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Abstract.  In this paper, we make an investigation into the structure of routine design problems. By analyzing
the design problem solving process, we show that the designer acquires a special kind of design knowledge,
which we called path variability knowledge. Based on this kind of knowledge, we conclude that routine
design can be regarded as a class of well-structured problems. Therefore, contrary to the prevailing view that
regards routine design problems as search problems, we argue that within a chosen domain of variation they
may be solved by direct algorithmic methods.

1. Introduction

It has been a common practice to divide design
problems into classes with different degrees of
difficulty (Kota, 1994). For example, Gero (1990)
identifies three classes of design problems: routine,
innovative and creative, and Brown (1991) classifies
design problems in reference to two orthogonal axes
(routine/non-routine and conceptual/parametric),
defining four major class of design problem. For the
purposes of this paper, we will recognize only two
classes: routine and non-routine design. The former
class of design problems can be solved in reference
to past experiences using only domain and design
knowledge already available to the designer. On the
other hand, for non-routine design problems it is
necessary to acquire new domain or design
knowledge and they involve various cognitive
mechanisms (Kolodner and Wills, 1993; Goel,
1997).

Since the seminal work of Newel and Simon
(1972), search has been an influential computational
paradigm to approach design problems (as in the
whole AI field). However, this view has been
rejected for creative design problems on the ground
that this kind of problem is too ill-defined and that it
should be treated more like a design space
exploration (Logan and Smithers, 1992).
Nevertheless, search is still accepted as an adequate
paradigm for routine design.

In this paper, it is argued that even for routine
design problems search is an inadequate paradigm.
The argument is that for this type of design problem
there is enough design knowledge available to solve
them by direct methods. This knowledge, which will
called path variability knowledge, is developed as
the designer makes explorations during the design
process and solves a number of similar design

problems. Eventually, path variability knowledge
becomes the dominant knowledge in the design
process, such that, similar problems can be solved
using only this kind of knowledge. Moreover, when
captured and formalized, path variability knowledge
turns out into a procedural form of knowledge and,
therefore, search is not necessary.

In the following three sections, we will define
the basic framework over which routine problems
will be investigated. Then, in sections 5 and 6, we
consider in detailed the structural nature of the
knowledge acquired during the design problem
solving. In section 6 we conclude that a routine
design problem is a well-structured problem and,
therefore, amenable to a direct problem solving
method.

2. Design as a problem solving process

As shown in Figure 1, the design activity can be
conceived as a problem solving process whereby a
designer transforms product requirements into
detailed product descriptions. A solution to the
problem is a detailed product description
incorporating all the requirements. During this
process, knowledge (from a knowledge base) is
brought into the problem solving and new
knowledge is generated through cognitive process.
The new knowledge is stored in the knowledge base
for future use.

In general, design is a very complex problem
solving activity that lasts months and even years.
Therefore, many models for the systematization of
the design activity have been proposed (Pahl and
Beitz, 1988). Following the model presented in
(Ulrich and Eppinger, 1995), we will divide the
design process into three phases: concept
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development, system-level design and detail design,
each one associated to a different design
representations of the product. However, we left out
the phases of testing and refinement, and production
ramp-up. These phases may give rise to design
cycles for the improvement of the solution, but do
not introduce new product representations.

Figure 1. Main elements of the design problem
solving process.

Each design phase is characterized by specific
activities, methods and outcomes. In the concept
design phase, the initial customer requirements are
refined and the conceptual model of the product is
generated, with the definition of the functional
structure and the associated working principles. At
the system-level design phase, the components are
defined and arranged into the product architecture.
Finally, at the detail design phase, the complete and
detail product description showing the assemblies,
part geometry, dimensioning, tolerances, materials,
etc. are defined. Accordingly, we can identify four
main product representation forms into which the
product conception is expressed along the design
process: 1) specification, expressing the product by
means of a set of requirements, 2) concepts, by
means of functional diagrams, 3) architecture, by
means of component schemata and 4) detail design,
expressing the product by means of drawings. Each
of these representations can be associated to a space
of all possible product expressions in that
representation. Then, design problem solving can be
conceived as a transformation of product
information along these spaces, from requirements
toward detailed description.

