
IA009-2010-17

1

Abstract—This paper presents a proposal of a particular

agent-oriented language, called TARDIS1. Actually, the TARDIS

is an extension of a functional language Scheme by including

primitives for creating and manipulating agents. Our approach is

motivated by a desire to bridge the gap between functional and

agent-oriented paradigm. The syntax and semantic we developed

was intended to be useful for justifying programs transformations

for real languages, and for formalizing intuitive arguments and

properties used by programmers.

Index Terms—Agent-Oriented Programming, Scheme

Functional Language, Agent Programming Language, Mobile

Agents, Distributed computing.

I. INTRODUCTION

he concept of an agent, in the context of this paper, can be

traced back to the early days of research into Distributed

Artificial Intelligence (DAI) in the 1970s – indeed, to Carl

Hewitt’s concurrent Actor model [1][2]. In this model, Hewitt

proposed the concept of a self-contained, interactive and

concurrently-executing object which he termed ‘actor’. This

object had some encapsulated internal state and could respond

to messages from other similar objects: an actor “is a

computational agent which has a mail address and a behavior.

Actors communicate by message-passing and carry out their

actions concurrently” (Hewitt, C. [1]).

The meaning of the term has evolved over time in the work

of Hewitt and associates. Hewitt used the term actor to

describe active entities which, unlike functions, went around

looking for patterns to match in order to trigger activity. This

concept was later developed into the scientific community

metaphor where sprites examined facts and added to them in a

monotonically growing knowledge base (Kornfeld and Hewitt,

cited in [2]). In Hewitt et al., the notion of actors was closer to

that of an agent in Distributed Artificial Intelligence (DAI):

Manuscript received June 29, 2010. This work was supported in part by

the Department of Computer Engineering and Industrial Automation (DCA)

at the School of Electrical and Computer Engineering (FEEC), State

University of Campinas (Unicamp). Pereira, M. M. is with the State

University of Campinas, Institute of Computing (e-mail:

marcio.machado.pereira@gmail.com).

1 The TARDIS (Time And Relative Dimension(s) In Space) is a time

machine and spacecraft in the British science fiction television programme

Doctor Who.

actors have intentions, resources, contain message monitors

and a scheduler. Irene Greif (cited in [2]) developed an

abstract model of actors in terms of event diagrams which

recorded local events at each actor and the causal relations

between events.

Baker and Hewitt (cited in [2]) then formalized a set of

axioms for concurrent computation which stated properties

that events in actor systems must obey in order to prevent

causality violations. The work in Hewitt contains the insight

that the usual control structures could be represented as

patterns of message passing between simple actors which had a

conditional construct but no local state. It demonstrated the use

of continuation passing style in actor programs, which was

carried over into Scheme [3] [4] [5].

There have been a number of languages developed using the

approach we follow in this paper – combining concurrency

primitives with a functional language. These languages include

Amber (Cardelli, 1986), Facile (Giacalone et al., 1989; Prasad

et al., 1990; Thomsen et al., 1992), Concurrent ML (Reppy,

1991), Erlang (Armstrong et al., 1993), Obliq (Cardelli, 1994)

and Pict (Pierce and Turner, 1994). Erlang [11] and Obliq [10]

are object based languages (Erlang is essentially an actor

language) while Facile, CML and Pict have process algebra

concurrency primitives. Except for Facile, and to a small

extent Obliq, these efforts have focused on language design,

and type systems, with less attention given to semantics and

equivalences.

On the other hand, some Agent specific languages, such as

3APL [13], April [6], and Go! [14], even if rich of agent-

specific constructs, lack many general-purpose statements and

libraries, thus needing the integration of other environments to

build a complete software system.

II. THE TARDIS LANGUAGE

A. Definition Stage

Researchers in object-oriented programming have been

extending the original notion of objects by incorporating one

or more of the features that we have associated with agents. As

a result, one has a proliferation of various extensions to objects

that make them active, concurrent, distributed, reflexive,

TARDIS: A Proposal for an Agent-Oriented

Program Language based on Scheme

Marcio Machado Pereira, UNICAMP, BRAZIL

T

IA009-2010-17

2

persistent, and real-time. However, there is no single object-

oriented language that encapsulates all the above mentioned

features.

