com/webit/
http://www.informit.com/networkit/
http://www.informit.com/configureit/
http://www.informit.com/edchoice/
http://www.informit.com/My/Add?isbn=0672312085&title=Sams+Teach+Yourself+CORBA+in+14+Days&category=Programming&topic=CORBA&chapter=2852&elementname=Web-Enabling+the+Bank+Example+with+Java
http://www.informit.com/product/0672312085

- Web-Enabling the Bank Example with Java From: Sams Teach Yourself CORBA in 14 Days

« Deploy the BankAppl et . You'll runthe BankAppl et intheappl et vi ewer (astandalone
application that runs Java applets) and then in a Web browser.

Implementing the Server Functionality

Ason Day 13, no changes will be made to the server components of the Bank application. When the time
comes to run the sample application, you'll run the same BankSer ver , Bank, and ATMserver components as
on Day 13.

Implementing the Client Functionality

Before delving into the development of the Bank Appl et , you need to make a slight modification to the
existing Cust orrer | npl . Thereason isthat, until now, all output of the client application (and of the server
applications, for that matter) has been to the system console (the cout stream in C++ or the Syst em out
stream in Java). Previoudly, the updat eAccount Bal ance() method of Cust orrer | npl simply printed a
message to Syst em out , which isfine for a console mode application such as the former ATMCl i ent .
However, for agraphical client application such as Bank Appl et , you probably want to deal with messagesin
amore graphical way. You'll see how the Bank Appl et handles such messages, but for now, just recognize
that the Cust oner | npl forwards the update message to another object--one that implements the

Account Updat eLi st ener interface (which you'll also seein a moment).

Customer

The modifications to the Cust oner | npl class are very minor; the Cust oner | npl constructor now accepts
an Account Updat eLi st ener parameter, which is used when account update messages are later sent to the
Cust oner | npl . Also, as mentioned previously, the updat eAccount Bal ance() method itself, rather
than print amessageto Syst em out , now forwards the update message to the registered

Account Updat eLi st ener object. (You'll soon seethat the Account Updat eLi st ener object, in this
case, isthe Bank Appl et itself.) The modified Cust oner | npl . j ava appearsin Listing 14.1.

Listing 14.1. Customerimpl.java.

1. // Customerlnpl.java
2:
3: inport java.util.Enuneration;
4: inport java.util.Vector;
5:
6: inport idldobal.Account;
7:
8: public class Custonerlnpl extends idl d obal._Custonerlnpl Base {
9:
10: /1l This Customer's nane.
11: private String nyNane;
12:
13: /1 This Custoner's Social Security nunber.
14: private String nySocial SecurityNunber;
15:
16: /1 This Customer's address.
17: private String nyAddress;
18:
19: /1 This Custoner's nother's maiden nane.
20: private String myMt her sMai denNane;
21:
22: /1l This Customer's list of Accounts.
23: private Vector nyAccounts;
24.
25: /1 This Custoner's |ist of ATMCards.
26: private Vector nyATMCards;
27:
28: /1l This Customer's Account UpdateListener (for sinplicity, only
29: /1l one is allowed).
30: private Account Updat eLi st ener myAccount Updat eLi st ener;
31:
32: public Custonerlnpl (String nane, String social SecurityNunber,

http://www.informit.com/content/0672312085/element_017.shtml (2 of 11) [17.07.2000 18:32:57]

- Web-Enabling the Bank Example with Java From: Sams Teach Yourself CORBA in 14 Days

33: String address, String nothersMi denNane,
34: Account Updat eLi st ener account Updat eLi st ener) {
35:

36: super (soci al Securi tyNunber);

37:

38: myName = new String(nane);

39: mySoci al SecurityNunber = new

40: String(social SecurityNunber);
41: myAddress = new String(address);

42. my Mot her sMai denName = new Stri ng(ot her sMai denNane) ;
43: nyAccounts = new Vector();

44 myATMCar ds = new Vector();

45: myAccount Updat eLi st ener = account Updat eLi st ener;
46: }

47:

48: protected Customrerlnpl () {

49:

50: nyNanme = new String();

51: nmySoci al SecurityNunber = new String();

52: nmyAddress = new String();

53: nyMbt her sMai denName = new String();

54. myAccounts = new Vector();

55: nyATMCar ds = new Vector ();

56: }

57:

58: public void name(String nane) {

59:

60: nyName = new String(nane);

61: }

62:

63: public String nane() {

64.

65: return nyNane;

66: }

67:

68: public String social SecurityNunber() {

69:

70: return nmySoci al SecurityNunber;

71. }

72:

73: public void address(String address) {

74.

75: nmyAddress = new String(address);

76: }

7.

78: public String address() {

79:

80: return nyAddress;

81: }

82:

83: public java.lang. String not hersMai denNanme() {
84:

85: return nyMot her sMai denNane;

86: }

87:

88: public Account[] getAccounts() {

89:

90: Account[] list = new Account[myAccounts. size()];
91: nmyAccount s. copyl nto(list);

92:

93: Enuneration e = nyAccounts. el enents();

94. whil e (e. hashreEl enents()) {

95: ((Account)e. nextEl ement()). _duplicate();

http://www.informit.com/content/0672312085/element_017.shtml (3 of 11) [17.07.2000 18:32:57]

- Web-Enabling the Bank Example with Java From: Sams Teach Yourself CORBA in 14 Days

96: }
97:
98: return list;
99: }
100:
101: public voi d updat eAccount Bal ance(Account account, fl oat
102: bal ance) {
103:
104: nmyAccount Updat eLi st ener . updat e(account, bal ance);
105: }
106: }

The Account Updat eLi st ener interfaceis simple, itsonly purpose being to accept update messages for
Account s. Consequently, its single method, updat e() , reflectsthe updat eAccount Bal ance() method
in Cust oner | npl . Note that, as an interface, Account Updat eLi st ener doesn't provide an
implementation for this method; the implementation is the responsibility of the class(es) implementing this
interface. Account Updat eLi st ener . j ava appearsin Listing 14.2.

Listing 14.2. AccountUpdateListener.java.

1. // Account UpdatelLi st ener. java

g i mport idldobal.Account;

g public interface Account Updat eLi stener {

e

8: * Update the given Account with the new bal ance.

. *

1?) } pu/bl i c void updat e(Account account, float bal ance);
11:

A Word About Java Development Tools

Y ou're ailmost ready to begin work on the Bank Appl et itself. If you already took a peek at

BankAppl et . j ava (see Listing 14.3), you saw that the file is quite sizable--much larger than anything that
has appeared in this book. Don't be alarmed. Much of the code was not written by hand but was generated by a
development tool (a development tool, or a portion thereof, for defining GUI interfacesis often called a GUI
builder). Symantec's Visual Café 2.0 (availableat ht t p: / / caf e. symant ec. com) was used to develop
this particular applet, but any GUI builder for Java--such as Sun's Java Workshop

(http:// www. sun. cont), Microsoft's Visual J++ (htt p: // www. mi cr osof t. com), Borland's
JBuilder (ht t p: / / ww. bor | and. cont), IBM's Visua Agefor Java

(htt p: // www. sof tware. i bm coni), or many others--can be used to perform the GUI design portion of
this task. Each of these products generates different code, depending on the GUI components chosen, but
produces a similar end resullt.

Although you can certainly write all the user interface code by hand, using a GUI builder makes your life alot
easier for al but the most trivial user interfaces. Describing even one of these tools is beyond the scope of this
book, so it's hoped that you already have some experience with these. Many GUI builders not only enable you
to place user interface components on forms (also called screens or dialogs) but aso to define interactions
between components without writing any code. The more work the GUI builder does, the less code you have to
write by hand, and you can always take code the GUI builder generates and modify it by hand to get the exact
results you want.

BankApplet

BankAppl et . j ava, including code generated by Visual Café and code written by hand, appearsin Listing
14.3. Again, most of this code (almost the entirei ni t () method, for instance) was generated by Visual Café.
In afew moments, you'll examine more closely the portions written by hand. Y ou will see that the applet's
behavior is similar to that of the client applications implemented in previous chapters. The structure, however,
differs significantly, as the structures of GUI-based applications often differ from their console-based
counterparts.

Before examining the code for the Bank Appl et , it's helpful to see what it produces. Figure 14.1 illustrates the
main window of the Bank Appl et , as designed using Visual Café. Figure 14.2 shows the corresponding

http://www.informit.com/content/0672312085/element_017.shtml (4 of 11) [17.07.2000 18:32:57]

- Web-Enabling the Bank Example with Java From: Sams Teach Yourself CORBA in 14 Days
hierarchy of objects that make up the user interface.

Figure 14.1. Bank Appl et main window.

Figure 14.2. BankAppl et main window hierarchy.
Listing 14.3. BankApplet.java.

View Code

Now take alook at selected portions of BankAppl et . j ava. Thethreei nmport statementsin lines 3-5
import the definitions of several GUI-related Java classes. Thej ava. awt package and related packages
contain the classes and interfaces that compose the Abstract Windowing Toolkit (AWT). The AWT isa
collection of user interface objects and the event handling mechanism that enables those objects to interact with
each other. Applications and libraries can build on the core AWT classes to create more complex user interface
objects and entire user interfaces.

Thej ava. uti | packageincludes a number of utility classes and interfaces. One interface isthe

Enurrer at i on (imported in line 6), which enables the iteration across collections (such as Vect or

Di ctionary, Hasht abl e, and so on), much like a C++ Standard Template Library (STL) iterator. The
Hasht abl e class (imported in line 7), as its name suggests, implements a hash table (a data structure that
maps one object instance to another).

Thei nport sinlines9 and 10 should look familiar. Because Bank Appl et isa CORBA application, it must
be able to access the familiar CORBA ORB and BOA.

Likethe ATMCl i ent that came before it, Bank Appl et makes use of the preceding CORBA objects and
exceptions. (Recall that you placed all these definitionsinthei dl G obal package when you ranthe IDL
compiler on Day 13.) Lines 12-22 import these classes into the application.

Notein lines 24 and 25 that the BankAppl et classis declared to implement the

Account Updat eLi st ener interface. This meansthat the Bank Appl et class must be able to implement
theupdat e() method from that interface, and you'll see later that thisisindeed the case. It also meansthat a
BankAppl et object can be used as a parameter to any method requiring an Account Updat eLi st ener as
aparameter.

For various reasons, the Bank Appl et keepstrack of the currently selected Bank, ATM Cust oner , and
Account . The definitions of these member variables are found in lines 33-38.

The BankAppl et must also keep track of which Bank names correspond to which Bank objects, which ATM
names correspond to which ATMobjects, and so on. Thisis so that the user can select each of these objects from
alist of names, and the applet will be able to determine the actual object, given its name. The Hasht abl e
classisideally suited to this purpose; in most of the cases appearing in lines 40-58, it maps St r i ngsto the
appropriate object type.

Most of thei ni t () method is omitted from this discussion because it was automatically generated by Visual
Café. However, there are some additions, such as the code appearing in lines 491-493. Thisillustrates a second
method of initializing the ORB. Recall that the first method used the command-line parameters from the Java
application. Because a Java applet does not have command-line parameters, another form of initiaization is
used. Thisform of ORB. i ni t () acceptsan Appl et asaparameter. From the Appl et , the ORB getsits
configuration information.

Note:Keep in mind that the ORB. i ni t () method used in the example is afeature of VisiBroker
for Java. Other products might (and almost certainly will) use a different method for initializing the
ORB.

The bit of codein lines 495-507 will look familiar, but with a small twist. Rather than use
System out . printl n(),thecodecalstheset St at us() method. You'll seelater exactly what this
method does, but for now you only need to know that the method delivers a status message to the user.

Appearing in lines 509-533 is the familiar section of code that obtains the available Bank and ATMobjects.
When these lists are obtained, the addBanks() and addATMs () methods are called. Again, you'll see
shortly what these methods do.

Theset St at us() method (lines 571-582), alluded to before, takesa St r i ng asaparameter. If the St ri ng
isnul | , adefault status message is displayed (in this case, " Bank Appl et ready. "); otherwise, the
supplied St r i ng isdisplayed. Closer inspection reveal s that the status message is displayed in the

http://www.informit.com/content/0672312085/element_017.shtml (5 of 11) [17.07.2000 18:32:57]

javascript:popUp('elementLinks/01.jpg');
javascript:popUp('elementLinks/02.jpg');
javascript:popUp('elementLinks/element_017_code_1.html');

- Web-Enabling the Bank Example with Java From: Sams Teach Yourself CORBA in 14 Days
st at usText Fi el d object, the text field spanning the bottom of the Bank Appl et window.

Recall that Bank Appl et was required to implement the updat e() method as a part of implementing the
Account Updat eLi st ener interface. The implementation, appearing in lines 584-599, displays a status
message (through--what else--the set St at us() method), and if the information for the updated Account is
currently being displayed, the display is updated.

TheaddBanks() method (lines 601-615), caled earlier ini ni t () , adds the names of the given Bank
objects to the choice box containing names. The names, along with the Bank s themselves, are then added to the
myBanks hash table so that the Banks can later be retrieved by name. addATMs () issimilar, except it works
with AT M.

Thecr eat eCust oner () method, in lines 633-659, performs functionality similar to that in the previous
ATMC i ent example. Note, in particular, that the method creates anew Cust oner | npl object and registers
the object with the BOA, using theobj i s_ready() method. In addition to performing this familiar
functionality, cr eat eCust oner () addsthe Cust omer to the internal hash table for future lookup. Finally,
the method enables parts of the user interface that might have been previously disabled. For example, it doesn't
make sense to create an Account beforea Cust omer iscreated to be associated with that Account .
Therefore, the Account creation features are disabled until thereisa Cust ormer selected.

Creating an Account ismore involved, as evidenced by the longer cr eat eAccount () method inlines
661-697. The Account creation consistsonly of calling thecr eat eAccount () method on the currently
selected Bank, but thereis a bit more work involved with associating the newly created Account with the
currently selected Cust oner . Thisis because thereis atwo-level hierarchy of Hasht abl esthat relates
Cust oner sto their Account s. In addition, the Hasht abl e of Account s iskeyed on the concatenation of
the issuing Bank name and the Account number, instead of just the Account number itself (because two
different Banks can issue the same Account number, but the keys must be unique). Figure 14.3 illustrates the
relationship between Cust oner sand their Account s. Findly, if an Account is selected, certain features
can be enabled, such asthe Account transaction features. Thisis performed by the

enabl eAccount Feat ur es() method, discussed next.

Figure 14.3. Relationship between Cust onmer sand Account s.

Theenabl eAccount Feat ur es() method (lines 699-717) enables some Account -related user interface
components if its parameter ist r ue and disables them if the parameter isf al se. In addition, if the parameter
isf al se, thetext fields containing Account information are cleared.

Theupdat eAccount | nf o() method (lines 719-746) updates the display with the current information on
the selected Account , such asissuing the Bank name, the account number, type, creation date, and current
balance. Notein line 733 that the type of Account isdetermined by using the nar r ow() operation. In this
case, Checki ngAccount Hel per. narrow() returnsaChecki ngAccount if the Account isindeed a
Checki ngAccount ; otherwise, the operation returnsnul | . (Thisis CORBA's version of what is commonly
referred to as Runtime Type Information, or RTTI.)

ThenewCust omrer But t on_Act i on() method, which appearsin lines 768-788, is called when the New
Customer button is pressed. Basically, it creates anew Cust orrer Di al og window (which you'll see later in
the chapter) and callscr eat eCust oner () with the information provided by that Di al og. The
newAccount Butt on_Act i on() method operates in much the same manner.

ThebankChoi ce_I t entt at eChanged() method, which you can seein lines 828-835, is called when an
item is selected in the Bank choice box. It looks up the Bank's name in the appropriate Hasht abl e to
determine which Bank object corresponds to that name and then sets the currently selected Bank to this object.
Theat mChoi ce_| t entst at eChanged() method behaves similarly. So do the

cust omer Choi ce_I t entSt at eChanged() and account Choi ce_ |t entSt at eChanged()
methods, although the latter two methods perform additional tasks when a new item is selected, such as
updating the display with new information. In the case of a Cust oner selection, that Cust orrer 'sAccount s
aredisplayed in the Account choice box. In the case of an Account selection, the Account information
display is updated with the newly selected Account .

Theremaining Bank Appl et methods are straightforward: aut oUpdat eButt on_Acti on() calsthe
appropriate Bank'sr equest Updat eSer vi ce() method for the selected Account ,

deposi tButton_Action() cadlsdeposit () ontheseected Account with theamount indicated in the
transaction text field, wi t hdr awBut t on_Acti on() calswi t hdraw() , and

updat eAccount Butt on_Acti on() calsupdat eAccount | nfo().

BankApplet Dialogs

http://www.informit.com/content/0672312085/element_017.shtml (6 of 11) [17.07.2000 18:32:57]

javascript:popUp('elementLinks/03.jpg');

- Web-Enabling the Bank Example with Java From: Sams Teach Yourself CORBA in 14 Days

In addition to the main Bank Appl et window, there are two other dialog boxes used in the applet. The firstis
the Cust oner Di al og, for entering information about anew Cust oner . The second isthe

Account Di al og, for entering information about a new Account . The layout of the Cust orrer Di al og
appearsin Figure 14.4, with its corresponding hierarchy of interface objects appearing in Figure 14.5.

Figure 14.5. Cust oner Di al og window hierarchy.

Like BankAppl et . j ava, most of Cust orrer Di al og. j ava isgenerated by the GUI builder. Listing 14.4
shows Cust oner Di al og. j ava initsentirety. In the section following the listing, you'll pick apart the real
functionality behind it.