3. The design transformation path

Although we have ascribed a direction of
transformation, design is a highly iterative process.
As there is a better understanding of the design
problem, the set of requirements is refined, new
requirements are added and inconsistencies are
removed. Furthermore, alternative conceptual
models and architectures will be generated during

the design process through synthesis-analysis cycles.
Changes to the final detailed description are made as
well, particularly during the production system
development.

This state of affairs is captured in Figure 2,
which shows the design process as a series of
transformations (represented by arrows) between the
design spaces. A sequence of transformations from a
specification onto a detailed description represents a
transformation path. It should be stressed that
transformation paths comprises not only the
outcomes associated to the design spaces, but also
the methods and the decisions taken, which establish
the rational linking between the outcomes during the
design process. Note that the outcomes at the
corresponding spaces are specific results defined by
the transformations. During the design process, the
spaces may be explored by the generation of
alternative results, but eventually a transformation
path is consolidated. This is represented in Figure 2
by the heavy arrows. Not only the consolidated
transformation path, but all the outcomes from the
spaces exploration becomes part of the designer’s
knowledge base.

Figure 2. The design transformation paths.

Although the design transformation path is
developed in connection to a particular design
problem, its outcomes are available to be applied on
other design problems through “prototypes” (Gero,
1990), case based reasoning (Kolodner and Wills,
1993), analogical reasoning (Goel, 1997) etc.
However, for specifications that are similar (in a
sense that will be made precise in the next sections)
to previously solved design problems, there is also
more direct ways in which the knowledge base can
be used. In order to dwell on these points, first we
have to define in more detail the structure of the
specification spaces and its relation to the design
space.
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4. The space structure

A product specification is a set of requirements that
has to be embodied into the design solution. For
example, “operating range: -20° C to 50° C”,
“material: steel or plastic”, “connection through the
top”, etc. Now, let Ω be the set of all possible
statements that can be made about artifacts, real or
conceivable. Then, every artifact specification is a
subset R ⊂  Ω. Furthermore, let Ψ =℘ (Ω) be the set
of all the subset of Ω. Then every possible artifact
specification is an element of Ψ. Thus, we call Ψ the
specification space. Given two specifications R,
R’∈Ψ , if R’⊇ R then we say that R’ contains
additional requirements to R. The combination and
the intersections of specifications is also an element
of Ψ. Thus, space Ψ can be structured into a lattice
of specifications by the relation of inclusion and Ω is
its upper limit.

On the other hand, the design space contains the
detailed description of specific artifacts in a
representation that closely resemble what the real
artifact will be or from which it can be
unambiguously produced. In what follows the design
space will be represented by Φ.

Design is a problem solving process that starts
with an initial specification R ∈Ψ  which evolves
during the problem solving process, as there is a
better understanding of problem structure, to a final
set R’ ∈Ψ . The design process ends when a solution
D ∈  Φ is found that embodies all the requirements in
R’.

If the specification R is associated to a design D
by a transformation path, then a non empty subset
R’⊂ R is also associated to D. In this case, R is a
more complete set of requirements for solution D
than R’. This condition lead us to the following
question: Is there a set R2∈Ψ  associated to solution
D which is more complete than R? And another
R3∈Ψ  which is more complete then R2? And so on.
Given the lattice structure of Ψ, this process must
have a limit or Ω will be associated to solution D,
which is impossible since this would imply that
every possible requirement, even contradictory ones,
are all incorporate in D. Thus, we can introduce the
following definition. A set R*∈Ψ  is complete for
solution D if, and only if, for every R ∈Ψ  such that
R ⊃ R*, then the set of requirements R−R* are not
embodied in D. The complete set of requirements for
D will be represented by RD.