Scheme is nearly an object-oriented language. This should

come as no surprise, since Scheme was originally inspired by

Actors, Hewitt’s message-passing model of computation.

Steele has described the relationship between Scheme and

Actors at length [3]. We take advantage of this relationship and

we try not to duplicate functionality that Scheme already

provides to add full support for agent-oriented programming.

Our extensions are in keeping with the spirit of Scheme: “It

was designed to have an exceptionally clear and simple

semantics and few different ways to form expressions”.

The primary aim of our work is to abstract the essential

aspects of agents and design language aspects of agents (as

well as various extensions to objects currently being

attempted) within a unified framework. This paper presents an

initial attempt in this direction by design of a concurrent agent-

oriented language on top of Scheme.

 TARDIS provides a mechanism for specifying the creation

and manipulation of agents. An individual agent represents the

smallest unit of coordination in the model. They are mapped as

lightweight processes, that means there could be hundreds of

thousands of them in a running system. Since they are an

important abstraction in the language, the programmer should

not consider their creation as costly. She should use them

freely to model the problems at hand. An agent's behavior is

described by a lambda abstraction which embodies the code to

be executed when messages are received or environment

changes. That is, agents are reactive as well as proactive

towards the environment. The statement below creates an

agent with its initial behavior.

 (define <agent-name>

 (make-agent <behavior>))

On the creation of agent a unique system generated handle

will be created to access the agent anywhere in the network.

 (let <agent-identifier>

 (spawn <agent-name>

 <initial-attributes>))

 This implies that no two agents of the same agency (see

below), created at the same location will have the same name

(a similar feature of accessing named process across anywhere

in the network is available in Agent Process Interaction

Language – APRIL [6]).

TARDIS agents are self-contained, concurrently interacting

entities of a computing system that communicate via message

passing which is asynchronous and fair. They can be

dynamically created and the topology of agents systems can

change dynamically. The agent model supports encapsulation

and sharing, and provides a natural extension of both

functional programming and object style data abstraction to

concurrent open systems.

At TARDIS language, programmers can model distributed

autonomous agents situated in dynamic environment that are

reactive as well proactive towards the environment. For

instance, agents may be organized into agencies offering

certain services to other agents (these services may be realized

through the execution of an associated plan, see B. Plans and

Services):

 (agency <agency-name>

 (export <export-spec>)

 (import <import-spec>)

 <agency-body>)

The benefits of modularization within conventional

languages are well known. In the model above, Agencies act

like Modules, disciplining name spaces with explicit names

exposure, hiding or renaming. They also offer qualified

naming. These name spaces may cover services or functions,

objects, agents, etc. Just as components, agencies may explicit

their dependences, that is, the other agencies they require in

order to work properly. Building a complete executable is

done via agency fusion (like modules linking or module

synthesis in case of higher-order modules). In a distributed

environment this fusion takes place at execution time. During

the compilation process, the compiler produces a specification

file that will be shared with other Agencies. At execution time,

the agency connects itself to a communication door and

informs this to the service directory. In this manner, will be

possible establish communication agency-agency.

The export subform specifies a list of exports, which name

a subset of the bindings defined within or imported into the

agency. An <export-spec> names a set of imported

and locally defined bindings to be exported. In an

<export-spec>, an <identifier> names a single binding

defined within or imported into the agency, where the external

name for the export is the same as the name of the binding

within the agency.

The import subform specifies the imported bindings as a

list of import dependencies, where each dependency specifies

the subset of the agency’s exports to make available within the

importing agency, and the local names to use within the

importing agency for each of the agency’s exports.

The <agency body> consisting of a sequence of

definitions (e.g. agents, plans, services, messages) followed by

a sequence of expressions. The definitions may be both for

local (unexported) and exported bindings, and the expressions

are initialization expressions to be evaluated for their effects.