Listing 14.4. CustomerDialog.java.
View Code

Now, let's inspect what is happening under the hood of Cust orrer Di al og. j ava. When the OK button is
pressed, okBut t on_Act i on() (lines253-257) iscalled. This method hides the Cust oner Di al og and
sets aflag to indicate that the dialog was closed by pressing the OK button (the Bank Appl et checksthisflag
to determine whether the Cust oner Di al og information should be processed).

cancel Button_Acti on() (lines259-262) behaves similarly but does not set this flag.

When the Cust onmer nametext field changes (in other words, the user presses akey in the field), the
nanmeText Fi el d_Text Val ueChanged() method (lines 282-290) is called. The method disables the OK
button unless avalue is entered into all the text fields (that is, the length of the text in each field is greater than
zero), in which case the OK button is enabled. (The Cancel button is always enabled and, thus, can be pressed at
any time.) Each text field has a method that behaves similarly:

soci al Securit yNurmber Text Fi el d_Text Val ueChanged() (lines292-300),

addr essText Fi el d_Text Val ueChanged() (lines302-310), and not her sMai denNarne

Text Fi el d_Text Val ueChanged() (lines312-320) all duplicate this behavior.

The next component of the BankAppl et isthe Account Di al og, an illustration of which appearsin Figure
14.6 and whose window hierarchy appearsin Figure 14.7. Account Di al og. j ava, which (you guessed it)
consists mostly of generated code, appearsin Listing 14.5.

Figure 14.6. Account Di al og window.
Figure 14.7. Account Di al og window hierarchy.

Listing 14.5. AccountDialog.java.
View Code

Because the Account Di al og iseven simpler than the Cust orrer Di al og, it takesno time at all to review.
TheokBut t on_Acti on() (lines225-229) and cancel Butt on_Act i on() (lines231-234) methods
behave identically to their counterpartsin Cust orrer Di al og; al other code is generated by the GUI builder.

The final component of the BankAppl et (or any applet, for that matter) isan HTML file containing an
<APPLET> tag. The HTML file should be placed in the same directory asthe Bank Appl et . cl ass filethat
is output from the Java compiler. In the case of the Bank Appl et , this can be avery ssmple HTML file, asin
Listing 14.6.

Listing 14.6. BankApplet.html.

<HTM_>

<HEAD>

<TI TLE>BankAppl et, a sanpl e CORBA appl et </ Tl TLE>
</ HEAD>

<BODY>

<APPLET CODE="BankAppl et . cl ass" W DTH=404 HEl GHT=327>
<PARAM NAME=o0r g. ong. CORBA. ORBCl ass

VALUE=com vi si geni c. vbr oker. or b. ORB>

</ APPLET>

</ BODY>

</ HTML>

R

http://www.informit.com/content/0672312085/element_017.shtml (7 of 11) [17.07.2000 18:32:57]

javascript:popUp('elementLinks/05.jpg');
javascript:popUp('elementLinks/element_017_code_2.html');
javascript:popUp('elementLinks/06.jpg');
javascript:popUp('elementLinks/07.jpg');
javascript:popUp('elementLinks/element_017_code_3.html');

- Web-Enabling the Bank Example with Java From: Sams Teach Yourself CORBA in 14 Days

In particular, note three aspects of the <APPLET> tag in the BankAppl et . ht nl file. First, note the
CODE="BankAppl et . cl ass" parameter in line 6. Thisindicates the file in which the main part of the
applet resides (in other words, the class that derivesfromj ava. awt . appl et . Appl et). Next, note the

W DTH and HEI GHT parameters, also in line 6. These indicate the initial size of the applet window. Finally,
notice the parameter <PARAM NANME=0r g. ongy. CORBA. ORBCl ass

VALUE=com vi si geni c. vbr oker. or b. ORB> inlines7 and 8. This parameter, intended for Visigenic's
VisiBroker for Java 3.0, tells the browser to use the supplied VisiBroker classes instead of the built-in classes
(for browsers, such as Communicator, that have VisiBroker built in).

Running the Applet

As mentioned before, the server components used with the Bank Appl et are unchanged from those used with
the Java version of the ATMCl i ent . You can refer to Day 13 to review the process for starting up the
BankSer ver , the Bank, and the ATM To make things interesting, you might want to start more than one
Bank and ATMso you can see how the choice boxes work when you run the Bank Appl et .

When the server components are up and running, you might be required to run other components as well,
depending on the CORBA product you are using. To enable applets to connect to other hosts, for example,
Visigenic's VisiBroker includes the GateK eeper, which serves as a gateway between applets and CORBA
servers. If you're using VisiBroker, starting the GateK eeper is simple enough:

Gat eKeeper

The GateK eeper responds with output similar to the following:

Vi si Broker Devel oper for Java [03.00.00. C3.05] (SEP 08 1997
16:55:51) |11 OP GateKeeper started: Mon Nov 03 01:50:51 GVIr+00: 00
1997

Java: Version 1.1.4 from Sun M crosystens |nc.

Cs: W ndows 95 version 4.0; CPU x86

Addi ng search path: .

Addi ng search path: C:.\Bin\Devel\Java\ VCaf e\ Bl N\\ COVPONENTS\
SYMBEANS. JAR

Addi ng search path: C:.\Bin\Devel\Java\ VCaf e\ JAVA\ LI B

Addi ng search path: D:\Bin\Devel\VisiBroker\lib\vbj30.jar

Addi ng search path: .

Addi ng search path: D:\Bin\Devel\ TeachYour sel f CORBA\ BankExanpl e\
chl4

Addi ng search path: D:\Bin\Devel \ TeachYour sel f CORBA\ BankExanpl e\
ch14\ Cust oner

Witing |OR to D:\Bi n\Devel \ TeachYour sel f CORBA\ BankExanpl e\ ch14\
BankAppl et\ gat ekeeper. i or

The actual output depends on your CLASSPATH setting, but if you get something resembling the preceding,
you are ready to run the Bank Appl et .

Y ou have two options for running the Bank Appl et : using the appl et vi ewer application provided with the
Java Developer's Kit or using a Java-enabled Web browser such as Netscape Navigator, Netscape
Communicator, Microsoft Internet Explorer, and so on. Now you'll learn how to run the applet in both
environments.

Using appletviewer

As stated before, appl et vi ewer isautility that ships with Sun's Java Development Kit (JDK) and is
included with Java development products. The appl et vi ewer 's purpose, which can be deduced from its
name, isto run applets. To run the Bank Appl et intheappl et vi ewer , first ensure that the

appl et vi ewer existsinyour PATH. (If you have previously installed the JDK or another Java development
tool, chances are that your PATH is already configured properly.) Next, as always, you want to be sure that your
CLASSPATH s configured correctly. Finally, change to the directory that contains Bank Appl et . ht m
BankAppl et . cl ass, and so on, and start the appl et vi ewer :

appl et vi ewer BankAppl et. htm

If you're using VisiBroker, you will see something similar to the following within afew seconds:

Vi si Broker Devel oper for Java [03.00.00. C3.05] (SEP 08 1997
16:55:51) started Mon Nov 03 12:55:19 GVI+00: 00 1997
Vi si geni c Software: http://ww. visigenic.con

http://www.informit.com/content/0672312085/element_017.shtml (8 of 11) [17.07.2000 18:32:57]

- Web-Enabling the Bank Example with Java From: Sams Teach Yourself CORBA in 14 Days

Locator: 153.36.240.254:-1

Local Environnent:
Java: Version 1.1.4 from Sun M crosystens |nc.
cs: W ndows 95 version 4.0; CPU x86

Renot e Envi ronnent:
Java: Version 1.1.4 from Sun M crosystens |nc.
cs: W ndows 95 version 4.0; CPU x86

After afew more seconds, the appl et vi ewer window appears. Within afew more seconds, it initializes the
BankAppl et , resulting in a display that resembles Figure 14.8

Figure 14.8. BankAppl et runninginappl et vi ewer .

If you see aBank name and an ATMname in the appropriate choice boxes, then so far, so good. If you don't,
make sure that at least one Bank and ATMserver has been started, and then restart the appl et vi ewer .

Now, press the New button next to the Cust oner choice box. A dialog box appears, like the onein Figure
14.9. Enter some information into the dialog, asin Figure 14.10. When you've entered something in every text
box, you will see the OK button enabled. When you're satisfied with what you've entered, press OK.

Figure 14.9. Initial Cust oner Di al og display.
Figure 14.10. Cust oner Di al og display filled in.

When you press OK inthe Cust oner Di al og, you are returned to the main Bank Appl et screen, with the
message Cr eat i ng new Cust oner. .. appearing in the status display. After a moment, the status returns
to BankAppl et ready and your new Cust onmer 's name appearsin the Cust orrer choice box.

Now, create anew Account for the Cust omrer by pressing the New button next to the Account choice box.
The Account Di al og window will appear, as shown in Figure 14.11.

Figure 14.11. Initial Account Di al og display.

Inthe Account Di al og, leave Checki ng selected for the Account type. Enter aninitial balance into the
appropriate text field, as demonstrated in Figure 14.12. Then press OK. (The applet accepts a blank initial
balance; in this case, the Account isgiven aninitial balance of zero.)

Figure 14.12. Account Di al og display filled in.

Now the main Bank Appl et screen reappears, displaying for amoment the message Cr eat i ng new
Account . .. inthe status area. The status then returnsto Bank Appl et r eady, at which point the window
displaysthe Account information, as shown in Figure 14.13.

Figure 14.13. BankAppl et displaying Account information.

Try afew transactions. Enter an amount into the Transactions text box and press the Deposit or Withdraw
button. See what happens when you try to withdraw too much money. When you're convinced that transactions
work correctly, press the AutoUpdate button. After a minute at most, you will see the Account 's balance
increase by 5 percent (don't you wish your own bank balance would increase so quickly?)

Feel free to put the applet through its paces. Create a number of Cust oner sand various Account sfor them
in different Banks. Switch between Cust oner sand Account s and watch the information on the screen
update accordingly.

Using a Web Browser

Y ou can aso run the applet inside a Java-enabled Web browser such as Netscape Communicator, athough
setting up the applet is more involved. First, you need access to a Web server (also called an HTTP server or an
HTTP daemon). Y ou then need to place the BankApplet.ntml file and the . cl ass filesfor the Bank Appl et
in adirectory visible to the Web server (consult the documentation for the Web server if you're unsure how to
do this). Run the server components (and GateK eeper, if necessary) as you did in the previous step.

When all the servers are running, start your Web browser and enter the appropriate URL for the page containing
the Bank Appl et . (The correct URL depends on the configuration of your Web server and the location of the

http://www.informit.com/content/0672312085/element_017.shtml (9 of 11) [17.07.2000 18:32:57]

javascript:popUp('elementLinks/08.jpg');
javascript:popUp('elementLinks/09.jpg');
javascript:popUp('elementLinks/10.jpg');
javascript:popUp('elementLinks/11.jpg');
javascript:popUp('elementLinks/12.jpg');
javascript:popUp('elementLinks/13.jpg');

- Web-Enabling the Bank Example with Java From: Sams Teach Yourself CORBA in 14 Days

files you created.) The applet might take a moment or two to start, but when it does, your browser window will
resemble the one appearing in Fig- ure 14.14.

Figure 14.14. BankAppl et runningin a Web browser.

Congratulations! Y ou have successfully deployed a Web-based CORBA application. (Y ou should appreciate
that thisisamuch more significant achievement than writing a cute little animated applet.)

Summary

Today, agrand finale for the sample Bank application, you built a Java applet to replace the ATMCl i ent from
Day 13 with a graphical user interface. Due to limited space, many details of developing appletsin Javawere
not discussed today, but nevertheless, you were able to run the applet using both the appl et vi ewer utility
from the JDK and a Java-enabled Web browser. Y ou now recognize the potential that comes with the capability
to deploy CORBA applications--even just the end-user interface of such applications--on the Web. In many
cases, the capability to run an enterprise-wide application within a Web browser demonstrates sound benefits:
Java's portability enables the application to be distributed to awide range of platforms. Also, the delivery
mechanism is simplified, compared to previous methods, making it arelatively trivial matter to distribute
updates to users geographically dispersed throughout an enterprise.

Q&A

Q Why arethelistingsin this chapter, especially BankAppl et . j ava, so much longer than in
previous chapters?

A Because the example in this chapter implements an application with a Graphical User Interface (GUI),
it is understandably more complex than its simpler, console-based counterpart. Creating the various user
interface components and handling the events generated by them adds a great deal of complexity to the
application. Fortunately, most of the code required to implement GUI interfacesis generated by
development tools.

Q| don't have Visual Café; can | still run the sample applet from this chapter?
A Although Visual Café was used to produce the sample applet in this chapter, you don't need it--or any
other Java development tool, for that matter, other than the freely available JDK--to run the sample

applet. Having Visual Café enables easier modification of the applet, but you should be able to work with
virtually any Java development tool.

Workshop

The following section will help you test your comprehension of the material presented in this chapter and put
what you've learned into practice. You'll find the answersto the quiz in Appendix A.

Quiz
1. Why might it be advantageous to deploy a CORBA client as a Java applet?

2. Why isit useful for browsers to include CORBA-related classes that are built in (for example,
Netscape's Communicator includes Visigenic's VisiBroker for Java runtime)?

3. What is a potential disadvantage to the bundling scheme described in question 2?
Exercise
Extend the Bank Appl et to do even more cool stuff. Y ou could add tabbed panelsto display the Account s
belonging to a particular Cust orrer . Or you could extend the applet to allow multiple Cust onrer sto be

associated with an Account and extend the Account information correspondingly to show all the
Cust oner sassociated with agiven Account . (Because thisis an open-ended exercise, no answer is given.)

http://www.informit.com/content/0672312085/element_017.shtml (10 of 11) [17.07.2000 18:32:57]

javascript:popUp('elementLinks/14.jpg');

- Web-Enabling the Bank Example with Java From: Sams Teach Yourself CORBA in 14 Days

<Back Contents Next>
Save to Mylnforml T

http://www.informit.com/content/0672312085/element_017.shtml (11 of 11) [17.07.2000 18:32:57]

http://www.informit.com/My/Add?isbn=0672312085&title=Sams+Teach+Yourself+CORBA+in+14+Days&category=Programming&topic=CORBA&chapter=2852&elementname=Web-Enabling+the+Bank+Example+with+Java
http://www.informit.com/about/
http://www.informit.com/press/
http://www.informit.com/about/advertising/
http://www.informit.com/legal/privacy/
http://www.informit.com/contact/
http://www.informit.com/legal/copyright/
http://www.informit.com/legal/privacy/

- Answers to Quizzes and Exercises From: Sams Teach Yourself CORBA in 14 Days

ile they last!
Y¥our Name Mi

® Exact Phrase
O All words

Search
Search Tips

Rlylnformi T

InfarmlT Stare
Dol g

Click Here for
High-Tech
Jobs!

developerWorks™

DPEC we—

Based Training

F
h click to
Recommaend-it.

Top IT
Hews

@m

TGOS

Hot Topics Yisual Basic Windows 2000 Windows MT Linu=/Open Source Cizco Knowledge Suite

Soluton Centers DatabazelT WebIT MetworkIT

Answers to Quizzes and Exercises

PragramlIT ConfiguralT

From: Sams Teach
Yourself CORBA in 14
Days

Author: Jeremy
Rosenberger

Publisher: Sams

More Information

<Back Contents Next>

Save to Mylnforml T

Yoursell

CORBA
in 14 DAYS

o Day 1: Getting Familiar with CORBA
0 Quiz
« Day 2: Understanding the CORBA Architecture
0 Quiz
« Day 3. Mastering the Interface Definition Language (IDL)
0 Quiz
o Exercises
o Day 4. Building a CORBA Application
0 Quiz
o Exercises
« Day 5: Designing the System: A Crash Course in Object-Oriented Analysis and Design
0 Quiz
o Exercise
« Day 6: Implementing Basic Application Capabilities
0 Quiz
o Exercise
« Day 7: Using Exceptions to Perform Error Checking
0 Quiz
o Exercises
« Day 8. Adding Automated Teller Machine (ATM) Capability
0 Quiz
o Exercise
« Day 9: Using Callbacks to Add Push Capability
0 Quiz
o Exercises
o Day 10: Learning About CORBA Design Issues
0 Quiz
« Day 11: Using the Dynamic Invocation Interface (DI11)
0 Quiz
« Day 12: Exploring CORBAservices and CORBAfacilities
0 Quiz
o Exercises
« Day 13: Developing for the Internet Using CORBA and Java

http://www.informit.com/content/0672312085/element_020.shtml (1 of 12) [17.07.2000 18:33:05]

http://www.informit.com/
http://ad.doubleclick.net/jump/www.informit.com/programit/;cat=developer;num=92
javascript:document.regularSearch.submit();
http://www.informit.com/search/tips/
http://ad.doubleclick.net/clk;1464039;4446282;i?http://www.informit.com/jobs
http://www.informit.com/news/
http://www.informit.com/downloads/
http://www.informit.com/store/
http://www.informit.com/itlibrary/
http://www.informit.com/edchoice/
http://www.informit.com/alphabook/
http://infobase.informit.com/
http://www.informit.com/My/Accounts
http://ad.doubleclick.net/jump/informit.com/sponsor-button/brassring/badge;sz=100x60
http://ad.doubleclick.net/jump/informit.com/sponsor-button/ibm/badge2;sz=88x31
http://www.informit.com/training/
http://www.recommend-it.com/p.e?415858
http://www.informit.com/news/
http://www.informit.com/downloads/
http://www.informit.com/programit/vb/
http://www.informit.com/networkit/windows2000/
http://www.informit.com/networkit/winnt/
http://www.informit.com/networkit/linux/
http://www.knowcisco.com/
http://www.informit.com/programit/
http://www.informit.com/databaseit/
http://www.informit.com/webit/
http://www.informit.com/networkit/
http://www.informit.com/configureit/
http://www.informit.com/My/Add?isbn=0672312085&title=Sams+Teach+Yourself+CORBA+in+14+Days&category=Programming&topic=CORBA&chapter=2854&elementname=Answers+to+Quizzes+and+Exercises
http://www.informit.com/product/0672312085

- Answers to Quizzes and Exercises From: Sams Teach Yourself CORBA in 14 Days
0 Quiz

« Day 14: Web-Enabling the Bank Example with Java
0 Quiz

o Exercise

Day 1. Getting Familiar with CORBA

Quiz

1. What does | |OP stand for, and what isits significance?

[1OP (Internet Inter-ORB Protocol) is a protocol that allows ORBs from various CORBA vendors to
interoperate with each other, using the TCP/IP protocols. Implementation of I1OP is arequirement for
CORBA 2 compliance.