Noting that, whenever two specifications are
associated to the same solution their union is also a
specification to the same solution, the following
proposition (for the construction of complete
specifications) can be easily proved. Let ΨD be the

set of all specifications in Ψ  associated to the design
solution D. The set R* = ∪ R (for all R∈Ψ D) is such
that R* = RD.

From the definition RD it follows that, if R∈Ψ  is
such that R ⊄ RD, then D is not a solution for R. In
particular, if RD’ is the complete set of requirement
for solution D’ and D’≠ D, then RD’ ⊄ RD and RD ⊄
RD’. Thus, we conclude that there is a one-to-one
relation between complete set of requirements in Ψ
and design solutions in Φ.

If an initial specification R∈Ψ  is incomplete, it
may be associated to any one design solution D∈Φ
such that R⊆ RD. The particular solution that will be
associated to R will depend on the requirements that
are added to it during the design process. In practice,
a complete specification is never obtained by the
designers, but the options of solutions that can be
associated are progressively narrowed down as new
requirements are added. Of course, if R contains
contradictory requirements (or if one such is added)
then R is inconsistent and there is not solution
associate to it.

5. The nature of the transformation paths

Making different decisions during the design process
results in different transformation paths, each one
ending up at a different solution in the design
spaces. For example, when confronted with the
choice of the material to be used in the car’s
bumpers, the designer may be faced with two
options: metal or plastic (reinforce with carbon
fibers) bumpers. Each one of these alternatives
requires a different conception of bumpers that leads
to a different design solution. Moreover, decisions
may affect different artifact perspectives (function,
behavior, structure or attribute) and have different
scopes of impact on the design solution, from a
small component to several of the artifact modules.

However, decisions along the design process are
not only related to the solution, but to the
specification as well. If the designer is face with a
decision during the design process that is related to a
set of requirements in the artifact specification, he
must follow the requirements and make a consistent
decision. If the specification is incomplete and no
requirement is related to the decision, its is up to the
designer to decide between the possible alternatives.
However, for every decision that the designer makes
and for which there is no related requirement in the
product specification, a new set of requirements
corresponding to the decision made has to be added
into the product specification. Furthermore, if for
some reason the designer makes a decision that
conflicts with the existing requirements, some of
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them will be changed to become consistent to the
decision made. In this way, the initial specification
is completed and modified as the design process
progresses. However, in practice, not all the
designer’s decision making are made explicit and
added to the product specification, though it could in
principle.

From the considerations made above, we can
establish a unique correspondence between all the
decisions made during the design process with the
set of final requirements in the specification space
and, on the other hand, with the solution arrived at in
the design space. Hence, every alternative decision
leads to a different solution D’∈Φ  which is
associated to a different set of complete requirement
RD’∈Ψ . Once again we arrive at the conclusion that
there is a one-to-one correspondence between
complete set of requirements in Ψ and design
solutions in Φ.

Now, let us suppose that at a decision point pk
during the design process the designer is confronted
with set of decision alternatives {a1, a2,..., an},  from
which ai is chosen. Then, along the way there is
another decision point pl, associated to the set of
alternatives {b1, b2,..., bm},   from which bj is chosen,
and so on, until a solution D is developed. In this
case, there is a transformation path from the
specification space to the design space that includes
the decisions pk = ai and pl = bj. However, what
would happen to the transformation path if pk ≠ ai?
As we already considered above, we would have a
different transformation path and D would be no
more the associated solution. Moreover, it may
happen that the decision point pl is no more along
the way in the new transformation path. In this
sense, we can say that a design process leaves a trace
of decisions from the specification towards the
correspondent solution. Actually, this is a network of
decisions, since decisions are also interconnected.
Let us return to the bumpers example to illustrate
this last point. We have seen that each material
alternative have different implications to the
bumpers’ design. In particular, the plastic bumper
will require a reinforcement beam and may use
energy absorbing foam, each of these solutions
eliciting additional decisions, for example, the
density of the foam. Furthermore, let us suppose that
the designer is considering two alternatives for the
bumpers finishing: painting the bumpers with the
same color as the car’s body or to chrome plated
them. However, he is told by the production that
plastic cannot be satisfactorily chrome plated. Thus,
the only option left for plastic bumpers is to paint
the bumpers.  Hence, each choice of material for the
bumpers leads to a different transformation path
involving different decisions along the way. Note

also that in this example the decision on the bumpers
finishing depends on the material chosen (or vice
versa). Hence, decisions along the transformation
path can be coupled by a chain of decisions, and
many of them can be part of more than one
transformation path, superposition different
transformation paths.