IA009-2010-17

3

B. Communication Stage

Agents communicate with each other by sending messages.

For instance, the following expression creates a new message

with receiver <agent-identifier> and contents

<message> and puts the message into the message delivery

system:

(send <agent-identifier> <message>)

In TARDIS, a message can be any serializable first class

value. It can be an atomic value such as a number or a symbol,

or a compound value such as a list, record, or procedures, as

long as it contains only serializable values.

 By default, message passing in TARDIS is asynchronous.

In others words, an agent can send a message whenever it

likes; irrespective of the state of receiving agent. At creation

time each agent is associated with a private mailbox. Then, the

messages are placed in the receivers’ mailbox. Synchronous

and mixed mode messages can be supported also.

In addition to the agent-to-agent message passing as

described above, TARDIS language supports agent-to-agency

message passing. The latter will allow agents to request

services on an agency basis, without having to specify a

particular agent. In this case messages are routed through

message-spaces, each one of which is linked to a particular

agency. Message spaces will be scanned by the respective

agent processes.

Although communication through message-spaces would be

the preferred mode of implementation, either broadcasting or

unicasting can also be implemented. In the case of

broadcasting it will be necessary for a receive function in the

receiving agent to filter the messages that are due to them.

When a message is sent by an agent to another agent or

agency it is given a unique <message-identifier> and the

identity of the agent which sent the message. This message is

then received by the agent or agency at the other end where the

message is decoded. The message is then processed by

receiving agent and appropriate actions are taken.

An agent at any point in time can be in any of the following

three states: active when it is executing a plan instance (see

C. Plans and Services); idle when agent was suspended by

any time-supervision expression or waiting when is waiting

for a message from internal or external environment. To hold

on this states, TARDIS introduced the time-supervision

expressions, a fundamental way to deal with unreliable

message delivery. In the following code fragment, the Agent

uses the cycle expression to check your mailbox at cycles of

elapsed time of 500 ms. When a message is arrived to mailbox

the message? predicate becomes true and the message is

retrieve by msg value as well as the identity of the sender is

binding to from value:

(define sleep-time 500)

 …

(cycle sleep-time

 …

 (if (message? #t)

 (receive from msg))

 …

)

While the receive procedure retrieves the next available

message in the agent’ mailbox, sometimes it can be useful to

be able to choose the message to retrieve based on a certain

criteria. The selective message retrieval procedure:

 (receive-case from

 (predicate-1 msg-1)

 (predicate-2 msg-2)

 …

 (after 10 (raise ‘timeout)))

retrieves the first message in the mailbox which satisfies one of

the predicates. If none of the messages in the mailbox satisfy

the predicates, then it waits until one arrives that does or until

the timeout is hit. Procedure receive-case specify the

maximum amount of time to wait for the reception of a

message as well as a value to return if this timeout is reached.

In the example above, the timeout symbol will be raised as an

exception. If no timeout is specified, the operation will wait

forever.

The receive procedure can also specify such a timeout,

with an after clause which will be selected after no message

matched any of the other clauses for the given amount of time.

(receive from msg

(after 10 (raise ’timeout)))

C. Plans and Services

An agent is deemed to exist for the purpose of accomplishing

its own desires and offer certain services to other agents.

Services can be defined in the scope of an agency suggesting

whether is public, by the export subform, or private

corresponding to internal goals of agents in the agency.

(define <service-name>

(make-service <service-body>))

A service could also be pre-instantiated in expectation of a

deferred invocation using the start-service function:

(let <service-instance>

 (start-service <service-name>

<list-of-arguments>))

IA009-2010-17

4

Private services instances correspond to internal goals of an

agent while public services instances correspond to messages

from other agents requesting to agency.

Plans are the means of performing services. A plan is

identified by its <plan-name>. It specifies the <service-

name> and the context in which a plan might be applicable. If

the plan is applicable the goal statements are performed.

