
ELSEVIBR Artificial Intelligence 94 (1997) 167-215

Artificial
Intelligence

Representations and solutions
for game-theoretic problems

Daphne Koller *, Avi Pfeffer *
Computer Science Department, Gates Building IA. Stanford University,

Stanford, CA 94305-9010, USA

Abstract

A system with multiple interacting agents (whether artificial or human) is often best ana-
lyzed using game-theoretic tools. Unfortunately, while the formal foundations are well-established,
standard computational techniques for game-theoretic reasoning are inadequate for dealing with
realistic galmes. This paper describes the Gala system, an implemented system that allows the
specification and efficient solution of large imperfect information games. The system contains the
first implernentation of a recent algorithm, due to Koller, Megiddo and von Stengel. Experimental
results from the system demonstrate that the algorithm is exponentially faster than the standard
algorithm in practice, not just in theory. It therefore allows the solution of games that are orders of
magnitude larger than were previously possible. The system also provides a new declarative lan-
guage for compactly and naturally representing games by their rules. As a whole, the Gala system
provides tbe capability for automated game-theoretic analysis of complex real-world situations.
@ 1997 Elsevier Science l3.V.

Keywords: Game theory; Algorithms; Imperfect information; Multi-agent systems; Game playing; Logic
programming; Poker

1. Introchction

When dlesigning or analyzing a situation with multiple interacting entities, it is impor-
tant to consider the (often incompatible) goals of these entities, their possible actions,

and the information available to them. Game theory provides us with the tools to for-
mally model such a situation as a multi-player game, to analyze it, and to prescribe
“rational” strategies to the different players.

* Corresponding author. Email: koller@cs.stanford.edu.
’ &nail: avi@cs.stanford.edu.

0004-3702/97/$17.00 @ 1997 Elsevier Science B.V. All rights reserved.
PZISOOO4-3702(97)00023-4

168 D. KolleK A. Pfeffer/Artijicial Intelligence 94 (1997) 167-215

Perfect information Imperfect information

No chance
Chess

Go

Inspection game

Battleships

Chance
Backgammon

Monopoly
OPEC game

Poker

Fig. 1. Examples of games of various types.

Since real life contains many situations involving multiple interacting agents with
incompatible goals, game theory has played a role in a variety of different areas. Game
theory has been fundamental in economics [11, both in the theoretical foundations of
microeconomic theory and in more practical examples (such as the design of the 1995/6

FCC auction of wavelengths [221) . Game theory has also been applied in the realm of

government policy, law, politics, military analysis (both strategic and tactical), biology,
and more.

Clearly, situations involving multiple agents also arise in computer science applica-
tions. In some applications, the agents are a mixture of computer and human users,
e.g., in computer game playing, interface design, or discourse understanding. Other
applications involve two or more artificial agents, e.g., network routing, load sharing
and resource allocation in a distributed system, coordination of multiple robots, and
information or service transactions on the internet.

The applicability of game-theoretic analysis to computer science problems has not

gone unnoticed. In recent years, several such problems have been analyzed using game
theoretic tools, with interesting results. Examples include the work of Franklin, Galil, and
Yung [71 on computer security, the work of Shenker [281 on network routing protocols,
and the work of Parikh [231 on discourse understanding. In artificial intelligence, more
and more researchers are turning to game theory for the theoretical foundations of
multi-agent systems (see, for example, [271 and the references therein).

Despite the growing popularity of game theory as an analytic tool, there has been
little work on providing effective automated tools for game-theoretic analysis. The work
in this area has focused almost exclusively on solution algorithms for games of pe@ct
information: games where all players have full knowledge of the current state of the
world. Unfortunately, such games form a very small fraction of the class of games that
concern game theory. In real life, almost all situations contain some aspects that are

hidden from the players.
It is important to distinguish the lack of information from the possibility of chance

moves. The former involves uncertainty about the current state of the world, particularly
situations where different players have access to different information. The latter involves
only uncertainty about the future, uncertainty which is resolved as soon as the future
materializes. Both perfect and imperfect information games may involve an element
of chance; examples of games from all four categories are shown in Fig. 1. Most of
these are popular recreational games. The inspection game is used by game theorists
to model arms control inspections; it is described in Section 3.5. The OPEC game

D. Kollel; A. Pfe$er/Arti$icial Intelligence 94 (1997) 167-215 169

models oil pricing by oil-producing countries; it is described in Rasmusen’s game theory
textbook [251.

As it turns out, the presence of chance elements does not necessitate major changes
to the computational techniques used to solve a game. In fact, the cost of solving a
perfect information game with chance moves is not substantially greater than solving

a game with no chance moves. By contrast, the introduction of imperfect information
greatly increases the complexity of the problem. This increase materializes even in the
one player case, 2 and is even more of a problem in the multi-player case, particularly

when the different players may have access to different information.
Due to the complexity (both conceptual and algorithmic) of dealing with imperfect

information games, this problem has been largely ignored at the computational level.

The lack of a computational infrastructure for dealing with such games has had several
unfortunate consequences:

l Since game-theoretic analysis must be done manually, only small simple games
can be analyzed. When faced with a more complex situation (as most real-life

situations are), the decision-maker must abstract the situation and simplify it until

it b’ecomes amenable to manual analysis. As a consequence, the results of the
analysis, while providing insight, can rarely be applied directly to the original

problem.
l Manual game-theoretic analysis is a subtle and complicated task, which can only

be performed by experts. Therefore, the tools provided by game theory are only
available to the general public via specialized consultants.

l The lack of practical game-theoretic algorithms has prevented the use of game-

theoretic decision making directly by autonomous artificial agents.
In this paper, we take a first step towards addressing this lack. We describe an

implemented system, called Gala, which automates game-theoretic analysis for a large

class of games. The system takes a description of a game, analyzes it, and outputs
strategies for the different players which are game-theoretically rational for the situation
described. If desired, the system can also simulate the game (playing the role of one
or more of the agents), providing a picture of the different scenarios that are likely to

arise.
The Gala system is composed of two main interacting pieces. The first allows large

complex games to be described clearly and concisely, using a special-purpose game
specification language, which we also call Gala. The Gala language mimics the way in
which a large game is typically described in natural language, by presenting its rules.
For example, Fig. 2 presents part of a Gala specification for the game of Poker.

Given .a game specification such as this, the first component of the Gala system

generates the extensive form of a game, a natural augmentation of a game tree utilized
by game theorists. “Standard” game trees, as typically used in AI game-playing systems,
are inadequate for modelling real-life games, since they do not represent the agents’
information state. The extensive form addresses this problem by augmenting game trees

with information sets.

’ The problem of solving a Markov decision process (MDP) is much easier than the problem of solving a
partially observable Markov decision process (POMDP). See [101 for a survey.

170 D. Keller; A. Pfeffer/Art@cial Intelligence 94 (1997) 167-215

gamecpoker, C

players: [dealer. gambler],

flow: (play_round(ante),
deal,

bet),

ante: (money($player) gets $cash,
%% each player gets his/her initial allocation of cash
payC§ante, gplayer, pot)),
Xii and pays the ante into the pot

deal: (choose(nature,
(Handl, HsndS),
(dealcdeck, Ocards, Handi),
dealcdeck, $cards, HandZ))),

%% a pair of random hands is chosen and dealt from the deck
revealcgambler, myhand(Handl)),
revealcdealer, myhand(Hand;?)),
%% each player's hand is revealed only to him
if(beats(Hand1, HendZ),

betterhsnd gets gambler,
betterhand gets dealer)),

XX evaluate the hands immediately, so that we only do
%% it once per deal, rather than at every possible showdown

bet: (choose(gambler, InitialBet, betueen(0, $money(gambler), InitialBet)),
%% the player chooses his bet
revealcdealer, betcgembler, InitialBet)),
%% reveals it to the other player
debt := InitialBet,
pay(InitialBet, gambler, pot),
%% and pays it into the pot
take_turns(next_bet)),

next-bet:
(choose($player, Bet, (% meet or raise

between($debt, $money($player), Bet)
; % fold
($debt>O, Bet = O))),

if(($debt>O, Bet = 01,
wins($opponent), % fold

(pay(Bet, Splayer, pot), % meet or raise
if($debt=O,

wins($betterhand), % showdown
(reveal($opponent. bet($player. Bet)),
debt gets Bet - $debt))))),

Fig. 2. Abbreviated Gala description of poker.

D. Keller; A. veffer/Artijcial Intelligence 94 (1997) 167-215 171

The second main component of the Gala system automatically analyzes and finds
optimal strategies for games in extensive form. For games of imperfect information, the

use of randomized strategies is essential in order to achieve guaranteed reasonable per-
formance. The basic insight is that deterministic strategies can be predictable, allowing
the opponent(s) to gain additional information about the state of the game.

Once randomized strategies are allowed, the existence of “optimal strategies” in im-
perfect information games can be proved [211. In particular, this means that there exists
an optimal randomized strategy for poker, in much the same way as there exists an
optimal deterministic strategy for chess. Indeed, Kuhn [141 has shown for a simplified

poker game that the optimal strategy does, indeed, use randomization.

The optimal strategy has several advantages: the player cannot do better than this
strategy i-f playing against a good opponent; furthermore, the player does not do worse

even if his strategy is revealed to his opponent, i.e., the opponent gains no advantage from
figuring out the player’s strategy. This last feature is particularly important in the context

of automated game-analysis programs, since they are often vulnerable to this form of
attack: sometimes the code is accessible, and in general, since they always play the same
way, their strategy can be discovered by intensive testing. Given these important benefits
of randomized strategies in imperfect information games, it is somewhat surprising that

none of the (very few) AI papers that deal with these games (e.g., [3,8,29]) utilize
such strategies.

Clearly, none of the minimax-based solution algorithms used for finding optimal
strategies in standard game trees can be adapted to the task of finding randomized
strategies in imperfect information games. The Gala system provides access to a variety
of solution algorithms for imperfect information games.

Game-theoretic solution algorithms can be partitioned into two classes, based on the
game representation they use. Traditionally, games in extensive form have been solved

by converting them to an alternative representation, called the normal form. Standard
linear optimization routines such as linear programming and linear complementarity can
then be used for finding optimal strategies. Gala provides access to these normal-form
solution algorithms by interfacing with a state-of-the-art game-theoretic solving system
called GAMBIT [191.

Unfortunately, the normal-form conversion process incurs exponential blowup in the

size of the representation, rendering this approach impractical for large games. Gala
therefore implements an alternative approach, due to Koller, Megiddo and von Stengel
[121, for solving games in extensive form. The approach is based on converting the

game to a different representation, called the sequence form. This representation is much
more compact than the normal form, but supports the use of similar linear optimization
algorithm,s. The result is solution algorithms that are exponentially faster than the normal-

form based algorithms.

One of the sequence-form algorithms is implemented as part of the Gala system
(others will be added in future versions of the system). We provide the first experimental
results for this algorithm, comparing it to the standard algorithm (based on the normal
form). Our results show that this algorithm is exponentially faster not only in theory,
but also in practice. It allows us to optimally solve complex games where the tree has

172 D. Keller; A. Pjeffer/Artificial Intelligence 94 (1997) 167-215

r
-6 7 6

Caed recense*
J Q K 6 7 6 9 10 J G K

Card received

First round Second round

Fig. 3. Gambler strategies for g-card poker.

tens of thousands of nodes. In comparison, normal-form algorithms can rarely deal with
game trees larger than 30 nodes.

By combining the ability to easily specify complex games with the algorithms capable

of solving them, the Gala system provides a complete automated game-theoretic analysis
tool. For example, from a Gala specification of a Poker game, as in Fig. 2, the system

would generate a game tree, which would then be analyzed to produce optimal strategies

for Poker. To illustrate this process, consider an instantiation of a general poker game
to the case where the deck consists of 8 cards (6-K), each player gets one card, and
each player only has one dollar to bet. Such a game would consist of three rounds. In

the first round, the gambler can either bet his dollar or pass. After hearing the gambler’s
bet, the dealer must decide whether to bet or pass. If the gambler passed and the dealer
decides to bet, the gambler still has his dollar, and therefore gets one more opportunity
to decide whether or not to bet. At that point, the game ends.

The optimal strategies for the gambler in this game, as obtained for the Gala system,
are shown in Fig. 3. They demonstrate an interesting phenomenon (first observed in a
simpler game by Kuhn [141): Behaviors such as bluffing, that seem to arise from the
psychological makeup of human players, are actually game-theoretically optimal.

These strategies were generated completely automatically by the Gala system, starting
from the description of the rules of Poker, described in Fig. 2. Thus, the system provides
complete end-to-end functionality, where we start from a simple specification of the rules
of a game, and end up with a clear and comprehensible description of optimal strategies

for that game.
The remainder of this paper is structured as follows. In Section 2, we review the exten-

sive form of a game, where game trees are augmented with information sets. In Section
3, we describe the Gala language, which supports a clear and concise specification of
large and complex games by allowing a formal specification of the rules of a game.
In Section 4, we review the basic solution concepts in imperfect information games,
including the definition of the Nash equilibrium [211. In Section 5 we survey both the
standard game-theoretic solution algorithms based on the normal form of the game, and
the more recent sequence form algorithms of [121. In Section 6, we show how these

D. Keller; A. Pjiefler/Ar@icial Intelligence 94 (1997) 167-215 173

different ideas come together to form the Gala system, and present the first experimental
results comparing the sequence form and the normal form algorithms. We conclude in
Section 7 with some discussion and directions for future work. As some readers may
be unfamiliar with game-theoretic concepts and techniques, the paper contains some
tutorial sections that review well-known material. Sections 2, 4 and 5.1 present standard
concepts from game theory, while Section 5.2 reviews more recent work.

2. The extensive form

In this section we review the extensive form representation of a game. Readers familiar

with game theory may wish to skip this section or to skim it rapidly so as to familiarize
themselves with the notation used later on. The extensive form is similar to the traditional

AI representation of a game as a tree. As usual, each node represents a possible state at
some point in time, with the root representing the initial state. Each edge is an action

which changes the state into a new one. In this paper, we restrict attention to situations
that have a finite action set and end after a finite number of actions have been taken.
Therefore, we consider only finite trees.