Figure 4. Transformation paths and the associated
path variability knowledge.

Taking into account the decision alternatives
related to the material and the finishing of the
bumpers, there are three different transformation
paths Tmp, Tmc and Tpp, as depicted in Figure 4. Each
path defines a different solution in the design space:
a car with painted metal bumpers (Dmp), a car with
chromed metal bumpers (Dmc) and a car with painted
plastic bumpers (Dpp). Accordingly, at the
specification space there are three associated
complete sets of requirements Rmp, Rmc and Rpp, one
differing from the other at least with respect to the
type of material and/or the type of finishing of the
bumpers. However, note that the specification Rpc,
which includes the requirements “plastic bumpers”
and “chrome plate bumpers”, is also a possible
product specification but one for which there is no
solution associated (as long as the technological
problem with plastic chrome plating is not solved).
Hence, this example also shows that not all
combination of decision alternative may be a valid
transformation path.

6. The variation model

In Figure 4, each of the transformation paths shown
are composed of specific combinations of decisions
with their outcomes at each of the design spaces.
Collectively, they can be regarded as the
transformation paths of distinct design problems
(with similar specifications) or as alternative
transformation paths generated during a single
design problem solving process. In any case, the
design explorations, the correlations observed, rules
derived etc., are all part of the designer experience
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and are available to be used next time the designer is
confronted with a design problem. This knowledge
is about how the trasformation paths can be
modified and combined, therefore, it will be called
the path variability knowledge.

Now, let Rt = {R : R ⊆  RD where RD is the
complete set of requirements of some transformation
path in the designer’s knowledge base}. It its clear
from the definition of RD that, if R⊆ RD then D is also
a solution for R. In practice, all the designer has to
do is to identify that R is consistent to some D which
is part of his experience or, equivalently, that R ⊆  RD
for some RD. Note that, actually the designer does
not have to know RD for any design that is part of his
experience, it suffices to recover any R’∈  Rt for
which R ⊆  R’. Hence, Rt is the set of all
specifications in Ψ to which the designer can, in
principle, ascribe a solution based directly on the
transformation paths that are part of his experience.

However, even if R ∉  Rt it may happen that the
designer can still associate a design to it. Let us
illustrate this point. After having explored the
behavior of the bumpers system for various
combinations of the design parameters, eventually
the designer learns how these parameters are
correlated and, as a consequence, he is capable of
setting these parameters for a range of impact
requirements (for example, between 4 and 8 km/h).
Thus, if the designer is presented with a new bumper
specification containing an impact requirement
within that range, but one for which he has never
developed a solution, he is still capable of providing
a solution for it in a straightforward way. This is
typically part of the path variability knowledge for
the bumpers transformation paths.

Hence, because of this kind of knowledge, the set
Rt can be extended to form a set of specifications Re,
such that, Re ⊃  Rt. If presented with a new
specification R ∉  Rt, but within Re, the designer will
still be capable of defining a solution that meets the
requirements of R with the help of variability path
knowledge. Moreover, he can do it without having
to go all along a transformation path. In what
follows, we will work out this point in more details.

