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Abstract 

A system with multiple interacting agents (whether artificial or human) is often best ana- 
lyzed using game-theoretic tools. Unfortunately, while the formal foundations are well-established, 
standard computational techniques for game-theoretic reasoning are inadequate for dealing with 
realistic galmes. This paper describes the Gala system, an implemented system that allows the 
specification and efficient solution of large imperfect information games. The system contains the 
first implernentation of a recent algorithm, due to Koller, Megiddo and von Stengel. Experimental 
results from the system demonstrate that the algorithm is exponentially faster than the standard 
algorithm in practice, not just in theory. It therefore allows the solution of games that are orders of 
magnitude larger than were previously possible. The system also provides a new declarative lan- 
guage for compactly and naturally representing games by their rules. As a whole, the Gala system 
provides tbe capability for automated game-theoretic analysis of complex real-world situations. 
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1. Introchction 

When dlesigning or analyzing a situation with multiple interacting entities, it is impor- 
tant to consider the (often incompatible) goals of these entities, their possible actions, 

and the information available to them. Game theory provides us with the tools to for- 
mally model such a situation as a multi-player game, to analyze it, and to prescribe 
“rational” strategies to the different players. 
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Perfect information Imperfect information 

No chance 
Chess 

Go 

Inspection game 

Battleships 

Chance 
Backgammon 

Monopoly 
OPEC game 

Poker 

Fig. 1. Examples of games of various types. 

Since real life contains many situations involving multiple interacting agents with 
incompatible goals, game theory has played a role in a variety of different areas. Game 
theory has been fundamental in economics [ 11, both in the theoretical foundations of 
microeconomic theory and in more practical examples (such as the design of the 1995/6 

FCC auction of wavelengths [ 221) . Game theory has also been applied in the realm of 

government policy, law, politics, military analysis (both strategic and tactical), biology, 
and more. 

Clearly, situations involving multiple agents also arise in computer science applica- 
tions. In some applications, the agents are a mixture of computer and human users, 
e.g., in computer game playing, interface design, or discourse understanding. Other 
applications involve two or more artificial agents, e.g., network routing, load sharing 
and resource allocation in a distributed system, coordination of multiple robots, and 
information or service transactions on the internet. 

The applicability of game-theoretic analysis to computer science problems has not 

gone unnoticed. In recent years, several such problems have been analyzed using game 
theoretic tools, with interesting results. Examples include the work of Franklin, Galil, and 
Yung [ 71 on computer security, the work of Shenker [ 281 on network routing protocols, 
and the work of Parikh [ 231 on discourse understanding. In artificial intelligence, more 
and more researchers are turning to game theory for the theoretical foundations of 
multi-agent systems (see, for example, [ 271 and the references therein). 

Despite the growing popularity of game theory as an analytic tool, there has been 
little work on providing effective automated tools for game-theoretic analysis. The work 
in this area has focused almost exclusively on solution algorithms for games of pe@ct 
information: games where all players have full knowledge of the current state of the 
world. Unfortunately, such games form a very small fraction of the class of games that 
concern game theory. In real life, almost all situations contain some aspects that are 

hidden from the players. 
It is important to distinguish the lack of information from the possibility of chance 

moves. The former involves uncertainty about the current state of the world, particularly 
situations where different players have access to different information. The latter involves 
only uncertainty about the future, uncertainty which is resolved as soon as the future 
materializes. Both perfect and imperfect information games may involve an element 
of chance; examples of games from all four categories are shown in Fig. 1. Most of 
these are popular recreational games. The inspection game is used by game theorists 
to model arms control inspections; it is described in Section 3.5. The OPEC game 
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models oil pricing by oil-producing countries; it is described in Rasmusen’s game theory 
textbook [ 251. 

As it turns out, the presence of chance elements does not necessitate major changes 
to the computational techniques used to solve a game. In fact, the cost of solving a 
perfect information game with chance moves is not substantially greater than solving 

a game with no chance moves. By contrast, the introduction of imperfect information 
greatly increases the complexity of the problem. This increase materializes even in the 
one player case, 2 and is even more of a problem in the multi-player case, particularly 

when the different players may have access to different information. 
Due to the complexity (both conceptual and algorithmic) of dealing with imperfect 

information games, this problem has been largely ignored at the computational level. 

The lack of a computational infrastructure for dealing with such games has had several 
unfortunate consequences: 

l Since game-theoretic analysis must be done manually, only small simple games 
can be analyzed. When faced with a more complex situation (as most real-life 

situations are), the decision-maker must abstract the situation and simplify it until 

it b’ecomes amenable to manual analysis. As a consequence, the results of the 
analysis, while providing insight, can rarely be applied directly to the original 

problem. 
l Manual game-theoretic analysis is a subtle and complicated task, which can only 

be performed by experts. Therefore, the tools provided by game theory are only 
available to the general public via specialized consultants. 

l The lack of practical game-theoretic algorithms has prevented the use of game- 

theoretic decision making directly by autonomous artificial agents. 
In this paper, we take a first step towards addressing this lack. We describe an 

implemented system, called Gala, which automates game-theoretic analysis for a large 

class of games. The system takes a description of a game, analyzes it, and outputs 
strategies for the different players which are game-theoretically rational for the situation 
described. If desired, the system can also simulate the game (playing the role of one 
or more of the agents), providing a picture of the different scenarios that are likely to 

arise. 
The Gala system is composed of two main interacting pieces. The first allows large 

complex games to be described clearly and concisely, using a special-purpose game 
specification language, which we also call Gala. The Gala language mimics the way in 
which a large game is typically described in natural language, by presenting its rules. 
For example, Fig. 2 presents part of a Gala specification for the game of Poker. 

Given .a game specification such as this, the first component of the Gala system 

generates the extensive form of a game, a natural augmentation of a game tree utilized 
by game theorists. “Standard” game trees, as typically used in AI game-playing systems, 
are inadequate for modelling real-life games, since they do not represent the agents’ 
information state. The extensive form addresses this problem by augmenting game trees 

with information sets. 

’ The problem of solving a Markov decision process (MDP) is much easier than the problem of solving a 
partially observable Markov decision process (POMDP). See [ 101 for a survey. 
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gamecpoker, C 

players: [dealer. gambler], 

flow: (play_round(ante), 
deal, 

bet), 

ante: (money($player) gets $cash, 
%% each player gets his/her initial allocation of cash 
payC§ante, gplayer, pot)), 
Xii and pays the ante into the pot 

deal: (choose(nature, 
(Handl, HsndS), 
(dealcdeck, Ocards, Handi), 
dealcdeck, $cards, HandZ))), 

%% a pair of random hands is chosen and dealt from the deck 
revealcgambler, myhand(Handl)), 
revealcdealer, myhand(Hand;?)), 
%% each player's hand is revealed only to him 
if(beats(Hand1, HendZ), 

betterhsnd gets gambler, 
betterhand gets dealer)), 

XX evaluate the hands immediately, so that we only do 
%% it once per deal, rather than at every possible showdown 

bet: (choose(gambler, InitialBet, betueen(0, $money(gambler), InitialBet)), 
%% the player chooses his bet 
revealcdealer, betcgembler, InitialBet)), 
%% reveals it to the other player 
debt := InitialBet, 
pay(InitialBet, gambler, pot), 
%% and pays it into the pot 
take_turns(next_bet)), 

next-bet: 
(choose($player, Bet, ( % meet or raise 

between($debt, $money($player), Bet) 
; % fold 
($debt>O, Bet = O))), 

if(($debt>O, Bet = 01, 
wins($opponent), % fold 

(pay(Bet, Splayer, pot), % meet or raise 
if($debt=O, 

wins($betterhand), % showdown 
(reveal($opponent. bet($player. Bet)), 
debt gets Bet - $debt))))), 

Fig. 2. Abbreviated Gala description of poker. 
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The second main component of the Gala system automatically analyzes and finds 
optimal strategies for games in extensive form. For games of imperfect information, the 

use of randomized strategies is essential in order to achieve guaranteed reasonable per- 
formance. The basic insight is that deterministic strategies can be predictable, allowing 
the opponent(s) to gain additional information about the state of the game. 

Once randomized strategies are allowed, the existence of “optimal strategies” in im- 
perfect information games can be proved [ 211. In particular, this means that there exists 
an optimal randomized strategy for poker, in much the same way as there exists an 
optimal deterministic strategy for chess. Indeed, Kuhn [ 141 has shown for a simplified 

poker game that the optimal strategy does, indeed, use randomization. 

The optimal strategy has several advantages: the player cannot do better than this 
strategy i-f playing against a good opponent; furthermore, the player does not do worse 

even if his strategy is revealed to his opponent, i.e., the opponent gains no advantage from 
figuring out the player’s strategy. This last feature is particularly important in the context 

of automated game-analysis programs, since they are often vulnerable to this form of 
attack: sometimes the code is accessible, and in general, since they always play the same 
way, their strategy can be discovered by intensive testing. Given these important benefits 
of randomized strategies in imperfect information games, it is somewhat surprising that 

none of the (very few) AI papers that deal with these games (e.g., [ 3,8,29] ) utilize 
such strategies. 