2. What isthe relationship between CORBA, OMA, and OMG?

The Object Management Group (OMG) is the organization that controls the OMA and CORBA
standards. The Object Management Architecture (OMA) consists of Object Request Broker (ORB)
functionality, CORBAservices, CORBAfacilities, domain interfaces, and application objects. Finally, the
Common Object Request Broker Architecture (CORBA) is the standard implementation for the ORB
functionality of the OMA.

3. What isaclient stub?

A client stub isapiece of code, usually generated by an IDL compiler, that allows a client application to
interface to CORBA server objects. The interface presented by the client stub is exactly the same as the
interface of the server, giving the client the illusion that method calls are performed locally.

4. What isan object reference? An IOR?

An object reference is a pointer to a CORBA object. A client makes all method callsto a CORBA object
through areference to that object. An IOR, or interoperable object reference, isthe CORBA/IIOP
terminology for an object reference.

Day 2: Understanding the CORBA Architecture
Quiz

1. What is marshaling?
Marshaling is the process of converting method parameters to aformat that can be transmitted across the
network. (Unmarshaling is simply the reverse of marshaling.)

2. What are the responsibilities of an ORB?
An ORB locates an object implementation given an object reference, prepares a server to receive
requests, and marshals and unmarshal s parameters in a method call.

3. Wheredo server skeletons and client stubs come from?
Server skeletons and client stubs are generated by the IDL compiler.

4. Which server activation policy describes a server that is started and stopped manually?
Thisisthe persistent server policy.

5. How doesthe use of IDL enhance language independence of CORBA objects?

IDL provides alanguage-independent mechanism for describing the interfaces of CORBA objects. The
language-independent constructs of IDL can then be mapped to language-specific constructs using an
IDL compiler for a particular language.

http://www.informit.com/content/0672312085/element_020.shtml (2 of 12) [17.07.2000 18:33:05]

- Answers to Quizzes and Exercises From: Sams Teach Yourself CORBA in 14 Days

Day 3: Mastering the Interface Definition Language
(IDL)

Quiz

1. Defineatype (using t ypedef), called t enrper at ur eSequence, that isasequence of
sequencesof f | oat s(yes, thisislegal).
The IDL definition would look like this:

typedef sequence<sequence<fl oat>> tenperatureSequence;

2. Why might atype likethe one described in the preceding question be useful ?

I magine a temperature-measuring system that periodically samples the current temperature. The
temperature readings gathered through a single day could potentially be stored in a

sequence<f | oat >. Now imagine that at the end of each day, the set of temperature data produced for
that day is stored in another sequence. Thissequence typewould be a

sequence<sequence<f | oat >>, which is precisdly the answer to question 1.

3. Why ar e exceptions useful ?

Exceptions are useful for at least two reasons. First, consider a method that returnsabool ean. If
exceptions were not available, the method would have to reserve certain return values to signa error
conditions. Of course, doing this eliminates one possible valid return value. In the case of abool ean
return value, there are only two possible return values, so giving up one of them to signal an error
condition is not practical. Second, when used in languages that directly support exceptions, they can
greatly simplify error handling. Rather than check the return value of each method call for an error
condition result, a developer can create a more generic error handling mechanism, resulting in cleaner
code. Additionally, because unhandled exceptions are passed up the call stack, a hierarchy of exception
handlers can be created.

4. Why isthe nodul e construct useful?

Thenodul e construct is useful because it facilitates the partitioning of a system. A well-partitioned
system is easier to define and implement than a monolithic system because the divide-and-conquer
approach creates independent or semi-independent components of manageable size. A monolithic design,
by comparison, does little to create manageable components of the system.

5. Name some practical usesfor theoct et datatype.

Theoct et datatypeisuseful for any type of data that should not undergo any sort of translation. For
instance, if a bitmapped image is sent across the network, it should arrive in exactly the same format in
which it was sent. The image can be sent as an array of oct et s, which guarantees that there is no
trandation from the image's source to its destination. Other types of datathat can be transmitted in this
way include executables, Java class files, and most multimediafiles. (By contrast, al other IDL data
types can undergo aformat conversion when being transmitted between different hardware platforms,
operating systems, and/or languages.)

6. Define an enumer ated type containing the months of the year.
The type definition would look like this (though you can give it whatever name you like):

enum Mont hsOf Year {
January,

February,

Mar ch,

April,

May,

June,

July,

August ,

Sept enber,

Cct ober,

Novenber ,

Decenber

¥

7. Why might a nonblocking remote method call be advantageous, compar ed to a blocking method

http://www.informit.com/content/0672312085/element_020.shtml (3 of 12) [17.07.2000 18:33:05]

- Answers to Quizzes and Exercises From: Sams Teach Yourself CORBA in 14 Days

call?

Consider the case in which a CORBA client is an interactive application. While the client makes callsto
CORBA servers, the user might want to interact with the application. If remote method calls, which
might be lengthy, were to block, the responsiveness of the client application would be greatly diminished.
Nonblocking method calls solve this problem by allowing the client to continue processing during a
method invocation so that the client can handle user input in atimely manner. (Again, the use of
multithreading in the client is almost always the best solution because oneway method invocations are
unreliable.) Day 10, "Learning About CORBA Design Issues,” explores this and other issuesin greater
depth.

8. Imagine a compound data type with alarge number of data members. Thisdata type will
frequently be used by a client application that needsto access each of the data members. Would it
be more efficient to encapsulatethisdatatypeintoast ruct or ani nt erf ace? Why?

Given that there are alarge number of data membersin this data type and that the client application needs
to access each of these data members, it would be more efficient to send the data to the client as a

st ruct . Thereason for thisis that accessing each of the datamembersof ani nt er f ace (recall that
the implementation object is passed by reference) requires a separate method call for each member,
resulting in agreat deal of overhead. By contrast, ast r uct issent by value; therefore, after the

st ruct isreturned to the client, the client can then access the member data with its own local copy.

9. Because an IDL method can return avalue, what isthe purpose of out and i nout parameter
types?

If amethod needs to simultaneously return more than one value of more than onetype, out andi nout
parameters can be used, in addition to (or in lieu of) the return value. Thisisasimilar mechanism to
passing parameters by reference in C++. In thisway, a single method call can return more than one value.
Why isaoneway method unable to return any value to the caller? Can you think of a mechanism, using
oneway calls, to return aresult to the caller?

Because aoneway method does not block, the caller does not wait for aresult. Consequently, thereis no
way for aoneway method call to return aresult to the client. (Incidentally, exceptions cannot be raised
either, for the same reason.) However, a system of oneway calls can be set up as follows: The client
makes aoneway call to the server and continuesiits processing. The server, after it has executed the
method, makes aoneway call back to the client (extra credit if you identified this as a callback) with the
result information for the previous call.

Exercises

1. Consider thefollowing classes: Condui t , Faucet , FuseBox, Qut | et , Pi pe, WAt er Heat er,
Wat er Punp, and W r e. How would you partition these classes? What relationships, if any, are
ther e between the partitions you have created?

Often, when partitioning a system, there is no clear answer asto which classes belong in what partitions.
Many are obvious, but there are those that potentially fall into one of severa partitions. In such cases,
there is no right or wrong answer. Also, how a particular system uses these classes might affect the
partitioning; a partitioning that makes sense for one system might not make sense for another.

Of the classesin this exercise, Condui t , FuseBox, Qut | et , and W r e clearly belong in one partition
(call itEl ectri cal). Faucet and Pi pe clearly belong in another partition (call it Pl unbi ng).

Wat er Heat er and Wt er Punp, however, could go either way. They are part of the plumbing system,
to be sure, but they are also electrical devices, so they could aso be considered part of the electrical
system. Here there is no right or wrong answer; depending on system requirements, either partitionis
reasonable.

Assuming you were to place WAt er Heat er and Wat er Punp in the Pl unbi ng partition, there would
probably be arelationship between WAt er Heat er and Qut | et (or between WAt er Heat er and
FuseBox, if they were connected directly). A similar relationship would exist for WAt er Punp. Because
there are few relationships between the two partitions and close relationships within each partition, you
can consider this partitioning scheme a reasonable one.

2. Createan interface that describes a clock radio (which can set hours, minutes, alarm time, and
So on).
There are many potential answersto this exercise, but your interface might resemble the following:

/Il Interface to a clock/radio device. This interface chooses to
/'l emulate the interface of many clock/radio controls, e.g. a

http://www.informit.com/content/0672312085/element_020.shtml (4 of 12) [17.07.2000 18:33:05]

- Answers to Quizzes and Exercises From: Sams Teach Yourself CORBA in 14 Days

[l "button" to set the hour, another "button"” to set the mnute,
/! and so on.

interface C ockRadio {

I/ Get the current tine. The result is returned in the output

[l parameters hour, mnute, and second.

voi d getTi ne(out short hour, out short mnute, out short second);
/1 Advance the current hour by one; reset to zero if the hour

[l exceeds the maxi mum (23). This nethod can be used to set the
/1 time. Returns the new val ue of the hour.

short | ncrenentHour();

/1 Advance the current mnute by one; reset to zero if the mnute
/1 exceeds the maxi mum (59). This nethod can be used to set the
[l time. Returns the new val ue of the m nute.

short I ncrenmentM nute();

/1 Advance the al arm hour by one; reset to zero if the hour

/'l exceeds the maxi mum (23). This method can be used to set the
/1l alarmtine. Returns the new val ue of the hour.

short | ncrenent Al ar mHour () ;

/1 Advance the current alarmmninute by one; reset to zero if the
/1 mnute exceeds the maxi mum (59). This nmethod can be used to set
/1 the alarmtime. Returns the new value of the minute.

short | ncrenent Al arnM nut e();

/1 Activate the alarm

void activateAl arm);

/1 Deactivate the alarm

voi d deActivateAl arm);

|
Day 4. Building a CORBA Application
Quiz

1. What isthe purpose of server skeletonsand client stubs?

Server skeletons provide the framework (skeleton) set of classes, which provide skeleton methods for
which the developer provides implementations (either through inheritance or through delegation). Client
stubs provide the clients with an interface to the server methods.

2. Why doesthe server need to register the implementation object with the CORBA Naming
Service?

The server needs to register with the CORBA Naming Service because, otherwise, there is no way for
clientsto locate the server. There are other methods of achieving visibility, such aswriting a stringified
object reference to awell-known and accessible location such as adisk file (assuming a networked file
system), a Web server, or an FTP server. The Naming Service provides a standard, convenient method
for publishing object references.

3. Why do the client and server need to catch exceptions, especially when none areraised by the
IDL operationsyou defined?

Recall that every remote method can potentially raise an exception and that these exceptions need to be
caught and handled. Even if the IDL definition for a method does not specify any exceptions, that method
can still raise a CORBA system exception (which would be raised if there were a network error, for
example).

Exercises

1. It was pointed out in the St ockMar ket examplethat it would be agood ideato raise an exception in
theget St ockVal ue() method if aninvalid St ockSymbol was passed in. Modify

St ockMar ket . i dl sothat the method canraisean | nval i dSt ockSynbol Excepti on. (Youll
aso need to add a definition for this exception.)

Theresulting St ockMar ket . i dl might look like this (you might have included additional data
membersin the definition for | nval i dSt ockSynbol Except i on):

/'l StockMarket.idl
/'l The St ockMarket nodul e consists of definitions useful

http://www.informit.com/content/0672312085/element_020.shtml (5 of 12) [17.07.2000 18:33:05]

- Answers to Quizzes and Exercises From: Sams Teach Yourself CORBA in 14 Days

/1 for building stock market-rel ated applications.
nodul e St ockMar ket {

/1 The I nvalidStockSymnbol Exception is rai sed when a
/1 method is passed an invalid stock symnbol.
exception I nvalidStockSynmbol Exception { };

[l The StockSynbol type is used for synbols (nanes)
[l representing stocks.

typedef string StockSynbol;

/'l The StockServer interface is the interface for a
/1 server that provides stock market infornation.
/1l (See the comrents on the individual nethods for
{1 nmore information.)

interface StockServer {

/1 getStockValue() returns the current value for

/1 the given StockSynbol. If the given StockSynbol
/1 is unknown, the results are undefined (this

/1 would be a good place to rai se an exception).

fl oat get StockVal ue(in StockSynbol symnbol)

rai ses (lnvalidStockSynbol Excepti on);

/1 get St ockSynbol s() returns a sequence of all

/1 StockSymbols known by this StockServer.
sequence<St ockSymnbol > get St ockSynbol s() ;

H

1

2. Inthe St ockMar ket example, an implementation was provided that used the del egation approach.
Implement the St ock Ser ver to use the inheritance approach. (Extra credit: Include the
exception-raising mechanism from the first exercise.)

3. The changes required are to modify the server so that it actually raisesthe

I nval i dSt ockSynbol Excepti on when aninvalid stock symbol is encountered; similarly, the
client must be modified to catch and handle this exception. For the server, here is the new implementation
for theget St ockVal ue() method (al other code remains unchanged):

/! Return the current value for the given StockSynbol .
public float getStockValue(String synbol) throws

I nval i dSt ockSynbol Excepti on {

[l Try to find the given synbol .

int stocklndex = nyStockSynbol s.indexO (synbol);

if (stocklndex !'= -1) {

[l Symbol found; return its val ue.

return ((Fl oat) nmyStockVal ues. el enent At (st ockl ndex)).
f1 oat Val ue();

} else {

/1 Symbol was not found.

t hrow new | nval i dSt ockSynmbol Exception();

}

}

The changesto the client are limited to the doSonet hi ng() method, which now catches the exception
and prints a warning message:

/1 Do sorme cool things with the StockServer.

protected void doSonet hing() {

try {

/1l Get the valid stock synbols fromthe StockServer.
String[] stockSymbols = myStockServer. get St ockSynbol s();
/1 Display the stock synbols and their val ues.

for (int i = 0; i < stockSynbols.length; i++) {
try {
Systemout . println(stockSynmbols[i] + " " +

my St ockSer ver. get St ockVal ue(st ockSynbol s
[i1));

http://www.informit.com/content/0672312085/element_020.shtml (6 of 12) [17.07.2000 18:33:05]

- Answers to Quizzes and Exercises From: Sams Teach Yourself CORBA in 14 Days

} catch (InvalidStockSynbol Exception ex) {
Systemout.println("lnvalid stock synbol.");

}

}
} catch (org.ong. CORBA. Syst enkException ex) {

Systemerr.println("Fatal error: " + ex);
}
}

Day 5: Designing the System: A Crash Course in
Object-Oriented Analysis and Design

Quiz

1. Identify the potential objectsin the system described here: An ordering system allows customers to
order products from a particular company. Each order consists of one or more line items, each of which
identifies a quantity and a particular product. Each product, in turn, has an associated price.

Possible objects in this system can be identified by picking out the nouns: order, line item, quantity, product,
and price. (Further analysis might reveal that some of these--particularly quantity and price--do not work well
as objects, but that depends on the application.)

2. What isUML, and what isit good for?

The UML, or Unified Modeling Language, is used to facilitate the object-oriented analysis and design
process. UML can be used to model a number of aspects of the system, from static design (such as class
diagrams) to dynamic (such as use cases and scenarios).

3. For an order-processing system design, one requirement given is "must be fast." Isthis areasonable
expression of this requirement, or could it be improved? If so, how?

Because fast by itself is not an easily quantifiable term and thus cannot be tested readily, "must be fast” is
probably not a reasonably expressed requirement. A more quantifiable requirement would be to require an
average system response time of, for example, one second or less.

Exercise

Modify the system design so that a Bank consists of Br anches, each of which owns some of the Cust onrer
Account s. Draw the class diagram for the modified design.

Y our modified class diagram should resemble the one shown in Figure A.1. Note that the Account creation
responsibility has been moved from the Bank to the Br anch, although the Bank and its constituent
Br anches share the capability to enumerate and close Account s.

Figure A.1 The modified Bank application class diagram.
Day 6. Implementing Basic Application Capabilities
Quiz

1. Itwasnoted earlier that _i s_equi val ent () isnot guaranteed to return TRUE when two object
references refer to the same object. Can you think of a mechanism that would more reliably determine
whether two references refer to the same object? (For simplicity, assume the objects are of the same
type.)

A mechanism could assign global unique identifiers (GUIDs) or universal unique identifiers (UUIDS) to
objects and make the identifiers available to client applications (through an accessor method such as

get GUI D()). Such a mechanism could more reliably determine object identity by comparing identifiers;
two objects that return the same GUID must be the same object.

2. What would happenif _r el ease() werenot called on an object that had earlier been
_duplicate()d?

If rel ease() werenot called on an object, the object would live forever; its reference count (in a
reference counting implementation) would never reach zero.

http://www.informit.com/content/0672312085/element_020.shtml (7 of 12) [17.07.2000 18:33:05]

javascript:popUp('elementLinks/01.jpg');

- Answers to Quizzes and Exercises From: Sams Teach Yourself CORBA in 14 Days

3. Why does NewCust orrer Mai n. cpp haveatry ... catch (const

CORBA: : Excepti on& ex) block?

The CORBA: : Except i on isageneric exception that can be thrown by any remote method. Because a

number of remote methods are called in NewCust orrer Mai n. cpp, they are done soinside thist ry
cat ch block.