(plan <plan-name>

 (invoke <service-name>

 (with-context <context>))

 (perform <list-of-goal-statements>)

 (finalize <context>))

The agent responds to the message by first selecting plans

whose invocation service statement matches the service

instance of the message. The invocation binding and the

context binding are used to create plan instances. The agent

will select one of these plan instances and start performing the

goal statements. Such a selected plan instance is called an

intention. At any particular instance, there can be many

intentions active. Each intention is an independent thread in

itself. Thus the agent as a whole is multi-threaded.

Unlike object-oriented systems the plan of an agent need not

be performed sequentially from the first goal statement to the

last goal statement. Any service statement in the performance

of the plan results in a service instance which is sent to the

agent’s mail box. This process goes on till all the goal

statements of the original plan are performed.

D. Mobility Stage

 According to [10], mobile agents are autonomous software

entities which can decide to move and relocate themselves in

the network, carrying both their code and execution state. They

perform tasks on behalf of a user, mobile or not. Ideally, any

application using mobile agents could be programmed without

them. The main interest in the use of mobile agents is to

replace remote interactions with servers by local ones, in order

to reduce communication costs. We think also that using

mobile agents can increase expressiveness in distributed

programming.

 Languages and platforms for mobile agents must provide

mechanisms and abstractions for:

� Concurrency and synchronization.

� Agent migration (with code, data and state) in a

heterogeneous context.

� Network-level identification and localization.

� Point to point asynchronous communication.

� Security (of both agents and hosts).

Objects are good candidates for the implementation of

agents, and existing mobile agents platforms are, in many

cases, based on concurrent objects enhanced with mobility

mechanisms (see ObjectSpace Voyager [9]). But introducing

mobility in the object model is not transparent and has effects

on mechanisms like synchronization and method invocation.

For example, mobility is weak in Java because it is impossible

to access to thread stack values and to serialize threads. The

problem of mobility degree is mainly a problem of

expressiveness.

Here, we argue for actors, rather than standard objects, for

mobile agent programming. When processing a message, an

actor can create other actors (dynamically), communicate by

asynchronous point-to-point message passing with other actors

that it knows, and change its own behavior (defining the

behavior for the processing of the next message). Behavior

changing may be useful for agents because it provides a way

for evolution and learning.

Thus, actors can be seen as active objects with the ability of

changing their interface. In applications, actors as agents can

be both clients and servers. Thanks to autonomy, asynchronous

message passing and behavior changing, they are naturally

mobile units:

� _ Autonomy is an important property that agents must have

for mobility self-decision. The encapsulation of data and

methods in the actor’s private behavior (a closure)

conceptually guarantees privacy and integrity. Actors

encapsulate not only programs and data, but also activity.

Actor systems are multi-threaded, but synchronization

problems are hidden from the programmer.

_

� Asynchronous message passing is another important

feature for mobile agents, because synchronous

communications are expensive and hard to maintain in

the context of wide-area or wireless networks (standard

call/return is un-adapted because of latency and failures).

� _ Actor’s behavior includes all its data and code. At

behavior changing time, actor’s state is fully contained in

the behavior (and in the mailbox), and so, easily

capturable and transferable. At this transitional moment,

there is nothing more in the execution state. Movement is

so delayed (only) to the end of the current message

processing. Actor’s mobility is based on a remote

creation of an actor from the behavior intended to

process the next message. Consequently, the actor moves

carrying both acquired knowledge and experience. Thus,

actors move but behaviors, during their execution, don’t

move.

 Localization of moving agents is possible using a

forwarding system. In TARDIS, each agent has a unique

reference (like a postal address) and localization is natural by

IA009-2010-17

5

means of a chain of forwarders. Every time the agent moves,

the local agent remains after the remote creation and becomes

a proxy for the agent: it receives messages for the agent and

forwards them to the remote reference. Such a method allows

also messages, stored in the mailbox before moving, to reach

the agent after it has moved. The mobile agent reference

remains valid even if moving is in progress or if the agent is

remote. So, mobility is transparent for communications (code

of sender agents hasn’t to be modified whether the target agent

is mobile or not). However, this basic protocol is known to be

few efficient and fault sensitive, because of the multiple relays:

several kinds of optimization can be provided. In conclusion,

we can assert that enhancing agents with mobility does not

involve semantics changes.