Clearly, none of the minimax-based solution algorithms used for finding optimal 
strategies in standard game trees can be adapted to the task of finding randomized 
strategies in imperfect information games. The Gala system provides access to a variety 
of solution algorithms for imperfect information games. 

Game-theoretic solution algorithms can be partitioned into two classes, based on the 
game representation they use. Traditionally, games in extensive form have been solved 

by converting them to an alternative representation, called the normal form. Standard 
linear optimization routines such as linear programming and linear complementarity can 
then be used for finding optimal strategies. Gala provides access to these normal-form 
solution algorithms by interfacing with a state-of-the-art game-theoretic solving system 
called GAMBIT [ 191. 

Unfortunately, the normal-form conversion process incurs exponential blowup in the 

size of the representation, rendering this approach impractical for large games. Gala 
therefore implements an alternative approach, due to Koller, Megiddo and von Stengel 
[ 121, for solving games in extensive form. The approach is based on converting the 

game to a different representation, called the sequence form. This representation is much 
more compact than the normal form, but supports the use of similar linear optimization 
algorithm,s. The result is solution algorithms that are exponentially faster than the normal- 

form based algorithms. 

One of the sequence-form algorithms is implemented as part of the Gala system 
(others will be added in future versions of the system). We provide the first experimental 
results for this algorithm, comparing it to the standard algorithm (based on the normal 
form). Our results show that this algorithm is exponentially faster not only in theory, 
but also in practice. It allows us to optimally solve complex games where the tree has 
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Fig. 3. Gambler strategies for g-card poker. 

tens of thousands of nodes. In comparison, normal-form algorithms can rarely deal with 
game trees larger than 30 nodes. 

By combining the ability to easily specify complex games with the algorithms capable 

of solving them, the Gala system provides a complete automated game-theoretic analysis 
tool. For example, from a Gala specification of a Poker game, as in Fig. 2, the system 

would generate a game tree, which would then be analyzed to produce optimal strategies 

for Poker. To illustrate this process, consider an instantiation of a general poker game 
to the case where the deck consists of 8 cards (6-K), each player gets one card, and 
each player only has one dollar to bet. Such a game would consist of three rounds. In 

the first round, the gambler can either bet his dollar or pass. After hearing the gambler’s 
bet, the dealer must decide whether to bet or pass. If the gambler passed and the dealer 
decides to bet, the gambler still has his dollar, and therefore gets one more opportunity 
to decide whether or not to bet. At that point, the game ends. 

The optimal strategies for the gambler in this game, as obtained for the Gala system, 
are shown in Fig. 3. They demonstrate an interesting phenomenon (first observed in a 
simpler game by Kuhn [ 141): Behaviors such as bluffing, that seem to arise from the 
psychological makeup of human players, are actually game-theoretically optimal. 

These strategies were generated completely automatically by the Gala system, starting 
from the description of the rules of Poker, described in Fig. 2. Thus, the system provides 
complete end-to-end functionality, where we start from a simple specification of the rules 
of a game, and end up with a clear and comprehensible description of optimal strategies 

for that game. 
The remainder of this paper is structured as follows. In Section 2, we review the exten- 

sive form of a game, where game trees are augmented with information sets. In Section 
3, we describe the Gala language, which supports a clear and concise specification of 
large and complex games by allowing a formal specification of the rules of a game. 
In Section 4, we review the basic solution concepts in imperfect information games, 
including the definition of the Nash equilibrium [ 211. In Section 5 we survey both the 
standard game-theoretic solution algorithms based on the normal form of the game, and 
the more recent sequence form algorithms of [ 121. In Section 6, we show how these 
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different ideas come together to form the Gala system, and present the first experimental 
results comparing the sequence form and the normal form algorithms. We conclude in 
Section 7 with some discussion and directions for future work. As some readers may 
be unfamiliar with game-theoretic concepts and techniques, the paper contains some 
tutorial sections that review well-known material. Sections 2, 4 and 5.1 present standard 
concepts from game theory, while Section 5.2 reviews more recent work. 

2. The extensive form 

In this section we review the extensive form representation of a game. Readers familiar 

with game theory may wish to skip this section or to skim it rapidly so as to familiarize 
themselves with the notation used later on. The extensive form is similar to the traditional 

AI representation of a game as a tree. As usual, each node represents a possible state at 
some point in time, with the root representing the initial state. Each edge is an action 

which changes the state into a new one. In this paper, we restrict attention to situations 
that have a finite action set and end after a finite number of actions have been taken. 
Therefore, we consider only finite trees. 

When modeling a multi-agent situation, each node is associated with a single agent, 
whose turn it is to choose an action. The set of edges leading out of a node are the 
choices av.ailable to that agent. The agent acting at a given node may also be chance or 
nature, in which case the edges represent random events. An agent’s strategy dictates its 
moves at the different points in the game. In order to recommend a strategy which is 
rational for an agent, we must model the agent’s preferences over the different possible 
outcomes of the situation. Therefore, we associate a vector of payoffs, one for each 

agent, with each leaf of the tree. 
This representation of a multi-agent situation is the very familiar one, standardly used 

to represent game trees in AI game-playing applications. Unfortunately, it is inadequate 
as a mode.1 for some games, and for almost all games that model real-world situations. 
To understand why, consider the following simplified variant of poker, first described by 
Kuhn [14-l. The game has two players, each of whom initially has two dollars, and a 

deck containing the three cards J, Q, and K. Each player antes one dollar and is dealt 
one card. 

Fig. 4 shows half of the game tree for this game: the part of the tree corresponding 
to the deals (Q, J), (Q, K), and (J, K) . The game consists of three rounds. In the first 
round, the gambler (shown in grey) can either bet an additional dollar or pass. After 
hearing the gambler’s bet, the dealer (shown in dashed black) decides whether to bet or 
pass. If the gambler passed and the dealer decides to bet, the gambler still has a dollar, 
and therefore gets one more opportunity to decide whether or not to bet. At that point, 
the game ends. If both bet or both pass, the player with the highest card takes the pot; 
in the first case, the winning player wins two dollars, and in the second case, he or she 
wins one. If one player bet and the other passed, then the betting player takes the pot, 
thereby winning one dollar. 

At first glance, Fig. 4 appears to be an adequate, albeit partial, representation of 
this game. However, this is not the case. Note that, at the two points corresponding 
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Fig. 4. Naive attempt at a partial game tree for simplified poker, containing three of the six possible deals. 

Fig. 5. A partial game tree for simplified poker, containing three of the six possible deals. A move to the left 
corresponds to a pass, a move to the right to a bet. The information sets are drawn as ovals; some of them 
extend into other parts of the tree. 

to the deals (Q, J) and (Q, K), the gambler has exactly the same information. So, 
even if the gambler would prefer to bet in the first case and pass in the second, this is 
not a strategy that he is capable of executing. Unfortunately, this information about the 
gambler’s information state is encoded nowhere in this tree,. Therefore, an algorithm that 
uses this tree as a model of the game cannot possibly determine that this “omniscient” 
strategy is not legitimate. 

Game theorists have long known that the representation of a game must encode the 
information states of the players. Therefore, the standard representation of a game as 
a tree, known as the extensive form of the game, also contains information sets. Each 
information set, represented graphically by an oval containing several nodes of the tree, 
aggregates those states of the game which are indistinguishable to the player whose turn 
it is to act. For example, as shown in Fig. 5, the two nodes immediately following the 
deals (Q, .I) and (Q, K) are in a single information set, which is associated with the 
gambler. 
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More precisely, let (c, d) denote the hands dealt to the two players. Initially, the 
gambler only knows his own card, so for each possible c, he has one information set 
uc containing two nodes; each node corresponds to the two possibilities for the dealer’s 
hand. In her turn, the dealer knows d as well as the gambler’s action in the first round. 
Hence, sh.e has two information sets for each d--u: and &corresponding to the 
gambler’s previous action. Finally, the gambler has an information set ui in the third 
round. As we can see, Fig. 5 is an accurate (although still partial) representation of this 
game. 

We can now provide a formal definition of an extensive form game, as first de- 
scribed by Kuhn [ 151. The game is represented as a finite directed tree whose nodes 

denote game states. The internal nodes of the tree are of two types: decision nodes of 
some player k, for k = 1, . . . , n, and chance moves. The outgoing edges at a decision 
node represent possible actions at that node, and have distinct labels called choices. A 

play denotes the path from the root to some leaf. A move is a choice taken on that 
path. 

The pyof function h determines a payoff vector h(p) E R?’ for each leaf p. The 
kth component /?(p) of h(p) is the payoff at p to player k. The relation between the 
payoffs to the different players is, in general, arbitrary. Thus, the interests of the players 
may coincide in some circumstances, and conflict in others. A zero-sum game models 
a situation where there are only two players, whose interests are strictly opposed, i.e., 
h* = -h’. 

The set of decision nodes is partitioned into information sets. Each information set 
u belongs to exactly one player k. Intuitively, the player cannot differentiate between 

different nodes in the same information set. This implies that at each node p in u, the 
player must have the same set C, of choices (labels for the outgoing edges) at U. For 

simplicity, it is assumed that the choice sets C, and C, of any two information sets u 
and v are disjoint. For example, in Fig. 5, the dealer might have the choices ppd and Bz 

in vf; and ~2 and Bi in vi, where P indicates a pass and B indicates a bet. In games 
with pe$ect information, where the players always know the current state of the game, 
the information sets of all players are always single nodes. 