When modeling a multi-agent situation, each node is associated with a single agent,
whose turn it is to choose an action. The set of edges leading out of a node are the
choices av.ailable to that agent. The agent acting at a given node may also be chance or
nature, in which case the edges represent random events. An agent’s strategy dictates its
moves at the different points in the game. In order to recommend a strategy which is
rational for an agent, we must model the agent’s preferences over the different possible
outcomes of the situation. Therefore, we associate a vector of payoffs, one for each

agent, with each leaf of the tree.
This representation of a multi-agent situation is the very familiar one, standardly used

to represent game trees in AI game-playing applications. Unfortunately, it is inadequate
as a mode.1 for some games, and for almost all games that model real-world situations.
To understand why, consider the following simplified variant of poker, first described by
Kuhn [14-l. The game has two players, each of whom initially has two dollars, and a

deck containing the three cards J, Q, and K. Each player antes one dollar and is dealt
one card.

Fig. 4 shows half of the game tree for this game: the part of the tree corresponding
to the deals (Q, J), (Q, K), and (J, K) . The game consists of three rounds. In the first
round, the gambler (shown in grey) can either bet an additional dollar or pass. After
hearing the gambler’s bet, the dealer (shown in dashed black) decides whether to bet or
pass. If the gambler passed and the dealer decides to bet, the gambler still has a dollar,
and therefore gets one more opportunity to decide whether or not to bet. At that point,
the game ends. If both bet or both pass, the player with the highest card takes the pot;
in the first case, the winning player wins two dollars, and in the second case, he or she
wins one. If one player bet and the other passed, then the betting player takes the pot,
thereby winning one dollar.

At first glance, Fig. 4 appears to be an adequate, albeit partial, representation of
this game. However, this is not the case. Note that, at the two points corresponding

174 D. Keller; A. Pfeffer/Art@cial Intelligence 94 (1997) 167-215

Fig. 4. Naive attempt at a partial game tree for simplified poker, containing three of the six possible deals.

Fig. 5. A partial game tree for simplified poker, containing three of the six possible deals. A move to the left
corresponds to a pass, a move to the right to a bet. The information sets are drawn as ovals; some of them
extend into other parts of the tree.

to the deals (Q, J) and (Q, K), the gambler has exactly the same information. So,
even if the gambler would prefer to bet in the first case and pass in the second, this is
not a strategy that he is capable of executing. Unfortunately, this information about the
gambler’s information state is encoded nowhere in this tree,. Therefore, an algorithm that
uses this tree as a model of the game cannot possibly determine that this “omniscient”
strategy is not legitimate.

Game theorists have long known that the representation of a game must encode the
information states of the players. Therefore, the standard representation of a game as
a tree, known as the extensive form of the game, also contains information sets. Each
information set, represented graphically by an oval containing several nodes of the tree,
aggregates those states of the game which are indistinguishable to the player whose turn
it is to act. For example, as shown in Fig. 5, the two nodes immediately following the
deals (Q, .I) and (Q, K) are in a single information set, which is associated with the
gambler.

D. KolleK A. Pjeffer/Arti$cial Intelligence 94 (1997) 167-215 175

More precisely, let (c, d) denote the hands dealt to the two players. Initially, the
gambler only knows his own card, so for each possible c, he has one information set
uc containing two nodes; each node corresponds to the two possibilities for the dealer’s
hand. In her turn, the dealer knows d as well as the gambler’s action in the first round.
Hence, sh.e has two information sets for each d--u: and &corresponding to the
gambler’s previous action. Finally, the gambler has an information set ui in the third
round. As we can see, Fig. 5 is an accurate (although still partial) representation of this
game.

We can now provide a formal definition of an extensive form game, as first de-
scribed by Kuhn [151. The game is represented as a finite directed tree whose nodes

denote game states. The internal nodes of the tree are of two types: decision nodes of
some player k, for k = 1, . . . , n, and chance moves. The outgoing edges at a decision
node represent possible actions at that node, and have distinct labels called choices. A

play denotes the path from the root to some leaf. A move is a choice taken on that
path.

The pyof function h determines a payoff vector h(p) E R?’ for each leaf p. The
kth component /?(p) of h(p) is the payoff at p to player k. The relation between the
payoffs to the different players is, in general, arbitrary. Thus, the interests of the players
may coincide in some circumstances, and conflict in others. A zero-sum game models
a situation where there are only two players, whose interests are strictly opposed, i.e.,
h* = -h’.

The set of decision nodes is partitioned into information sets. Each information set
u belongs to exactly one player k. Intuitively, the player cannot differentiate between

different nodes in the same information set. This implies that at each node p in u, the
player must have the same set C, of choices (labels for the outgoing edges) at U. For

simplicity, it is assumed that the choice sets C, and C, of any two information sets u
and v are disjoint. For example, in Fig. 5, the dealer might have the choices ppd and Bz

in vf; and ~2 and Bi in vi, where P indicates a pass and B indicates a bet. In games
with pe$ect information, where the players always know the current state of the game,
the information sets of all players are always single nodes.

Throughout this paper, we restrict attention, as in most of the game-theory literature,

to games where all of the players have perfect recall. Informally, a player has perfect
recall if he never forgets his previous actions or any fact that he knows. Formally:

Definition 1. Player k is said to have pelfect recuEE if for each of his information sets

u, and any two nodes p, q E u, the sequence of player k choices on the path to p is
precisely the same as the sequence of player k choices on the path to q.

Thus, I) and q can only be in the same information set if the entire history of events
leading to u and v is identical uccomling to player k’s point of view. Had there been some
difference between the two histories, player k would have had to forget that difference
in order to place p and q in the same information set. To fully understand this definition,
recall our assumption that actions at different information sets have different labels. For
example, the first-round passing action when the gambler has a Queen would be labelled
PQ, while: the same action when the gambler has a Jack would be labelled PJ. Thus,

176 D. Kollec A. Pfefer/Art@cial Intelligence 94 (1997) 167-215

two histories that pass through different info~ation sets must be different. Hence, the
definition of perfect recall guarantees that two histories that passed through different
information sets can never “converge” into the same information set; i.e., the player can
never “forget” information he once had.

3. The Gala language

The extensive form captures the low-level dynamics of the game: the choice points,
the choices available, and the sets of nodes among which a player cannot ~stinguish.

However, it captures none of the underlying structure, e.g., the fact that the choices of
a Poker player are determined by the amount of money he has left. In fact, within the
extensive form, we cannot even represent the amount of money the player has at various

points in the game.
Since we cannot encode this information, we cannot utilize it to compactly specify the

game tree (e.g., by observing that the available moves in the betting round of Poker are

identical regardless of the hands the players are dealt). The game tree must be written
down explicitly: every move and every information set. While it is possible, although
far from trivial, to write down a correct game tree with 30 nodes, it is unrealistic to

expect a person to manually construct a game tree with thousands of nodes. It is even
less reasonable to expect the resulting game tree to be correct.

In this section, we present a language, called Gala (for GAme LAnguage), 3 that

supports clear and concise specifications of large, complex games. Gala mimics the way
in which a large game is typically described in natural language, by presenting its r&es.

The idea of using a declarative language to specify games was proposed by Pell [241.
He utilizes it to specify symmetric chess-like games-a class of two-player perfect-
information board games. Our language is much more general, and can be used to
represent a very wide class of games, in particular: one-player, two-player and multi-
player games; games where the outcomes are arbitrary payoffs; and games with either

perfect or imperfect information. As we will show, the expressive power of Gala allows
for clear and concise game descriptions, that resemble, at a high-level, a natural language

representation of the rules of the game.
Gala describes a game as a branching program, where each possible execution of

the program corresponds to a possible play of the game, as determined by the players’
actions and by the outcomes of the chance moves. The program first specifies an initial
state, including the number of players. It then lists a sequence of game steps, whose
execution causes the game state and the players’ information state to change over the

course of the game.
A Gala program consists of a set of declarations. These declarations fall into two

categories. Declarations in the first category describe entities in the game. In a poker
program they might say that the game involves two players named dealer and gambler,

3 We use the name “Gala” to refer both to the Gala language and to the Gala system described in Section 6,

which contains an implementation of the Gala language and algorithms for solving games specified in this
language.

D. Kolles A. Pfeffer/Art$cial Intelligence 94 (1997) 167-215 111

a deck of cards, and so on. The other category contains declarations that describe the
sequence of events that take place during the game. In Fig. 2, the declarations for flow,
ante, deal., bet and nextbet all fall into this category. Each such declaration contains
a sequence of Gala statements. Gala provides flow control statements similar to those
found in many programming languages.

Three important Gala statements are choose, reveal and outcome. These are the basic
building blocks for defining the course of a game. A choose statement defines a choice
point in the game; it indicates the set of choices available at that point, and whether the

choice is made by a player or at random. A reveal statement changes the information

state of a player. The payoff statements determine the final outcome of the game.

In addition, Gala allows a game state to be explicitly specified, maintained through
the game, and utilized in determining the available choices. For example, in the Poker
program of Fig. 2, we maintain the amount of money available to the players via the
variables $money(gambler) and $money(dealer). These are updated by Gala commands as
the betting progresses, and are accessed to determine the set of possible amounts that a
player can choose to bet.

The game manipulation statements range from simple variable manipulation, to ubiq-
uitous concepts such as combinations of objects, to special-purpose libraries for dealing
with certain types of objects (e.g., a rectilinear board). These statements do not directly
affect the structure of the game; they do not induce choice points or specify information

sets. Rath,er, they provide bookkeeping for the game state, which in turns supports the
specification of the game tree.

It is worth discussing the relationship between Gala and Prolog. Gala is embedded

in Prolog, and uses Prolog syntax for many of its constructs. The Gala interpreter is
written in Prolog, and uses the Prolog proof generator to discover all possible plays of a

game. In addition, Prolog predicates can be called from within a Gala program, allowing
conditions on the game state to be expressed as declarative queries. We do require that
Prolog predicates called from within Gala be deterministic, so that all non-determinism
in the game is defined by choose statements. In general, the code describing a game in
Gala consists of two parts: the Gala program itself, and auxiliary Prolog predicates used
by the Gala program.

We begin by discussing the underlying semantics of a Gala program. We then discuss

the various types of Gala statements: basic primitives, flow control, and game state
manipulation. Finally, we demonstrate how the various features of the language come

together in specifying complete games.

3.1. Gala semantics

As we have discussed, game trees are not sufficiently expressive for ascribing precise
semantics to a Gala program, since they do not allow us to discuss the state of the
game and the information state of the players. We therefore consider a somewhat more
expressive framework, based on the work of Fagin, Halpem, Moses and Vardi [61 for
reasoning about multi-agent systems.

We specify the behavior of a Gala program via its execution tree. Each node in the
execution tree is a possible state that can occur in the game, with the root corresponding

to the initial state of the program, and the children of each node co~esponding to those
states that can follow the state encoded by that node.

As in [6], a global State describes both the “external” state of the game and the
internal states of the different players. In an N-player game, a global state is therefore

an (N+l)-tupleoftheform (s,,s~,..., SN) where s, is the environment state and Sk
is the local state of player k. The player’s local state encodes all of the information
available to the player, so that the player cannot distinguish between global states where

her local state is the same.
The environment state corresponds to the program state of the Gala program, in the

same sense as in any other programing language. It consists of two main parts:

A game~ow, which is a Gala code fragment specifying the sequence of steps that
remains to be executed. The gameflow serves the role of a program counter. In
the description of a state, the gameflow is presented in quotes, and we use the

letters 4 and + to indicate an arbitrary (possibly empty) sequence of gameflow
steps.
A gamestate, consisting of a set of current assignments (or bindings) to the

program variables. Gala allows both Prolog-style variables, whose bindings are
progressively refined during the course of execution, and variables whose values
can be changed at will, as in traditional programming languages. We use V to

indicate a set of bindings for all the variables,
The local state for each player describes the agent’s mental state. It consists of the

player’s memories, represented as an ordered list of facts (Prolog terms) known to the
player. We use Fk to denote the list of facts known to player k.

The execution tree is a directed tree whose vertices are labeled with global states. The
successors of a state are the possible states resulting from executing the first command

in the gameflow at that state. Some transitions are deterministic, corresponding to the
mechanics of the game (e.g., transferring the ante to the pot in the beginning of a poker
game). In this case, the vertex will have only a single successor. In other cases, the
transition corresponds to a choice point in the game, resulting in vertices with several

successors. The choice point can be due either to a chance event (e.g., a roll of the
dice) or to an action of one of the players (e.g., a decision to pass or bet). Different

choices of action will induce different possible plays of the game.

3.2. Basic Gala

3.2. I. Choice points
The choose statement has the format choose(Player, Template, Constraint), where

Template is a Prolog expression containing unbound variables, and Constraint is a Prolog

predicate. Any instantiation of Template satisfying Constraint is an action that can be
taken in the current state.4 For example, the

choose(gambler, InitialBet, between(0, $money(gambler), Bet>)

4 We assume that in a correct Gala program, this set of instnntiations is finite and will be computed in Prolog
in a finite amount of time.

D. Kollel; A. Ffeffer/Artificiai Intelligence 94 (1997) 167-215 179

statement in Fig. 2 specifies the set of possible actions to be any numerical value for the
variable Bet which is between 0 and the amount of money that the gambler has. (See
the semantics of Gala variables in Section 3.3.1.) Player is either the name of a player,
or nature(@), where ,u is a probability distribution over the instantiations of Template

satisfying Constraint. 5

The power of choose lies in the fact that the available actions in a state are the answers
to a query, and do not have to be encoded explicitly. The answers to the query depend

on the current game state, and vary according to context. For example, the available

bets in the statement above depend on the current value of the variable $money(gambler),

as described in the gamestate part of the global state. Thus, the same choose statement

can be used throughout the betting phase.

More formally, let

((“choose(Player ,Template,Constraint), CL”, v), Fl, . . . , Fk, . . . , FN),

be the current state, and let Z be the set of inst~t~ations of Template that satisfy the
prolog constraint Constraint and are consistent with V. For each I E Z, let V/I denote

the refinement of the bindings of Prolog variables in V by the bindings in I.
We cannot transition directly from this state to the state after the choice is made,

since, at this point, the player might not know the set of actions available to her.