Exercise

Modify the client application so that it prints the names of the Cust oner swho are associated with the
Account that was created. (The single Cust oner printed should be the same Cust oner whose information
was entered on the command line.)

After line 85 of NewCust orrer Mai n. cpp (refer to Listing 6.21), add the following code. This code gets the
Account ownersusing theget Cust oner s() method, then iterates through the sequence of Cust oner s
returned by that method, printing the name of each Cust onrer (asreturned by name()).

View Code
Day 7: Using Exceptions to Perform Error Checking
Quiz

1. What does it mean to raise (or throw) an exception?
To raise an exception means that a new exception is created and passed to the caller of the method that
raised the exception. The caller can then handle the exception or passit to its caller.

2. What does it mean to catch an exception?

To catch an exception means to handle an exception that was raised by a method that was called.
Catching an exception might involve displaying an error message to the user, trying to resolve the
condition that caused the exception to be raised, or doing nothing at all.

3. Why are exceptions useful ?

Exceptions are useful because they provide a structured form of error handling. For example, without
exceptions, a given method would have to reserve certain return results to signify an error condition; a
caller of such a method would have to check for each of these special return codes. Exceptions greatly
simplify the complexities that can otherwise arise from error handling mechanisms.

Exercises

1. Modify the following interface definition so that appropriate exceptions are raised in appropriate
places.

exception InvalidNunber Exception { };
exception Nol ncom ngCal | Exception { };
exception Not O f HookException { };
interface Tel ephone {

voi d of f Hook() ;

voi d onHook();

voi d di al Nunber (in string phoneNunber);
voi d answerCall ();

s

One potential solution is asfollows:

exception | nvalidNunber Exception { };
exception Nol nconi ngCal | Exception { };
exception Not O f HookException { };
interface Tel ephone {

voi d of f Hook();

voi d onHook();

voi d di al Nunber (in string phoneNunber)
rai ses (I nvali dNunmber Exception, Not O f HookExcepti on);
voi d answer Cal | ()

rai ses (Nol nconi ngCal | Excepti on);

b

http://www.informit.com/content/0672312085/element_020.shtml (8 of 12) [17.07.2000 18:33:05]

javascript:popUp('elementLinks/element_020_code_1.html');

- Answers to Quizzes and Exercises From: Sams Teach Yourself CORBA in 14 Days

This solution assumesthat it is not valid to dial anumber unlessthe Tel ephone isaready off the hook.
It might be equally reasonable for di al Nunber () to call of f Hook() if the Tel ephone isnot
aready off the hook.

2. Implement the interface from exercise 1, raising the appropriate exceptions under the appropriate
conditions. (Most of the methods probably won't do anything, except for di al Nurrber () , which will
likely check the validity of the given phone number).

The complete solution is not given here, but the implementation for the exercise 1 solution would look
like this (the following is in pseudocode):

voi d di al Nunmber (string phoneNunber) {

if (telephone is on hook) {

rai se Not O f HookExcepti on;

}

i f (phone number is invalid) {

rai se I nvalidNunber Excepti on;

}

proceed to dial the number...

}

void answerCall () {

if (noincomng call is being placed) {
rai se Nol ncom ngCal | Excepti on;

}

proceed to answer the call...

}

Day 8: Adding Automated Teller Machine (ATM)
Capability

Quiz
What are the four steps you'll usualy follow to make enhancements to a CORBA application?

The steps are to define additional requirements, modify the system design, modify the IDL definitions to reflect
the new design, and, finally, implement the new functionality.

Exercise

Add an operation to the ATMinterface that allows funds to be transferred between Account s. Be sureto
provide appropriate exceptions as well.

The IDL should look something like this:

float transfer(in ATMCard card, in Account fromAccount, in Account
toAccount, in short pin in float anmount)
rai ses (AuthorizationException, Invali dAmunt Excepti on,
I nsuf fici ent FundsExcepti on);

Note that the implementation of this method will likely need to use the ATMCar d to check the authorization for
both thef r omAccount andt oAccount parameters. (Actualy, it might be reasonable to alow transfersto
any Account , but real ATM cards allow transfers only between accounts on which those cards are authorized.)

Day 9: Using Callbacks to Add Push Capability
Quiz

1. Why does the issue of thread safety become important in the sample application developed in this
chapter?

Thread safety isimportant because multiple threads might attempt to access the same data
simultaneously. To prevent the possible corruption of data, access to such data must be made thread-safe.

2. Instead of using oneway methodsto notify clients of updates, can you think of another way to
efficiently send update messages to clients? (Hint: Multithreading could come in handy here.)
Launching a new thread to send each client update messages significantly enhances the efficiency of

http://www.informit.com/content/0672312085/element_020.shtml (9 of 12) [17.07.2000 18:33:05]

- Answers to Quizzes and Exercises From: Sams Teach Yourself CORBA in 14 Days

non-oneway message delivery. Thisis because, rather than require a single thread to wait for each client
response before delivering the next message, each thread can block while waiting for a response from its
respective client.

Exercises

1. It was noted earlier in the chapter that no facility currently existsto cancel the automatic account
update service. Provide an IDL method signature for such an operation. Don't forget to include
appropriate exceptions, if any.

The method signature, which would be added to the Bank interface, should resemble the following:

voi d cancel Updat eServi ce(in Account account)
rai ses (lnvali dAccount Excepti on);

Thel nval i dAccount Except i on would beraised if the Account does not belong to the Bank on
which the operation was called. Optionally, you would either raise this exception or ignore the operation
if it were called on an Account that was already subscribed to this service.

2. Implement the account update cancellation method from exercise 1.

The complete implementation is not given here, but the following pseudocode provides the genera
agorithm:

voi d cancel Updat eSer vi ce(Account account) {

if (account does not belong to this Bank) ({

t hrow I nval i dAccount Excepti on;

}

if (account is already subscribed to the auto update service) {
t hrow I nval i dAccount Excepti on;

}

(ot herwi se)

renove the account fromlist of Accounts subscribed to the auto
updat e service

}
Day 10: Learning About CORBA Design Issues

Quiz

1. What is the major issue associated with mixing client and server functionality in a single-threaded
CORBA application?

Depending on what the application is doing, mixing client and server functionality in a single-threaded
application introduces the potential for deadlock to occur.

2. How can the use of reference counting in a CORBA application lead to problems?
When an application component crashes, none of the reference counts for the objects it referenced will be
decremented. Consequently, those objects might not be destroyed when they should be.

3. Which version of X11 (the X Window System) would be required to safely run multithreaded X -based
applications?

X11R6.1 or later is necessary to safely run multithreaded applications. Earlier versions don't have
thread-safe libraries.

4. Why isthe capability to pass objects by value sometimes useful ?

If an application component intends to perform anumber of operations on an object, it is often more
efficient to use alocal copy of that object rather than make numerous method invocations on a remote
object.

5. Why isit usually inadvisable to use the Exclusive oneway Call design pattern introduced earlier in
this chapter?

Because oneway methods are unreliable, the Exclusive oneway Call design pattern is difficult to
implement for situations in which reliable message delivery is required.

http://www.informit.com/content/0672312085/element_020.shtml (10 of 12) [17.07.2000 18:33:05]

- Answers to Quizzes and Exercises From: Sams Teach Yourself CORBA in 14 Days

Day 11: Using the Dynamic Invocation Interface (DIl)
Quiz

1. Would you expect DIl to be useful to most CORBA application developers? Why or why not?
As emphasized numerous times in this chapter, DI will probably not be useful to most CORBA
application developers. Thisis primarily because, for most applications, the interfaces are almost always
known at compile time anyway. Also, DIl adds agreat deal of complexity that developers are well
advised to avoid altogether.

2. What are the advantages of DIl over static method invocation?

DIl has two advantages over static method invocation: the flexibility for a client to invoke operations on
interfaces that were unknown at the time the client was compiled, and the ahility to use one of several
options for obtaining the return result from a remote method invocation.

<

3. What are the disadvantages of DIl compar ed to static method invocation?

The disadvantagesto using DIl are its complexity, itslack of static-type-checking ability, the additional
overhead incurred by its call mechanism, and the overhead associated with interface discovery.

Day 12: Exploring CORBAservices and
CORBAfacilities

Quiz

1. Who defines the specifications for CORBAservices and CORBAfacilities?
The specifications for CORBAservices and CORBAfacilities are defined by the Object Management
Group (OMG).

2. Who provides the implementations for CORBA services and CORBAfacilities?
The implementations for CORBA services and CORBAfacilities are provided by the vendors themselves.
The OMG does not provide their implementations, only their specifications.

3. What CORBAservices and/or CORBAfacilities, if any, must avendor provide with an ORB product in
order to be considered CORBA 2 compliant?

No CORBAservices or CORBAfacilities implementations are required from a vendor for CORBA 2
compliance. Compliance is determined by a product's ORB capabilities alone.

4. Why are vertical market facilities useful ?

Vertical market facilities are useful because they can enhance interoperability between applications
within a particular industry. In addition, they can facilitate the sharing of data between companies within
an industry.

Exercises

1. Provide an overview of how the Object Trader Service could be used to replace the Bank Ser ver in
the sample Bank application.

In the sample Bank application, the Bank Ser ver component exists solely to allow other application
components to locate Bank s and ATMs. Asit turns out, locating objects by typeis precisely the capability
provided by the Trader Service. Rather than locate and register with aBank Ser ver component, Banks
and ATMs could instead register with the Trader Service. These components would subsequently be
available to other application components--namely, Cust oner s-that could locate the components
through the same Trader Service. Thus, the functionality of the Bank Ser ver component is effectively
replaced.

2. Describe how the Event Service could be used within the Bank application. (Hint: Consider the
automatic account update feature added on Day 9.) What would be the benefit of using this approach?
Currently, the automatic account update feature requires the Bank to iterate through its Account sthat
are subscribed to the update service. The Bank invokes a callback method on each of the Cust oner s
who are associated with those Account s. Using the Event Service, the Bank could become a publisher
of Account balance update eventsto which Cust oner s could subscribe. The benefit of this approach
isthat it eliminates the complexity of delivering update messagesto Cust oner sin the Bank

http://www.informit.com/content/0672312085/element_020.shtml (11 of 12) [17.07.2000 18:33:05]

- Answers to Quizzes and Exercises From: Sams Teach Yourself CORBA in 14 Days

application; the details of message delivery are shifted to the Event Service.

3. (Extra Credit) If you have any products available to you that implement one or more CORBA services,
try to integrate the functionality provided by a service of your choice with the sample Bank application.
(See the section of this chapter labeled "Choosing CORBAservices' to determine which services might
integrate well with the sample application.) Because of the numerous possibilities available to you, no
answer is provided for this exercise.

Day 13: Developing for the Internet Using CORBA and
Java

Quiz

1. What IDL construct resembles Java's package?
The Javapackage isvery similar to the IDL nodul e.

2. What is an advantage of Java Remote M ethod | nvocation (RM1) over CORBA? Of CORBA over
RMI17?

One advantage of RMI over CORBA isthat RMI alows objects to be passed by value. Some advantages
of CORBA over RMI are language independence and robustness.

3. Why might a developer want to use Java to develop a CORBA application?
Java's portability makesit especialy attractive for developing CORBA client applications that might be
required to run on avariety of platforms.

Day 14. Web-Enabling the Bank Example with Java
Quiz

1. Why might it be advantageous to deploy a CORBA client as a Java applet?
Two potential advantages for using Java applets for CORBA clients are the Java language's portability
and the applet's simplified deployment mechanism through Web browsers.

2. Why isit useful for browsers to include built-in CORBA-related classes (for example, Netscape's
Communicator includes Visigenic's VisiBroker for Java runtime)?

Because the classes required for CORBA connectivity are included with the browser, they do not have to
be downloaded with the applet each time the applet is downloaded, thus reducing the download time
required.

3. What isa potential disadvantage to the bundling scheme described in question 2?
A possible disadvantage to this scheme is that the CORBA classes provided with the browser might
become outdated, thus requiring new versions of the classes to be downloaded with the applet anyway.

Exercise

Extend the Bank Appl et to do even more cool stuff. For example, you might add tabbed panels to display the
Account sbelonging to a particular Cust orrer . Or, you might extend the applet to allow multiple

Cust oner sto be associated with an Account and extend the Account information correspondingly to
show all the Cust oner s associated with agiven Account . (Because thisis an open-ended exercise, no
answer isgiven.)

<Back Contents Next>
Save to MylnformI T

http://www.informit.com/content/0672312085/element_020.shtml (12 of 12) [17.07.2000 18:33:05]

http://www.informit.com/My/Add?isbn=0672312085&title=Sams+Teach+Yourself+CORBA+in+14+Days&category=Programming&topic=CORBA&chapter=2854&elementname=Answers+to+Quizzes+and+Exercises
http://www.informit.com/about/
http://www.informit.com/press/
http://www.informit.com/about/advertising/
http://www.informit.com/legal/privacy/
http://www.informit.com/contact/
http://www.informit.com/legal/copyright/
http://www.informit.com/legal/privacy/

- CORBA Tools and Utilities From: Sams Teach Yourself CORBA in 14 Days

ile they last! @

Your Hame

Hot Topics Yisual Basic Windows 2000 Windows MT Linu=/Open Source Cizco Knowledge Suite
Soluton Centers PragramlIT DatabazelT WebIT MetworkIT ConfiguralT

oWl CORBA Tools and Utilities

Search
Search Tips

From: Sams Teach
Yourself CORBA in 14
B Days

R Author: Jeremy
(00)1419:Y Rosenberger

' 14 DAYS| Publisher: Sams
- More Information

<Back Contents Next>

Save to Mylnforml T

Rlylnformi T

InformlT E:tln re

D02 o A Look at CORBA ORB Products

o BBN's Corbus

o BEA Systems ObjectBroker'

o Chorus Systems CHORUS/COOL ORB'
o DNS Technologies SmalltalkBroker'

Glick Here for

High-Tech

Johs! 0 Expersoft's CORBAplus Products
o Hewlett-Packard's ORB Plus

developerWorks™ o IBM's SOMobjects

o IONA Technologies Orbix, OrbixWeb, and Other Products
0 Netscape's Navigator and Enterprise Server'
o Object-Oriented Concepts OmniBroker'

bt 0 Object-Oriented Technologies DOME!

o Objectspace's Voyager'

DPEC we—

Based Training

@m L‘;F]“g o The Olivetti and Oracle Research Laboratory's omniORB2'
o SunSoft's NEO and Joe
TGS 0 Sybase's Jaguar CTS

o TIBCO's TIB/ObjectBus
o Visigenic Software's VisiBroker and Other Products
o Xerox PARC'sILU'
o A Look at CORBA-Aware Development Tools
o Aonix's Software through Pictures
o Black & White Software's CORBA Development Tools
o ParcPlace's Distributed Smalltalk'
o Rational Software's Rose
o TakeFive Software's SNiFF+
o TRW's Universal Network Architecture Services (UNAS)'

This appendix provides a brief overview of some of the CORBA products available today. Although every
attempt was made to make this information as up-to-date as possible, there are always products that slip
between the cracks. Also, asthe interest in CORBA grows, new products are announced all the time. Here, then,
isabrief overview of all CORBA-related products known to the author at the time this was written.

A Look at CORBA ORB Products

The products described in this section include Object Request Brokers (ORBs) and are used to develop and

http://www.informit.com/content/0672312085/element_021.shtml (1 of 8) [17.07.2000 18:33:09]

http://www.informit.com/
http://ad.doubleclick.net/jump/www.informit.com/programit/;cat=developer;num=92
javascript:document.regularSearch.submit();
http://www.informit.com/search/tips/
http://ad.doubleclick.net/clk;1464039;4446282;i?http://www.informit.com/jobs
http://www.informit.com/news/
http://www.informit.com/downloads/
http://www.informit.com/store/
http://www.informit.com/itlibrary/
http://www.informit.com/edchoice/
http://www.informit.com/alphabook/
http://infobase.informit.com/
http://www.informit.com/My/Accounts
http://ad.doubleclick.net/jump/informit.com/sponsor-button/brassring/badge;sz=100x60
http://ad.doubleclick.net/jump/informit.com/sponsor-button/ibm/badge2;sz=88x31
http://www.informit.com/training/
http://www.recommend-it.com/p.e?415858
http://www.informit.com/news/
http://www.informit.com/downloads/
http://www.informit.com/programit/vb/
http://www.informit.com/networkit/windows2000/
http://www.informit.com/networkit/winnt/
http://www.informit.com/networkit/linux/
http://www.knowcisco.com/
http://www.informit.com/programit/
http://www.informit.com/databaseit/
http://www.informit.com/webit/
http://www.informit.com/networkit/
http://www.informit.com/configureit/
http://www.informit.com/My/Add?isbn=0672312085&title=Sams+Teach+Yourself+CORBA+in+14+Days&category=Programming&topic=CORBA&chapter=2855&elementname=CORBA+Tools+and+Utilities
http://www.informit.com/product/0672312085

- CORBA Tools and Utilities From: Sams Teach Yourself CORBA in 14 Days

deploy CORBA applications. Usually, these products don't provide full development environments but simply
the ORB itself, an Interface Definition Language (IDL) compiler, and other miscellaneous tools useful for
CORBA application devel opment.

BBN's Corbus'

Corbusisa CORBA 2.0-compliant ORB that is free for government and noncommercia use (subject to certain
conditions, details being available on BBN's Web site). Corbusis available for Solaris, SUunOS, and HP-UX.