Throughout this paper, we restrict attention, as in most of the game-theory literature, 

to games where all of the players have perfect recall. Informally, a player has perfect 
recall if he never forgets his previous actions or any fact that he knows. Formally: 

Definition 1. Player k is said to have pelfect recuEE if for each of his information sets 

u, and any two nodes p, q E u, the sequence of player k choices on the path to p is 
precisely the same as the sequence of player k choices on the path to q. 

Thus, I) and q can only be in the same information set if the entire history of events 
leading to u and v is identical uccomling to player k’s point of view. Had there been some 
difference between the two histories, player k would have had to forget that difference 
in order to place p and q in the same information set. To fully understand this definition, 
recall our assumption that actions at different information sets have different labels. For 
example, the first-round passing action when the gambler has a Queen would be labelled 
PQ, while: the same action when the gambler has a Jack would be labelled PJ. Thus, 



176 D. Kollec A. Pfefer/Art@cial Intelligence 94 (1997) 167-215 

two histories that pass through different info~ation sets must be different. Hence, the 
definition of perfect recall guarantees that two histories that passed through different 
information sets can never “converge” into the same information set; i.e., the player can 
never “forget” information he once had. 

3. The Gala language 

The extensive form captures the low-level dynamics of the game: the choice points, 
the choices available, and the sets of nodes among which a player cannot ~stinguish. 

However, it captures none of the underlying structure, e.g., the fact that the choices of 
a Poker player are determined by the amount of money he has left. In fact, within the 
extensive form, we cannot even represent the amount of money the player has at various 

points in the game. 
Since we cannot encode this information, we cannot utilize it to compactly specify the 

game tree (e.g., by observing that the available moves in the betting round of Poker are 

identical regardless of the hands the players are dealt). The game tree must be written 
down explicitly: every move and every information set. While it is possible, although 
far from trivial, to write down a correct game tree with 30 nodes, it is unrealistic to 

expect a person to manually construct a game tree with thousands of nodes. It is even 
less reasonable to expect the resulting game tree to be correct. 

In this section, we present a language, called Gala (for GAme LAnguage), 3 that 

supports clear and concise specifications of large, complex games. Gala mimics the way 
in which a large game is typically described in natural language, by presenting its r&es. 

The idea of using a declarative language to specify games was proposed by Pell [ 241. 
He utilizes it to specify symmetric chess-like games-a class of two-player perfect- 
information board games. Our language is much more general, and can be used to 
represent a very wide class of games, in particular: one-player, two-player and multi- 
player games; games where the outcomes are arbitrary payoffs; and games with either 

perfect or imperfect information. As we will show, the expressive power of Gala allows 
for clear and concise game descriptions, that resemble, at a high-level, a natural language 

representation of the rules of the game. 
Gala describes a game as a branching program, where each possible execution of 

the program corresponds to a possible play of the game, as determined by the players’ 
actions and by the outcomes of the chance moves. The program first specifies an initial 
state, including the number of players. It then lists a sequence of game steps, whose 
execution causes the game state and the players’ information state to change over the 

course of the game. 
A Gala program consists of a set of declarations. These declarations fall into two 

categories. Declarations in the first category describe entities in the game. In a poker 
program they might say that the game involves two players named dealer and gambler, 

3 We use the name “Gala” to refer both to the Gala language and to the Gala system described in Section 6, 

which contains an implementation of the Gala language and algorithms for solving games specified in this 
language. 
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a deck of cards, and so on. The other category contains declarations that describe the 
sequence of events that take place during the game. In Fig. 2, the declarations for flow, 
ante, deal., bet and nextbet all fall into this category. Each such declaration contains 
a sequence of Gala statements. Gala provides flow control statements similar to those 
found in many programming languages. 

Three important Gala statements are choose, reveal and outcome. These are the basic 
building blocks for defining the course of a game. A choose statement defines a choice 
point in the game; it indicates the set of choices available at that point, and whether the 

choice is made by a player or at random. A reveal statement changes the information 

state of a player. The payoff statements determine the final outcome of the game. 

In addition, Gala allows a game state to be explicitly specified, maintained through 
the game, and utilized in determining the available choices. For example, in the Poker 
program of Fig. 2, we maintain the amount of money available to the players via the 
variables $money(gambler) and $money(dealer). These are updated by Gala commands as 
the betting progresses, and are accessed to determine the set of possible amounts that a 
player can choose to bet. 

The game manipulation statements range from simple variable manipulation, to ubiq- 
uitous concepts such as combinations of objects, to special-purpose libraries for dealing 
with certain types of objects (e.g., a rectilinear board). These statements do not directly 
affect the structure of the game; they do not induce choice points or specify information 

sets. Rath,er, they provide bookkeeping for the game state, which in turns supports the 
specification of the game tree. 

It is worth discussing the relationship between Gala and Prolog. Gala is embedded 

in Prolog, and uses Prolog syntax for many of its constructs. The Gala interpreter is 
written in Prolog, and uses the Prolog proof generator to discover all possible plays of a 

game. In addition, Prolog predicates can be called from within a Gala program, allowing 
conditions on the game state to be expressed as declarative queries. We do require that 
Prolog predicates called from within Gala be deterministic, so that all non-determinism 
in the game is defined by choose statements. In general, the code describing a game in 
Gala consists of two parts: the Gala program itself, and auxiliary Prolog predicates used 
by the Gala program. 

We begin by discussing the underlying semantics of a Gala program. We then discuss 

the various types of Gala statements: basic primitives, flow control, and game state 
manipulation. Finally, we demonstrate how the various features of the language come 

together in specifying complete games. 

3.1. Gala semantics 

As we have discussed, game trees are not sufficiently expressive for ascribing precise 
semantics to a Gala program, since they do not allow us to discuss the state of the 
game and the information state of the players. We therefore consider a somewhat more 
expressive framework, based on the work of Fagin, Halpem, Moses and Vardi [ 61 for 
reasoning about multi-agent systems. 

We specify the behavior of a Gala program via its execution tree. Each node in the 
execution tree is a possible state that can occur in the game, with the root corresponding 



to the initial state of the program, and the children of each node co~esponding to those 
states that can follow the state encoded by that node. 

As in [6], a global State describes both the “external” state of the game and the 
internal states of the different players. In an N-player game, a global state is therefore 

an (N+l)-tupleoftheform (s,,s~,..., SN) where s, is the environment state and Sk 
is the local state of player k. The player’s local state encodes all of the information 
available to the player, so that the player cannot distinguish between global states where 

her local state is the same. 
The environment state corresponds to the program state of the Gala program, in the 

same sense as in any other programing language. It consists of two main parts: 

A game~ow, which is a Gala code fragment specifying the sequence of steps that 
remains to be executed. The gameflow serves the role of a program counter. In 
the description of a state, the gameflow is presented in quotes, and we use the 

letters 4 and + to indicate an arbitrary (possibly empty) sequence of gameflow 
steps. 
A gamestate, consisting of a set of current assignments (or bindings) to the 

program variables. Gala allows both Prolog-style variables, whose bindings are 
progressively refined during the course of execution, and variables whose values 
can be changed at will, as in traditional programming languages. We use V to 

indicate a set of bindings for all the variables, 
The local state for each player describes the agent’s mental state. It consists of the 

player’s memories, represented as an ordered list of facts (Prolog terms) known to the 
player. We use Fk to denote the list of facts known to player k. 

The execution tree is a directed tree whose vertices are labeled with global states. The 
successors of a state are the possible states resulting from executing the first command 

in the gameflow at that state. Some transitions are deterministic, corresponding to the 
mechanics of the game (e.g., transferring the ante to the pot in the beginning of a poker 
game). In this case, the vertex will have only a single successor. In other cases, the 
transition corresponds to a choice point in the game, resulting in vertices with several 

successors. The choice point can be due either to a chance event (e.g., a roll of the 
dice) or to an action of one of the players (e.g., a decision to pass or bet). Different 

choices of action will induce different possible plays of the game. 

3.2. Basic Gala 

3.2. I. Choice points 
The choose statement has the format choose(Player, Template, Constraint), where 

Template is a Prolog expression containing unbound variables, and Constraint is a Prolog 

predicate. Any instantiation of Template satisfying Constraint is an action that can be 
taken in the current state.4 For example, the 

choose(gambler, InitialBet, between(0, $money(gambler), Bet>) 

4 We assume that in a correct Gala program, this set of instnntiations is finite and will be computed in Prolog 
in a finite amount of time. 
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statement in Fig. 2 specifies the set of possible actions to be any numerical value for the 
variable Bet which is between 0 and the amount of money that the gambler has. (See 
the semantics of Gala variables in Section 3.3.1.) Player is either the name of a player, 
or nature(@), where ,u is a probability distribution over the instantiations of Template 

satisfying Constraint. 5 

The power of choose lies in the fact that the available actions in a state are the answers 
to a query, and do not have to be encoded explicitly. The answers to the query depend 

on the current game state, and vary according to context. For example, the available 

bets in the statement above depend on the current value of the variable $money(gambler), 

as described in the gamestate part of the global state. Thus, the same choose statement 

can be used throughout the betting phase. 