 Programming mobile agents TARDIS mainly consists in

defining behaviors. This is done by extending the primitives

already defined and creates new ones specific to movement. In

a way, the mobility mechanism (tied with behavior changing)

provides strong mobility in TARDIS, since mobile agents

resume remotely at the execution point where they stopped. A

moved behavior contains references to agents which, in our

system, do not have to be transformed. Like Obliq [10],

TARDIS relies on a mechanism of network-wide lexical

scoping: the main advantage is the preservation of the

semantics of moved agents and the independence between

computation and locality. This allows to reason upon the

programs independently from the location of activities.

Moving is also more efficient because referenced agents do not

have to be serialized.

A place in TARDIS represents a virtual machine running

in a physical or logical site. It can be seen as an agent server

providing environment and resources for agent execution. A

set of places (which can dynamically change) constitutes a

domain on which applications run. If needed, it is possible to

simulate distribution by creating several places on a single

physical site. It is not necessary to change the code to

distribute an application; the same program can be used in a

local environment or in a distributed one.

 To create an agent in a specific place in the network,

TARDIS extends the spawn procedure to indicate the virtual

machine where the agent will run. The variable this-place

(binding normally to “//localhost:”) can be used to

indicate the current place.

 (let <agent-identifier>

 (spawn <place> | this-place

 <agent-name>

 <initial-values>))

 TARDIS also defines a new procedure move! used to move

agents from their current place to a new one. We can make use

of the procedure self that is binding to <agent-

identifier> for a self move of the current agent.

 (move! <place>

 <agent-identifier> | self

 (with-context <context>))

III. EXAMPLE

 We consider the traditional example of producers and

consumers sharing a global buffer [15]. In the implementation

below, we have simplified the example assuming agents know

each other identities. The shared resource is accessed via the

services get and put. According to standard multi-threading

programming, when an agent is notified in the function get, it

still has to check the availability of the resource. After a

notification, only one agent consumes the resource. No

competition is needed between agents.

 (define producer (make-agent

 (lambda (count)

 (let loop ((n count))

 (exec-plan put n)

 (yield)

 (loop (+ 1 n))))))

 (define prod-id

 (spawn this-place producer 1))

 (plan put (invoke (buffer-put! val)

 (with-context (not (full? buffer))))

 (perform

 (if (not (empty? buffer))

 (send cons-id 'resource-available))))

 (define buffer-put! (make-service

 (lambda (val)

 (if (empty? buffer)

 (set! buffer (list val))

 (set-cdr!(last-pair buffer)

 (list val))))))

 (define consumer (make-agent

 (lambda ()

 (let loop ()

 (exec-plan get)

 (yield)

 (loop)))))

 (define cons-id

 (spawn this-place consumer))

 (plan get (invoke (buffer-fetch)

 (with-context

 (not (empty? buffer))))

 (perform

 (receive-case prod-id

 (eq? msg 'resource-available))))

 (define buffer-fetch (make-service

 (lambda ()

 (let ((r (car buffer)))

 (set! buffer (cdr buffer))
 r))))

IA009-2010-17

6

IV. CONCLUSION

We describe a small set of additions to Scheme to support

agent-oriented programming, including a form of mobile

agent. The extensions proposed are in keeping with the spirit

of the Scheme language. Our extensions mesh neatly with the

underlying Scheme system. The core of this design comprises

the thread and object systems used in Scheme. An important

objective was that it should be flexible enough to allow the

programmer to easily build and experiment this new paradigm

providing higher-level primitives and a framework, so that we

can share and reuse more of the design and implementation of

agent-oriented programming. Another important objective was

that the basic communication model should have sufficiently

clean semantic properties to make it possible to write simple

yet robust code on top of it. Only by attaining those two

objectives can we hope to build higher layers of abstractions

that are themselves clean, maintainable, and reliable.