Information on Corbus, as well as downloadable copies, is available on BBN's Web site at
http://ww. bbn. conf product s/ dpom cor bus. ht m

BEA Systems' ObjectBroker

BEA, perhaps most famous for its Tuxedo transaction-processing monitor, offers a CORBA ORB (which it
acquired from Digital around March 1997). ObjectBroker supports 20 platforms (BEA's Web site doesn't
indicate which) and provides integration with OLE on Windows platforms. BEA claims that ObjectBroker isthe
most mature ORB available, having first shipped in 1991 (indeed, thisis an eternity in CORBA years).

Information on ObjectBroker is available on BEA's Web site at
http://ww. beasys. com product s/ obb/i ndex. ht m

Chorus Systems' CHORUS/COOL ORB'

Chorus, recently acquired by Sun Microsystems (September 1997), offers a CORBA 2.0- compliant ORB iniits
CHORUS/COOL ORB product. CHORUS/COOL ORB is available for an impressive array of operating
systems, including AlX, CHORUS realtime and embedded OS's, HP-UX, Linux, SCO OpenDesktop and
OpenServer, SUNOS, Solaris, Windows 95, and Windows NT.

Information on CHORUS/COOL ORB, as well as a downloadable evaluation copy, is available at Chorus's
Web siteatht t p: / / www. chor us. coml Product s/ Cool /i ndex. ht i .

DNS Technologies' SmalltalkBroker'

A rare breed, DNS Technologies SmalltalkBroker isa CORBA 2.0-compliant ORB for Smalltalk applications.
SmalltalkBroker also provides a handful of CORBAservices implementations--CORBA Naming Service,
CORBA Life Cycle Service, CORBA Event Service, and CORBA Transaction Service.

Information on SmalltalkBroker is available on DNS Technologies Web site at
http://ww. dnst ech. com st bprod. ht m

Expersoft's CORBAplus Products'

Expersoft's CORBAplus family comesin avariety of flavors:

o CORBAplusfor C++, a CORBA 2.0-compliant ORB, supports Windows 95, Windows NT, Solaris,
HP-UX, and Al X. It aso provides implementations for the CORBA Naming Service, the CORBA Event
Service, and the CORBA Relationship Service.

« CORBAplus Java Edition is a 100% Pure Java ORB implementation that supports JDK 1.0.2 and JDK
1.1.

« CORBAplus ActiveX Bridge provides interoperability between ActiveX and CORBA objects, enabling,
among other things, the development of CORBA applications using Visual Basic.

« CORBAplus Enterprise Edition adds asynchronous messaging capability, along with multithreaded
application support, a dynamic type manager (used in conjunction with the Dynamic Invocation
Interface), and URL object-addressing capability.

Information on the CORBA plus product line, along with downl oadable evaluation copies, is available on
Expersoft'sWeb siteat ht t p: / / www. exper sof t . coml Pr oduct s/ CORBApl us/ cor bapl us. ht m

Hewlett-Packard's ORB Plus'

ORB Plus is Hewlett-Packard's entry into the CORBA market, with support for (of course) HP-UX, Solaris, and

http://www.informit.com/content/0672312085/element_021.shtml (2 of 8) [17.07.2000 18:33:09]

http://www.bbn.com/products/dpom/corbus.htm
http://www.beasys.com/products/obb/index.htm
http://www.chorus.com/Products/Cool/index.html
http://www.expersoft.com/Products/CORBAplus/corbaplus.htm

- CORBA Tools and Utilities From: Sams Teach Yourself CORBA in 14 Days

Windows NT. In addition to being a CORBA 2.0-compliant ORB, ORB Plus provides implementations for the
CORBA Life Cycle Service, the CORBA Naming Service, and the CORBA Event Service. A unique feature of
ORB Plusisthat it supports DCE CIOP (essentialy the equivalent of 110OP for DCE), at least on HP-UX.

Hewlett-Packard has been instrumental in the devel opment of proposals to build bridges between CORBA and
Microsoft technologies, such as DCOM and ActiveX, so developers interested in spanning the two worlds will
want to keep an eye on Hewlett-Packard.

More information on ORB Plus is available on Hewlett-Packard's Web site at
http://ww. hp. com gsy/orbplus. htni.

IBM's SOMobjects'

SOMobjects, IBM's offering in the CORBA world, is available for AlX, 0S/2, and Windows NT. SOMobjects
provides implementations for a variety of CORBAservices, including the CORBA Event Service, the CORBA

Life Cycle Service, the CORBA Persistent Object Service, the CORBA Concurrency Service, and the CORBA
Transaction Service.

Information on SOMobjects, as well as a downloadable copy, is available at IBM's Web site at
http://ww. sof tware. i bm com ad/ sonpbj ects/.

IONA Technologies' Orbix, OrbixWeb, and Other Products'

IONA and Orbix are perhaps two of the most well-known and well-respected namesin CORBA. IONA offersa
number of CORBA products to serve awide range of needs:

« Orbix, perhaps the most prolific CORBA ORB in existence, is available on a plethora of operating
systems, including awide range of UNIX systems (Solaris, HP-UX, IRIX, AlX, and Digital UNIX),
Windows NT, Windows 95, 0S/2, VxWorks, QNX, and MV S. Orbix supports language bindings for
Smalltalk, Adagd5, and C++. IONA also goes one step further with Orbix: On Windows, Orbix supports
integration with OLE and ActiveX; on MV S, Orbix provides full support for COBOL, CICS, DB/2, and
IMS.

« OrbixWeb for Java brings the power of Orbix to Java applets and applications. Because OrbixWeb is
100% Pure Java, it will run in any Java-enabled browser. OrbixWeb isthe first ORB to support JDK 1.1,
and JDK 1.0.2 isaso fully supported.

« Orbix Wonderwall, a companion product to OrbixWeb, provides security in the form of an 11OP firewall
(recall that 110P, or Internet Inter-ORB Protocol, is the standard mechanism by which ORBs from
different vendors can communicate).

« IONA also providesimplementations for many of the CORBA services specifications with such products
as OrbixEvents (CORBA Event Service), OrbixManager (CORBA application monitoring and
management tools), OrbixNames (CORBA Naming Service), OrbixOTS (CORBA Transaction Service),
OrbixSecurity (CORBA Security Service), OrbixTalk (a multicasting implementation of the CORBA
Event Service), and OrbixTrader (CORBA Trader Service).

IONA seems to be making itself a one-stop shop for awide variety of CORBA solutions. Information on Orbix,
OrbixWeb, and other IONA products--many of which can be down-loaded as trial versions--is available from
the IONA Web siteatht t p: / / www. i ona. com .

Netscape's Navigator and Enterprise Server'

Netscape licenses Visigenic Software's VisiBroker for Java (covered in greater detail later in this appendix) and
includes the ORB technology in its popular Web browser, Navigator 4.0 (and, by extension, Communicator).
Thisisaboon for intranet (and, to alesser extent, Internet) developers because the client end (the part written in
Javathat runsin the browser) of a CORBA application can be made smaller (requiring less codeto be
downloaded to the client) because the ORB is integrated with the browser. Because VisiBroker is 100% Pure
Java, such an application also works with non-Netscape browsers as well, although the VisiBroker code hasto
be downloaded to those browsers. (Of course, other vendors are free to include ORB technology in their
browsers aswell.)

Netscape also bundles Visigenic's ORB technology with Enterprise Server 3.0, bringing CORBA functionality
to the server side aswell.

http://www.informit.com/content/0672312085/element_021.shtml (3 of 8) [17.07.2000 18:33:09]

http://www.hp.com/gsy/orbplus.html
http://www.software.ibm.com/ad/somobjects/
http://www.iona.com/

- CORBA Tools and Utilities From: Sams Teach Yourself CORBA in 14 Days

Information on Navigator, as well as adownloadable copy, is available at Netscape's Web site at
http://ww. net scape. coni ; developer information for Netscape productsis available at

htt p: // devel oper. net scape. coni .

Object-Oriented Concepts' OmniBroker'

OmniBroker, from Object-Oriented Concepts, is another CORBA 2.0-compliant ORB that is freely available for
noncommercia use. Aswell as being freely available, full source code isincluded with OmniBroker.
OmniBroker fully supports IDL mappings for C++ and Java, and, because source code is available, can
theoretically work on virtualy any platform. OmniBroker for C++ has been tested on IRIX, Solaris, HP-UX,
AIX, Linux, Windows 95, and Windows NT; OmniBroker for Javaworks with Sun's JDK 1.0.2 or 1.1.3, aswell
as Microsoft's Visual J++ 1.1.

Information on OmniBroker, as well as a downloadable copy, is available on Object-Oriented Concepts Web
siteathttp://ww. ooc. comfob. htm .

Object-Oriented Technologies' DOME'

DOME is another freely available (though redistribution details are not clear) CORBA ORB supporting C++
and C. DOME is available for awide variety of platforms, including Solaris, SUnOS, AlX, HP-UX, Digital
UNIX, Windows 3.1, Windows 95, Windows NT, VMS, 0S5/2, 0OS-9, pSOS, and Linux.

More information about DOME is available on Object-Oriented Technologies Web site at
http://ww. oot . co. uk/.

Objectspace's Voyager'

Voyager, although not yet CORBA-compliant (Objectspace is planning CORBA interoperability in the next
release), should still be of great interest to Java developers. Just one look at the list of features will explain why:
In addition to al the ORB-like features one would expect (such as remote method invocation, naming services,
and so on), Voyager provides much, much more. For example, any Java class can be remote-enabled
non-intrusively (even if the source code is unavailable). VVoyager also supports awide variety of messaging
services, as well as maobile objects (objects can literally be moved onto any Voyager server on the network) and
even autonomous agents (objects can move themselves to other Voyager servers). Voyager adds more, such as
support for persistence through various databases (as well as its own simple built-in persistence mechanism)
and a custom Security Manager.

And, asif al thisweren't enough, Objectspace is making Voyager available free of charge. (Objectspace
charges for VVoyager support, although the level of support given for free is quite reasonable.) That Objectspace
is giving away the use of this technology is amazing, especially considering the product's capabilities. Although
Voyager isaJava-only product (and 100% Pure Java at that), when CORBA support is added, VVoyager objects
can interact with CORBA applications. In addition, Objectspace is planning support for DCOM interoperability
aswell.

Java devel opers owe it to themselves to check out this product; the rest of the CORBA community should stay
tuned. Information on Voyager, aong with the free download, is available on Objectspace's Web site at
htt p: // www. obj ect space. coni voyager/ .

The Olivetti and Oracle Research Laboratory's omniORB2'

omniORB2, from the Olivetti and Oracle (an interesting combination) Research Laboratory, will be a
particularly appealing product to some devel opers because of one outstanding feature: The product is freely
available, even for commercial use. That's correct. ORL has placed omniORB2 under the GNU General Public
License and GNU Library General Public License. At the time this was written, omniORB2 was not yet a
complete CORBA 2.0 implementation because it lacked support for Typecodes and the any type; aso, the
Dynamic Invocation Interface (DII) and Dynamic Skeleton Interface (DSI) were not supported. Nevertheless,
omniORB2 can prove useful for agreat many of development projects.

The GNU General Public License

Details of the GNU General Public License (GPL), also known as the copyleft, are available from
the Free Software Foundation (FSF) Web site at
http://ww. fsf.org/copyleft/gpl.htm .Similarly, details of the GNU Library

General Public License are availableat ht t p: / / www. f sf. org/ copyl eft/l gpl. htm .

http://www.informit.com/content/0672312085/element_021.shtml (4 of 8) [17.07.2000 18:33:09]

http://www.netscape.com/
http://developer.netscape.com/
http://www.ooc.com/ob.html
http://www.oot.co.uk/
http://www.objectspace.com/voyager/
http://www.fsf.org/copyleft/gpl.html
http://www.fsf.org/copyleft/lgpl.html

- CORBA Tools and Utilities From: Sams Teach Yourself CORBA in 14 Days

Essentially, software distributed under these terms can be copied and distributed freely, or even
modified or sold, but the source code must always be included with the product using such
software. The GPL is very popular among users of free UNIX-like operating systems such as
Linux or FreeBSD.

Information on omniORB2, along with the (freely available) distribution, is available at ORL's Web site at
http://ww. orl. co. uk/ omi ORB/ ommi ORB. ht i .

SunSoft's NEO and Joe'

Sun's CORBA product line consists of four major products:

o SolarisNEO isa CORBA 2.0-compliant ORB that includes implementations for the CORBA Naming
Service, the CORBA Property Service, the CORBA Event Service, the CORBA Relationship Service,
and the CORBA Life Cycle Service. Solaris NEO also boasts other features, such as SNMP (Simple
Network Management Protocol) management capability, support for workgroups, concurrent requests,
persistent object storage, and more.

« JoeisaCORBA ORB implemented in 100% Pure Java. Joe is bundled with Solaris NEO and is also
available as a separate product.

« NEO Connectivity for Microsoft Windows enables Windows 95 and Windows NT, using ActiveX, OLE,
and COM interfaces, to communicate with CORBA objects.

« Solstice NEO enables CORBA system administration, providing capabilities such as managing ORBS,
displaying status of CORBA objects and processes, |oad balancing, and other management capabilities.
Solstice NEO, which is Java-based, is bundled with Solaris NEO or available separately.

Information on NEO and Joe, along with downloadable copies of some of Sun's products, is available on Sun's
Web siteatht t p: / / www. sun. cont sol ari s/ neo/ .

Sybase's Jaguar CTS'

Although the current version (1.1) of Jaguar CTS is hot CORBA-compliant, Sybase is promising CORBA
interoperability in version 2. In the meantime, Jaguar CTSis particularly interesting because of its wide range
of support for various technologies and products. Jaguar CTS interoperates with Java, ActiveX, PowerBuilder,
and C/C++. It supports connectivity through HTTP, TDS, and (in version 2) 11OP. It also supports database
connectivity through JDBC, ODBC, or CTlib to databases such as (of course) Sybase, Oracle, Informix, SQL
Server, or mainframe-based databases.

Information on Jaguar CTSis available on Sybase's Web site at
http://wwil. sybase. com products/jaguar/.

TIBCO's TIB/ObjectBus’

TIBCO's strong suit is messaging, and it leverages this strength with its TIB/ObjectBus product, a CORBA
2.0-compliant ORB that TIBCO claimsis "the only ORB that takes advantage of both broadcast and reliable
multicast communication to initiate ORB requests and distribute ORB events across an unlimited number of
servers and users." In addition to supporting the CORBA Naming Service and CORBA Event Service,
T1B/ObjectBus provides CORBA-compliant mechanisms for publish-subscribe and request-reply models of
communication. TIB/ObjectBus supports avariety of platforms, including Solaris, HP-UX, VMS, Digital
UNIX, 052, AlX, and Windows NT. In addition, TIBCO is planning possible support for Java, the CORBA
Transaction Service, and other features.

More information on TIB/ObjectBusis available on TIBCO's Web site at
http://ww.tibco.conlobjctbus/tib_object bus.htmn.

Visigenic Software's VisiBroker and Other Products'

Visigenic is quickly making a name for itself in the CORBA industry. The company has been successful in
licensing its ORB technology to a number of high-profile vendors, including Borland, Netscape, Novell, Oracle,
SGlI, and Sybase. In addition to licensing its technology, Visigenic also offers the following products:

« VisiBroker for C++ isacomplete CORBA ORB for developing CORBA applicationsin C++.

http://www.informit.com/content/0672312085/element_021.shtml (5 of 8) [17.07.2000 18:33:09]

http://www.orl.co.uk/omniORB/omniORB.html
http://www.sun.com/solaris/neo/
http://www1.sybase.com/products/jaguar/
http://www.tibco.com/objctbus/tib_object_bus.html

- CORBA Tools and Utilities From: Sams Teach Yourself CORBA in 14 Days

VisiBroker is available on avariety of platforms, including Solaris, HP-UX, AlX, IRIX, Digital Unix,
Windows 95, and Windows NT.

« VisiBroker for Javaisa100% Pure Javaimplementation of a CORBA ORB. Visigenic has the distinction
of bringing to market the first CORBA 2.0-compliant ORB written in 100% Pure Java.

« Visigenic aso provides implementations for a number of CORBAservices with its VisiBroker Naming
Service (CORBA Naming Service), VisiBroker Event Service (CORBA Event Service), and TPBroker
(CORBA Transaction Service).

Visigenic has recently announced the Distributed Application Platform Architecture (Visigenic/DAP), its plan
for a CORBA development platform. Along with the CORBAservices presently offered, Visigenic plans to add
other services, such asthe CORBA Trader Service, integrated transaction capability, and asynchronous

messaging capability.

Information on VisiBroker and other Visigenic products, many of which can be downloaded astrial versions, is
available from Visigenic'sWeb siteat ht t p: / / www. vi Si geni c. coni .

Xerox PARC's ILU'

Strictly speaking, ILU (Inter-Language Unification) is not a CORBA 2.0-compliant ORB, although it supports
I1OP aong with the CORBA language mappings for C, C++, and Java. The capabilities provided by ILU area
superset of CORBA. For example, languages supported by ILU, in addition to the aforementioned C, C++, and
Java, include Python, Common LISP, and Modula-3. Also, ILU includes, of all things, an implementation of
HTTP (Hypertext Transport Protocol, the mechanism used by the World Wide Web).

According to the ILU Web page, one of the implementation goals is to maximize compatibility with existing
open standards, and this goal is reflected in the availability list for ILU: SunOS, Solaris, HP-UX, AlX, OSF,
IRIX, FreeBSD, Linux, LynxQOS, SCO, Windows 3.1, Windows 95, and Windows NT. Additionally, ILU
supports a number of threading and event loop models. Again, ILU is not strictly a CORBA 2.0-compliant
product, but it is freely available with no restrictions (other than that a copyright notice must accompany any
copies of the software).

Information on ILU, aswell as afreely available downloadable copy, is available at PARC's Web site (actually
their FTPsite) atft p: / /ft p. parc. xerox. conf pub/ilu/ilu.htm .