More formally, let 

(( “choose(Player ,Template,Constraint), CL”, v), Fl, . . . , Fk, . . . , FN), 

be the current state, and let Z be the set of inst~t~ations of Template that satisfy the 
prolog constraint Constraint and are consistent with V. For each I E Z, let V/I denote 

the refinement of the bindings of Prolog variables in V by the bindings in I. 
We cannot transition directly from this state to the state after the choice is made, 

since, at this point, the player might not know the set of actions available to her. 

{The info~ation may not be in her locai state.) We therefore implement the statement 
using two transitions. Formally, when the interpretation of Player is some player k E 

(1,. . . , Iv’}, then a deterministic transition is made to the state: 

(( “choosing(k, 11, JI”, v), Fl,. . . , (F& 0 choosing(l)), . . . ,3#). 

The statement choosing is not a statement in the Gala language; it is just a placeholder 
for the intermediate state. Note that the addition of the fact choosing(X) to Fk forces the 
player to distinguish between states where she had different choice sets. 

This new state has multiple successor states, corresponding to all possible instantia- 

tions f E Z. Each such state has the form 

(C“,“, V/Z) 5 6,. * A I (Fk 0 choosing(x) 0 chose(l)), . . . ,Fn), 

where V/1 is the modification of V according to the bindings in 1. (See the specification 

of variables below.) Note that the fact chose(l) is added to the player’s local state, 
enforcing the requirement {implied by the perfect recall assumption) that a player 

always remembers her own actions. 
For the case of chance events, where Player is nature(p), then we first transition to 

the state 

((“choosing(nature&), z), $“, v),Fl,. , . ,FN). 

The set of successors for this state are all those of the form 

((“s”,V/r),~~T...,3,), 

such that I E Z. Each of these successor states is reached with probability g(I), 

5 w can ba omitted, in which case it defaults to the uniform distribution. 
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The choose statement is the only way to represent choice points in the game, whether 
the choice is due to a chance move or to a move by one of the players. Thus, it is the 
only statement to allow multiple successor states in the execution tree. 

3.2.2. Znfo~t~on states 
The reveal statement has the format reveal(Player, Fact), where Player is any pIayer 

and Pact is any Prolog term. Intuitively, the fact Fact is added to the player’s local state, 

allowing the player to distinguish runs where Fact was observed from runs where it was 
not. Fact is interpreted by the Prolog system, using the set of bindings in V. 

More foxily, let 

((“reveal (Player ,Fact), I++“, v) , Fl, . . . , Fk, . . . , FN), 

be the current state, and let k be the interpretation of Player. Then the next state is: 

((“lff2’,v),F~ ,..., &ooFaclw ,... *.?N). 

where FactV is the Prolog term resulting from interpreting Fact using the bindings in 

v.6 
For example, in the Gala program of Fig. 2, each player’s & starts out as the empty 

list. After the execution of the s~tements revealcgambler, Hand11 and revealcdealer, 

Hand2), each & contains only the Prolog fact myhandGIand), for the appropriate value 
of Hand; for example, in games where each player gets one card, this fact may be 
myhmd( CJI >. As the betting progresses, each Fk is augmented with facts that denote his 
own moves and the moves of the opponent. For example, after two rounds of betting, 

the gambler’s local state may be the list: Cmyhandf C.Jl) , choosing([0,1,21), chose(i), 

bet (dealer, 011. 

Note that the facts known by a player are ordered, so a player can differentiate between 
runs in which the same facts were revealed in different orders. This is important, because 
perfect recall (see Definition 1) requires that a player distin~ish between runs in which 
a fact was revealed before or after choosing an action. We fulfill this requirement by 
adding chose(dction) to the list of facts known to the player at the time the action is 

chosen. Since choose and reveal are the only Gala statements that change a player’s local 

state, and they always append info~ation to the facts already known, perfect recall is 
maintained. 

3.2.3. PayoJffs 
The format of the payoff statement is Payoff (Player, Amount). It is interpreted to 

mean that the amount haunt is added to Player’s payoff to date. Thus, the player’s 

actual payoff at the end of the game is the amount she has accumulated throughout the 
game. The cumulative nature of the payoff command allows it to be used in contexts 
where the game may be very long or infinite. In such games, we often want to consider 

6 Fact may also contain uninstantiated variables, but their names are ignored in this interpretation process. 
Given any set of bindings V, a Prolog term Fact has a unique structure Factv that ignores the names of 
variables, and it is this structure that is added to the player’s information state. 
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a prefix o-f the game, and it is useful to be able to have a record of the player’s payoffs 
to date. 

To implement the payoff command, we maintain a special set of variables hi, . . . , hN 
in the global state. Formally, let the current state be 

((“payoff (Player Jmount), *I”, V) ,Fl, . . . , &, . . . ,3N). 

Let k be the interpretation of player, and p be the interpretation of Amount. Then the 

next state is: 

((“‘f’vV[h +hk+p]),3 ,,..., 3k ,..., h). 

Note that we do not assume that the payoff is revealed to the player. 

3.2.4. Basic flow control 

Gala provides several flow control statements that can be used to guide the progress of 
the game. The most basic ones are concatenation, termination and conditional statements. 

Concatenation is straightforward. If 4 and + are gameflows, then (4, $) is simply 
the concatenation of the steps in 4 and $. The semantics for concatenation is derived 
from the semantics for other statements, as demonstrated above. 

The game terminates whenever the gameflow in a state is empty, or an end statement is 

reached. The payoff hk accumulated up to that point is then allocated to player k. Since 
in many games a payoff is assigned to all the players when the game terminates, Gala 

provides am outcome statement that is defined in terms of payoff and end. The statement 
takes a vector V as its argument, assigns payoff vk to the kth player, and terminates the 
game. 

Conditionals have the form if (Condition, 41, 42) where Condition is a Prolog predi- 
cate and Q)I,& are gameflows. If Condition can be satisfied given the set of bindings V 
in a state, ’ the flow continues with 41, otherwise it continues with 42. More formally, 
let the current state be 

( (“if(Condition, 41, 42)) @“, v) ,31,. . . ,3~). 

If Condition can be satisfied given V, then the next state is 

((“~i.~",V),~,,...,3N), 

otherwise, it is 

As a shorthand one can use if (Condition, 4) instead of if (Condition, 4, ~1, where E 
is the empty sequence of commands. 

For example, in our Poker example, beats (Hand1 , Handl) is a Prolog predicate (defined 
in Fig. 8) used in the argument of an if statement. The outcome of this predicate thereby 
determines the assignment to the variable betterhand. 

’ In a correct Gala program, the evaluation of Condition must always terminate. 
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3.2.5. Game trees 
These primitives are the basic tools for specifying game trees within the Gala lan- 

guage. Any extensive form game can be written as a Gala program utilizing only the 

features described above. A leaf can be translated into an outcome statement with an 
appropriate vector of payoffs. For an internal node p, suppose player k has to choose 

one of the actions cl,. . . , cl, and that p is in information set CL Assume (by in- 

duction) that we have already defined gameflows $1,. . . , $1 for the subtrees rooted 
at the corresponding children of p. Then the subtree rooted at p can be translated 

into: * 

revealck, u), 

chooseck, C, member(C, Cct , ., c/l )), 
if (C=ct , 

(/II I 
if (C=cz, 

., 
if (C=c/_t, 

!+%-I I 
1/11)...)). 

Conversely, the basic primitives choose, reveal, and payoff are the only Gala com- 

mands that directly influence the construction of the game tree from a Gala program. 
We return to this point at the end of this section. 

3.3. Maintaining game state 

As we mentioned, the power of the choose statement derives from the fact that the 
player’s set of choices does not have to be explicitly listed in the program. Rather, this 
set can depend on the current state of the game. Gala provides an extensive suite of 
commands for accessing and manipulating the game state. 

3.3.1. Variables 

As in a traditional programming language, the state is maintained via a set of variables. 

Some of these are standard Prolog variables, which can be accessed in any of the 
statements described above. The bindings for the Prolog variables are maintained as 
part of the set of bindings V. They can be changed as a consequences of some of the 
statements described above (e.g., as a consequence of a particular choice in a choose 

statement). 
It is often convenient to model the changing game state in the same way as the 

changing state of traditional programming languages, using variables whose values can 
be assigned and changed at will. For this reason, it helps to provide Gala variables 
in addition to the Prolog variables. Gala variables are similar to variables encoun- 
tered in many programming languages: they can be assigned values at will, without 
requiring (as for Prolog variables) that the new value be consistent with the old 
value. 

8 In this program, [. .] is used as a set constructor, and member tests for membership in the resulting set. 
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The two types of variables are normally used in different ways. Prolog variables are 
useful for storing local information and connecting statements within a gameflow, while 
Gala variables can maintain global information that is used throughout the course of the 
game. For example, consider the following code fragment: 

choose(a, Number, betueencl, 10, Number)), 

Parity is Number mod 2, 

reveal(b, Parity), 

choosecb, Guess, betweencl, 10, Guess)), 

if(Guess = Number, 

score gets $score + Number) 

This fragment specifies that player a chooses any number between 1 and 10 and reveals 
only its parity to player b. Player b then tries to guess the number, and gets the number’s 
value added to his score if he guesses right. The Prolog variables Number, Parity and 
Guess are used to connect the statements together and relate the numbers to each other. 
The Gala variable score, in contrast, maintains the score that is accumulated throughout 

the course of the game. 
Gala variables can be directly referenced within a gameflow by putting a “$” in 

front of them. They can be instantiated within a gameflow using the gala command 

gets, which is analogous to is in Prolog. Gala variables can be converted to and 
from Prolog variables using gala_val(GalaVar, PrologVar), and galaset(GalaVar, Value). 