Let P = {p1, p2,..., pn} be a set of decision points
associated to a set of transformation paths and their
path variability knowledge, and Ai their
correspondent set of alternative decisions.
Alternatives in Ai may be an actual decision taken as
part of some transformation path or be just an
extrapolation from the insight gained during the
design explorations, for example, a range of possible
values for the foam density. Although, for each
alternative in Ai (i = 1, 2,..., n) there is an associated
design solution, this may not be true for any

combination of alternative decisions of an arbitrary
subset of P. As we have seen in the bumper
example, this is due to a hierarchical structure and
the dependencies that exist between the decision
points. However, since the decision points are
identified over the transformation paths and their
variations, this is the knowledge source from which
the organization of the decision points must be
defined. In particular, the choices between
alternative decisions can be explained based on that
knowledge. Hence, based on the organizational
structure of the decision points, instead of a blind
decision making process, this can be done according
to some inherent systematic. Moreover, at each pn ∈
P it is possible to elaborate procedures or methods
for choosing the proper alternative in view of the
requirements and the previous decisions made.

Based on the above argumentation we will make
the following statement. Let P = {p1, p2,..., pn}be a
set of decision points identified over a set of
transformation paths and their variations and let A =
{A1, A2,..., An}be their associated set of alternative
decisions. There is a procedural model V(P, A) that
is capable to transforming specifications into
detailed design descriptions. This will be referred to
as the variation model V associated to the decision
points P and their correspondent alternative
decisions A.

In order to delimit the set of requirements in the
specification space over which V(P, A) is defined,
we begin noting that for every Ai (i = 1, 2,..., n) there
is a correspondent set Ri in the specification space,
such that, there is a one-to-one correspondence
between alternative decisions in Ai and requirements
in Ri. Therefore, the set ℜ  = {{ r1, r2,...,  rn }: ri ∈  Ri
(i = 1, 2,..., n)}, defines the limits of variation within
the space of specifications for the model M(P, A).
However, if V(P, A) does not allow all combination
of decisions, not all elements in ℜ  are valid
specification for this model. For every valid
specification V(P, A) will associate a solution to it.

In reference to Figure 4, if bumpers are all that
will be allowed to be changed in the car’s design and
if material and finishing are all the decisions points
that will be allowed to be varied (with their
alternative decisions presented above) then there is
an associated variation model V({material,
finishing}, {{steel, plastic}, {chrome, paint}}) that
can be used to design customized cars. This is a
trivial case in which only the set specifications {Rmp,
Rmc, Rpp} forms the range of specifications to which
the model can be applied. By the inclusion of
dimensional decision points in this model, the set of
specification over which the model is defined could
be extended beyond the specifications explicitly
associated to the consolidated transformation paths.
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Note that the specifications discriminated in
Figure 4 have a core set of requirements that are
common to all of them. This is the set of car
requirements not related to the bumpers. Since they
are fixed, these requirements need not to be made
explicit but they will be taken into account in the
solution given by the model. Hence, the
specification for a variational model is composed of
a set of fixed and implicit requirements and a set of
variable requirements. However, because the
implicit part will be taken for granted, it must not be
referred to explicitly as part of the specifications.

6. Conclusion

While non-routine design problems are typified as
space explorations, routine design problems are still
conceived as a space search (Logan and Smithers,
1992; Gero, 1994).

For a problem solving process to qualify as a
search, it is necessary that the problem space, the
initial state, the solution criteria and the operators
that transform states within the space be all defined.
Indeed, a routine design problem can be cast as a
search process, for example, by representing the
decision points as variables and the set of alternative
decisions as values for the correspondent variable.
The solution to the problem is a value attribution to
the variables (a decision making) such that none of
the constraints that exist between them is violated.
This is how configuration problems have been
treated within the constraint satisfaction problem
approach (for example, Sabin and Freuder, 1996).

However, as it has been argued in sections 4 and
5, within a given range of variability, as defined by
the set of decision points and their correspondent
sets of alternative decisions, there is enough design
knowledge associated to a routine design problem in
order to establish the dependency between the
decision points and to elaborate procedures to
automate the decision making at those points.

Therefore, we conclude that although the routine
design problems can be treated within the search
paradigm, they can be further structured up to the
point that, within a delimited set of specifications,
they become direct problem solving process.
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