A Look at CORBA-Aware Development Tools

This section describes development tools that are "CORBA-aware," meaning that they have at least some
knowledge of CORBA application development methodology. For instance, such atool can generate and parse
IDL definitions or enable a developer to graphically create a set of IDL interfaces to define the workings of a
CORBA application.

Note that a number of development products might include ORBs (as mentioned previously, Visigenic Software
licenses its ORB technology to a number of other software vendors). Development products that include ORBs
without providing CORBA -specific development tools are not mentioned here.

Aonix's Software through Pictures'

Software through Picturesis afamily of tools that supports, among other things, object-oriented analysis and
design of applications. Software through Pictures supports a variety of OO methodol ogies, including the
Unified Modeling Language (UML), Object Modeling Technique (OMT), and Booch. Software through
Pictures supports graphical editing of business requirements, use cases, object models, dynamic models,
functional models, object interaction diagrams, and class tables. Software through Pictures also integrates with a
variety of languages and tools, such as Smalltalk, C++, Java, and IDL (making it useful asa CORBA design
tool); FrameMaker and Interleaf are supported for automatic generation of documentation. Finally, Software
through Pictures supports SUnOS, Solaris, HP-UX, AlX, Digital UNIX, and Windows NT.

More information on the Software through Pictures family of productsis available on Aonix's Web site at
http://ww. aoni x. coml Products/ StP/stp. htm .

Black & White Software's CORBA Development Tools'

Black & White Software offers a plethora of CORBA development tools:

http://www.informit.com/content/0672312085/element_021.shtml (6 of 8) [17.07.2000 18:33:09]

http://www.visigenic.com/
ftp://ftp.parc.xerox.com/pub/ilu/ilu.html
http://www.aonix.com/Products/StP/stp.html

- CORBA Tools and Utilities From: Sams Teach Yourself CORBA in 14 Days

» OrbixBuilder isafamily of products that plug in to various development tools. OrbixBuilder provides
graphical utilities and code generation for CORBA clients and servers and is bundled with IONA
Technologies Orbix or OrbixWeb (depending on whether a C++ or Java flavor of OrbixBuilder is
chosen). In addition to supporting Black & White's own UIM/Orbix and Web/Enable, OrbixBuilder
supports Symantec's Visual Café.

« Object/Observer provides diagnostic and trace mechanisms for CORBA applications, facilitating the
monitoring of server activity, network traffic, and other communication details.

« UIM/Orbix isagraphical application builder tool geared towards the devel opment of CORBA
applicationsin C++. In addition, UIM/Orbix is extensible through other products offered by Black &
White.

« Orb/Enableisaset of tools that simplify CORBA application development. It enables the user to create
and import IDL files aswell as visually browse the CORBA server interfaces available in an Interface
Repository.

« Web/Enable, an add-on to UIM/Orhix, facilitates the development of CORBA applicationsin Java,
complementing UIM/Orbix's C++ devel opment facilities. Web/Enable also includes IONA Technologies
OrbixWeb.

« Object/LM provides access control and usage metering for CORBA applications as well as license
management and a security mechanism.

More information on Black & White's CORBA development products is available on the Black & White Web
siteathtt p: // ww. bl ackwhi t e. comf pr oduct s/ cor badev. ht i .

ParcPlace's Distributed Smalltalk'

Distributed Smalltalk is an interactive tool that supports the development of CORBA applications in--what
else--Smalltalk. In addition to providing graphical design and development tools, Distributed Smalltalk includes
a CORBA 2.0-compliant ORB and implementations for the CORBA Naming Service, the CORBA Event
Service, the CORBA Transaction Service, and the CORBA Concurrency Service. Distributed Smalltalk also
includes other CORBA features, such as an Interface Repository browser and the capability to generate IDL
from existing Smalltalk classes. Distributed Smalltalk supports Windows 3.1, Windows 95, Windows NT,
MacOS, HP-UX, AlX, Solaris, and SunOS.

More information on Distributed Smalltalk is available on ParcPlace's Web site at
http://ww. parcpl ace. com products/dst/info/dst.htm

Rational Software's Rose'

Rational Rose is the most popular visual design tool on the market today. The tool supports Booch, Object
Modeling Technique (OMT), and Unified Modeling Language (UML) notations and provides tools for use case
analysis, class and object modeling, component modeling, and more. Rose a so supports a number of languages,
including Visual Basic, PowerBuilder, C++, Forté, Java, Smalltalk, and SQLWindows. In addition, Rose can be
used to create logical models for relational databases, supporting Oracle?, Sybase, SQL Server, Watcom SQL,
and ANSI SQL. Of particular use to CORBA application developersis Rose's capability to generate IDL from
graphical object models. Rose is available on a number of platforms, including Windows 95, Windows NT,
IRIX, Solaris, AlX, Digital UNIX, and HP-UX.

More information on Rose, as well as a downloadable evaluation copy, can be found on Rational's Web site at
http://ww. rational.coni products/rose/index.htm.

TakeFive Software's SNiFF+'

SNiFF+ isadevelopment tool (or actually afamily of tools) that supports awide variety of languages, including
C, C++, FORTRAN, Java, IDL, and others. Useful to CORBA developersis SNiFF+'s capability to generate
and parse IDL files. Of course, SNiFF+ offers avariety of graphical tools, such as a class browser, a debugger,
and more.

More information on the SNiFF+ family of products, along with downloadable evaluation software, can be
found on TakeFive'sWeb siteatht t p: / / wwww. t akefi ve. coml products. ht m

http://www.informit.com/content/0672312085/element_021.shtml (7 of 8) [17.07.2000 18:33:09]

http://www.blackwhite.com/products/corbadev.html
http://www.parcplace.com/products/dst/info/dst.htm
http://www.rational.com/products/rose/index.html
http://www.takefive.com/products.htm

- CORBA Tools and Utilities From: Sams Teach Yourself CORBA in 14 Days

TRW's Universal Network Architecture Services (UNAS)'

TRW's Universal Network Architecture Services (UNAS) is a development tool combined with a CORBA
ORB, supporting some beyond-CORBA features such as object monitoring and control, performance evaluation
and tuning, and fault tolerance. UNAS also supports the CORBA Naming Service and SNMP (Simple Network
Management Protocol) management. Also supported are the C++ and Ada languages, SunOS, Solaris, HP-UX,
AlX, IRIX, Digital UNIX, OpenVMS, DEC CMW, ULTRIX, Rational Apex, Rational R1000, SCO UNIX, and
Windows NT platforms.

Moreinformation on UNAS is available at TRW's Web site at
http://ww.trw com unas/http://ww.trw confunas/.

<Back Contents Next>
Save to Mylnforml T

http://www.informit.com/content/0672312085/element_021.shtml (8 of 8) [17.07.2000 18:33:09]

http://www.trw.com/unas/
http://www.informit.com/My/Add?isbn=0672312085&title=Sams+Teach+Yourself+CORBA+in+14+Days&category=Programming&topic=CORBA&chapter=2855&elementname=CORBA+Tools+and+Utilities
http://www.informit.com/about/
http://www.informit.com/press/
http://www.informit.com/about/advertising/
http://www.informit.com/legal/privacy/
http://www.informit.com/contact/
http://www.informit.com/legal/copyright/
http://www.informit.com/legal/privacy/

- What Lies Ahead? The Future of CORBA From: Sams Teach Yourself CORBA in 14 Days

ile they last!
Y¥our Name Mi

® Exact Phrase
O All words

Search
Search Tips

Rlylnformi T

Click Here for
High-Tech
Jobs!

developerWorks™

DPEC we—

Based Training

-
bl click to
Recommaend-it.

-@m TopIT
Hews

TGOS

Hot Topics Yisual Basic Windows 2000 Windows MT Linu=/Open Source Cizco Knowledge Suite
Soluton Centers PragramlIT DatabazelT WebIT MetworkIT ConfiguralT

What Lies Ahead? The Future of CORBA

From: Sams Teach
Yourself CORBA in 14
Days

Author: Jeremy
Rosenberger

w 14 DAYS | Publisher: Sams

- More Information

<Back Contents

Save to Mylnforml T

Looking Briefly Through the Rearview Mirror

« Inthe Near Future: CORBA 2.1

On the Horizon: CORBA 3.0
o OMG Task Forces
o Task Forces of the Platform Technology Committee
o Task Forces of the Domain Technology Committee
o What It All Means

« Looking Beyond

o CORBA Development in the Future

o Challenges Facing CORBA

o Summary

This book has focused largely on what you can do with CORBA today. But what about six months from now, or
ayear from now, or even further in the future? To plan for the systems you will build tomorrow, you want to
know where CORBA is going to be at that time. This chapter looks at some proposed additions to CORBA and
examines the overall direction CORBA istaking.

Looking Briefly Through the Rearview Mirror

To predict where CORBA is heading, it is helpful to know some of its history. Recall from Day 1, "Getting
Familiar with CORBA," that CORBA first materialized around 1990, shortly after the Object Management
Group--CORBA's controlling organization--was founded. CORBA 1.0, followed shortly by CORBA 1.1, laid
the groundwork for distri-buted object communication. In 1994, the OM G adopted the 2.0 version of the
CORBA specification, the primary goa of which wasto define a standard for interoperability for ORBs
produced by different vendors. (Recall that an ORB, or Object Request Broker, is the component of CORBA
that facilitates communication between objects.) CORBA 2.0 was a major step towards achieving
interoperability between various products, but it still lacked some capabilities. Most notable was its inability to
pass objects by value (as discussed on Day 10, "Learning About CORBA Design Issues'). Simultaneously, the
OMG devel oped specifications for additional functionality in the form of CORBAservices and
CORBAfacilities.

In the Near Future; CORBA 2.1

CORBA 2.1, adopted in September 1997, made some incremental changes to the CORBA specification:
« Revisionsto the interoperability specification

« Extensionsto the IDL language, notably thel ong | ong (64-bit) integer typesand wchar (wide
character) type

http://www.informit.com/content/0672312085/element_022.shtml (1 of 10) [17.07.2000 18:33:33]

http://www.informit.com/
http://ad.doubleclick.net/jump/www.informit.com/programit/;cat=developer;num=92
javascript:document.regularSearch.submit();
http://www.informit.com/search/tips/
http://ad.doubleclick.net/clk;1464039;4446282;i?http://www.informit.com/jobs
http://www.informit.com/news/
http://www.informit.com/downloads/
http://www.informit.com/store/
http://www.informit.com/itlibrary/
http://www.informit.com/edchoice/
http://www.informit.com/alphabook/
http://infobase.informit.com/
http://www.informit.com/My/Accounts
http://ad.doubleclick.net/jump/informit.com/sponsor-button/brassring/badge;sz=100x60
http://ad.doubleclick.net/jump/informit.com/sponsor-button/ibm/badge2;sz=88x31
http://www.informit.com/training/
http://www.recommend-it.com/p.e?415858
http://www.informit.com/news/
http://www.informit.com/downloads/
http://www.informit.com/programit/vb/
http://www.informit.com/networkit/windows2000/
http://www.informit.com/networkit/winnt/
http://www.informit.com/networkit/linux/
http://www.knowcisco.com/
http://www.informit.com/programit/
http://www.informit.com/databaseit/
http://www.informit.com/webit/
http://www.informit.com/networkit/
http://www.informit.com/configureit/
http://www.informit.com/My/Add?isbn=0672312085&title=Sams+Teach+Yourself+CORBA+in+14+Days&category=Programming&topic=CORBA&chapter=2856&elementname=What+Lies+Ahead?+The+Future+of+CORBA
http://www.informit.com/product/0672312085

- What Lies Ahead? The Future of CORBA From: Sams Teach Yourself CORBA in 14 Days
« Theinclusion of two standard language mappings: COBOL and Ada

None of these changes is earth-shattering, but the IDL extensions in particular bring CORBA up-to-date with
respect to languages and operating systems that support 64-bit integer types and multi-byte character sets.

On the Horizon: CORBA 3.0

Coming up on the horizon is the CORBA 3.0 standard, the next major step in the evolution of CORBA. At the
time of thiswriting, the OMG has not yet announced what capabilities and enhancements will be included in
CORBA 3.0, but by taking alook at the current Requests For Proposals (RFPs) and Reguests for Information
(RFIs), you can make some reasonabl e guesses about what to expect in the next major iteration of the CORBA
specification.

OMG Task Forces

A knowledge of how the OMG operatesis also helpful in predicting what CORBA 3.0 might include. The
OMG includes two Technology Committees (TCs) that charter various Task Forces to solve particular
problems. To this end, the Task Forces issue RFPs and RFIsto find potential solutions from the industry at
large.

Currently, the Domain Technology Committee and the Platform Technology Committee have chartered a
number of Task Forces that have current outstanding RFPs and RFIs. This section provides a brief overview of
these Requests, which will probably drive much of the content of CORBA 3.0 when it is adopted.

Task Forces of the Platform Technology Committee

The work performed by the Platform Technology Committee Task Forcesisincluded in the CORBA
specification itself at some point. For example, there are Task Forces to resolve issues of COM/CORBA
interworking (recall that COM is Microsoft's Component Object Modél), to create IDL mappings for various
programming languages, and to propose additional featuresto CORBA. Currently, the Task Forces of the
Platform Technology Committee include the Object Analysis and Design Task Force (OA&D TF) and the
ORB/Object Services Task Force.

Most of the descriptions here are quoted directly from the OMG Web site. Details on the various Task Forces
areavailableat ht t p: / / ww. ong. or g/ ong00/ t ask. ht n details on the work in progress of the
Technology Committees (as well as descriptions of the RFPs and RFIs themselves) are available at
http://ww. ong. org/library/schedul e. htm

ORB and Object Services Platform Task Force

According to the charter of the ORB and Object Services Platform Task Force, its mission isto solicit, evaluate,
and select specifications for recommendations to the Platform Technology Committee for adoption by OMG in
the areas of ORB technology (which falls under the CORBA specification) or general purpose Object Services
(which fall under CORBAservices). Furthermore, the charter states that such specifications should be
fundamental for developing useful CORBA -based applications composed of distributed objects, should provide
auniversal basis for application interoperability, or support higher level facilities and frameworks.

The current RFIs and RFPs issued by the ORB and Object Services Platform Task Force include the following:

« ORB and Object Services RFI 1 (Internet). An RFI on Internet-related services and interfaces, to help
with the integration and inclusion of OMG and CORBA abjects on the Internet. The overall goal of this
RFI isto collect information from various communities to help guide the OMG's IPSIG and the OMG in
the adoption of specifications that will scale the OMG Object Management Architecture to the Internet
and further populate or align with Internet standards, protocols, tools, and utilities. This RFI solicits
relevant information in several areas: requirements, architectures, designs, projects, products, protocols,
and standards.

« ORB and Object Services RFI 2 (Realtime). This Request For Information solicits input regarding the
need for and availahility of technology for the following: realtime operating environment suitable for
supporting realtime Object Request Brokers; realtime Object Request Brokers; object services, common
facilities, and extensions for realtime; and genera realtime features that would apply to the above in an
object technology context.

« Multiple Interfaces and Composition RFP. Multiple Interfaces RFP deal s with the resolution of conflict

http://www.informit.com/content/0672312085/element_022.shtml (2 of 10) [17.07.2000 18:33:33]

http://www.omg.org/omg00/task.htm
http://www.omg.org/library/schedule.htm

- What Lies Ahead? The Future of CORBA From: Sams Teach Yourself CORBA in 14 Days

between multiple IDL interfaces on the same object. The composition facility provides the means for
objects to be composed of logically distinct services by the use of multiple interface definitions. The
composition facility has been proposed as a base of many system requirements.

« Messaging Service RFP (ORBOS RFP1). An RFP soliciting proposals of services and ORB
enhancements designed to manage asynchronous messages in distributed object systems, including
ordering and quality of service of requests.

« Objects-by-Value RFP (ORBOS RFP2). This RFP seeks proposals for interfaces that provide for the
passing of CORBA objects by value (rather than by reference) as parametersin CORBA object
operations. Passing objects by value is more efficient and straightforward in many circumstances.

« Javato IDL RFP (ORBOSRFP5). This RFP solicits proposals that will enhance the CORBA Java
language mapping with a Java-to-IDL mapping. A Java-to-1DL mapping will enable developers to build
distributed applications directly in Java and communicate via |l|OP. By generating IDL from Java code,
many languages have access to these Java-written components.

« DCE/CORBA Interworking RFP (ORBOS RFP6). This RFP solicits proposals for the following:
Application Level Interworking, CORBA clients interacting with DCE servers and DCE clients
interacting with CORBA servers, provisioning CORBA services and CORBAfacilities (for example,
security, naming, time) with existing DCE components (for example, security services, directory services,
distributed time facility).

o Persistent State Service, Version 2.0 RFP (ORBOS RFP7). The intent of this RFP isto solicit proposals
that provide coherent and pragmatic specification for CORBA persistence. The RFP focuses on afacility
to be used by the object implementer that wishes to achieve and maintain persistence. It isimportant to
address whether and, if so, how the PSS interacts with other OMG specifications, such as the POA, the
Concurrency Service, the Transaction Service, and the Objects-by-Value Service.

« CORBA Component Model RFP (ORBOS RFP8). This RFP solicits proposals for a distributed
component model that is based on the OMA and is capable of interoperating with other emerging
component technologies, particularly the JavaBeans component model.

« CORBA <ripting Language RFP (ORBOS RFP9). This RFP isintended to form part of a coordinated
strategy to introduce a component model into the OMA. The RFP solicits proposals for a scripting
language that is capable of scripting CORBA components.

o Minimum CORBA RFP (ORBOS RFP10). This RFP solicits proposals for the following: A reduced
CORBA core specification that implements basic client/server functionality, enabling configurations of
subsets of the full OMG IDL definition, and the effect on existing CORBA and Common Object Services
resulting from configuring out CORBA capabilities. Minimum CORBA is intended to help build
embedded systems.