These statements allow Prolog predicates outside the Gala program to access and modify 
the game state. The semantics for setting and referencing Gala variables are obvious: 
setting a variable causes a transition to a state in which the new binding is appended 
to the list, and a reference to a variable is replaced by the value in its most recent 

binding. 
In Fig. 2, the only Prolog variables are Handi, Hand2, and Bet. They serve precisely 

the role described above, of making a short-term connection between the outcome of 

the choose statement with some additional statements. For example, we use Bet in the 
statement revealing information to the opponent, and also to update the value of debt. 

The use of the Gala variable debt allows information to be passed between different 
CdlS to next-bet. 

3.3.2. Mol*e complex game states 
The different types of variables provide the basic facilities for storing, manipulating, 

and accessing various aspects of the game state. Using variables, Gala provides a short- 
hand notation for concepts that occur ubiquitously in games. These include locations 
and their contents, pieces and their movement patterns, and resources that change hands, 
such as money. For example, Gala allows the user to utilize statements of the form 
move(queen(white), (d,l), Cd,811 Or paycgambler, pot, Bet). 

On a more abstract level, we have observed that certain structures and combinations 
appear in many different games. While these usually involve sets in one way or another, 
they come in many flavors. For example, a flush in poker is a set of five cards sharing 

a common property; a straight, on the other hand, is a sequence of cards in which 
successive elements bear a relation to one another; a full house is a partition into 
equivalence classes based on rank in which the classes are of a specific size. 



184 D. Kollec A. Pfefleer/Artificial Intelligence 94 (1997) 167-215 

The Prolog language provides a few predicates that describe sets and subsets. We 
have supplemented these with various predicates that make it easy to describe many 
of the combinations occurring in games. For example, chain(Predicate, Set) deter- 
mines whether Set is a sequence of objects in which successive elements are related 
by Predicate, while partition(Relation, Set, Classes) partitions set into equivalence 
Classes defined by the equivalence relation Relation. 

The following example, using a more elaborate function provided in the same library, 
shows how we can concisely test for all types of poker hand except flushes and straights: 

partition_profile(match_rank, Hand, Profile), 

associate(Profile, HandType, 

[([4, 11, four-of-a-kind), (C3, 21, full_house), 

(C3, 1, II, three_of_a_kind), ([2, 2, 11, two_pairs), 
(C2, 1, 1, II, one-pair), (Cl, 1, 1, 1, 11, nothing)]) 

The predicate partitionprofile takes three arguments: a set-in this case Hand; an 

equivalence relation-in this case matchrank; and a list of numbers-prologargProfile. 
The predicate is true precisely when the list of numbers is a profile of the partition 

defined by the equivalence relation, where a profile is a list of sizes of partition cells in 
non-increasing order. For example, if Hand is [90,6), 94,60,60], then Profile must 

be [ 3,2]. The profile [ 3,2] is then associated with the class full-house. 

Building on this library of predicates for describing combinations, Gala also provides 
libraries with more specific functionality that is common to a certain class of games. 
These include games played on a grid (such as chess or tic-tat-toe) , playing cards, dice, 
and so on. For example, if a game is declared to include a grid-board object, a range 
of predicates that apply specifically to a rectilinear board become available. One such 
predicate is straight-line, which tests for a sequence of squares in a straight line, all of 

which satisfy a certain property (such as an open file in chess or three-in-a-row in tic- 
tat-toe). It is defined in terms of the chain predicate. In general, high-level predicates 
are typically very easy to define in terms of the intermediate level concepts, so that 

adding a module for a new class of games requires little effort. 

3.4. Advanced flow control 

One of the primary advantages of representing a game as a Gala program is the ability 
to utilize the same code to encode structures that repeat again and again throughout the 
game. For example, as we discussed above, the rule for specifying the set of legal bets 
can be used in different subtrees of the poker game, as well as in different bets within 
the same subtree. 

Gala provides a variety of repetition statements, the most basic of which is the while. It 
has the form while(Condition, +), and is interpreted by translation into an if statement. 
That is, if the current state is 

((“while(Condition, 41, $“,v),~~,...,~~), 

then the following state would be: 

(( “if(Condition, (4, while(Condition, do))), ~+%“,v),~~,...,~p~). 
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Gala also provides a repeat statement that is defined in terms of while and pro- 
vides fancier functionality. Its form is repeat (Flow, Conditionl, , Conditio%). Each 
Conditioq Can take One Of tW0 fOrIllS: unless(Predicate) or until(Predicate). The Set 

of statements in Flow is executed repeatedly until one of the predicates becomes true; 
unless conditions are tested before an iteration, while until conditions are tested after 

an iteration. 
Another feature adapted from traditional programming languages is the de$ned game- 

jaw, whic.h is analogous to a defined procedure. As usual, it consists of a head and a 

body; the head consists of a name and a list of formal parameters, while the body is a 
gameflow. A defined gameflow is listed as a separate section in the specification of a 
Gala program. For example, in our poker example, deal, bet, firstbet and nextbet are 
all defined gameflows. 

A call to a defined gameflow is interpreted in the obvious way, with the parame- 
ters passed by value. If the gameflow in a game state begins with a call to a defined 
gameflow, the values of the actual parameters are substituted for the formal param- 
eters in the body of the defined gameflow, and this body is substituted for the call 

to the defined gameflow in the game state. All Prolog variables within the body of a 
defined gameflow are local, so different calls to the gameflow do not cause binding 

conflicts. 
Finally, Gala provides functionality that allows for players to be treated uniformly. 

This allows for games where all the players (or a subgroup of players) take the same 

sequence of actions. 
One such command is playlound(Flow), where Flow is a gameflow. In addition to 

executing FLOW once for each player, this also defines a special Gala variable “player” 
which takes as value each of the players in turn. Thus, if FLOW contains a step of the 
fOlXl choose($player,Action, Constraint),9 each player will make a choice in turn. For 
example, in the poker program, play_round(ante) has the ante flow called twice, with 
$player first instantiated to dealer and then to gambler. 

In addition to the player variable, the variable opponent is also defined in a two player 
game, and lho and rho (for left- and right-hand opponent, respectively) are defined in 

multiplayer games. There is also a variant of playzound which allows a subset of the 
players to play the round, perhaps in a different order from the default order. 

Gala also allows a temporally extended version of play-round, in which the players 
take turns performing a sequence of actions until some condition is true. The statement 
takes the form take_turns(Flow, ConditionI, ., Condition,,). It is essentially the same 
aS repeat (Flow, ConditionI, ., Condition,,), with the player variable and its relatives 
being defined in the same way as for playzound. lo For example, in the poker program, 
the take-turns construct is used to describe repeated betting by the players in turn. This 
terminates either when wins0 is called within the next-bet flow, or when someone meets, 
in which #case $debt=O. 

9 The dollar sign indicates that a Gala variable is being referenced; see Section 3.3. 
lo This is not the same as repeat (playzound(Flow) , Condition] , . , ConditioQ) since in this case, 

Condition is checked only between complete rounds, whereas in the take-turns statement, Condition is 
also checked between the turns of the different players. 
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game(inspection, C 

players : [inspector, violator], 

params : [stages, inspections]. 

variables : [stages-remaining = $stages, 
inspections-remaining = $inspections, 
violate, 
inspect]. 

flow : (repeat(stage, unless(no_more_inspections), 
unless(no_more_stage.s), 
until(violation)), 

determine_outcome), 

stage : 
(choose(violator, X, (X = yes ; X = no)), 
choose(inspector, Y, (Y = yes ; Y = no)), 
reveal(violator, Y), 
violate gets X. 
inspect gets Y, 
if($inspect = yes, 

inspections-remaining gets $inspections_remaining - I), 
stages-remaining gets $stages_remaining - I), 

determine-outcome : 
if(no_more_inspections, 

outcome(C-I, II), 
if(no_more_stages, 

outcome(C1, -ll), 
if($inspect = yes, 

outcome(iL1, -111, 
outcome(C-1, 11)))) I). 

no_more_inspections :- 
gala_val(inspections_remaining, 0). 

no_more_stages :- 
gala_val(stages_remaining, 9, 
gala_val(inspections_remaining, RI, 
s =< Ft. 

violation :- 
gala_val(violate, yes). 

Fig. 6. A Gala description of inspection games. 

3.5. Two complete Gala programs 

In this section, we describe how the various features of the Gala language are com- 
bined to form a Gala program. As an example, Fig. 6 shows a complete listing of a 
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simple inspection game, which has received significant attention in the game theory 
community as a model of on-site inspections for arms control treaties [ 21. 