{The info~ation may not be in her locai state.) We therefore implement the statement
using two transitions. Formally, when the interpretation of Player is some player k E

(1,. . . , Iv’}, then a deterministic transition is made to the state:

((“choosing(k, 11, JI”, v), Fl,. . . , (F& 0 choosing(l)), . . . ,3#).

The statement choosing is not a statement in the Gala language; it is just a placeholder
for the intermediate state. Note that the addition of the fact choosing(X) to Fk forces the
player to distinguish between states where she had different choice sets.

This new state has multiple successor states, corresponding to all possible instantia-

tions f E Z. Each such state has the form

(C“,“, V/Z) 5 6,. * A I (Fk 0 choosing(x) 0 chose(l)), . . . ,Fn),

where V/1 is the modification of V according to the bindings in 1. (See the specification

of variables below.) Note that the fact chose(l) is added to the player’s local state,
enforcing the requirement {implied by the perfect recall assumption) that a player

always remembers her own actions.
For the case of chance events, where Player is nature(p), then we first transition to

the state

((“choosing(nature&), z), $“, v),Fl,. , . ,FN).

The set of successors for this state are all those of the form

((“s”,V/r),~~T...,3,),

such that I E Z. Each of these successor states is reached with probability g(I),

5 w can ba omitted, in which case it defaults to the uniform distribution.

180 D. Keller; A. Pfe$er/Art@cial Intelligence 94 (1997) 167-21.5

The choose statement is the only way to represent choice points in the game, whether
the choice is due to a chance move or to a move by one of the players. Thus, it is the
only statement to allow multiple successor states in the execution tree.

3.2.2. Znfo~t~on states
The reveal statement has the format reveal(Player, Fact), where Player is any pIayer

and Pact is any Prolog term. Intuitively, the fact Fact is added to the player’s local state,

allowing the player to distinguish runs where Fact was observed from runs where it was
not. Fact is interpreted by the Prolog system, using the set of bindings in V.

More foxily, let

((“reveal (Player ,Fact), I++“, v) , Fl, . . . , Fk, . . . , FN),

be the current state, and let k be the interpretation of Player. Then the next state is:

((“lff2’,v),F~ ,..., &ooFaclw ,... *.?N).

where FactV is the Prolog term resulting from interpreting Fact using the bindings in

v.6
For example, in the Gala program of Fig. 2, each player’s & starts out as the empty

list. After the execution of the s~tements revealcgambler, Hand11 and revealcdealer,

Hand2), each & contains only the Prolog fact myhandGIand), for the appropriate value
of Hand; for example, in games where each player gets one card, this fact may be
myhmd(CJI >. As the betting progresses, each Fk is augmented with facts that denote his
own moves and the moves of the opponent. For example, after two rounds of betting,

the gambler’s local state may be the list: Cmyhandf C.Jl) , choosing([0,1,21), chose(i),

bet (dealer, 011.

Note that the facts known by a player are ordered, so a player can differentiate between
runs in which the same facts were revealed in different orders. This is important, because
perfect recall (see Definition 1) requires that a player distin~ish between runs in which
a fact was revealed before or after choosing an action. We fulfill this requirement by
adding chose(dction) to the list of facts known to the player at the time the action is

chosen. Since choose and reveal are the only Gala statements that change a player’s local

state, and they always append info~ation to the facts already known, perfect recall is
maintained.

3.2.3. PayoJffs
The format of the payoff statement is Payoff (Player, Amount). It is interpreted to

mean that the amount haunt is added to Player’s payoff to date. Thus, the player’s

actual payoff at the end of the game is the amount she has accumulated throughout the
game. The cumulative nature of the payoff command allows it to be used in contexts
where the game may be very long or infinite. In such games, we often want to consider

6 Fact may also contain uninstantiated variables, but their names are ignored in this interpretation process.
Given any set of bindings V, a Prolog term Fact has a unique structure Factv that ignores the names of
variables, and it is this structure that is added to the player’s information state.

D. Keller; A. Pfe$er/Artifcial Intelligence 94 (1997) 167-215 181

a prefix o-f the game, and it is useful to be able to have a record of the player’s payoffs
to date.

To implement the payoff command, we maintain a special set of variables hi, . . . , hN
in the global state. Formally, let the current state be

((“payoff (Player Jmount), *I”, V) ,Fl, . . . , &, . . . ,3N).

Let k be the interpretation of player, and p be the interpretation of Amount. Then the

next state is:

((“‘f’vV[h +hk+p]),3 ,,..., 3k ,..., h).

Note that we do not assume that the payoff is revealed to the player.

3.2.4. Basic flow control

Gala provides several flow control statements that can be used to guide the progress of
the game. The most basic ones are concatenation, termination and conditional statements.

Concatenation is straightforward. If 4 and + are gameflows, then (4, $) is simply
the concatenation of the steps in 4 and $. The semantics for concatenation is derived
from the semantics for other statements, as demonstrated above.

The game terminates whenever the gameflow in a state is empty, or an end statement is

reached. The payoff hk accumulated up to that point is then allocated to player k. Since
in many games a payoff is assigned to all the players when the game terminates, Gala

provides am outcome statement that is defined in terms of payoff and end. The statement
takes a vector V as its argument, assigns payoff vk to the kth player, and terminates the
game.

Conditionals have the form if (Condition, 41, 42) where Condition is a Prolog predi-
cate and Q)I,& are gameflows. If Condition can be satisfied given the set of bindings V
in a state, ’ the flow continues with 41, otherwise it continues with 42. More formally,
let the current state be

((“if(Condition, 41, 42)) @“, v) ,31,. . . ,3~).

If Condition can be satisfied given V, then the next state is

((“~i.~",V),~,,...,3N),

otherwise, it is

As a shorthand one can use if (Condition, 4) instead of if (Condition, 4, ~1, where E
is the empty sequence of commands.

For example, in our Poker example, beats (Hand1 , Handl) is a Prolog predicate (defined
in Fig. 8) used in the argument of an if statement. The outcome of this predicate thereby
determines the assignment to the variable betterhand.

’ In a correct Gala program, the evaluation of Condition must always terminate.

182 D. Kollec A. Pfe$er/Artificial Intelligence 94 (I 997) 167-215

3.2.5. Game trees
These primitives are the basic tools for specifying game trees within the Gala lan-

guage. Any extensive form game can be written as a Gala program utilizing only the

features described above. A leaf can be translated into an outcome statement with an
appropriate vector of payoffs. For an internal node p, suppose player k has to choose

one of the actions cl,. . . , cl, and that p is in information set CL Assume (by in-

duction) that we have already defined gameflows $1,. . . , $1 for the subtrees rooted
at the corresponding children of p. Then the subtree rooted at p can be translated

into: *

revealck, u),

chooseck, C, member(C, Cct , ., c/l)),
if (C=ct ,

(/II I
if (C=cz,

.,
if (C=c/_t,

!+%-I I
1/11)...)).

Conversely, the basic primitives choose, reveal, and payoff are the only Gala com-

mands that directly influence the construction of the game tree from a Gala program.
We return to this point at the end of this section.

3.3. Maintaining game state

As we mentioned, the power of the choose statement derives from the fact that the
player’s set of choices does not have to be explicitly listed in the program. Rather, this
set can depend on the current state of the game. Gala provides an extensive suite of
commands for accessing and manipulating the game state.

3.3.1. Variables

As in a traditional programming language, the state is maintained via a set of variables.

Some of these are standard Prolog variables, which can be accessed in any of the
statements described above. The bindings for the Prolog variables are maintained as
part of the set of bindings V. They can be changed as a consequences of some of the
statements described above (e.g., as a consequence of a particular choice in a choose

statement).
It is often convenient to model the changing game state in the same way as the

changing state of traditional programming languages, using variables whose values can
be assigned and changed at will. For this reason, it helps to provide Gala variables
in addition to the Prolog variables. Gala variables are similar to variables encoun-
tered in many programming languages: they can be assigned values at will, without
requiring (as for Prolog variables) that the new value be consistent with the old
value.

8 In this program, [. .] is used as a set constructor, and member tests for membership in the resulting set.

D. Keller; A. Pfeffer/Art$cial Intelligence 94 (1997) 167-215 183

The two types of variables are normally used in different ways. Prolog variables are
useful for storing local information and connecting statements within a gameflow, while
Gala variables can maintain global information that is used throughout the course of the
game. For example, consider the following code fragment:

choose(a, Number, betueencl, 10, Number)),

Parity is Number mod 2,

reveal(b, Parity),

choosecb, Guess, betweencl, 10, Guess)),

if(Guess = Number,

score gets $score + Number)

This fragment specifies that player a chooses any number between 1 and 10 and reveals
only its parity to player b. Player b then tries to guess the number, and gets the number’s
value added to his score if he guesses right. The Prolog variables Number, Parity and
Guess are used to connect the statements together and relate the numbers to each other.
The Gala variable score, in contrast, maintains the score that is accumulated throughout

the course of the game.
Gala variables can be directly referenced within a gameflow by putting a “$” in

front of them. They can be instantiated within a gameflow using the gala command

gets, which is analogous to is in Prolog. Gala variables can be converted to and
from Prolog variables using gala_val(GalaVar, PrologVar), and galaset(GalaVar, Value).

These statements allow Prolog predicates outside the Gala program to access and modify
the game state. The semantics for setting and referencing Gala variables are obvious:
setting a variable causes a transition to a state in which the new binding is appended
to the list, and a reference to a variable is replaced by the value in its most recent

binding.
In Fig. 2, the only Prolog variables are Handi, Hand2, and Bet. They serve precisely

the role described above, of making a short-term connection between the outcome of

the choose statement with some additional statements. For example, we use Bet in the
statement revealing information to the opponent, and also to update the value of debt.

The use of the Gala variable debt allows information to be passed between different
CdlS to next-bet.

3.3.2. Mol*e complex game states
The different types of variables provide the basic facilities for storing, manipulating,

and accessing various aspects of the game state. Using variables, Gala provides a short-
hand notation for concepts that occur ubiquitously in games. These include locations
and their contents, pieces and their movement patterns, and resources that change hands,
such as money. For example, Gala allows the user to utilize statements of the form
move(queen(white), (d,l), Cd,811 Or paycgambler, pot, Bet).

On a more abstract level, we have observed that certain structures and combinations
appear in many different games. While these usually involve sets in one way or another,
they come in many flavors. For example, a flush in poker is a set of five cards sharing

a common property; a straight, on the other hand, is a sequence of cards in which
successive elements bear a relation to one another; a full house is a partition into
equivalence classes based on rank in which the classes are of a specific size.

184 D. Kollec A. Pfefleer/Artificial Intelligence 94 (1997) 167-215

The Prolog language provides a few predicates that describe sets and subsets. We
have supplemented these with various predicates that make it easy to describe many
of the combinations occurring in games. For example, chain(Predicate, Set) deter-
mines whether Set is a sequence of objects in which successive elements are related
by Predicate, while partition(Relation, Set, Classes) partitions set into equivalence
Classes defined by the equivalence relation Relation.

The following example, using a more elaborate function provided in the same library,
shows how we can concisely test for all types of poker hand except flushes and straights:

partition_profile(match_rank, Hand, Profile),

associate(Profile, HandType,

[([4, 11, four-of-a-kind), (C3, 21, full_house),

(C3, 1, II, three_of_a_kind), ([2, 2, 11, two_pairs),
(C2, 1, 1, II, one-pair), (Cl, 1, 1, 1, 11, nothing)])

The predicate partitionprofile takes three arguments: a set-in this case Hand; an

equivalence relation-in this case matchrank; and a list of numbers-prologargProfile.
The predicate is true precisely when the list of numbers is a profile of the partition

defined by the equivalence relation, where a profile is a list of sizes of partition cells in
non-increasing order. For example, if Hand is [90,6), 94,60,60], then Profile must

be [3,2]. The profile [3,2] is then associated with the class full-house.

Building on this library of predicates for describing combinations, Gala also provides
libraries with more specific functionality that is common to a certain class of games.
These include games played on a grid (such as chess or tic-tat-toe) , playing cards, dice,
and so on. For example, if a game is declared to include a grid-board object, a range
of predicates that apply specifically to a rectilinear board become available. One such
predicate is straight-line, which tests for a sequence of squares in a straight line, all of

which satisfy a certain property (such as an open file in chess or three-in-a-row in tic-
tat-toe). It is defined in terms of the chain predicate. In general, high-level predicates
are typically very easy to define in terms of the intermediate level concepts, so that

adding a module for a new class of games requires little effort.

3.4. Advanced flow control

One of the primary advantages of representing a game as a Gala program is the ability
to utilize the same code to encode structures that repeat again and again throughout the
game. For example, as we discussed above, the rule for specifying the set of legal bets
can be used in different subtrees of the poker game, as well as in different bets within
the same subtree.

Gala provides a variety of repetition statements, the most basic of which is the while. It
has the form while(Condition, +), and is interpreted by translation into an if statement.
That is, if the current state is

((“while(Condition, 41, $“,v),~~,...,~~),

then the following state would be:

((“if(Condition, (4, while(Condition, do))), ~+%“,v),~~,...,~p~).

D. Kolles A. Pfeffer/Artijcial Intelligence 94 (1997) 167-215 185

Gala also provides a repeat statement that is defined in terms of while and pro-
vides fancier functionality. Its form is repeat (Flow, Conditionl, , Conditio%). Each
Conditioq Can take One Of tW0 fOrIllS: unless(Predicate) or until(Predicate). The Set

of statements in Flow is executed repeatedly until one of the predicates becomes true;
unless conditions are tested before an iteration, while until conditions are tested after

an iteration.
Another feature adapted from traditional programming languages is the de$ned game-

jaw, whic.h is analogous to a defined procedure. As usual, it consists of a head and a

body; the head consists of a name and a list of formal parameters, while the body is a
gameflow. A defined gameflow is listed as a separate section in the specification of a
Gala program. For example, in our poker example, deal, bet, firstbet and nextbet are
all defined gameflows.