« Realtime CORBA 1.0 RFP. This RFP'sintent is to standardize realtime CORBA extensions and promote
the use of the OMA in the realtime area. For example, Choruss COOL isacommercial example of a
CORBA ORB with realtime facilities, and this and other non-standard realtime CORBA variants are
aready being used in applications such asin-flight radar tracking software on board AWACS planes.

« Data Interchange Facility and Mobile Agent Facility RFP. The Data | nterchange Facility is afacility
supporting interoperability between objects. The key elements of the service include the datainterchange
interfaces, the data object type, the life cycle of data objects, and the data trand ation interfaces. The use
of metadata is another important area. To implement mobile agents, three key features need to be
supported by ORB: launching and loading of agents on what is traditionally thought of as the client side
of the ORB, time asynchrony, and notifying senders and receivers of arrival of packetsintended for them.
The mobile agent facility proposes these changes.

« Input Method Manager Facility RFP. This RFP solicits proposals for specifications for the common
features of the Input Method Manager Facility that enables management of input methods for (but not
limited to) multi-octet Asian characters on CORBA platforms.

» Firewall RFP. This RFP solicits proposals for the following: Specification of the use of 110P in network

http://www.informit.com/content/0672312085/element_022.shtml (3 of 10) [17.07.2000 18:33:33]

- What Lies Ahead? The Future of CORBA From: Sams Teach Yourself CORBA in 14 Days

firewalls, for the purpose of controlling limited use from the Internet or intranet of an organization's
CORBA-based applications, and optionally, similar specifications with respect to any other inter-ORB
protocols.

« Printing Facility RFP. An RFP soliciting proposals for printing facility objects. This facility handles
management (scheduling, spooling, locating) of print servers and routing of print jobs. The printing
facility should be able to meet arange of printing requirements from simple documents up to high
volume production printing.

Analysis and Design Platform Task Force

The Object Analysis and Design Task Force's charter states that its mission is to enable devel opers to better
understand how to develop applications using OT, thereby increasing the market; to recommend technology for
adoption to enabl e interoperability across the life cycle of, and to enable reuse of, designs/work products
developed using OA& D tools; to recommend technology for adoption of common semantics, metamodels, and
abstract syntax for OA& D methodol ogies; to leverage existing OMG specifications; to facilitate advancesin the
state of the art of OA& D methodologies; and to recommend liaison with other appropriate organizations.
Certainly thisis a hefty responsibility to be taken on by the OMG's newest Task Force. Already this Task Force
has generated two Requests for Proposals, involving aframework for analysis and design tools and a
meta-object facility that would enable further interoperability between CORBA tools and applications.

The current RFPs generated by the Analysis and Design Platform Task Force include the following:

« Analysis and Design Task Force RFP1. This Request for Proposals focuses on creating a framework for
analysis and design-tool semantic interoperability, through an Analysis and Design Facility. This facility
will contain the interfaces and semantics needed to support the creation and manipulation of OA&D
models that define the behavior of object applications with the Object Management Architecture. This
includes a set of notations that can be used to describe these models in a consistent fashion.

« This RFP has already been successfully completed with the adoption of OMB UML 1.0, proposed by
Rational, IBM, Objectime, and other submitters. The formal spec should be published in early 1998.

Task Forces of the Domain Technology Committee

The work of the Domain Technology Committee comes to fruition in the form of CORBAfacilities, particularly
in the vertical facilities such as health care, manufacturing, and telecommunications.

Currently, the Domain Technology Committee has chartered the following Task Forces:
o Business Object Task Force
« Electronic Commerce Domain Task Force
« Financial Domain Task Force (CORBAfinancias)
» Manufacturing Domain Task Force (CORBAmanufacturing)
« CORBAmMed Task Force (Hedthcare)
« Telecommunications Task Force (CORBALtel)
« Transportation Domain Task Force (CORBAtransport)

(Note that many of the Task Forces composing the Domain Technology Committee are organized around
vertical domains.)

Business Object Domain Task Force

Again referring to the OMG Web site, the mission of the Business Object Task Forceis to define the domain of
OMG Business Objects. It will work to facilitate and promote the use of OMG-distributed object technology for
business systems; commonality among vertical domain task force standards; simplicity in building, using, and
deploying business objects for application devel opers; interoperability between independently developed
business objects; the adoption and use of common business object and application component standards; and
issuance of requests and evaluation of responses and proposals for adoption by the OMG specifications for
objects, frameworks, services, and architectures applicable to awide range of businesses.

Certainly the role of the Business Object Domain Task Force is an important one. Because the purpose of most
distributed enterprise-level applicationsis to facilitate the communication between business objects, the goals of
the Business Object Domain Task Force have much in common with the goals of the distributed application
developer: to enable the development and deployment of robust, interoperabl e business objects.

http://www.informit.com/content/0672312085/element_022.shtml (4 of 10) [17.07.2000 18:33:33]

- What Lies Ahead? The Future of CORBA From: Sams Teach Yourself CORBA in 14 Days

The current RFPs and RFIs issued by the Business Object Domain Task Force include the following:

« Common Business Object and Business Object Facility RFP. This RFP solicits proposals for Common
Business Objects, those objects representing business semantics that can be shown to be common across
most businesses, and a Business Object Facility that provides the infrastructure required to support
business objects operating as cooperative application components in a distributed object environment.

« Workflow Management Facility RFP. The Workflow Management Facility defines interfaces and their
semantics required to manipul ate and execute interoperable workflow objects and their metadata. The
Workflow Management Facility will serve as ahigh-level integrating platform for building flexible
workflow management applications incorporating objects and existing applications. This RFP solicits
proposals for the Workflow Management Facility.

« Common Business Objects RFI (CBO RFI). The Common Business Object Working Group is attempting
to define areference architecture that provides a concise and effective framework within which the
dependencies between individual domains can be understood and reconciled. The Working Group invites
input from individual s and organizations with insights or information that could provide a basis for work
inthis area.

Manufacturing Domain Task Force

The Manufacturing Domain Task Force, the successor to the Manufacturing Special Interest Group, has a
mission to foster the emergence of cost-effective, timely, commercially available, and interoperable
manufacturing domain software components through CORBA technol ogy; to recommend technology for
adoption that enables the interoperability and modularity of CORBA -based manufacturing domain software
components; to encourage the development and use of CORBA -based manufacturing domain software
components, thereby increasing the object technology market; to leverage existing OM G specifications; and to
recommend liaison with other appropriate organizations in support of the preceding goals.

Current RFPs and RFIs generated by the Manufacturing Domain Task Force include the following:

« Manufacturing High-Level Requirements RFI (MFG RFI1). This Request for Information seeks input on
clarifying and revising the Manufacturing Object Model as well as identifying a high-level partitioning of
that model and improving the list of infrastructure requirements. This partitioning will be used as the
basis for aroad map and future RFPs from the Task Force.

» Manufacturing DTF RFI-2. This RFI solicitsinput from ERP users and vendors on recommendations for
the number of RFPs and subject areas to be covered by RFPs, and on ERP systems to be issued by the
Manufacturing DTF. ERP includes systems referred to as Materials Requirements Planning (MRP) and
Manufacturing Resource Planning (MRP-11). ERP's mgjor relationship is to the Production Planning
business process.

o Product Data Management Enablers RFP (MFG RFP1). This RFP looks to establish standard interfaces
for the services provided by Product Data Management (PDM) systems. These interfaces, made available
through ORBs, will provide the standard needed to support a distributed product data-management
environment, as well as provide standard interfaces to differing PDM systems.

Electronic Commerce Domain Task Force

Electronic commerceis a hot area of computing right now. Fueled particularly by the explosion of the World
Wide Web phenomenon, many companies are looking for ways to sell their products through electronic
channels and, just as important, to protect their copyrighted works and other intellectual property. The
Electronic Commerce Domain Task Force was chartered to address the issues associated with electronic
commerce.

The goals of the Electronic Commerce Domain Task Force are to garner Domain Technology support and
invalvement in OMG,; to continue reliance on domain experts and issue RFPs; to seek broad industry and
domain response to RFPs (where applicable); and to work toward outlining the scope of work for the Domain
Task Force, including more specifically defining content management and rights and royalties, electronic
payment, and online retail (electronic commerce).

The Electronic Commerce Domain Task Force has currently issued the following RFPs and RFIs:

« Electronic Payment Facility (EC RFP1). This RFP solicits Proposals for Object Framework that support
the implementation of industry-standardized el ectronic payment protocolsin an OMA-compliant system
and specifications for one or more industries' payment protocols using the Object Framework.

http://www.informit.com/content/0672312085/element_022.shtml (5 of 10) [17.07.2000 18:33:33]

- What Lies Ahead? The Future of CORBA From: Sams Teach Yourself CORBA in 14 Days

« Negotiation Facility RFP (EC RFP2). This RFP solicits proposals for: a business process or processes,
expressed in IDL and enabling multi-participant negotiation; and an object framework supporting
dynamic negotiation rule substitution, rule verification, and interfaces through which domain policy can
be used to control the disclosure of information and control the decisions taken during the course of
negotiation.

« Electronic Healthcare Claims Facility RFP (EC RFP3). This RFP solicits proposals for the interface of a
healthcare claims facility to administer and manage standardized el ectronic claims exchanges using
established healthcare data formats.

« Asset and Content Management RFI (EC RFI1). The technical scope of this RFI isthe collection of
technologies and necessary interfaces to the asset and content- management areas, such as creation and
capture of digital asset and content search and access of digital asset and content, as well as distribution
of digital asset and content. Responses should identify relevant standards associated with this RFI. These
include de facto industry standards as well as de jour standards developed by recognized standards
organizations.

» Enabling Technologies and Services for EC (EC RFI2). This RFI specifically addresses the technology
necessary to facilitate interactions between consumers, providers, and interested third parties over a
communication network.

Telecommunications Domain Task Force

The mission of the Telecommunications Domain Task Force isto issue RFIs and RFPs for CORBA-based
technology relevant to the telecommunications industry; to evaluate RFI and RFP responses and RFCs for
recommended adoption by the Domain Technology Committee; to communicate requirements from the
telecommunications industry to the Architecture Board, the Platform Technology Committee, and other OMG
subgroups, as appropriate; to assist and advise the Liaison Subcommittee regarding its relationship with
telecommunications-rel ated standards organizations and consortia; and to promote the use of OMG technologies
as solutions to the needs of the telecommunications industry.

Currently, the Telecommunications Domain Task Force has generated the following RFPs and RFIs:

« Topology RFP (Telecom RFP2). The purpose of this RFP isto solicit proposals for a Topology Service
that will manage relationship information that enables systems and application integration.

« Notification Service RFP (Telecom RFP3). This RFP solicits proposals for a service that extends the
capabilities of the OMG Event Service to support filtering capability; a service that satisfies scalability
demands of event-driven applications running within large, distributed, heterogeneous networks; a
service that satisfies event management demands of distributed systems, network, and
telecommuni cations management applications; and a specification of notification types and contents
applicable to particular vertical domains.

« CORBA/TMN Interworking RFP. The objective of this RFP is to define a set of Interworking mappings
and CORBA Telecom Domain Interfaces which enable the development of CORBA-based TMN systems
that can interwork with non-CORBA-based TMN systems that export interfaces based on standard
management object models such as OSlI Management or Internet Management, and standard management
protocols such as CMIP or SNMP; and the development of CORBA-based TMN systems in compliance
with the OSI Management Reference Model or Internet Management Model, without using CMIP or
SNMP.

« Issuesfor Intelligent Networking with CORBA (Telecom RFI1). This RFI seeks information on five issues:
what issues exist for providing interoperability between existing systems using the SS7 protocol suite,
what issues exist for using the SS7 protocol suite as an environment-specific Inter-ORB Protocol for
communications between CORBA-based implementations, what additional requirements are needed for
enhancements to the existing set of CORBA specifications, what current or prospective standardization
activities exist in these areas, and which CORBA objects are needed for IN-CORBA systems that
encapsulate the functionality for the various IN Functional Entities.

Financial Domain Task Force

The mission of the Financial Domain Task Force, or CORBAfinancias, isto promote the use of financial

http://www.informit.com/content/0672312085/element_022.shtml (6 of 10) [17.07.2000 18:33:33]

- What Lies Ahead? The Future of CORBA From: Sams Teach Yourself CORBA in 14 Days

services and accounting software that incorporate OMG standards; to provide an internationally recognized
forum for industry focus on financial services and accounting facilities; to identify relevant standards, business
architectures, research, and technologies in this area of computing; to coordinate end-user requirements in the
financial services domain through aliaison with the End-User SIG; to facilitate advances in the state of the art
of OA&D methodologies; to coordinate potential future specification activities with the Common Facilities
Task Force, to involve all interested members of the OMG in the OMG Financial Domain Task Force; to create
a CORBAfinancials architecture and road map for the financial services industry worldwide; to issue RFIs,
RFPs, and RFCs for CORBA-based technology relevant to the financial servicesindustry; to evaluate RFl and
RFP responses and recommend technology adoption by the OMG's Domain Technical Committee; and to assist
and advise the Liaison Subcommittee regarding its relationship with related standards organizations and
consortia. (That's quite a mouthful!)

CORBAfinancials has currently generated the following RFPs and RFIs:

« Currency RFP (Finance RFP1). The objective of this RFP isto solicit interfaces that support the
definition and management of currencies. Thisisdistinct from money that is an amount of one or more
currencies. This RFP solicits proposals for currency representation, currency validation, and money
algebra.

« Finance/lnsurance Party Management Facility RFP (Finance RFP2). This RFP solicits proposals for
specifications for the common features of a Party Management Facility for the Financial Service Industry.
These facilities are part of systems that are commonly known as Client or Customer Information
Systems.

« Financial DTF Insurance RFI. Goals of this RFI are to improve the quality of customer service and
reduce costs by utilizing CORBA technologies for interoperability throughout the global insurance
community, and to standardize interfaces for insurance objects.

CORBAmMed Domain Task Force

The CORBAmMed Task Forceis chartered with the following mission: to improve the quality of care and reduce
costs by the use of CORBA technologies for interoperability throughout the global healthcare community; to
utilize the OM G technology adoption process to standardize interfaces for healthcare objects; to communicate
the requirements of the health- care industry to the Platform Technical Committee; and to assist and advise the
Liaison Subcommittee regarding the relationship with healthcare standards organizations and consortia.
CORBAmMed a'so has the following goals: to educate both the system devel opers and the user community in the
health care industry; to issue RFIs and RFPs related to the health care industry based on CORBA technologies,
and to evaluate RFI and RFP responses and RFCs for recommended adoption by the Domain Technical
Committee.

Currently, CORBAmed has issued the following RFPs and RFIs:

« Patient Identification Services RFP (CORBAmMed RFP1). This RFP solicits proposals for specifications
for the common features of a patient identification system that enables multiples of these patient
identification systems to interoperate.

« Healthcare Lexicon Service RFP (CORBAmMed RFP2). This RFP solicits proposals for specifications of
IDL interfaces for the common features of a set of lexicon query services. This RFP describes the
requirement for services to support lexicons in a distributed object system conforming to OMA.

« Clinical Observations RFlI (CORBAmMed RF12). This RFI solicits information about requirements that will
provide guidance to the CORBAmMed DTF of the OMG in developing specifications for healthcare
information systems dealing with patient observation data. The overall goal will be to adopt
vendor-neutral common interfaces for interoperability between systems, applications, and instruments
that detect, transmit, store, and display medical information dealing with observations of a particular
patient's medical condition.

« Clinical Decision Support RFI (CORBAmMed RFI3). This RFI solicits information about requirements that
will provide guidance to the CORBAmed DTF of the OMG in developing specifications for Clinical
Decision Support Systems (DSS). The overall goal will be to adopt vendor-neutral common interfaces
that improve the quality of care and reduce costs by utilizing CORBA technologies for interoperability
between systems, applications, and instruments that detect, transmit, store, and display medical
information used in Clinical DSS.

http://www.informit.com/content/0672312085/element_022.shtml (7 of 10) [17.07.2000 18:33:33]

- What Lies Ahead? The Future of CORBA From: Sams Teach Yourself CORBA in 14 Days

« Lifescience RFI. This RFI seeks information to help the Life Sciences Research Domain Special Interest
Group (LSR-DSIG) make useful and efficient decisionsin the life sciences research technology adoption
process. Asthefirst stepsin this process, LSR-DSIG will develop an architecture description, a schedule
for issuing additional RFIs and RFPs (a technology road map), and one or more RFPs soliciting OMG
IDL interfaces and corresponding semantic descriptions. Therefore, this RFI requests information on
architectures, interoperability, object and data models, interfaces, existing systems, standards, legal
issues, and their priorities.

« HL7 RFI. This Request for Information (RFI) solicits information about requirements that will provide
guidance to the CORBAmed Domain Task Force (DTF) of the Object Management Group (OMG) in the
area of CORBA -based HL 7 implementation approaches. The overall goal of CORBAmMed isto adopt
vendor-neutral common interfaces that may improve the quality of care and reduce costs. CORBAmed
DTF will utilize the OMG's open technol ogy adoption process to standardize interfaces in the healthcare
arena.

Transportation Domain Task Force

It isthe mission of the Transportation Domain Task Force to promote the development and use of
transportation-rel ated systems that incorporate OMG specifications and technologies; to identify relevant
standards, business objects, components, and technologiesin the field of transportation, and to disseminate this
information to the OMG; to work within the OMG committees and task forces to ensure that the CORBA,
CORBAservices, CORBAfacilities, Business Object, and domain specifications are conducive to the needs of
the transportation industry; to recruit additional Transportation DSIG membership from corporations in the
transportation systems development community; and to establish a global forum for the free exchange of
distributed object systems development ideas amongst the various members of the transportation community
and its partners.