The inspection game involves two players: a violator, who wants to commit some 
treaty-violating act (such as nuclear testing), and an inspector who wants to prevent 
the act. The game takes place over n stages. In each period, the violator chooses 
whether olr not to violate, and the inspector chooses whether or not to inspect. By the 
terms of the treaty, the inspector may only inspect 1 times over the n stages, where 
1 < n. If at any stage the violator violates without being caught, the violator wins. If 
the violator is caught, or if he does not attempt a violation throughout the game, the 
inspector .wins. If at any point the number of remaining inspections is 0, we assume 
that the violator will successfully violate at the next stage. If the number of inspections 
rem~ning equals the number of stages rem~ning, we assume the inspector will inspect 
in every subsequent stage, thereby ensuring victory. The game terminates as soon as 
either of these assumptions becomes valid, because the winner is then known. 

A Gala program consists of a statement game(GameName, DeclarationList), together 
with a set of auxiliary Prolog predicates. Each declaration in DeclarationList has the 
form N~IW: Definitioa Some declarations define gameflows, while others specify other 
aspects of the game. 

The players declaration lists the players in the game, in the order used by default for 
constructs such as playround and take-turns. The variables declaration declares Gala 
variables used in the program. The parader declaration illustrates a powerful feature of 
Gala. A Gala program can be parameter&d, so that it defines a family of games. The 
program shown defines the inspection game for any number of stages and inspections. 
In this program, the parameter values are used only to declare the initial values of Gala 
variables. In general, the parameters can also appear directly inside a gameflow, but they 
are not part of the game state, and cannot be modified during a game. 

The flow declaration defines the gameflow for the entire game; it must appear in 
every game description. (It is analogous to the main function in a C program.) Two 
other gameflows are also defined in this program: stage and determineautcome. The 
content of every garnetlow is a sequence of statements, as defined in the previous 
sections. E:n this case, the primary construct in the main flow is the repeat statement: 
stage is repeated until one of the termination conditions is met. When that happens, the 
outcome of the game is determined. The te~ination conditions are defined in auxiliary 
Prolog predicates. 

Each stage consists of a choice by both players. The violator chooses whether or not 
to violate, while the inspector chooses whether or not to inspect. After they make their 
choices, the inspector’s decision is revealed to the violator, but the violator’s decision 
is not revealed to the inspector. The remainder of the stage consists of bookkeeping, 
updating ,the values of the Gala variables violate, inspect, inspectionszemaining and 
stagesxemaining. 

As a final example, Figs. 7 and 8 show the complete code for the poker game from 
Fig. 2. Approximately half the code is the Gala program, while the rest is Prolog code 
for evaluating and comparing hands. Most of the code should be easy to understand 
based on the discussion above. The only new feature is the objects de&ration, which 
declares that the game includes a deck of cards, and a money account for the two players 
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game(poker, [ 

players : [dealer, gambler], 

parems : [suits, ranks, cards, cash, ante = 11, 

objects : [deck : $suits * $ranks, 
money : [dealer, gambler, pot1 1, 

variables : [winner, debt], 

flow : (play_round(ante), 
deal, 
bet), 

ante: (money($player) gets $cash, 
pay (Sent e I Splayer , pot 1) , 

deal : (choose(nature, 
(Hsndl, Hend2) , 
(dealcdeck, $cs.rds, Handl), 
dealcdeck, $cerds, Hand2))), 

%% a pair of random hands is chosen and dealt from the deck 
revealcgambler, myhand(Handl)), 
reveal (dealer, myhand(Hend2) ) , 
%% each player’s hand is revealed only to him 
if (beats(Hend1, Hend2) , 

betterhand gets gambler, 
betterhand gets dealer)), 

%% evaluate the hands immediately, so that ue only do 
XX it cznce per deal, rather than at every possible showdown 

bet : (choose(gsmbler, InitialBet, betveen(0, $money(gambler), InitialBet)), 
%% the player chooses his bet 
revae.l(dealer, betcgsmbler, InitialBet)), 
%% reveals it to the other player 
debt := InitialBet, 
pay(InitialBet, gambler, pot), 
%% end pays it into the pot 
take-turns (next-bet) 1, 

next-bet: 
(choose($player, Bet, ( % meet or raise 

between($debt, $money($player), Bet) 
; % fold 

($debt>O, Bet = O))), 
if(($debt>O, Bet = O), 

wins ($opponent ) , % fold 
(pay(Bet , Splayer, pot), 7. meet or raise 
if ($debt=O, 

vins($betterhand), 1 showdown 
(reveal ($opponent , bet @player, Bet)) , 
debt gets Bet - Sdebt))))), 

wins(player) : 
(Winnings is $money($player) + $money(pot) - $cash, 
Losings is - Winnings 
if ($player = dealer, 

outcome( [Winnings, Losingsl) , 
outcome(CLosing.5, Winnings])) I). 

Fig. 7. Gala description of poker: Gala program. 
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beats(Hand1, Hand2) :- 
predsort(compare_renks, Handl, SortedHandi), 
predsort(compare_ranks, Hsnd2, SortedHand21, 
evaluate(SortedHand1, Typel, Detailsi), 
evaluate(SortedHand2, Type2, Details2), 
(Type1 = Type2 -> 

Details1 (o> Details2 
; precedes(Type1, TypeP, Cstraight_flush, 

four-of-a-kind, 
full-house, 
flush, 
straight, 
three-of-a-kind, 
two-pairs, 
one-pair, 
nothing])). 

evaluateWand, Type, Details) :- 
(is_flush(Hand) -> 

(is_straight(Hend) -> 
(Type = straight-flush, 
Hand = CC_, Rank) I _I, 
Details = [Rank]) 

; (Type = flush, 
maplist(rank, Hand, Details))) 

; (is_straight(Hend) -> 
(Type = straight, 

Hand = CC_, Rank) 1 _I, 
Details = CRankI) 

; (partition_profile(match_rank, Hand, profile), 
associate(Profile, Type, [([a I _I, four_of_a_kid, 

([3, X I _I : X>l, full-house), 
CC3 I _I, three-of-a-kind), 
(C2. 2 I _I. two-pairs), 
cc2 I _I, one-pair), 
(_, nothing)])))). 

is_flush(Hand) :- 
checklist(match_suit(_), Hand). 

is_straigbt(C_l). 

is_straight(C(_, Ranki), (_, Rank2) I Tail]) :- 
Rank2 is Rank1 - 1, 
is_straight(C(_, Rank21 1 Tail]). 

compare_r,ulks((_, Ranki), (_, Rank211 :- 
Rank2 =< Rankl. 

match_rank((_, Rank), Rank). 

match_suit(Suit, (Suit, _)). 

Fig. 8. Gala description of poker: Prolog predicates. 
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and the pot. This declaration allows the program to use Gala functio~~ity created for 
these types of objects. For example, the deal statement causes cards to be removed from 
the deck and added to a player’s hand, 

This Gala program takes five parameters: the suits and ranks of cards in the deck, the 

number of cards dealt to each player, the amount of cash initially given to each player, 
and the amount of the ante. Not only does the program describe many different poker 
games through the use of parameters, it can easily be modified to describe other variants 

of poker, in which cards are dealt one at a time, exchanged with the deck, individually 
revealed, and so on. For example, describing a game in which each player exchanges 
cards can be done by adding a gameflow describing the exchange process, and replacing 

the bet step in flow with (take_turnsfexchangel , bet). 

3.6. Gala programs and game trees 

Above, we showed how we can specify any extensive form game as a Gala program. 
However, in order to apply standard solution algorithms to Gala-specified games, we 
need a process for converting a Gala program into a game tree. More precisely, given 
a Gala program and an assignment of values to the program parameters, we need to 

generate a game tree co~esponding to the game. 
To accomplish this task, we need to understand the relationship between an execution 

tree and a game tree. In some sense, an execution tree is an annotated game tree: just like 
in a game tree, each vertex in the execution tree corresponds to a state in the game. I1 
However, the game tree contains nodes only for those states which represent a choice 
point in the game, one where different outcomes lead to different plays in the game. 

In contrast, an execution tree also contains vertices which correspond to deterministic 

manipulations of the gamestate, e.g., changing the values of variables, transforming a 
complex statement into simpler ones, etc. The states corresponding to these deterministic 

t~sfo~atio~s would not be associated with nodes in the game tree. 
Thus, the game tree is essentially a condensed version of the execution tree, where 

we eliminate all vertices that have only one successor. More precisely, the game tree 

has: 
l An internal node for every vertex in the execution tree where the first command 

in the gameflow is the placeholder choosingf.. -3. 

* A leaf node for every Ieaf vertex in the execution tree. 
a An edge from one node to another, whenever there is a path consisting of deter- 

ministic edges between the corresponding vertices in the execution tree. 

The info~atio~ sets for the game tree can be derived from the local states of the 
associated vertices in the execution tree. An information set for player k corresponds 
to some local state Sk, and consists of all choice nodes for player k that correspond to 
execution-tree vertices where player k’s local state is s&. Note that the information set 
is determined only by the local state of the player whose turn it is to move. 

