3 Characterization of Fuzzy Sets

Fuzzy Systems Engineering
Toward Human-Centric Computing
Contents

3.1 Generic characterization of fuzzy sets: fundamental descriptors
3.2 Equality and inclusion relationships in fuzzy sets
3.3 Energy and entropy measures of fuzziness
3.4 Specificity of fuzzy sets
3.5 Geometric interpretation of sets and fuzzy sets
3.6 Granulation of information
3.7 Characterization of the families of fuzzy sets
3.8 Fuzzy sets, sets, and the representation theorem
3.1 Generic characterization of fuzzy sets: Some fundamental descriptors
Fuzzy sets

- Fuzzy sets are membership functions.
- In principle: any function is “eligible” to describe fuzzy sets.
- In practice it is important to consider:
 - type, shape, and properties of the function
 - nature of the underlying phenomena
 - semantic soundness

\[A: X \rightarrow [0, 1] \]
Normality

$hgt(A) = 1$

Normal

$hgt(A) < 1$

Subnormal

$hgt(A) = \sup_{x \in X} A(x)$
Normalization

Subnormal

\[hgt(A) < 1 \]

\[\text{Norm}(A)(x) = \frac{A(x)}{hgt(A)} \]

Normal

\[hgt(\text{Norm}(A)) = 1 \]
Support

\[\text{Supp}(A) = \{ x \in X \mid A(x) > 0 \} \]

Open set

\[\text{CSupp}(A) = \text{closure}\{ x \in X \mid A(x) > 0 \} \]

Closed set
Core

\[\text{Core}(A) = \{ x \in X \mid A(x) = 1 \} \]
\(\alpha\)-cut

\[A_\alpha = \{ x \in X \mid A(x) \geq \alpha \} \]

\[A_\alpha^+ = \{ x \in X \mid A(x) > \alpha \} \]

Stronger condition
Convexity

$A[\lambda x_1 + (1-\lambda)x_2] \geq \min[A(x_1), A(x_2)]$

$x = \lambda x_1 + (1-\lambda)x_2$

$0 \leq \lambda \leq 1$

Convex fuzzy set

Nonconvex

$A_\alpha = \{x \in X | A(x) > \alpha\}$
Cardinality

\[\text{Card}(A) = \sum_{x \in X} A(x) \quad \text{X finite or countable} \]

\[\text{Card}(A) = \int_{X} A(x) \, dx \]

\[\text{Card}(A) = |A| \quad \text{sigma count (\(\sigma\)-count)} \]
3.2 Equality and inclusion relationships for fuzzy sets
Equality

\[A = B \iff A(x) = B(x) \quad \forall x \in X \]

Inclusion

\[A \subseteq B \iff A(x) \leq B(x) \quad \forall x \in X \]
Sets

\[A \subseteq B \]

\[A \not\subseteq B \]
Degree of inclusion

\[\|A(x) \subseteq B(x)\| = \frac{1}{\text{Card}(X)} \int_X (A(x) \Rightarrow B(x)) \, dx \]

\[A(x) \Rightarrow B(x) = \begin{cases} 1 & \text{if } A(x) \leq B(x) \\ 1 - A(x) + B(x) & \text{otherwise} \end{cases} \]
Degree of equality

\[\|A(x) = B(x)\| = \frac{1}{\text{Card}(X)} \int_X \left[\min(A(x) \Rightarrow B(x), B(x) \Rightarrow A(x)) \right] dx \]
Example

Examples of fuzzy sets A and B along with their degrees of inclusion:

(a) $a = 0$, $n = 2$, $b = 3$; $m = 4$, $\sigma = 2$; $\|A = B\| = 0.637$

(b) $b = 7$; $\|A = B\| = 0.864$

(c) $a = 0$, $n = 2$, $b = 9$, $m = 4$, $\sigma = 0.5$; $\|A = B\| = 0.987$
3.3 Energy and entropy measures of fuzziness
Energy measure of fuzziness

\[E(A) = \sum_{i=1}^{n} e[A(x_i)] \]

\[E(A) = \int_{\mathbf{X}} e[A(x)]dx \]

\[\text{Card (X)} = n \]

\[e : [0, 1] \rightarrow [0, 1] \text{ such that} \]

\[e(0) = 0 \]

\[e(1) = 1 \]

\[e: \text{monotonically increasing} \]

Pedrycz and Gomide, FSE 2007
Example

\[e(u) = u \quad \forall u \in [0, 1] \]

\[E(A) = \sum_{i=1}^{n} A(x_i) = \text{Card}(A) \]

\[E(A) = \sum_{i=1}^{n} A(x_i) = \sum_{i=1}^{n} |A(x_i) - \phi(x_i)| = d(A, \phi) \]

\[d = \text{Hamming distance} \]
$e(u)$ non-linear

Emphasis on high membership values

Emphasis on low membership values
Inclusion of probabilistic information

\[E(A) = \sum_{i=1}^{n} p_i e[A(x_i)] \]

\[E(A) = \int_X p(x) e[A(x)] dx \]

\(p_i \): probability of \(x_i \)

\(p(x) \): probability density function

Pedrycz and Gomide, FSE 2007
Entropy measure of fuzziness

\[H(A) = \sum_{i=1}^{n} h[A(x_i)] \]

\[H(A) = \int_{X} h(A(x)) \, dx \]

\[h : [0,1] \rightarrow [0,1] \]