The Transportation Domain Task Force, one of the newest Task Forcesin the OMG, has issued the following
RFI:

« CORBAtransport RFI. This RFI solicits information about requirements, projects, and products that will
provide guidance for transportation-related object system interoperability. The overall goa will beto
adopt vendor-neutral common interfaces. Responses to this RFI will be used to define one or more RFPs
that will solicit OMG IDL interfaces and other corresponding materials, such as semantic descriptions,
sequencing, and timing constraints. CORBAtransport intends to produce specification setsin at |east four
major vertical domains (air, marine, highway, and rail) and a common horizontal specification across the
breadth of the transportation domain.

What It All Means

Certainly the OMG is hard at work enhancing current specifications and creating new ones. But what doesiit all
mean? In particular, who stands to benefit from the products of the various Technology Committees and Task
Forces?

« Everyone. That is, al developers of CORBA applications will benefit from many of the enhancements
being made to CORBA. The Platform Technology Committee Task Forces--namely, the ORB and Object
Services Platform Task Force and the Analysis and Design Platform Task Force--are working on
specifications that will benefit virtually all CORBA developers. Features such asa CORBA component
model, the capability to pass objects by value aswell as by reference, persistent CORBA objects, a
scripting language for CORBA objects, and printing capability are useful to awide variety of developers.

« Deveopersusing other technologies. Developers using Microsoft's COM object model will benefit from
enhanced interoperability between COM and CORBA objects; those using the DCE-distributed
computing model will realize similar benefits. And, of course, Javawill enjoy improved interoperability
with CORBA, particularly with the capability to convert Javainterfacesto IDL interfaces.

« Usersof electronic commerce. As mentioned previously, electronic commerce has the potentia to
become akiller app for the Internet, and CORBA will be there. Thus, anyone wishing to take advantage
of electronic commerce capability stands to benefit from the work being done by the Electronic
Commerce Domain Task Force in this area.

« Developersof vertical applications. A great deal of work is being done to support avariety of vertical
industry applications. The standards being devel oped for these markets will promote interoperability
between such applications.

http://www.informit.com/content/0672312085/element_022.shtml (8 of 10) [17.07.2000 18:33:33]

- What Lies Ahead? The Future of CORBA From: Sams Teach Yourself CORBA in 14 Days

Again, as of the time of thiswriting, the OMG had not yet specified the contents, or even an availability date, of
CORBA 3.0. Therefore, which of the specifications described here will be included in the next major CORBA
release is anybody's guess. When these specifications do become available, however, all CORBA d developers
will be the winners.

Looking Beyond

The current Requests for Proposal's and Requests for Information issued by the various Task Forces within the
OMG give agood indication of where CORBA is heading in the near future. But what about beyond that? How
will CORBA affect the development of distributed applications in the not-so-near future? And what challenges
will it face? Although it is difficult to predict anything in the area of software development technology, this
section addresses some of these questions.

CORBA Development in the Future

Degspite its current shortcomings, CORBA is nonetheless a very powerful development tool already. It still can
stand to see some improvement, however, particularly in one area: So far, nobody has ever accused CORBA of
being too easy to develop with.

Faceit, CORBA's awesome power, plusits unmatched cross-platform and cross-language capabilities, come at
aprice. Developing for CORBA means learning to develop for yet another platform, asit were. The benefits
that come with learning and applying this skill are immense, but in this age of rapid application development,
emphasisis often placed on the speed of deployment of an application rather than on the power and robustness
of adesign. If CORBA isto continue to enjoy success as a development platform, it must learn to play in this
world of instant software development.

Does this mean sacrificing CORBA's power, cross-platform capability, or robustness for ease of use? Of course
not, although development tools could go along way towards making CORBA application devel opment easier
on the developer. Already, such tools are starting to appear, and initiatives such as the ORB and Object Services
Platform Task Force's Javato IDL RFP suggest that additional strides will be made towards making CORBA
more seamless with application development.

The seamless concept will eventually be the key to CORBA's success. Although the use of some CORBA
services, facilities, and the like will always require some developer knowledge, the devel oper should be
insulated as much as possible from the plumbing of a CORBA application. Details of memory management,
reference counting, and perhaps of IDL itself, should be handled by the development tools themselves, invisible
to most developers. (Granted, a developer should still be ableto drill down to thislevel of detail when desired,
and a good development tool will always enable thislevel of interaction.) Freed from having to worry about the
details of implementation, the developer can concentrate more on the design of the application itself.

In short, CORBA is dready at the point where some very impressive things can be done with it. Additional
features will push the usefulness of CORBA even farther, but to ensure CORBA's success, devel opment tool
vendors must provide tools that make CORBA application development easier than ever. (In the meantime,
publishers are happy to bring to you such books as Sams' Teach Yourself CORBA in 14 Days!)

Challenges Facing CORBA

Despite the power and capability of the CORBA architecture and the Object Management Architecture
surrounding it, CORBA still faces a number of challengesto its success. These challenges come in the form of
competing technologies, or in the very process by which CORBA and related specifications are adopted. This
section will briefly describe some of the challenges facing CORBA today.

Microsoft DCOM

Not surprisingly, CORBA is not without its competition. Although CORBA has the backing of amost the entire
industry, including some very big players, its universal acceptance faces at |east one major obstacle. This
challenge comesin the form of another distributed object model from a vendor that enjoys an extremely
dominant position in the industry. The vendor, of course, is none other than Microsoft, which is heavily pushing
its Distributed Component Object Model (DCOM) as a de facto standard for a distributed computing platform.

Microsoft is quite clear regarding its position on CORBA, the open standard backed by just about every other
player in the industry. Perhaps this position is best summed up in the words of COM Product Manager
Cornelius Willis, as reported by InfowWorld Electric on August 18, 1997: "Of course, we want COM 3--now
known as COM+--to make CORBA irrelevant.” (The original article is available at Infoworld Electric's Web
siteat ht t p: / / ww. i nf owor | d. coni cgi - bi n/ di spl ayAr chi ves. pl ?7970818. wsof t . ht m)

http://www.informit.com/content/0672312085/element_022.shtml (9 of 10) [17.07.2000 18:33:33]

http://www.infoworld.com/cgi-bin/displayArchives.pl?970818.wsoft.htm

- What Lies Ahead? The Future of CORBA From: Sams Teach Yourself CORBA in 14 Days

Apparently, Microsoft prefers to extend its already expansive industry domination to include distributed
computing standards as well, rather than support a widely accepted industry standard. To its credit, Microsoft
has turned over parts of its COM, DCOM, and ActiveX technologies to The Open Group, an independent
standards organization, and is partnering with Software AG to provide DCOM implementations on operating
systems other than Windows. (More details are availableat ht t p: / / www. acti vex. or g/ and

http://ww. sof t war eag. coni cor por at/dconi def aul t. ht m)

Of course, Microsoft is welcome to compete in this space. If anything, competition will help to keep the OMG
and CORBA product vendors on their toes, providing the best possible specifications, implementations, and
interoperability they can. However, given the near ubiquity of Microsoft's operating systems--and, by extension,
DCOM--backers of CORBA will be fighting an uphill battle against Microsoft's leveraging of one of its
platforms to create another. However, there is hope--CORBA currently enjoys some advantages over DCOM,
asoutlined in an article available at the OMG Web siteat ht t p: / / www. ong. or g/ news/ acti vex. ht m
Another OMG article, aresponse to areport published by the UK-based analyst group Ovum, also provides
some relevant information comparing CORBA and DCOM,; the articleis available at

http://ww. ong. or g/ news/ pr97/ ovunpr. ht m

Other Challenges

Of course, there are other challenges facing CORBA aswell. Consider, for example, the issuesinvolved with
managing an organization with more than 750 members. Granted, not all the OMG members vote on proposals,
but the associated overhead is not insignificant. One of the OMG's greatest strengths--its strong backing by the
industry--might also be one of its greatest weaknesses because the resulting bureaucracy can slow the
development and acceptance of new specifications. The OMG has done exceptionally well so far, especially
considering its size. With competition from Microsoft's DCOM, the OM G will need to take great care to ensure
that the organization doesn't collapse under its own weight, possibly taking CORBA with it.

Summary

CORBA has already come along way. With a membership of more than 750 and still growing, the OMG has
definitely achieved a position of great relevance in the marketplace. CORBA as a standard has been growing
and maturing for more than seven years now--an eternity in computer time. CORBA products are available on a
wide variety of platforms and operating systems from dozens of vendors. (Among the platforms supported by
CORBA are AS400, HP-UX, MacOS, MS-DOS, MV'S, OpenVMS, OS2, SunOS and Solaris, Windows 3.x,
Windows 95, Windows NT, and many flavors of UNIX not already mentioned.) Clearly, CORBA has grown
from its humble beginnings into an established, mature platform for distributed application development.

CORBA isn't done growing; new capabilities and enhancements are being added al the time. Today you've seen
some of the enhancements currently proposed, from horizontal features such asa CORBA object model,

support for various languages, and support for passing objects by value, to specifications for vertical facilities
such as the healthcare, telecommunications, and manufacturing industries. The OMG has big plans for CORBA,
and with the backing of a plethora of vendors producing CORBA products, these plans are being realized.
CORBA has already become a powerful, robust platform for the development of distributed enterprise
applications and iswell on its way to becoming far more useful than it already is. In the future, not only will
CORBA become even more powerful and robust, but it will also become more seamlessly integrated with
application development. The future certainly has some exciting thingsin store for CORBA and its developers.

< Back Contents
Save to Mylnforml T

http://www.informit.com/content/0672312085/element_022.shtml (10 of 10) [17.07.2000 18:33:33]

http://www.activex.org/
http://www.softwareag.com/corporat/dcom/default.htm
http://www.omg.org/news/activex.htm
http://www.omg.org/news/pr97/ovumpr.htm
http://www.informit.com/My/Add?isbn=0672312085&title=Sams+Teach+Yourself+CORBA+in+14+Days&category=Programming&topic=CORBA&chapter=2856&elementname=What+Lies+Ahead?+The+Future+of+CORBA
http://www.informit.com/about/
http://www.informit.com/press/
http://www.informit.com/about/advertising/
http://www.informit.com/legal/privacy/
http://www.informit.com/contact/
http://www.informit.com/legal/copyright/
http://www.informit.com/legal/privacy/

	informit.com
	- Sams Teach Yourself CORBA in 14 Days - Programming - CORBA
	- Getting Familiar with CORBA From: Sams Teach Yourself CORBA in 14 Days
	- Understanding the CORBA Architecture From: Sams Teach Yourself CORBA in 14 Days
	- Mastering the Interface Definition Language (IDL) From: Sams Teach Yourself CORBA in 14 Days
	- Building a CORBA Application From: Sams Teach Yourself CORBA in 14 Days
	- Designing the System: A Crash Course in Object-Oriented Analysis and Design From: Sams Teach Yourself CORBA in 14 Days
	- Implementing Basic Application Capabilities From: Sams Teach Yourself CORBA in 14 Days
	- Using Exceptions to Perform Error Checking From: Sams Teach Yourself CORBA in 14 Days
	- Adding Automated Teller Machine (ATM) Capability From: Sams Teach Yourself CORBA in 14 Days
	- Using Callbacks to Add Push Capability From: Sams Teach Yourself CORBA in 14 Days
	- Learning About CORBA Design Issues From: Sams Teach Yourself CORBA in 14 Days
	- Using the Dynamic Invocation Interface (DII) From: Sams Teach Yourself CORBA in 14 Days
	- Exploring CORBAservices and CORBAfacilities From: Sams Teach Yourself CORBA in 14 Days
	- Developing for the Internet Using CORBA and Java From: Sams Teach Yourself CORBA in 14 Days
	- Web-Enabling the Bank Example with Java From: Sams Teach Yourself CORBA in 14 Days
	- Answers to Quizzes and Exercises From: Sams Teach Yourself CORBA in 14 Days
	- CORBA Tools and Utilities From: Sams Teach Yourself CORBA in 14 Days
	- What Lies Ahead? The Future of CORBA From: Sams Teach Yourself CORBA in 14 Days

	IIDKJKPJCNOLMDGPINFBFADBHEJNPKBD:
	form1:
	x:
	f1: FilterSearch
	f2: informit_filter.hts
	f3: informit_results.hts
	f4: 20
	f5: 39
	f6: informit_site
	f7:
	f8:
	f9:
	f10:
	f11:
	f12: all

	ACLOMMJAEPNLEEMPHNNJBLADMHAFOAJO:
	form1:
	x:
	f1: FilterSearch
	f2: informit_filter.hts
	f3: informit_results.hts
	f4: 20
	f5: 39
	f6: informit_site
	f7:
	f8:
	f9:
	f10:
	f11:
	f12: all

	FOFNGLKFDDCILJPCJOLMMGJKMFMJNJJG:
	form1:
	x:
	f1: FilterSearch
	f2: informit_filter.hts
	f3: informit_results.hts
	f4: 20
	f5: 39
	f6: informit_site
	f7:
	f8:
	f9:
	f10:
	f11:
	f12: all

	EAIPLJLIPIOEJJJCKJMJOAIBEGMPJKEH:
	form1:
	x:
	f1: FilterSearch
	f2: informit_filter.hts
	f3: informit_results.hts
	f4: 20
	f5: 39
	f6: informit_site
	f7:
	f8:
	f9:
	f10:
	f11:
	f12: all

	FBMPDCFJJCFODBOBAMFODAGFBPIJKEAM:
	form1:
	x:
	f1: FilterSearch
	f2: informit_filter.hts
	f3: informit_results.hts
	f4: 20
	f5: 39
	f6: informit_site
	f7:
	f8:
	f9:
	f10:
	f11:
	f12: all

	HIBPFFGNNLCHNFIPANCFEHEDCDNKIKGA:
	form1:
	x:
	f1: FilterSearch
	f2: informit_filter.hts
	f3: informit_results.hts
	f4: 20
	f5: 39
	f6: informit_site
	f7:
	f8:
	f9:
	f10:
	f11:
	f12: all

	BFEMOJNLEIADNJPAFNDCHFODMHGJIGOM:
	form1:
	x:
	f1: FilterSearch
	f2: informit_filter.hts
	f3: informit_results.hts
	f4: 20
	f5: 39
	f6: informit_site
	f7:
	f8:
	f9:
	f10:
	f11:
	f12: all

	NGPBNMHFCFPEFIONEAJNCNCCAFMDEMKE:
	form1:
	x:
	f1: FilterSearch
	f2: informit_filter.hts
	f3: informit_results.hts
	f4: 20
	f5: 39
	f6: informit_site
	f7:
	f8:
	f9:
	f10:
	f11:
	f12: all

	IFBFHCABPMCFKANJBDKIFHCICLEOFFFC:
	form1:
	x:
	f1: FilterSearch
	f2: informit_filter.hts
	f3: informit_results.hts
	f4: 20
	f5: 39
	f6: informit_site
	f7:
	f8:
	f9:
	f10:
	f11:
	f12: all

	IBOEAHPHEHIFBAIHJHOPNDJPAGILENFA:
	form1:
	x:
	f1: FilterSearch
	f2: informit_filter.hts
	f3: informit_results.hts
	f4: 20
	f5: 39
	f6: informit_site
	f7:
	f8:
	f9:
	f10:
	f11:
	f12: all

	ENMGBKHKKEIONPHGOLCLIOFAPOANPGON:
	form1:
	x:
	f1: FilterSearch
	f2: informit_filter.hts
	f3: informit_results.hts
	f4: 20
	f5: 39
	f6: informit_site
	f7:
	f8:
	f9:
	f10:
	f11:
	f12: all

	PBFPNLCKIAAFJFJBHLBILFPHJLDFMCPD:
	form1:
	x:
	f1: FilterSearch
	f2: informit_filter.hts
	f3: informit_results.hts
	f4: 20
	f5: 39
	f6: informit_site
	f7:
	f8:
	f9:
	f10:
	f11:
	f12: all

	OJGKAIBIFMFMOBIKBFIEMNMDNPBPLLDCJN:
	form1:
	x:
	f1: FilterSearch
	f2: informit_filter.hts
	f3: informit_results.hts
	f4: 20
	f5: 39
	f6: informit_site
	f7:
	f8:
	f9:
	f10:
	f11:
	f12: all

	PHKEJOPIBEGNMDDHKACBEFIKFBGEOOGH:
	form1:
	x:
	f1: FilterSearch
	f2: informit_filter.hts
	f3: informit_results.hts
	f4: 20
	f5: 39
	f6: informit_site
	f7:
	f8:
	f9:
	f10:
	f11:
	f12: all

	KOPNHJKENMNAFPBDJAEAODBPGLGKDHPA:
	form1:
	x:
	f1: FilterSearch
	f2: informit_filter.hts
	f3: informit_results.hts
	f4: 20
	f5: 39
	f6: informit_site
	f7:
	f8:
	f9:
	f10:
	f11:
	f12: all

	DKAGLFCPAPNEJPCDCJPGDDPOPFCFLJFO:
	form1:
	x:
	f1: FilterSearch
	f2: informit_filter.hts
	f3: informit_results.hts
	f4: 20
	f5: 39
	f6: informit_site
	f7:
	f8:
	f9:
	f10:
	f11:
	f12: all

	FAMJGJLJNDPJPIFMDANKAKOFGJDGMAFDBK:
	form1:
	x:
	f1: FilterSearch
	f2: informit_filter.hts
	f3: informit_results.hts
	f4: 20
	f5: 39
	f6: informit_site
	f7:
	f8:
	f9:
	f10:
	f11:
	f12: all

	FJMKMPGIHOKNJJHNJDNOCJLHEEAGLNKI:
	form1:
	x:
	f1: FilterSearch
	f2: informit_filter.hts
	f3: informit_results.hts
	f4: 20
	f5: 39
	f6: informit_site
	f7:
	f8:
	f9:
	f10:
	f11:
	f12: all