A call to a defined gameflow is interpreted in the obvious way, with the parame-
ters passed by value. If the gameflow in a game state begins with a call to a defined
gameflow, the values of the actual parameters are substituted for the formal param-
eters in the body of the defined gameflow, and this body is substituted for the call

to the defined gameflow in the game state. All Prolog variables within the body of a
defined gameflow are local, so different calls to the gameflow do not cause binding

conflicts.
Finally, Gala provides functionality that allows for players to be treated uniformly.

This allows for games where all the players (or a subgroup of players) take the same

sequence of actions.
One such command is playlound(Flow), where Flow is a gameflow. In addition to

executing FLOW once for each player, this also defines a special Gala variable “player”
which takes as value each of the players in turn. Thus, if FLOW contains a step of the
fOlXl choose($player,Action, Constraint),9 each player will make a choice in turn. For
example, in the poker program, play_round(ante) has the ante flow called twice, with
$player first instantiated to dealer and then to gambler.

In addition to the player variable, the variable opponent is also defined in a two player
game, and lho and rho (for left- and right-hand opponent, respectively) are defined in

multiplayer games. There is also a variant of playzound which allows a subset of the
players to play the round, perhaps in a different order from the default order.

Gala also allows a temporally extended version of play-round, in which the players
take turns performing a sequence of actions until some condition is true. The statement
takes the form take_turns(Flow, ConditionI, ., Condition,,). It is essentially the same
aS repeat (Flow, ConditionI, ., Condition,,), with the player variable and its relatives
being defined in the same way as for playzound. lo For example, in the poker program,
the take-turns construct is used to describe repeated betting by the players in turn. This
terminates either when wins0 is called within the next-bet flow, or when someone meets,
in which #case $debt=O.

9 The dollar sign indicates that a Gala variable is being referenced; see Section 3.3.
lo This is not the same as repeat (playzound(Flow) , Condition] , . , ConditioQ) since in this case,

Condition is checked only between complete rounds, whereas in the take-turns statement, Condition is
also checked between the turns of the different players.

186 D. Keller, A. F’feffer/Artijcial Intelligence 94 (1997) 167-215

game(inspection, C

players : [inspector, violator],

params : [stages, inspections].

variables : [stages-remaining = $stages,
inspections-remaining = $inspections,
violate,
inspect].

flow : (repeat(stage, unless(no_more_inspections),
unless(no_more_stage.s),
until(violation)),

determine_outcome),

stage :
(choose(violator, X, (X = yes ; X = no)),
choose(inspector, Y, (Y = yes ; Y = no)),
reveal(violator, Y),
violate gets X.
inspect gets Y,
if($inspect = yes,

inspections-remaining gets $inspections_remaining - I),
stages-remaining gets $stages_remaining - I),

determine-outcome :
if(no_more_inspections,

outcome(C-I, II),
if(no_more_stages,

outcome(C1, -ll),
if($inspect = yes,

outcome(iL1, -111,
outcome(C-1, 11)))) I).

no_more_inspections :-
gala_val(inspections_remaining, 0).

no_more_stages :-
gala_val(stages_remaining, 9,
gala_val(inspections_remaining, RI,
s =< Ft.

violation :-
gala_val(violate, yes).

Fig. 6. A Gala description of inspection games.

3.5. Two complete Gala programs

In this section, we describe how the various features of the Gala language are com-
bined to form a Gala program. As an example, Fig. 6 shows a complete listing of a

0. Kolter; A. ~~~~r/~rti~~i~l ~ntel~i~en~e p4 (1997) 167-215 187

simple inspection game, which has received significant attention in the game theory
community as a model of on-site inspections for arms control treaties [21.

The inspection game involves two players: a violator, who wants to commit some
treaty-violating act (such as nuclear testing), and an inspector who wants to prevent
the act. The game takes place over n stages. In each period, the violator chooses
whether olr not to violate, and the inspector chooses whether or not to inspect. By the
terms of the treaty, the inspector may only inspect 1 times over the n stages, where
1 < n. If at any stage the violator violates without being caught, the violator wins. If
the violator is caught, or if he does not attempt a violation throughout the game, the
inspector .wins. If at any point the number of remaining inspections is 0, we assume
that the violator will successfully violate at the next stage. If the number of inspections
rem~ning equals the number of stages rem~ning, we assume the inspector will inspect
in every subsequent stage, thereby ensuring victory. The game terminates as soon as
either of these assumptions becomes valid, because the winner is then known.

A Gala program consists of a statement game(GameName, DeclarationList), together
with a set of auxiliary Prolog predicates. Each declaration in DeclarationList has the
form N~IW: Definitioa Some declarations define gameflows, while others specify other
aspects of the game.

The players declaration lists the players in the game, in the order used by default for
constructs such as playround and take-turns. The variables declaration declares Gala
variables used in the program. The parader declaration illustrates a powerful feature of
Gala. A Gala program can be parameter&d, so that it defines a family of games. The
program shown defines the inspection game for any number of stages and inspections.
In this program, the parameter values are used only to declare the initial values of Gala
variables. In general, the parameters can also appear directly inside a gameflow, but they
are not part of the game state, and cannot be modified during a game.

The flow declaration defines the gameflow for the entire game; it must appear in
every game description. (It is analogous to the main function in a C program.) Two
other gameflows are also defined in this program: stage and determineautcome. The
content of every garnetlow is a sequence of statements, as defined in the previous
sections. E:n this case, the primary construct in the main flow is the repeat statement:
stage is repeated until one of the termination conditions is met. When that happens, the
outcome of the game is determined. The te~ination conditions are defined in auxiliary
Prolog predicates.

Each stage consists of a choice by both players. The violator chooses whether or not
to violate, while the inspector chooses whether or not to inspect. After they make their
choices, the inspector’s decision is revealed to the violator, but the violator’s decision
is not revealed to the inspector. The remainder of the stage consists of bookkeeping,
updating ,the values of the Gala variables violate, inspect, inspectionszemaining and
stagesxemaining.

As a final example, Figs. 7 and 8 show the complete code for the poker game from
Fig. 2. Approximately half the code is the Gala program, while the rest is Prolog code
for evaluating and comparing hands. Most of the code should be easy to understand
based on the discussion above. The only new feature is the objects de&ration, which
declares that the game includes a deck of cards, and a money account for the two players

188 D. Kolle,: A. Pfeffer/Artificial Intelligence 94 (1997) 167-215

game(poker, [

players : [dealer, gambler],

parems : [suits, ranks, cards, cash, ante = 11,

objects : [deck : $suits * $ranks,
money : [dealer, gambler, pot1 1,

variables : [winner, debt],

flow : (play_round(ante),
deal,
bet),

ante: (money($player) gets $cash,
pay (Sent e I Splayer , pot 1) ,

deal : (choose(nature,
(Hsndl, Hend2) ,
(dealcdeck, $cs.rds, Handl),
dealcdeck, $cerds, Hand2))),

%% a pair of random hands is chosen and dealt from the deck
revealcgambler, myhand(Handl)),
reveal (dealer, myhand(Hend2)) ,
%% each player’s hand is revealed only to him
if (beats(Hend1, Hend2) ,

betterhand gets gambler,
betterhand gets dealer)),

%% evaluate the hands immediately, so that ue only do
XX it cznce per deal, rather than at every possible showdown

bet : (choose(gsmbler, InitialBet, betveen(0, $money(gambler), InitialBet)),
%% the player chooses his bet
revae.l(dealer, betcgsmbler, InitialBet)),
%% reveals it to the other player
debt := InitialBet,
pay(InitialBet, gambler, pot),
%% end pays it into the pot
take-turns (next-bet) 1,

next-bet:
(choose($player, Bet, (% meet or raise

between($debt, $money($player), Bet)
; % fold

($debt>O, Bet = O))),
if(($debt>O, Bet = O),

wins ($opponent) , % fold
(pay(Bet , Splayer, pot), 7. meet or raise
if ($debt=O,

vins($betterhand), 1 showdown
(reveal ($opponent , bet @player, Bet)) ,
debt gets Bet - Sdebt))))),

wins(player) :
(Winnings is $money($player) + $money(pot) - $cash,
Losings is - Winnings
if ($player = dealer,

outcome([Winnings, Losingsl) ,
outcome(CLosing.5, Winnings])) I).

Fig. 7. Gala description of poker: Gala program.

D. Kollec A. Pfeffer/Ar@cial Intelligence 94 (1997) 167-215 189

beats(Hand1, Hand2) :-
predsort(compare_renks, Handl, SortedHandi),
predsort(compare_ranks, Hsnd2, SortedHand21,
evaluate(SortedHand1, Typel, Detailsi),
evaluate(SortedHand2, Type2, Details2),
(Type1 = Type2 ->

Details1 (o> Details2
; precedes(Type1, TypeP, Cstraight_flush,

four-of-a-kind,
full-house,
flush,
straight,
three-of-a-kind,
two-pairs,
one-pair,
nothing])).

evaluateWand, Type, Details) :-
(is_flush(Hand) ->

(is_straight(Hend) ->
(Type = straight-flush,
Hand = CC_, Rank) I _I,
Details = [Rank])

; (Type = flush,
maplist(rank, Hand, Details)))

; (is_straight(Hend) ->
(Type = straight,

Hand = CC_, Rank) 1 _I,
Details = CRankI)

; (partition_profile(match_rank, Hand, profile),
associate(Profile, Type, [([a I _I, four_of_a_kid,

([3, X I _I : X>l, full-house),
CC3 I _I, three-of-a-kind),
(C2. 2 I _I. two-pairs),
cc2 I _I, one-pair),
(_, nothing)])))).

is_flush(Hand) :-
checklist(match_suit(_), Hand).

is_straigbt(C_l).

is_straight(C(_, Ranki), (_, Rank2) I Tail]) :-
Rank2 is Rank1 - 1,
is_straight(C(_, Rank21 1 Tail]).

compare_r,ulks((_, Ranki), (_, Rank211 :-
Rank2 =< Rankl.

match_rank((_, Rank), Rank).

match_suit(Suit, (Suit, _)).

Fig. 8. Gala description of poker: Prolog predicates.

190 D. Kolle,: A. Pfeffer/Arti$cial Intelligence 94 (1997) 167-215

and the pot. This declaration allows the program to use Gala functio~~ity created for
these types of objects. For example, the deal statement causes cards to be removed from
the deck and added to a player’s hand,

This Gala program takes five parameters: the suits and ranks of cards in the deck, the

number of cards dealt to each player, the amount of cash initially given to each player,
and the amount of the ante. Not only does the program describe many different poker
games through the use of parameters, it can easily be modified to describe other variants

of poker, in which cards are dealt one at a time, exchanged with the deck, individually
revealed, and so on. For example, describing a game in which each player exchanges
cards can be done by adding a gameflow describing the exchange process, and replacing

the bet step in flow with (take_turnsfexchangel , bet).

3.6. Gala programs and game trees

Above, we showed how we can specify any extensive form game as a Gala program.
However, in order to apply standard solution algorithms to Gala-specified games, we
need a process for converting a Gala program into a game tree. More precisely, given
a Gala program and an assignment of values to the program parameters, we need to

generate a game tree co~esponding to the game.
To accomplish this task, we need to understand the relationship between an execution

tree and a game tree. In some sense, an execution tree is an annotated game tree: just like
in a game tree, each vertex in the execution tree corresponds to a state in the game. I1
However, the game tree contains nodes only for those states which represent a choice
point in the game, one where different outcomes lead to different plays in the game.

In contrast, an execution tree also contains vertices which correspond to deterministic

manipulations of the gamestate, e.g., changing the values of variables, transforming a
complex statement into simpler ones, etc. The states corresponding to these deterministic

t~sfo~atio~s would not be associated with nodes in the game tree.
Thus, the game tree is essentially a condensed version of the execution tree, where

we eliminate all vertices that have only one successor. More precisely, the game tree

has:
l An internal node for every vertex in the execution tree where the first command

in the gameflow is the placeholder choosingf.. -3.

* A leaf node for every Ieaf vertex in the execution tree.
a An edge from one node to another, whenever there is a path consisting of deter-

ministic edges between the corresponding vertices in the execution tree.

The info~atio~ sets for the game tree can be derived from the local states of the
associated vertices in the execution tree. An information set for player k corresponds
to some local state Sk, and consists of all choice nodes for player k that correspond to
execution-tree vertices where player k’s local state is s&. Note that the information set
is determined only by the local state of the player whose turn it is to move.

I1 To help disambiguate, we use “state” or “vertex” for nodes in the execution tree, and “node” for nodes in
the game tree.

D. Kollel; A. Pfe$er/Artificial Melligence 94 (1997) 167-215 191

4. Strategies and equilibrium

While defining a game and examining the possible scenarios is an interesting exercise,
our goal is really to find good strategies for playing the game. In this section, we survey
the game-theoretic definitions of a strategy, a minimax strategy, and a Nash equilibrium

strategy. We describe these concepts in the framework of extensive form games.
The simplest of all strategies is a pure (deterministic) strategy. Like a conditional plan

in AI, a pure strategy is a very explicit “how-to-play manual” that tells the player what
to do at every possible point in the game. In the poker example of Fig. 5, such a manual
for the gambler would contain an entry: “If I hold a King, and I passed in the first round,
and the dealer bets, then bet 1.” In general, a pure strategy 7# for player k specifies

a choice at each of his or her information sets. (Since the player cannot distinguish
between nodes in the same information set, the strategy cannot dictate different actions
at those nodes.)

Fixing a strategy for each of the players does not completely determine the outcome

of the game, since the game also contains moves representing nature. However, the
behavior at these nodes, while random, is completely specified in the description of the
game. Therefore, a tuple of strategies ‘TT = (~1,. . . , TN), where each Vk is a strategy

for player k, determines a probability distribution over the leaves of the tree. We will
denote the probability of reaching some node p in the tree by PI-,(P).

Definition 2. The expected payoff H(m) is defined to be

H(n) = c fwP)h(P).
leaves p

Based on these definitions, we can now describe what we mean by “solving” a game.
A solution to a game is a recommendation to the various players of how to play the
game, i.e., a tuple of strategies w = (9i-1, . . . , TN). Of course, not every tuple of strategies

dictates behavior which is rational for the different players. At the very minimum, one
would wish that each player’s strategy be optimal with respect to the current context.
That is, a player should not be able to do better by diverging from his strategy, provided
the strategies of all other players remains constant. If a tuple of strategies satisfies this
property for all players, the strategies are said to be in equilibrium. More formally, we
have the following definition:

Definition .3. A strategy combination (~1, . . . , TN) is said to be in equilibrium if for
every player k and every strategy dk for that player,

Hk(7T1,. . . ,‘Tk,. . . ,7TN) > Hk(%-,, . . . /IT;, . . . ,‘TN).