1-monotonically increasing \([0, \frac{1}{2}]\]

2-monotonically decreasing \((\frac{1}{2}, 1]\]

3-boundary conditions:

\[h(0) = h(1) = 0 \]
\[h(\frac{1}{2}) = 1 \]
Specificity of fuzzy sets

Specific fuzzy set

Lack of specificity

Pedrycz and Gomide, FSE 2007
Specificity

1-\(\text{Spec}(A) = 1\) if and only if \(\exists x_0 \in A(x_0) = 1, A(x) = 0 \ \forall x \neq x_0\)

2-\(\text{Spec}(A) = 0\) if and only if \(A(x) = 0 \ \forall x \in X\)

3-\(\text{Spec}(A_1) \leq \text{Spec}(A_2)\) if \(A_1 \supset A_2\)
Examples

\[Spec(A) = \int_{0}^{\alpha_{\text{max}}} \frac{1}{\text{Card}(A_{\alpha})} d\alpha \]

\[Spec(A) = \sum_{i=1}^{m} \frac{1}{\text{Card}(A_{\alpha_i})} \Delta\alpha_i \]

Yager (1993)
Geometric interpretation of sets and fuzzy sets

\[X = \{ x_1, x_2 \} \quad P(X) = \{ \emptyset, \{ x_1 \}, \{ x_2 \}, \{ x_1, x_2 \} \} \]
3.4 Granulation of information
Motivation

- **Need of granulation:**
 - abstract information
 - summarize information

- **Purpose:**
 - comprehension
 - decision making
 - description
Discretization, quantization, granulation

Discretization

Quantization

Granulation

Discretization, quantization, granulation

Pedrycz and Gomide, FSE 2007
Formal mechanisms of granulation

\[\langle X, G, S, C \rangle \]

- \(X \): universe
- \(G \): formal framework of granulation
- \(S \): collection of information granules
- \(C \): transformation

Pedrycz and Gomide, FSE 2007
3.5 Characterization of families of fuzzy sets
Frame of cognition

- Codebook of conceptual entities
 - family of linguistic landmarks
 \[\Phi = \{ A_1, A_2, \ldots, A_m \} \]
 \[A_i \text{ is a fuzzy set on } X, \ i = 1, \ldots, m \]

- Granulation that satisfies semantic constraints
 - coverage
 - semantic soundness
Coverage

$\Phi = \{A_1, A_2, \ldots, A_m\}$ covers X if, for any $x \in X$

$\exists i \in I \mid A_i(x) > 0$

$\exists i \in I \mid A_i(x) > \delta$ (δ-level coverage) $\delta \in [0, 1]$

A_i's are fuzzy set on X, $i \in I = \{1, \ldots, m\}$
Semantic soundness

- Each A_i, $i \in I = \{1, \ldots, m\}$ is unimodal and normal
- Fuzzy sets A_i are disjoint enough (λ-overlapping)
- Number of elements of Φ is low
Characteristics of frames of cognition

- Specificity: Φ_1 more specific than Φ_2 if $\text{Spec}(A_{1i}) > \text{Spec}(A_{2j})$
- Granularity: Φ_1 finer than Φ_2 if $|\Phi_1| > |\Phi_2|$
Focus of attention

Regions of focus of attention implied by the corresponding fuzzy sets
• Information hiding

\[x \in [a_2, a_3] \text{ indistinguishable for } A, \text{ but not for } B \]
3.6 Fuzzy sets, sets and the representation theorem
Any fuzzy set can be viewed as a family of sets:

\[A = \bigcup_{\alpha \in [0,1]} \alpha A_\alpha \]

\[A(x) = \sup_{\alpha \in [0,1]} \alpha A_\alpha (x) \]
Example

\(X = \{1, 2, 3, 4\} \)

\(A = \{0/1, 0.1/2, 0.3/3, 1/4, 0.3/5\} = [0, 0.1, 0.3, 1, 0.3] \)

\(A_{0.1} = \{0/1, 1/2, 1/3, 1/4, 1/5\} = [0, 1, 1, 1, 1] \rightarrow 0.1A_{0.1} = [0, 0.1, 0.1, 0.1, 0.1] \)

\(A_{0.3} = \{0/1, 0/2, 1/3, 1/4, 1/5\} = [0, 0, 1, 1, 1] \rightarrow 0.3A_{0.3} = [0, 0, 0.3, 0.3, 0.3] \)

\(A_1 = \{0/1, 0/2, 0/3, 1/4, 0/5\} = [0, 0, 0, 1, 0] \rightarrow 1.0A_1 = [0, 0, 0, 1, 0] \)

\(A = \text{max} \left(0.1A_{0.1}, 0.3A_{0.3}, 1A_1 \right) \)

\(A = [\text{max} \left(0, 0, 0 \right), \text{max} \left(0.1, 0, 0 \right), \text{max} \left(0.1, 0.3, 0 \right), \text{max} \left(0.1, 0.3, 1 \right), \text{max} \left(0.1, 0.3, 0 \right)] \)

\(A = [0, 0.1, 0.3, 1, 0.3] \)