I1 To help disambiguate, we use “state” or “vertex” for nodes in the execution tree, and “node” for nodes in 
the game tree. 
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4. Strategies and equilibrium 

While defining a game and examining the possible scenarios is an interesting exercise, 
our goal is really to find good strategies for playing the game. In this section, we survey 
the game-theoretic definitions of a strategy, a minimax strategy, and a Nash equilibrium 

strategy. We describe these concepts in the framework of extensive form games. 
The simplest of all strategies is a pure (deterministic) strategy. Like a conditional plan 

in AI, a pure strategy is a very explicit “how-to-play manual” that tells the player what 
to do at every possible point in the game. In the poker example of Fig. 5, such a manual 
for the gambler would contain an entry: “If I hold a King, and I passed in the first round, 
and the dealer bets, then bet 1.” In general, a pure strategy 7# for player k specifies 

a choice at each of his or her information sets. (Since the player cannot distinguish 
between nodes in the same information set, the strategy cannot dictate different actions 
at those nodes.) 

Fixing a strategy for each of the players does not completely determine the outcome 

of the game, since the game also contains moves representing nature. However, the 
behavior at these nodes, while random, is completely specified in the description of the 
game. Therefore, a tuple of strategies ‘TT = (~1,. . . , TN), where each Vk is a strategy 

for player k, determines a probability distribution over the leaves of the tree. We will 
denote the probability of reaching some node p in the tree by PI-,(P). 

Definition 2. The expected payoff H( m) is defined to be 

H(n) = c fwP)h(P). 
leaves p 

Based on these definitions, we can now describe what we mean by “solving” a game. 
A solution to a game is a recommendation to the various players of how to play the 
game, i.e., a tuple of strategies w = (9i-1, . . . , TN). Of course, not every tuple of strategies 

dictates behavior which is rational for the different players. At the very minimum, one 
would wish that each player’s strategy be optimal with respect to the current context. 
That is, a player should not be able to do better by diverging from his strategy, provided 
the strategies of all other players remains constant. If a tuple of strategies satisfies this 
property for all players, the strategies are said to be in equilibrium. More formally, we 
have the following definition: 

Definition .3. A strategy combination (~1, . . . , TN) is said to be in equilibrium if for 
every player k and every strategy dk for that player, 

Hk(7T1,. . . ,‘Tk,. . . ,7TN) > Hk(%-,, . . . /IT;, . . . ,‘TN). 

The equilibrium property is a highly desirable one. Without it, a player following the 
“recommended solution” may leave himself vulnerable to having his strategy predicted 
(since following the recommendation is the rational thing to do) and possibly taken 
advantage of. In that case, following the recommended solution is no longer rational, 
making the whole idea of solution somewhat dubious. 
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The ability to announce one’s strategy without giving the advantage to the other player 
is particularly important in the context of an artificial agent. There, it is very difficult 
to keep one’s strategy a secret. For one thing, it is always possible to break into the 

code. For another, it is often possible to subject the agent’s program to intensive testing 
simply by playing the game over and over again. 

In perfect information games, we can easily construct an equilibrium solution to the 
game via a process called backward induction: At the leaves of the tree, the payoffs for 
all players are known. At a state which is just before the end of the game, the player 
whose turn it is will choose the action that maximizes his or her own payoffs. Under the 
assumption that this player will act rationally, the player in the preceding node in the 
game tree can now determine the optimal action for him or her. This backward induction 

process reduces to the standard minimax algorithm (originally due to Zermelo [ 341) in 
the case of zero-sum games. 

Unfortunately, in most real-life games, the players do not have perfect information. It 
is clear that this simple process cannot work for imperfect information games. Here, the 

decision as to the optimal move must be done for the entire information set, rather than 
for individual nodes. And a strategy which is optimal in one node in the information 
set may not be optimal in others. For example, in our simple poker game, there are two 
nodes in the information set corresponding to the situation where the dealer’s hand is a 
Queen and the gambler bet. In one of these two nodes, the gambler has a Jack, and in 
the other, a King. Clearly, different moves are optimal in these two nodes. 

How do we find an equilibrium in the far more complex case of imperfect information 
games? The answer is that we don’t. In fact, as defined, an equilibrium might not even 
exist. To see this, consider the simple game of “scissors-paper-stone”. There, any pure 

strategy is a losing one as soon as it is revealed to the other player. That is, we cannot 

achieve equilibrium with any pure strategy. 
The problem is not with the notion of equilibrium, but with the use of pure strategies. 

Pure strategies are predictable, and predictable play gives the opponent information. The 
opponent can find a strategy calculated to take advantage of this information, thereby 
making the original strategy suboptimal. Unpredictable play, on the other hand, maintains 
the information gap inherent in imperfect information games. Unpredictability can only 

be guaranteed by using randomized strategies: 

Definition 4. A randomized strategy pk for player k (called a behavior strategy in 
game theory) is a function that, for each information set u of player k, returns a 

probability distribution over the choices C, at u. 

In our poker example, a randomized strategy for the gambler can be described by 
defining the probability of betting at each information set uc and u:, c = 1,2,3. 

Once we fix a tuple of randomized strategies ,u = (,ut , . . . , pN), the behavior (albeit 
random) is specified at all points in the game. Therefore, just as for pure strategies, 
/.L determines a probability distribution Pr, over the nodes in the game tree. Thus, 
Definition 2 can be used (only substituting /_L for n-) to ascribe an expected payoff 
to a tuple of randomized strategies. Similarly, the notion of equilibrium presented in 
Definition 3 can be used, again substituting ,u for rr. 
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The use of randomized strategies allows us to find an adequate solution for the game 
of scissors-paper-stone. The strategy combination where each of the players assigns 

probability l/3 to each of the three possible choices is clearly an equilibrium: Each 
player is guaranteed an expected payoff of 0, and can do no better with any other 
strategy so long as the other player sticks to the equilibrium. 

However, it is far from clear that an equilibrium necessarily exists in complex games 
involving many moves. In his Nobel-prize winning theorem, Nash [ 211 showed that the 
use of randomized strategies allows us to guarantee the existence of an equilibrium for 

imperfect information games. ‘* 

Theorem 5 (Nash, 1951). Any extensive-form game with pe$ect recall has an equilib- 
rium solution in randomized strategies. 

Just as in the case of perfect information games, the equilibrium strategies are par- 
ticularly compelling when the game is zero-sum. Then, as shown by von Neumann 
[ 321, any equilibrium strategy is optimal against a rational player. More precisely, the 

equilibrium pairs are those where each player plays the optimal defensive strategy: the 
one that provides the best worst-case payoff. This maximin behavior is reasonable for 
zero-sum g,ames since it is, in fact, in the other player’s best interests to be as harmful 

as possible. More formally: 

Theorem 6 (von Neumann, 1947). In a zero-sum game, a strategy pair &, & 
is in equilibrium iff ,uT maximizes maxP, minPcLz HI (~1, ~2) and ,LL~ maximizes 

mm,, min,‘, HZ ( PI, ~2 1, I3 where the maximization and minimization is over the 
space of randomized strategies. 

Thus, in zero-sum games, the best defensive strategies are optimal in a very strong 
sense: They are the best that can be achieved against a rational player, i.e., a player 
that also plays the defensive strategy. Furthermore, a player can publicly announce her 
intention to do so without adversely affecting her payoffs. 

5. Solving games 

Now that we have a clearly defined notion of a solution, how do we go about finding 

one? This is, in general, a very difficult problem. In the poker example of Fig. 5, we 
would specify a strategy for each of the players using six numbers: the move probabilities 
at the various information sets (six information sets per player). When trying to solve 

a game, we need to find an appropriate set of numbers that satisfies the properties we 

‘* Nash’s result actually applies to mixed strategies and normal form games, both of which are described 

in the next section. The application of Nash’s theorem to extensive form games and behavior strategies is 
based on a theorem by Kuhn [ 151 asserting that, for extensive games of perfect recall, the two strategy 

representations are essentially equivalent. 
l3 Since H2 = -HI, this is equivalent to minimizing min,, maxP, HI (~1, ~2). 
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want. That is, we want to treat the parameters of the strategy as variables, and solve for 
them. In the zero-sum case, for example, the general computational problem is: 

Find x which achieves: 

max, 

subject to 

minyHl(x,y) 

x represents a strategy for player 1 

y represents a strategy for player 2 

(*) 

Given our definition of randomized strategies, the appropriate set of variables seems 

to be obvious: We simply use the different move probabilities in the game. In the poker 
example, we would have x = {xc, XL 1 c = 1,2,3} representing the gambler’s strategy, 
and y = {ydp, y$ 1 d = 1,2,3} representing the dealer’s strategy. 

Unfortunately, the space of legal assignments to these variables is a difficult one over 

which to search. It is continuous and high-dimensional. Furthermore, the payoff function 
H, which plays an important role in both the definition of equilibrium and the definition 
of maximin strategy, is not a “nice” linear function of the x’s and y’s. 

We now survey the two main frameworks for solving games in extensive form. In 
Section 5.1 we survey the traditional normal form algorithms, and in Section 5.2 we 

review the more recent approach of [ 121. 

5’. 1. Normal form 

The representation of a game in extensive form is rather complex, requiring many 

different components (nodes, edges, information sets, chance moves, . . .) for repre- 
senting the dynamics of the game and of the players’ information state. By contrast, 

the goal of game theory is to provide a simple uniform framework for representing 
games, that will enable a mathematical analysis of their properties. The complexity 
of the extensive form was viewed as detracting from its suitability as a primary rep- 
resentation, inducing game theorists to develop an alternative formulation of a game, 
called the normal form (also known as the straregic form). It turns out that the nor- 

mal form also allows for clean and elegant solution algorithms, adding to its attrac- 
tion. 