The equilibrium property is a highly desirable one. Without it, a player following the
“recommended solution” may leave himself vulnerable to having his strategy predicted
(since following the recommendation is the rational thing to do) and possibly taken
advantage of. In that case, following the recommended solution is no longer rational,
making the whole idea of solution somewhat dubious.

192 D. Keller, A. Pfeeer/Artcial Intelligence 94 (1997) 167-215

The ability to announce one’s strategy without giving the advantage to the other player
is particularly important in the context of an artificial agent. There, it is very difficult
to keep one’s strategy a secret. For one thing, it is always possible to break into the

code. For another, it is often possible to subject the agent’s program to intensive testing
simply by playing the game over and over again.

In perfect information games, we can easily construct an equilibrium solution to the
game via a process called backward induction: At the leaves of the tree, the payoffs for
all players are known. At a state which is just before the end of the game, the player
whose turn it is will choose the action that maximizes his or her own payoffs. Under the
assumption that this player will act rationally, the player in the preceding node in the
game tree can now determine the optimal action for him or her. This backward induction

process reduces to the standard minimax algorithm (originally due to Zermelo [341) in
the case of zero-sum games.

Unfortunately, in most real-life games, the players do not have perfect information. It
is clear that this simple process cannot work for imperfect information games. Here, the

decision as to the optimal move must be done for the entire information set, rather than
for individual nodes. And a strategy which is optimal in one node in the information
set may not be optimal in others. For example, in our simple poker game, there are two
nodes in the information set corresponding to the situation where the dealer’s hand is a
Queen and the gambler bet. In one of these two nodes, the gambler has a Jack, and in
the other, a King. Clearly, different moves are optimal in these two nodes.

How do we find an equilibrium in the far more complex case of imperfect information
games? The answer is that we don’t. In fact, as defined, an equilibrium might not even
exist. To see this, consider the simple game of “scissors-paper-stone”. There, any pure

strategy is a losing one as soon as it is revealed to the other player. That is, we cannot

achieve equilibrium with any pure strategy.
The problem is not with the notion of equilibrium, but with the use of pure strategies.

Pure strategies are predictable, and predictable play gives the opponent information. The
opponent can find a strategy calculated to take advantage of this information, thereby
making the original strategy suboptimal. Unpredictable play, on the other hand, maintains
the information gap inherent in imperfect information games. Unpredictability can only

be guaranteed by using randomized strategies:

Definition 4. A randomized strategy pk for player k (called a behavior strategy in
game theory) is a function that, for each information set u of player k, returns a

probability distribution over the choices C, at u.

In our poker example, a randomized strategy for the gambler can be described by
defining the probability of betting at each information set uc and u:, c = 1,2,3.

Once we fix a tuple of randomized strategies ,u = (,ut , . . . , pN), the behavior (albeit
random) is specified at all points in the game. Therefore, just as for pure strategies,
/.L determines a probability distribution Pr, over the nodes in the game tree. Thus,
Definition 2 can be used (only substituting /_L for n-) to ascribe an expected payoff
to a tuple of randomized strategies. Similarly, the notion of equilibrium presented in
Definition 3 can be used, again substituting ,u for rr.

D. Keller; A. Pfe$er/Art@cial Intelligence 94 (1997) 167-215 193

The use of randomized strategies allows us to find an adequate solution for the game
of scissors-paper-stone. The strategy combination where each of the players assigns

probability l/3 to each of the three possible choices is clearly an equilibrium: Each
player is guaranteed an expected payoff of 0, and can do no better with any other
strategy so long as the other player sticks to the equilibrium.

However, it is far from clear that an equilibrium necessarily exists in complex games
involving many moves. In his Nobel-prize winning theorem, Nash [211 showed that the
use of randomized strategies allows us to guarantee the existence of an equilibrium for

imperfect information games. ‘*

Theorem 5 (Nash, 1951). Any extensive-form game with pe$ect recall has an equilib-
rium solution in randomized strategies.

Just as in the case of perfect information games, the equilibrium strategies are par-
ticularly compelling when the game is zero-sum. Then, as shown by von Neumann
[321, any equilibrium strategy is optimal against a rational player. More precisely, the

equilibrium pairs are those where each player plays the optimal defensive strategy: the
one that provides the best worst-case payoff. This maximin behavior is reasonable for
zero-sum g,ames since it is, in fact, in the other player’s best interests to be as harmful

as possible. More formally:

Theorem 6 (von Neumann, 1947). In a zero-sum game, a strategy pair &, &
is in equilibrium iff ,uT maximizes maxP, minPcLz HI (~1, ~2) and ,LL~ maximizes

mm,, min,‘, HZ (PI, ~2 1, I3 where the maximization and minimization is over the
space of randomized strategies.

Thus, in zero-sum games, the best defensive strategies are optimal in a very strong
sense: They are the best that can be achieved against a rational player, i.e., a player
that also plays the defensive strategy. Furthermore, a player can publicly announce her
intention to do so without adversely affecting her payoffs.

5. Solving games

Now that we have a clearly defined notion of a solution, how do we go about finding

one? This is, in general, a very difficult problem. In the poker example of Fig. 5, we
would specify a strategy for each of the players using six numbers: the move probabilities
at the various information sets (six information sets per player). When trying to solve

a game, we need to find an appropriate set of numbers that satisfies the properties we

‘* Nash’s result actually applies to mixed strategies and normal form games, both of which are described

in the next section. The application of Nash’s theorem to extensive form games and behavior strategies is
based on a theorem by Kuhn [151 asserting that, for extensive games of perfect recall, the two strategy

representations are essentially equivalent.
l3 Since H2 = -HI, this is equivalent to minimizing min,, maxP, HI (~1, ~2).

194 D. Keller; A. Pfeffer/Artijcial Intelligence 94 (1997) 167-215

want. That is, we want to treat the parameters of the strategy as variables, and solve for
them. In the zero-sum case, for example, the general computational problem is:

Find x which achieves:

max,

subject to

minyHl(x,y)

x represents a strategy for player 1

y represents a strategy for player 2

(*)

Given our definition of randomized strategies, the appropriate set of variables seems

to be obvious: We simply use the different move probabilities in the game. In the poker
example, we would have x = {xc, XL 1 c = 1,2,3} representing the gambler’s strategy,
and y = {ydp, y$ 1 d = 1,2,3} representing the dealer’s strategy.

Unfortunately, the space of legal assignments to these variables is a difficult one over

which to search. It is continuous and high-dimensional. Furthermore, the payoff function
H, which plays an important role in both the definition of equilibrium and the definition
of maximin strategy, is not a “nice” linear function of the x’s and y’s.

We now survey the two main frameworks for solving games in extensive form. In
Section 5.1 we survey the traditional normal form algorithms, and in Section 5.2 we

review the more recent approach of [121.

5’. 1. Normal form

The representation of a game in extensive form is rather complex, requiring many

different components (nodes, edges, information sets, chance moves, . . .) for repre-
senting the dynamics of the game and of the players’ information state. By contrast,

the goal of game theory is to provide a simple uniform framework for representing
games, that will enable a mathematical analysis of their properties. The complexity
of the extensive form was viewed as detracting from its suitability as a primary rep-
resentation, inducing game theorists to develop an alternative formulation of a game,
called the normal form (also known as the straregic form). It turns out that the nor-

mal form also allows for clean and elegant solution algorithms, adding to its attrac-
tion.

The normal form abstracts away much of the structure of the game. It represents the
game only via the list of pure strategies available to the players. More precisely, the nor-
mal form is a table, indexed by a tuple of pure strategies 7c = (~1, . . . , TN), one for every
player. For each such tuple, it lists the tuple of payoffs H(m) = (HI(~), . . . , HN(m)).

Clearly, every extensive-form game can be converted into the normal form. We simply
list all of the possible pure-strategy combinations 7r, and compute the (expected) payoff
tuple H(m). While this tranformation loses most of the information encoded in the
game tree, it does capture the basic components necessary for equilibrium analysis
(Definition 3): the possible courses of actions and their outcomes.

In the case of general two-player games, also called bimatrix games, the normal form
can be written as a pair of m x n matrices A and B. A row represents a pure strategy ~1
of player 1, a column represents a simultaneously chosen pure strategy 7rz of player 2,
and the corresponding entries in A and B are HI (~1, n-2) and Hz(rt,7r2), respectively.

D. Keller; A. Pfeffer/Arti$cial Intelligence 94 (1997) 167-215 195

In zero-sum games, B = -A, so the normal form of the game is completely specified
by A.

Fig. 9, for example, shows part of the normal form of the simplified poker game of
Fig. 5. The entire normal form is a 27 x 64 matrix. The 27 rows correspond to the
strategies of the gambler. Each strategy indicates what the gambler should do in the first
round for leach possible card, and whether the gambler should bet in the third round
if he passe.s in the first round. Thus, for example, the triple pp, b, pb (in boldface in
the figure) represents the strategy of passing on a Jack in both rounds, betting on a
Queen, and passing on a Ring (in an attempt to bluff) and then betting if the dealer

bets.
Each co.lumn corresponds to a dealer’s strategy, indicating the action to be taken at

uf; and us; for each possible card d. For example, the triple pp, bp, bb (also in boldface)
represents the strategy where the dealer passes on a Jack and bets on a Ring no matter
what the gambler does, but bets on a Queen only if the gambler passed. The matrix
only shows 16 of the 64 possible strategies.

The matrix entry for each strategy pair represents the expected payoff for this pair. In
this case, it is simply the average of the six possible outcomes of the game arising from
the six possible deals. For example, on a (Q, J) deal, the gambler would bet, and then
the dealer would pass, leading to a payoff of 1. On a (K, Q) deal, the gambler would
pass, and then the dealer would bet, giving the gambler the opportunity to bet after all,
with an ensuing payoff of 2.

As we mentioned above, the simpler representation of a game also allows for simple
solution algorithms. Recall that the main difficulty with solving games in the extensive
form was the complexity of representing a randomized strategy. However, once we list all

of a player’s pure strategies, a randomized strategy can be viewed simply as a probability
distribution over this set. Such a distribution is known as a mixed strategy in the game

theory literature. Clearly, any randomized strategy generates such a distribution. For
games of perfect recall, it is also the case that any such distribution (mixed strategy) is
equivalent to a randomized strategy [151.

This representation of strategies allows us to construct a simple formulation of the
problem of finding equilibrium strategies. The advantages are most tangible in the case of
two-player games, so we will focus on those for the remainder of the section. However,
much of the analysis holds unchanged in the general case.

Suppose player 1 has m pure strategies and player 2 has it pure strategies. Consider
some mixed strategy ,ui for player 1, i.e., some distribution over player l’s pure strate-

gies v;, . . . , ?r;‘. We can represent this distribution as a vector X, with m components

representing the probabilities ,UI (+i) assigned by ~1 to the pure strategies di of player
1. In fact, any nonnegative m-vector x = (xi, . . . ,x,,) with Cz, xi = 1 describes a
mixed strategy. Similarly, a mixed strategy ~2 for player 2 can be represented by an

n-vector y. It is easy to see that the expected payoff HI (~1, ,u2) is equal to the matrix
product x”Ay, and similarly H2(~1, ~2) = xTBy.

The vectors x,y provide us with an alternative set of variables for which we can
solve. They allow us to reduce the problem of finding equilibrium strategies in two-
player games to a simple problem of optimization over a linear space of vectors. For
the zero-sum case, the problem (*) described above can be written as:

196 D. Keller; A. Pfe$er/ArtQicial Intelligence 94 (1997) 167-215

PI’ PI’ PP PP PP PP PI’ PP PP PP PP PP PP Pi’ PI’ PP

PP PP PP pp pb pb pb pb bp bp bp bp bb bb bb bb

PP pb bp bb pp pb bp bb pp pb bp bb PP pb bp bb

Fig. 9. Part of the normal form for three-card poker.

D. Keller; A. Pfefler/Artifcial Intelligence 94 (1997) 167-215 197

Find x which achieves:

maxx min, xTAy
m

subject to c Xi = 1
i=l
n

c
Yj = 1

j=l

x,y > 0.

This problem can be reformulated, by an appropriate use of linear progrmnming duality
[51, as a simple linear programming problem, resulting in the following theorem [321:

Theorem 7 (von Neumann, 1947). The normul form of a zero-sum game defines a
linear program (LP) whose solutions are the equilibria (maximin strategies) of the
game.

The standard Simplex algorithm for linear programming can be used to solve this LP
very effectively. Other standard LP solution algorithms, while slower in practice, can be
used to guarantee a worst-case polynomial time for the solution.

A different, but related, transformation allows the reformulation of the equilibrium
problem for general two-player games as a linear complementarity problem (see [41
for a definition) :

Theorem 8. The normal form of a general two-player game defines a linear comple-
mentarity problem (LCP) whose solutions are the equilibria of the game.

One of the solutions to this LCP (each of which corresponds to an equilibrium) can
be found by the Len&e-Howson algorithm [171. This algorithm resembles the simplex
algorithm both in its general operation and in the fact that, while requiring exponential
time in the worst case, it is fast in practice. If a comprehensive list of equilibria is
required, a general exhaustive enumeration scheme can be used (as in [4, p. 171). This,

of course, requires exponential time.
At this point, one might think that the problem of solving games is essentially

solved, at least in the two-player case. In the zero-sum case, we have a fairly efficient

polynomial-time algorithm. l4 In the general case, the problem of finding a single equi-
librium is not known to be solvable in worst-case polynomial time. We do, however,
have an algorithm which is effective in practice.

Howevcer, a closer examination shows that Theorems 7 and 8 are highly misleading.
Although useful, the normal form is not a representation which naturally captures a
person’s intuitive model of a game. In practice, a game-theoretic analyst would model
the situation using some alternative formalism, probably a game tree, and then convert

I4 In fact, we really cannot expect to do better for a normal form game. It is easy to show that the converse

to Theorem 7 also holds, i.e., the problem of solving a linear program can be reduced to that of solving a

normal form game.