REFERENCES

[1] C. Hewitt. Viewing control structures as patterns of passing messages.

Journal of Artificial Intelligence 8(3):323–364, 1977.

[2] Gul Agha. Actors: A Model of Concurrent Computation in Distributed

Systems. Doctoral Dissertation. MIT Press. Cambridge, MA, USA, 1986

[3] Gerald Jay Sussman and Guy Lewis Steele, Jr.. "Scheme: An Interpreter

for Extended Lambda Calculus". MIT AI Lab. AI Lab Memo AIM-349.

December 1975.

[4] Harold Abelson , Gerald J. Sussman, Structure and Interpretation of

Computer Programs, MIT Press, Cambridge, MA, 1996

[5] Michael Sperber , R. kent Dybvig , Matthew Flatt , Anton Van straaten,

Robby Findler , Jacob Matthews, Revised6 report on the algorithmic

language scheme, Journal of Functional Programming, v.19 n.S1, p.1-

301, August 2009.

[6] F. G. McCabe and Keith L. Clark. APRIL – Agent PRocess Interaction

Language. Workshop on Agent Theories, Architectures and Languages.

Also appears as Lecture Notes in Computer Science. Amsterdam,

Netherlands, 1994, Springer Verlag.

[7] Foundation for Intelligent Physical Agents (FIPA). Fipa2000 Agent

Communication Language http://www.fipa.org.

[8] A. Fuggetta, G. Picco, and G. Vigna. Understanding code mobility.

IEEE Transactions on Software Enginnering, 24(5): 342-361, 1998

[9] Recursion Software, Inc. Voyager Mobile Agent Technology.

http://recursionsw.com

[10] L. Cardelli. Obliq: A language with a distributed scope Computing

Systems, 8(1):27–59, 1995.

[11] J. Armstrong, R.Virding. Concurrent programming in Erlang, second

edition. Ericson Telecom Systems Lab, Sweden. Prentice Hall.

[12] H. Cejtin, S. Jagannathan, R. Kelsey. Higher-Order distributed Objects.

ACM Transactions on Programming Languages and Systems 17(5):

704-739, 1995..

[13] K. Hindriks, F. de Boer, W. van der Hoek, and J.-J. Meyer Agent

programming in 3APL. Autonomous Agents and Multi-Agent Systems,

2(4):357–401, 1999.

[14] F. McCabe and K. Clark. Go! - A Multi-Paradigm Programming

Language for Implementing Multi-Threaded Agents. Annals of

Mathematics and Artificial Intelligence, 41(2-4):171–206, August

2004.

[15] Serrano, M., Boussinot, F., and Serpette, B., Scheme fair threads. In

Proceedings of the 6th ACM SIGPLAN international Conference on

Principles and Practice of Declarative Programming (Verona, Italy,

August 24 - 26, 2004). PPDP '04. ACM, 203-214.

[16] Bordini, R. H., Wooldridge, M., and Hübner, J. F. 2007 Programming

Multi-Agent Systems in Agentspeak Using Jason (Wiley Series in Agent

Technology). John Wiley & Sons.

[17] Jean-Paul Arcangeli, Christine Maurel, Fr´ed´eric Migeon. An API for

high-level software engineering of distributed and mobile applications

Proceedings of the Eighth IEEE Workshop on Future Trends of

Distributed Computing Systems (FTDCS.01)

[18] Michael J. Wooldridge and Nicholas R. Jennings. Agent Theories,

Architectures, and Languages: A Survey. Springer-Verlag 1994, pg. 1-

39

[19] Shoham, Y. 1993. Agent-oriented programming. Artif. Intell. 60, 1

(Mar. 1993), 51-92

[20] Agha, G. A., Mason, I. A., Smith, S. F., and Talcott, C. L. 1997. A

foundation for actor computation. J. Funct. Program. 7, 1 (Jan. 1997),

1-72.