198 D. Keller; A. Pfeffer/Art@cial Intelligence 94 (1997) 167-21.5

Fig. 10. A simple game where player 1 has 1 information sets and 2’ pure strategies

to the normal form for the purposes of finding the solution. In both theorems, the size of
the problem to be solved-the linear program or linear complementarity problem-is the
size of the resulting normal form. And, unfortunately, the normal form of an extensive
form game can be very large.

To understand this, consider the simple game tree in Fig. 10. In this game, player 1
has I information sets, one for each possible move of player 2 at the initial state. At each
of these information sets, the player has to pick one of the two possible moves. Thus,
a pure strategy can be described as an I-length vector of R’s and L’s. The total number

of possible pure strategies is therefore 2’. The normal form of this game contains a row
for each and every one of these pure strategies. Therefore, the size of the normal form
corresponding to this game is exponential in the size of the game tree!

More generally, our strategy space is the set of functions from information sets to
moves, and is therefore also exponential in the number of information sets. I5 Thus, in
the worst-case, the process of solving the game via the algorithms in Theorems 7 and
8 incurs an exponential blowup, not only in time, but also in space (which, in practice,
is much worse). Clearly, this problem renders these algorithms impractical in the worst

case.
One might think that this blowup does not arise in practice, but only in artificial

games like the one above. So, while the worst case is bad, perhaps the typical case is
quite reasonable. Unfortunately, this is not the case. Consider our simple poker example,
generalized to a deck with k cards. For each card c, player 1 must decide whether to

pass or bet, and if he has the option, whether to pass or bet in the third round. There are
three courses of action for each c, so the total number of possible strategies is 3k. Player
2, on the other hand, must decide on her action for each card d and each of the two
actions possible for the first player in the first round. The number of different decisions
is therefore 2k, so the total number of deterministic strategies is 22k = 4k. Since the
normal form has a row for each strategy of one player and a column for each-strategy
of the other, it is also exponential in k, while the size of the game tree is only 9k + 1.

In fact, this blowup occurs in many real-life games, and appears to have been a
significant obstacle to the widespread use of game theory as an analysis technique:

I5 This analysis uses the standard conversion of an extensive form game into the normal form. Alternative

conversions into a reduced normal form also exist. While the reduced normal form is smaller than the normal

form, it is still exponential in the size of the game tree. See 1331 for details.

D. Kollec A. F’jeffer/Artificial Intelligence 94 (1997) 167-215 199

This astronomical increase in the number of variables to be determined actually
occurs in some important real-world problems and often forces the analyst to
abandon the game theoretic approach.

An Overview of the Mathematical Theory of Games

William F. Lucas, Cornell University
Management Science [181

5.2. Sequence form

The exponential blowup associated with the normal form makes the standard solution
algorithms an unrealistic option for many games. Recently, however, a new approach to
solving imperfect information games was developed by Koller, Megiddo, and von Stengel

[121. This approach uses an alternative representation called the sequence form, which
avoids the exponential blowup associated with the normal form. I6 We will describe the
main ideas briefly here; for more details see [12,13,33].

The sequence form is based on a different representation of the strategic variables.
Rather than representing probabilities of individual moves (as in the extensive form),
or probabilities of full pure strategies (as in the normal form), the variables represent

the reakution weight of different sequences of moves.
Essent:ially, a sequence for a player corresponds to a path down the tree, but it isolates

the moves under that player’s direct control, ignoring chance moves and the decisions
of the other players. In our poker game of Fig. 5, for example, the gambler has 13
sequence.s: in addition to the empty sequence (which corresponds to the root of the
game) he has four sequences for each card c: [bet on c] (in which case there is no

third round), [pass on c] , [pass on c, bet in the last round], and [pass on c, pass in the
last rounfd]. The dealer also has 13 sequences: the empty sequence, and for each card
d, the four sequences [bet on d after seeing a pass], [pass on d after seeing a pass],
[bet on d after seeing a bet], [pass on d after seeing a bet].

More precisely, let k be a player, and let p be a node of the game tree. There is a
unique path from the root to p. On this path, certain edges correspond to moves of player
k. The string of labels of these edges is denoted by d(p) and is called the sequence
of choices of player k leading to p. It may be the empty sequence 8, for example if p
is the root. Essentially, the sequence d(p) describes the choices that player k has to

make so that p can be reached in the game. That is, a pure strategy n-k can only reach
p if it chooses to make every move in gk(p) at the information set when the move is

relevant.
Our goal is to describe a randomized strategy via some set of weights associated with

sequences. (Just as, for mixed strategies, we described a randomized strategy via a set
of weights associated with pure strategies.) We therefore consider the probability that,
for a given randomized strategy pk, a certain sequence is realized in play. Clearly, a

I6 In 1996. it was discovered that the sequence form was first suggested by Romanovsky [26]. But Ro-
manovsky’s paper was published only in Russian and so his result was completely unknown to the scientific

community in the West. This led to the later but independent development of the sequence form by Koller,

Megiddo, and von Stengel.

200 D. Keller; A. Pfe$er/Art.$icial Intelligence 94 (1997) 167-215

player cannot unilaterally determine whether a sequence is realized. For example, the
sequence [pass on c, bet in the last round] can only be realized if the dealer decides
to bet in her turn. However, the player’s strategy does determine whether a sequence is

realized given that the appropriate decision points in the game are reached.

Thus, for a given randomized strategy pk, we define the realization weight of a
sequence uk (some sequence for player k) as a conditional probability:

Definition 9. The realization weight of a sequence gk under pk, denoted ,&((Tk), is
defined to be the probability that player k, playing according to ,%k, will take the moves
in @k, given that the corresponding information sets are reached in the game. The set of

realization weights pk (a:), . . . , pk (a?) , where (+i, . . . , up is the set of sequences of
player k, is called a realization plan for player k.

It is fairly easy to see that the realization weight pk((+k) is simply the product of the

probabilities, according to ,&, of the moves listed in (Tk.
We can find equilibrium strategies for player k by searching over the space of possible

realization plans. More precisely, as described at the beginning of this section, we treat
the realization weights of player k as variables xi,. . . , ~7, and search over the space

of possible assignments to these variables for one that satisfies our optimality conditions
(e.g., minimax). Note that there is at most one sequence, and therefore one variable,
for each node in the game tree. Compare this to the exponential number of variables

required to represent a strategy in the normal form.
Several crucial properties are required in order to make this process feasible. First, in

order to substitute a search over realization plans for a search over randomized strategies,
we must provide a correspondence between the two spaces. Clearly, not every vector of
numbers (of the right length) actually represents some randomized strategy.

Lemma 10 (Koller and Megiddo [111) . Zf player k has perfect recall, then there exists

a matrix E and a vector e such that a non-negative vector x of dimension mk represents

a randomized strategy for player k tf and only if Ex = e. Furthermore, the matrix E

and vector e can be derived from the game tree in linear time.

That is, for a vector to represent a randomized strategy, it must satisfy certain con-
straints. These constraints (as encoded in the matrix E and the vector e) are quite
simple: They force the weights to “add up” the right way. For example, the weight of
the sequences [pass on c, bet in the last round] and [pass on c, pass in the last round],
denoted [Pi, P:] and [~c, B:] , must add up to the weight of the sequence [pass on c] ,
denoted [pc] .

More generally, let (+k be the sequence for player k leading to an information set at
which player k is to move, I7 and let cl, . . . , cl be the possible moves at that information
set. The sequence uk is realized if and only if one of its continuations is realized, and
these are mutually exclusive events. Therefore, we must have that x,~ = xUI-toc, + . . . +
xgkoc,, where Uk o c is the sequence obtained from concatenating the move c to the

I7 The perfect recall assumption implies that there is at most one sequence cq leading to this information set.

D. Keller; A. Pfeffer/Artificial Intelligence 94 (1997) 167-215 201

(a) Gambler:

(b) Dealer:

/ 1 0 0 0 0 0 0 0 0 0 0 0 0

-1 1001 0 0 0 0 0 0 0 0

0 -1 1 1 0 0 0 0 0 0 0 0 0

-1 0 0 0 0 1 0 0 1 0 0 0 0

0 0 0 0 0 -1 1 1 0 0 0 0 0

-1 0 0 0 0 0 0 0 0 1 0 0 1

\ O 0 0 0 0 0 0 0 0 -1 1 1 0

/1000000000000

-1 1 1 0 0 0 0 0 0 0 0 0 0

-1 0 0 1 1 0 0 0 0 0 0 0 0

-1 0 0 0 0 1 1 0 0 0 0 0 0

-1 0 0 0 0 0 0 1 1 0 0 0 0

-1 0 0 0 0 0 0 0 0 1 1 0 0

\-1000000000011

Y=

I
1

0

0
x= 0

0

0

0

/l

0

0

0

0

0

\O 1.
Fig. 11. Constraints on realization plans for 3-card poker.

sequence (+k. The only other constraints are that the realization weight of the empty
sequence is 1 (because the root of the game is realized in any play of the game), and

that x, > 0 for all (T.
Thus, a realization plan for the gambler is a 13-element vector x satisfying the

constraints in Fig. 11 (a). The constraints are written under the assumption that the
sequences are ordered as in Fig. 12. Thus, the constraints asserting that the weights

of [P,, P:] and [P,, B:] sum up to the weight of [P,] (for each of the three different
values of c) are encoded in lines 3, 5, and 7 of the matrix. Similarly, a realization plan
for the dealer is a 13-element vector y satisfying the constraints in Fig. 11 (b) .

The sequence form transformation allows us to accomplish the task of searching over
the space of randomized strategies, by searching over the space of vectors satisfying the
constraints. Furthermore, once an appropriate vector is found, we can easily recover the
corresponding randomized strategy. That is, if a realization plan satisfies the condition
of Lemma 10, then we can recover the corresponding randomized strategy pk from
the realization weights. Let c be a possible move at some node p in the game tree
where player k is to move, and let Uk be the sequence of player-k moves leading to p.
Then

if xCk > 0. Otherwise, we can define Pr,,(c) arbitrarily. It is straightforward to verify
that the resulting strategy ,Uk induces the realization plan x.

The analysis above shows that we can represent a randomized strategy as a realization
plan, and easily convert between the two representations. However, it is still not clear
what advantages we have gained from doing so. The key point is that we describe the
payoff function H as a linear function of the realization plan variables; this linearity
was the key to the normal-form solution algorithms.

202 D. Keller: A. Pfeffer/Artijicial Intelligence 94 (1997) 167-215

& 0

PJ 0

PJ& 0

PJ,& 0

B.l 0

PQ 0

PQ>Ph 0

PQ& 0

BQ 0

PK 0

pK& 0

PK& 0

BK 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

100

0 -1 0

0 2 0

0 0 1

100

0 -I 0

0 2 0

0 0 1

0 0 0

0 -1 0

0 0 -1

0 0 -2

0 0 0

0 0 0

0 0 0

0 0 0

2 0 0

0 1 0

0 0 -1

0 0 2

2 0 0

0 0 0 0

0 0 -1 0

0 0 0 -1

0 0 0 -2

1 -2 0 0

0 0 -1 0

0 0 0 -1

0 0 0 -2

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1 2 0 0

Fig. 12. Payoff matrix for the sequence form for simplified poker.

0 0

0 0

0 0

0 0

1 -2

0 0

0 0

0 0

1 -2

0 0

0 0

0 0

0 0

To derive this linearity property, we must divide each path in the game tree into its
components. The probability that a path is actually taken in a game is the product of
the probability of all of the moves on the path. This product can be re-expressed as the
product of the realization weights of all the players’ sequences on that path, times the
probability of all the chance moves on the path. That is, for a given tuple (PI,. . . , pN>
of randomized strategies,

where p(p) denotes the product of the chance probabilities on the path to p. Incorpo-
rating this expression into Definition 2, we obtain that:

N

H(F) = c h(P) .P(P) q--JPk(akm. (1)
leaves p k=l

If x is a realization plan for player k corresponding to the strategy ,Uk, then ,&((+k)
is precisely xUk, so that H(p) is, indeed, linear in the realization weight variables for
each of the players.

In the two player case, the linearity of Eq. (1) allows us to achieve a matrix formu-
lation analogous to the one we used for the normal form. In this representation, called
the sequence form, we again define a matrix A (or a pair of matrices A, B) . But here,
the rows correspond to the sequences (rather than pure strategies) of player 1, and the

D. Keller; A. Pfeffer/Artificial Intelligence 94 (1997) 167-215 203

columns correspond to the sequences of player 2. The entry aij is the weighted sum of

the payoff at the leaves that are reached by the pair of sequences ai and u-& i.e.,

aij = c P(P) * h(P).

For example, the matrix entry for the pair of sequences [bet on a Queen] (denoted BQ)

and [pass on a Jack after seeing a bet] (denoted P”,) is 1 (obtained from the one leaf

consistent with this pair of sequences). Note that if a pair of sequences is not consistent
with any path to a leaf, the matrix entry is zero. Thus, the matrix entry for the pair [bet
on a Queen] and [pass on a Jack after seeing a pass] is 0. Fig. 12 shows the matrix

for the sequence form for the simplified poker game.
Let x denote a realization plan for player 1, and y denote a realization plan for

player 2. The entry xi of x is the weight of the sequence af at the ith row of A, i.e.,

xi = ,ut (di), where ,ut is the randomized strategy co~csponding to n (assuming one

exists). Similarly, yi = ,u,z(&~>. It now easily follows from the definitions of aij, xi, and
yj, and from Eq. (1) that

Hi (x,Y) = xTAy,

precisely as for the normal form.
We can now solve (*) using realization weights as our strategic variables. The

similarity between the normal form and sequence form formulations of (*) allow the
use of very similar techniques to those used in the proofs of Theorems 7 and 8, resulting
in the following theorems:

Theorem 11 (Keller et al. [121) . The sequence form of a zero-sum game defines a

linear program (LP) whose solutions are the equilibria (maximin strategies) of the

game.

As before, standard LP solution algorithms provide us with polynomial time algo-
rithms for solving such games.

In the more general case:

Theorem 12 (Keller et al. [121). The sequence form of a general ho-grayer game
defines a linear complementarity problem (LCP) ~&ose soEutiuns are the equilibria of
the game. One of these solutions (each of which corresponds to an equilibrium) can be

found by Lemke’s algorithm [161.

Lemkes algori~m is a simple variant of the ace-~owson algo~thm, with the
same general characteristics.

At first glance, these results seem very similar to the normal-form results, so it

might not be clear what we have gained. The key is that the sequence form (and the
representation of a realization plan) is at most linear in the size of the game tree, since
there is at most one sequence for each node in the game tree, and one constraint for
each information set. Furthermore, it can be generated very easily by a single pass over
the game tree. Thus, for example, the LP algorithm for zero-sum games is polynomial

204 D. Kollel; A. Pfeffer/Art$cial Intelligence 94 (I997) 167-215

Fig. 13. Architecture of the Gala system.

in the size of the game tree as opposed to polynomial in the size of the normal form.

(The algorithms for the general case are analogous, except that the worst-case behavior
is exponential in the size of the corresponding representation.) Since the normal form is
typically exponential in the size of the game tree, these results provide an exponential

time reduction over the standard normal-form algorithms!

6. The Gala system

The Gala system builds on the techniques described in the previous sections to provide

a complete system for specifying and solving games. The system, described in Fig. 13,
uses three main stages for processing a game: generating a game tree from a Gala
specification, solving the game tree, and examining the strategies.

The system as a whole provides end-to-end functionality, from the game specification

to the examination of the optimal strategies. The result is a very useful package for
experimental game-theoretic analysis. To illustrate this process, consider the game of
poker. As demonstrated in Section 3.5, the specification of the general game is compact
and natural. Appropriate instantiations of the parameters of the program allow the gen-
eration of a variety of games. These games can be effectively solved, and the strategy
interpreted. We illustrate this below.

6.1. Game tree generation

In the first stage, the system receives as input a game specified in the Gala language
(as described in Section 3). The system interprets the Gala code, running through the
various possible executions of the game. The interpreter works by maintaining the game
state, including the local state of the agents, and updating it according to the Gala
semantics (Section 3). When the interpreter reaches a choice point, it explores all of
the possible outcomes, in a depth-first fashion.

D. Keller, A. Pfe$er/Artijicial Intelligence 94 (1997) 167-215 205

The interpreter is implemented in Prolog, relying on the underlying Prolog interpreter
for interpreting the embedded Prolog predicates in the Gala code. It also utilizes the
ability of F’rolog to deal with nondeterminism to facilitate the generation of the different

possible plays of the game.
As a result, the interpreter searches the entire execution tree of the program. During the

generation of the execution tree, the corresponding game tree, as defined in Section 3.6,
is generated. Whenever a choose statement is encountered, a node in the game tree
is created. The node is added to the appropriate information set: the information set
consisting of all nodes where the player’s local state is the same (according to Prolog

structural equality).

6.2. Solving the game

In the second stage of processing, the system solves the resulting extensive-form
game. Cmrently, this occurs via one of two methods. The first is using the sequence
form. The Gala system converts the game tree to its sequence form, and outputs the
resulting matrices. These can be read by the appropriate solution algorithm. The current

implementation of the system supports only the solution of zero-sum games, by using
commercial linear programming software packages I8 over the resulting sequence form.

We are currently working on the implementation of the case of general two-player
games. The Gala system is the first to provide an implementation of any of the sequence

form algorithms.
The other solution method is via an interface to the GAMBIT system [191, a state-

of-the-art game theory software package which provides a number of game-theoretic
solution algorithms (primarily for the normal form). Gala outputs the extensive form
of a game in a format readable by GAMBIT, and calls the appropriate GAMBIT routines
over the result. In particular, GAMBIT provides algorithms for multi-player games, so
that such games written in the Gala language can be solved using the two systems in
combinatmn.

The Gala system, via its interface to GAMBIT, allows us to compare the performance

of the sequence form and the normal form algorithms on practical problems. We experi-
mented with two games: simplified poker, instantiated from the Gala program in Figs. 7

and 8, and inspection game, instantiated from the program of Fig. 6.
The experiments were performed as follows: The Gala system was used to generate

different variants of these games, induced by different instantiations to the parameters.

We generated poker games with different numbers of cards in the deck, and inspec-
tion games with a varying number of stages and inspections. For the sequence form
experiments, the extensive form was transformed to the sequence form by the Gala
solution engine and the resulting linear program was solved using CPLEX. The times
for the conversion to sequence form and the solution of the linear program were added
together.

For the normal form experiments, the game trees were printed to a file and converted
to normal form by the GAMBIT system. The normal form linear program was again

I8 CPLEX, Matlab and OSL are all supported.

206 D. Keller: A. Pfeffer/Art@cial Intelligence 94 (1997) 167-215

250 600
Nemxlfcwm - Nomal form -

Sequence form - -
500

sequence ioml

%
2 400.
E” S
P 300 _
z

5 1 200 .

4
100 ”

oL----. : 1 0 0 500 1000 1500 2000 2500 WI0 0 500 1000 1500 2rJoo 2500 3000
number of nodes in tree number of nodes in tme

Poker Inspection game

Fig. 14. Normal form versus sequence form NnniIIg time.

1

5000 10000 15000 2Oooo 25000 0 6000 1GOoo 15000 2iBoo 25oOcl
number of nodes in tree number of nodes in tree

Poker Inspection game

Fig. 15. Time for genemting and solving the sequence form.

solved using CPLEX. The times for the conversion to normal form and the solution of

the linear program were added together.
The resulting running times are shown in Fig. 14. They are as one would expect in a

comparison between a polynomial and exponential algorithm. The results are continued

for the sequence form in Fig. 15. (It was impossible to obtain normal-form results for
the larger games.) In more recent experiments, we have solved poker games with over
140,000 nodes (see below}. The largest games we have solved take about an hour on a

Sun UltraSPARC II.
We believe that the Gala system can easily be modified to deal with much larger

games, simply by streamlining the implementation. Fig. 15 also shows the division of

time between generating the sequence form and solving the resulting linear program. For
the poker games, we can see that generating the sequence form takes the bulk of the time.
Solving even the largest of these games takes less than 10 seconds. Thus, we believe
that the system can be made to run considerably faster by optimizing the sequence-form
generator. Furthermore, the current implementation of this generator stores the game

D. Keller; A. F’jee$er/Arti$cial Intelligence 94 (1997) 167-215 207

cards in deck

48

43

38

33

28

23

18

13

8

3
1

fig. 16. Parameters of largest poker games solved.

tree in main memory as it is generated. As a consequence, the amount of main memory
available posed the most severe constraint on the size of our experiments. A more careful
implementation would write the game tree to disk as it is created, and then generate the
sequence form from it (a process which can be done in a single pass over the tree).
We believe that these minor modifications will allow the system to efficiently deal with
much larger games.

In general, the main influences on the complexity of solving a sequence form game
are the number of nodes in the tree and the structure of the information sets. In poker,
for example, the total size of the tree is determined by the initial number of deals and

the number of nodes in the subtree for each deal, which in turn depends on cash - ante.

Fig. 16 shows the number of cards in the deck, the number of cards dealt to each player,
and the number of rounds for the largest games solved so far. The most extreme points

are 127 card deck, 1 card each, 1 round; 3 card deck, 1 card each, 11 rounds; and
11 card deck, 5 cards each, 3 rounds.

The influence of the information-set structure is apparent when we compare the per-

formance of the sequence-form algorithm for poker games and for inspection games.
Games such as poker, which are wide and shallow, tend to have many parallel informa-
tion sets (information sets which cannot be reached in the same play of a game) ; they
typically gain the most from the use of the sequence form. In the inspection game, on
the other hand, the tree tends to be deep and narrow, reducing the computational savings

obtained from the sequence-form representation.

6.3. Examining the strategies

The final stage of processing allows the user to examine the optimal strategies dis-
covered .by the solution engine. The user can navigate the game tree and view the

208 D. Kolles A. Pfeffer/Art@cial Intelfigence 94 (1997) 167-215

0’ 0
6 7 6 Cafd 10 J Q K 6 7 8 0 10 J Q K

recaived Card received

First round Second round

Fig. 17. Gambler strategies for S-card poker.

*i oi
6 7 8 9 10 J Q K 6 7 8 9 J 0 K

Card received Card
recelifed

After seeing pass After seeing bet

Fig. 18. Dealer strategies for S-card poker.

optimal behavior strategy at any information set. The GAMBIT interface is also useful,
since GAMBIT offers a nice graphical user interface for displaying game trees and the
resulting strategies.

The Gala system also provides other useful information about the equilibrium solution.
Once a pair of strategies is fixed, every branch in the game tree has a v&e, which is
the expected outcome of the game given that the branch is taken and from that point the

players continue to play according to the specified strategies. Also, the strategies induce
a probability distribution over the plays of the game. Therefore, at any of her information
sets, the player can derive a belief state-the resulting probability distribution over the

nodes in the information set. Gala allows the user to examine the value of any action
and the belief state of a player.

Figs. 17 and 18 present the strategies resulting from this analysis for an eight-card

version of the simplified poker discussed throughout the paper. (We have an eight-
card deck, each player is dealt one card, has an ante of $1, and another dollar with

D. Keller: A. Pfeffer/Art$cial intelligence 94 (1997) 167-21.5 209

which to bet.) l9 They provide an interesting example of the insights that can be
achieved by such an analysis. Consider the probability that the gambler bets in the
first round: it is very high on a 1, 0 on the middle cards, and then goes up for the
high cards. The behavior for the low cards corresponds to bluffing, a characteristic

that one tends to associate with the psychological makeup of human players. Similarly,
after seeing a pass in the first round, the dealer bets on low cards with very high
probability. Psychologically, we interpret this as an attempt to discourage the gambler
from “changing his mind” and betting in the final round. In more complex games, we
see other e:xamples where “human” behavior (e.g., underbidding) is game-theoretically

optimal.
The fact that such “psychological” properties are game-theoretically optimal in poker

was first pointed out by Kuhn [141. It was a result of a laborious manual analysis
for the 3-card poker game described above. The Gala system makes this type of anal-

ysis an effortless process, and allows it to be carried out for much more complex
games.

As this example illustrates, the system also provides the exact probabilities for the
various actions (e.g., bluffing on a low hand). Thus, the output of the system can be
implemented directly. Before, only very simple games could be solved exactly. Thus,
the outcome of a game-theoretic solution process was a strategy for a greatly simplified

game, preventing the results from being directly applicable.

7. Discussion

7.1. Equilibrium and optimality

Throughout the paper, we have not questioned the use of Nash equilibrium as the
definition of the desired solution. In practice, however, the Nash equilibrium is not al-

ways appropriate, particularly in the case of extensive-form games. The problem arises

even in the (relatively very simple) case of zero-sum games. The definition of a max-
imin strategy (as set out in Theorem 6) only requires that the strategy ,~i be optimal
in the worst case, i.e., when player 2 is playing optimally. This situation is unlikely
to materialize when human players are involved: human players invariably make mis-

takes.
The maximin criterion results in strategies that are guaranteed to do no worse against a

suboptimal adversary than against an optimal one. But the strategies are not guaranteed
to take advantages of mistakes when they become apparent. This can lead to very
counterintuitive behavior. For example, assume that player 1 is guaranteed to win $1
against an optimal player 2. But now, the latter makes a mistake which allows player 1 to
immediately win $10000. It is perfectly consistent with the definition for the “optimal”

I9 The game was generated and solved in under 2 seconds using the Gala system. The corresponding normal

form algorithm did not terminate after two days of execution.

210 D. Keller; A. Pfe#er/Artificial Intelligence 94 (1997) 167-215

(maximin) strategy to continue playing so as to win the $1 that was the original

goal.
It is interesting to compare this behavior and the one resulting from an optimal

strategy for a perfect information game. In the perfect information case, the maximin
definition also allows for strategies with the same bizarre behavior. However, the specific

backward induction algorithm used to solve the game avoids such strategies by picking,
at each node, the move which is optimal at that node. Unfortunately, in the case of
imperfect information games, it is much harder to define a notion of “optimal from this

point on” (see Section 7.2 for some discussion). Essentially, the player might not know
which node the game is actually at, and designing strategies that are optimal from an
information set is much more complicated.

These difficulties are well known, and have led to the development of an extensive
suite of alternative (more refined) solution concepts. The discussion of the different

options is beyond the scope of this paper; see [301 for a survey. Currently, there seems
to be no consensus as to the “right solution” to this problem. Nevertheless, it would be
useful to incorporate one or more of the alternative solutions into the Gala system. Work

is in progress on the computational aspects of these more refined solution concepts. See
[20,3 1] for some results. *O

There is an alternative approach to the problem of dealing with less-than-perfect
players. Rather than simply reacting to suboptimality when it is detected, we can try
to learn the type of mistake that a certain player is prone to make. This approach can
be used when there is a long-term interaction with the same player (or with players
sharing similar flaws in play), either within a single (long) game or over a series of
games. The ability of the Gala language to capture regularities in the game may be
particularly useful in this context, since the high-level description of a game state can

provide features for the learning algorithm.

7.2. Scaling up

While we can now solve games with tens of thousands of nodes, we are nowhere
close to being able to solve huge games such as full-scale poker, and it is unlikely that
we will ever be able to do so. A game tree for five-card draw poker, for example, where
players are allowed to exchange cards, has over 1O25 different nodes. The situation (for
zero-sum games) is now quite similar to that of perfect-information games: We have
algorithms that are fairly efficient in the size of the game tree; unfortunately, the game

tree is often extremely large.

Nevertheless, chess-playing programs are very successful in spite of the fact that we
currently cannot solve full-scale chess. Can the standard game-playing techniques be
applied to imperfect information games? We believe that, in principle, the answer is yes,
but the issue is nontrivial.

*O [20] also contains an extensive survey of computational methods for finding equilibria of non-zero-sum

games.

D. Kolles A. Pfeffer/Artijkial Intelligence 94 (1997) 167-215 211

The standard algorithms for playing perfect-information games have the following
general form:

Expand an initial subtree of the game, beginning at the root node, and using a
heuristic evaluation function to assign a payoff to the leaves of the subtree.

Compute optimal pure strategies in the resulting subtree. *’
Choo:se the action at the root that is optimal in the subtree, and wait for the
opponent to choose an action.
Return to step 1, using the node reached as a consequence of the actions as the

new root.

Can we adapt this approach to solving imperfect-information games? Initially, every-

thing seems to work out fine. Just as before, we expand an initial subtree of the game,
beginning at the root node, and use a heuristic evaluation function to assign a payoff
to the leaves of the subtree. We solve the resulting tree to obtain randomized strategies
for each player. We now have a strategy for the initial stages of the game, so play can

proceed.
The problem arises when we attempt to apply this idea to subsequent positions in the

game. At that point, the player might not know what node she is actually in. That is,
the actual node might be p, while the player knows only that she is in the information
set u which contains p. The player must therefore consider and somehow combine the
subtrees rooted at each of the nodes in u, to obtain a single decision for the entire

information set.
Of course, the player also has beliefs over the nodes in the information set, as

determined by the strategies computed before and the probabilities of the chance moves.
Therefore, one might think that the problem can be solved by a simple process of
reasoning by cases. We consider each of the nodes in the information set separately,

generating a game tree representing the assumption that this is the true state of the
world. We find an optimal move in each tree. Finally, we choose a randomized strategy,
in which each move is weighted by the probability that the true state is one for which

it is optimal.
This approach is clearly flawed: it assumes that the player has perfect information

when making her decision. Consider, for example, a variant of the inspection game
where, in each round, the inspector also has the possibility of gathering intelligence
before inspecting. This action has a cost, but does not waste an entire inspection. It
might well be the optimal course of action. However, it will never be chosen by the
algorithm d.escribed above. The algorithm considers two options: Either a violation has
occurred, in which case one should simply inspect; or, a violation has not occurred, in
which case the intelligence gather is a waste of resources.

A somewhat more plausible approach incorporates the player’s uncertainty about the
current pos-ition: The player creates a new game tree, in which the root node is a chance
node, and its children are all the nodes in u. The chance move represents the player’s

” The solution process is often interleaved with the process of generating the game tree, so that partial results

can be used to guide the expansion process to more relevant parts of the game tree.

212 D. KolleK A. Pfe$er/Artifcial Intelligence 94 (1997) 167-215

uncertainty, so that the probability of the chance move leading to each node agrees with
the player’s belief state. The analysis now proceeds with the new tree.

The flaw in this algorithm is more subtle. While it does incorporate the player’s
uncertainty, it ignores the opponent’s uncertainty. After all, even if the player knows

that the true state is one of the nodes in u, the opponent does not necessarily have the
same information. Consider the second round in three-card poker when the dealer is
trying to decide on her action following a pass by the gambler. The dealer knows her
own hand, a Jack. The two nodes in her information set correspond to those where the
gambler has a Queen and a King. In any game that begins by choosing one of these two

nodes at random, the gambler will always have a better card than the dealer, and know
it, so the dealer has no reason to bluff. However, in the actual game, if the gambler
has a Queen he will not know that he has the better card. And, in fact, the optimal
strategy requires that the dealer bluff with non-zero probability, to take advantage of

this situation.
The point is that the opponent’s information state can have a large effect on one’s

strategy. Thus, one cannot eliminate nodes that the opponent considers possible, even
if one knows for a fact that they are not. Similarly, nodes that neither player considers
possible, but that one player thinks the other player considers possible, can also have
an effect on a player’s strategy. The only nodes that can be completely eliminated from
consideration are those for which it is common knowledge [6] that they cannot be

reached. 22
It might be possible to develop a solution approach, analogous to the one described

above, where we only eliminate such nodes. The resulting algorithm may be useful

in some games. For example, in a poker game which consists of a deal followed by
many rounds of betting, the number of reachable nodes stays constant, since all bets are

common knowledge. 23 Unfortunately, many games have a more complex information
structure, in which knowledge is dynamically created and revealed. This is the case
with the inspection game and with variants of poker in which cards are dealt during
the course of the game. In such games, the elimination of unreachable nodes may not
significantly reduce the size of the game tree. Some other method of pruning the tree

is needed, perhaps one based on the value of information metric (see, e.g., [93). We
believe that developing an algorithm that prunes the tree in a principled manner presents

an interesting research problem.
Besides the difficulties involved in pruning the tree, care must also be taken in

designing the heuristic evaluation function used to evaluate nodes at the leaves of the
subtree. This function must take into account the knowledge of the players in a state. In
other words, the evaluation of a node must consider not only the node itself, but other
nodes in the same information set. (In fact, the information state of all the players may
conceivably affect the node’s value.) For example, a naive evaluation function for poker
might estimate that the player with the better hand will win the current stake, but this
fails to differentiate between the states where a player knows she has the better hand and

22 A fact 4 is common knowledge if both players know 4, both players know that they both know 4, they

know that they know that they know q5, and so on.
23 Unfortunately, the main challenge in poker is not the depth of the tree but its width.

D. Keller; A. Pfe$er/Artijicial Intelligence 94 (1997) 167-215 213

one where she does not, and this knowledge affects the value of the state. In three-card
poker, if your opponent possesses a Jack, the state in which you possess a King is better
than the one in which you possess a Queen, because you cannot be fooled by a bluff.

Even if we were to circumvent all of these obstacles, the bounded-depth-search ap-

proach is not a general solution. While it may work when the game tree is deep but not
too wide, some game trees (full scale poker, for example) cannot even be expanded to
depth 1. One approach that may be useful for such games (as well as for others) is
based on abstraction. Many similar game states are mapped to the same abstract state,
resulting in an abstract game tree much smaller than the original tree. The abstract tree
can then be solved completely, and the strategies for the abstract game can be used to

play the real game.
In poker, for example, this approach is likely to work very well. It is implausible that

each of the (552) hands that a player can get (in 5-card draw) generates a completely
different strategy. Indeed, our experimental results in Section 6 reveal a lot of regularity
in the strategies, with the gambler exhibiting identical behavior for the cards 6, 7 and 8.
We believe that the solution for an appropriately abstracted game will result in strategies

that are very close to optimal. We are currently in the process of experimenting with
various possible abstractions.

Gala’s ability to concisely and naturally represent a game via its rules may even allow
us to construct appropriate abstractions automatically. Even more interestingly, it raises
the intriguing possibility that we might, one day, develop solution algorithms that solve

games dinectly from their rules.

7.3. Conclusion

The Gala system can provide the infrastructure for experimental game-theoretic re-
search. Different abstractions and variants of a game can be generated easily and solved

efficiently. Gala therefore provides a convenient tool for testing and evaluating different

approaches for solving games.
Perhaps more importantly, Gala can play a crucial role in making game-theoretic

reasoning more accessible to people and computer systems. The system allows com-
plex games to be described simply, in a language even a layperson (one who is
not a game-theory expert) can use. This allows the game to be refined until it ad-
equately models the given situation. The effective solution algorithms implemented

in the system allow solutions to be obtained in a reasonable amount of time. Fi-
nally, the solutions can be examined and interpreted in a way that is legible for

a non-expert human. We hope that the public availability of Gala (available from
http://robotics.stanford.edu/"koller/gala.html) will encourage the use of
game-theoretic reasoning in day-to-day life.

Acknowledgements

We are deeply grateful to Richard McKelvey and Ted Turocy for going out of their
way to ensure that the GAMBIT functionality we needed for our experiments was ready

214 D. Kolles A. Pfeffer/Art@cial Intelligence 94 (1997) X67-215

on time. We also thank the ~ntemational Computer Science Institute at Berkeley for
providing us access to the CPLEX system in the early stages of the project. We also
wish to thank Nimrod Megiddo, Barney Pell, Stuart Russell, Yoav Shoham, John Tomlin,
Bernhard von Stengel, Michael Wellman, and Salim Yusufali for useful discussions and
comments. Some of this work was done while both authors were at U.C. Berkeley, with
the support of a University of California President’s Postdoctor~ Fellowship and an NSF
Postdoctoral Associateship in Experimental Science. More recent work was supported

through the generosity of the Powell foundation, and by ONR grant NOOO14-96-l-0718.

[I] R.J. Aumann and S. Hart, eds., Handbook of Game Theory, Vol. 1 (North-Holland, Amsterdam, 1992).
[2] R. Avenhaus, B. von Stengel and S. Zamir, Inspection games, in: R.J. Aumann and S. Hart, eds.,

Handbook of Game Theory, Vol. 3 (North-Holland, Amsterdam, 1997).
[3] J.R.S. Blair, D. Mutchler and C. Liu, Games with imperfect info~~on, in: W~~~~~~ bores of&e Adftl

Fall Symposium on Gantes: Planning and Learning (1993).
141 R.W. Cottle, J.-S. Pang and R.E. Stone, The Linear Complementarity Problem (Academic Press, New

York, 1992).
f5] G.B. Da&g, Linear Programming and Extensions (Princeton University Press, Princeton, NJ, 1963).
161 R. Fagin, J.Y. Halpem, Y. Moses and M.Y. Vardi, Reasoning abuu# Knowledge (MIT Press, Cambridge,

MA, 1995).
[7] M. Franklin, 2. Galil and M. Yung, Eavesdropping games: a graph-theoretic approach to privacy in

distributed systems, in: Proceedings 34th Annual IEEE Symposium on Foundations of Computer Science
(1993) 670-679.

[S] S. Gordon, A comparison between probabilistic search and weighted heuristics in a game with incomplete
info~a~on, in: WoT~~ng Notes of the AAAI Fall ~~m~o~i~rn on Games: Planning and warning f 1993).

[9] R.A. Howard, J.E. Matheson and K.L. Milbr, eds., Readings on the Principles and Applications of
Decision Analysis (Stanford Research Institute, Strategic Decisions Group, Menlo Park, CA, 1977).

[IO] L.l? Kaelbling, M.L. Littman and A.R. Cassandra, Planning and acting in partially observable
stochastic domains, Submitted for publication; can be obtained from http: //www . cs. duke. edu/
-~litt~~/topics/pomdp-page.html(l996).

[1 I] D. Keller and N. Megiddo, The complexity of two-person zero-sum games in extensive form, Games
and Economic Behavior 4 (1992) 528-552.

[121 D. Koller, N. Megiddo and B. von Stengel, Fast algorithms for finding randomized strategies in game
trees, in: Proceedings of the 26th Annual ACM Symposium on the Theory of Computing (1994) 750-759.

[131 D. Koller, N. Megiddo and B. von Stengel, Efficient solutions of extensive two-person games, Games
and Economic Behavior 14 (1996) 247-259.

[141 H.W. Kuhn, A simplified two-person poker, in: H.W. Kuhn and A.W. Tucker, eds., Contributions to the
Theory of Games I (Princeton University Press, Princeton, NJ, 1950) 97-103.

[151 H.W. Kuhn, Extensive games and the problem of information, in: H.W. Kuhn and A.W. Tucker, eds.,
Contributions to the Theory of Games II (Princeton University Press, Princeton, NJ, 1953) 193-216.

[161 C.E. Len&e, Bimatrix eqniIib~um points and mathematical pugging, ~a~ugerne~# Sei. 11 (1965)
681-689.

[171 C.E. Lemke and J.T. Howson Jr, Equilibrium points in bimatrix games, J. Sac. Industrial Appl. Math.
12 (1964) 413-423.

[181 W.F. Lucas, An overview of the mathematical theory of games, Management Sci. I$ Appendix P (1972)
3-19.

[I91 R.D. McKelvey, GAMBIT: ~~fe~acfjve Extensive Form Game Program (California Institute of
Technology, Pasadena, CA, 1992).

1201 R.D. McKelvey and A. McLennan, Computation of equilibfia in finite games, in: Handbook of
Computational Economics (1996).

D. Keller, A. Pfeffer/Artificial Intelligence 94 (1997) 167-215 215

[21] J.F. Nas,h, Non-cooperative games, Ann. of Math. 54 (1951) 286-295.
[22] R. Norton, Winning the game of business, Fortune Mag. 131 (1995) 36.
[23] P. Pa&h, A game-theoretic account of implicature, in: Proceedings 4th Conference on Theoretical

Aspects of Reasoning about Knowledge (TARK) (Morgan Kaufmann, Los Altos, CA, 1992).
[24] B. Pell, Metagame in symmetric, chess-like games, in: H. van der Herik and L. Allis, eds., Heuristic

Programming in Artificial Intelligence 3-The Third Computer Olympiad (Ellis Horwood, Chichester,
1992).

[25] E. Rasmusen, Games and Information: An Introduction to Game Theory (Basil Blackwell, Oxford,
1989).

[26] J.V. Romanovsky, Reduction of a game with perfect recall to a constrained matrix game, Dokl. Akad.
Nuuk SSSR 144 (1962) 62-64 (in Russian).

[27] J.S. Rosenschein and G. Zlotkin, Consenting agents: designing conventions for automated negotiation,
AI Mug. 15 (1994) 29-46.

[28] S.J. Shenker, Making greed work in networks: a game-theoretic analysis of switch service disciplines,
IEEE/ACM Trans. Networking 3 (1995) 819-831.

[291 S.J.J. Smith and D.S. Nau, Strategic planning for imperfect-information games, in: Working Notes of the
AAAI Fall Symposium on Games: Planning and Learning (1993).

[30] E. van Damme, Refinements of the Nash Equilibrium Concept, Lecture Notes in Economics and
Mathematical Systems (Springer, Berlin, 1983).

[3 11 A. van den Elzen, B. von Stengel and D. Talman, Tracing equilibria in extensive games by complementary
pivoting, Manuscript (1996).

[32] J. von Neumann and 0. Morgenstem, The Theory of Games and Economic Behavior (Princeton
University Press, Princeton, NJ, 2nd ed., 1947).

[331 B. von Stengel, Efficient computation of behavior strategies, Games and Economic Behavior 14 (1996)
220-24-6.

[341 E. Zerrelo, Uber eine Anwendung der Mengenlehre auf die Theorie des Schachspiels, in: E.W. Hobson
and A.E.H. Love, eds., Proceedings 5th International Congress of Mathematicians II (Cambridge
University Press, Cambridge, 1913) 501-504.