The normal form abstracts away much of the structure of the game. It represents the 
game only via the list of pure strategies available to the players. More precisely, the nor- 
mal form is a table, indexed by a tuple of pure strategies 7c = (~1, . . . , TN), one for every 
player. For each such tuple, it lists the tuple of payoffs H(m) = (HI(~), . . . , HN( m)). 

Clearly, every extensive-form game can be converted into the normal form. We simply 
list all of the possible pure-strategy combinations 7r, and compute the (expected) payoff 
tuple H(m). While this tranformation loses most of the information encoded in the 
game tree, it does capture the basic components necessary for equilibrium analysis 
(Definition 3): the possible courses of actions and their outcomes. 

In the case of general two-player games, also called bimatrix games, the normal form 
can be written as a pair of m x n matrices A and B. A row represents a pure strategy ~1 
of player 1, a column represents a simultaneously chosen pure strategy 7rz of player 2, 
and the corresponding entries in A and B are HI (~1, n-2) and Hz( rt,7r2), respectively. 
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In zero-sum games, B = -A, so the normal form of the game is completely specified 
by A. 

Fig. 9, for example, shows part of the normal form of the simplified poker game of 
Fig. 5. The entire normal form is a 27 x 64 matrix. The 27 rows correspond to the 
strategies of the gambler. Each strategy indicates what the gambler should do in the first 
round for leach possible card, and whether the gambler should bet in the third round 
if he passe.s in the first round. Thus, for example, the triple pp, b, pb (in boldface in 
the figure) represents the strategy of passing on a Jack in both rounds, betting on a 
Queen, and passing on a Ring (in an attempt to bluff) and then betting if the dealer 

bets. 
Each co.lumn corresponds to a dealer’s strategy, indicating the action to be taken at 

uf; and us; for each possible card d. For example, the triple pp, bp, bb (also in boldface) 
represents the strategy where the dealer passes on a Jack and bets on a Ring no matter 
what the gambler does, but bets on a Queen only if the gambler passed. The matrix 
only shows 16 of the 64 possible strategies. 

The matrix entry for each strategy pair represents the expected payoff for this pair. In 
this case, it is simply the average of the six possible outcomes of the game arising from 
the six possible deals. For example, on a (Q, J) deal, the gambler would bet, and then 
the dealer would pass, leading to a payoff of 1. On a (K, Q) deal, the gambler would 
pass, and then the dealer would bet, giving the gambler the opportunity to bet after all, 
with an ensuing payoff of 2. 

As we mentioned above, the simpler representation of a game also allows for simple 
solution algorithms. Recall that the main difficulty with solving games in the extensive 
form was the complexity of representing a randomized strategy. However, once we list all 

of a player’s pure strategies, a randomized strategy can be viewed simply as a probability 
distribution over this set. Such a distribution is known as a mixed strategy in the game 

theory literature. Clearly, any randomized strategy generates such a distribution. For 
games of perfect recall, it is also the case that any such distribution (mixed strategy) is 
equivalent to a randomized strategy [ 151. 

This representation of strategies allows us to construct a simple formulation of the 
problem of finding equilibrium strategies. The advantages are most tangible in the case of 
two-player games, so we will focus on those for the remainder of the section. However, 
much of the analysis holds unchanged in the general case. 

Suppose player 1 has m pure strategies and player 2 has it pure strategies. Consider 
some mixed strategy ,ui for player 1, i.e., some distribution over player l’s pure strate- 

gies v;, . . . , ?r;‘. We can represent this distribution as a vector X, with m components 

representing the probabilities ,UI (+i) assigned by ~1 to the pure strategies di of player 
1. In fact, any nonnegative m-vector x = (xi, . . . ,x,,) with Cz, xi = 1 describes a 
mixed strategy. Similarly, a mixed strategy ~2 for player 2 can be represented by an 

n-vector y. It is easy to see that the expected payoff HI (~1, ,u2) is equal to the matrix 
product x”Ay, and similarly H2( ~1, ~2) = xTBy. 

The vectors x,y provide us with an alternative set of variables for which we can 
solve. They allow us to reduce the problem of finding equilibrium strategies in two- 
player games to a simple problem of optimization over a linear space of vectors. For 
the zero-sum case, the problem (*) described above can be written as: 
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PI’ PI’ PP PP PP PP PI’ PP PP PP PP PP PP Pi’ PI’ PP 

PP PP PP pp pb pb pb pb bp bp bp bp bb bb bb bb 

PP pb bp bb pp pb bp bb pp pb bp bb PP pb bp bb 

Fig. 9. Part of the normal form for three-card poker. 
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Find x which achieves: 

maxx min, xTAy 
m 

subject to c Xi = 1 
i=l 
n 

c 
Yj = 1 

j=l 

x,y > 0. 

This problem can be reformulated, by an appropriate use of linear progrmnming duality 
[ 51, as a simple linear programming problem, resulting in the following theorem [ 321: 

Theorem 7 (von Neumann, 1947). The normul form of a zero-sum game defines a 
linear program (LP) whose solutions are the equilibria (maximin strategies) of the 
game. 

The standard Simplex algorithm for linear programming can be used to solve this LP 
very effectively. Other standard LP solution algorithms, while slower in practice, can be 
used to guarantee a worst-case polynomial time for the solution. 

A different, but related, transformation allows the reformulation of the equilibrium 
problem for general two-player games as a linear complementarity problem (see [ 41 
for a definition) : 

Theorem 8. The normal form of a general two-player game defines a linear comple- 
mentarity problem (LCP) whose solutions are the equilibria of the game. 

One of the solutions to this LCP (each of which corresponds to an equilibrium) can 
be found by the Len&e-Howson algorithm [ 171. This algorithm resembles the simplex 
algorithm both in its general operation and in the fact that, while requiring exponential 
time in the worst case, it is fast in practice. If a comprehensive list of equilibria is 
required, a general exhaustive enumeration scheme can be used (as in [4, p. 171). This, 

of course, requires exponential time. 
At this point, one might think that the problem of solving games is essentially 

solved, at least in the two-player case. In the zero-sum case, we have a fairly efficient 

polynomial-time algorithm. l4 In the general case, the problem of finding a single equi- 
librium is not known to be solvable in worst-case polynomial time. We do, however, 
have an algorithm which is effective in practice. 

Howevcer, a closer examination shows that Theorems 7 and 8 are highly misleading. 
Although useful, the normal form is not a representation which naturally captures a 
person’s intuitive model of a game. In practice, a game-theoretic analyst would model 
the situation using some alternative formalism, probably a game tree, and then convert 

I4 In fact, we really cannot expect to do better for a normal form game. It is easy to show that the converse 

to Theorem 7 also holds, i.e., the problem of solving a linear program can be reduced to that of solving a 

normal form game. 
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Fig. 10. A simple game where player 1 has 1 information sets and 2’ pure strategies 

to the normal form for the purposes of finding the solution. In both theorems, the size of 
the problem to be solved-the linear program or linear complementarity problem-is the 
size of the resulting normal form. And, unfortunately, the normal form of an extensive 
form game can be very large. 

To understand this, consider the simple game tree in Fig. 10. In this game, player 1 
has I information sets, one for each possible move of player 2 at the initial state. At each 
of these information sets, the player has to pick one of the two possible moves. Thus, 
a pure strategy can be described as an I-length vector of R’s and L’s. The total number 

of possible pure strategies is therefore 2’. The normal form of this game contains a row 
for each and every one of these pure strategies. Therefore, the size of the normal form 
corresponding to this game is exponential in the size of the game tree! 

More generally, our strategy space is the set of functions from information sets to 
moves, and is therefore also exponential in the number of information sets. I5 Thus, in 
the worst-case, the process of solving the game via the algorithms in Theorems 7 and 
8 incurs an exponential blowup, not only in time, but also in space (which, in practice, 
is much worse). Clearly, this problem renders these algorithms impractical in the worst 

case. 
One might think that this blowup does not arise in practice, but only in artificial 

games like the one above. So, while the worst case is bad, perhaps the typical case is 
quite reasonable. Unfortunately, this is not the case. Consider our simple poker example, 
generalized to a deck with k cards. For each card c, player 1 must decide whether to 

pass or bet, and if he has the option, whether to pass or bet in the third round. There are 
three courses of action for each c, so the total number of possible strategies is 3k. Player 
2, on the other hand, must decide on her action for each card d and each of the two 
actions possible for the first player in the first round. The number of different decisions 
is therefore 2k, so the total number of deterministic strategies is 22k = 4k. Since the 
normal form has a row for each strategy of one player and a column for each-strategy 
of the other, it is also exponential in k, while the size of the game tree is only 9k + 1. 

In fact, this blowup occurs in many real-life games, and appears to have been a 
significant obstacle to the widespread use of game theory as an analysis technique: 

I5 This analysis uses the standard conversion of an extensive form game into the normal form. Alternative 

conversions into a reduced normal form also exist. While the reduced normal form is smaller than the normal 

form, it is still exponential in the size of the game tree. See 1331 for details. 
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This astronomical increase in the number of variables to be determined actually 
occurs in some important real-world problems and often forces the analyst to 
abandon the game theoretic approach. 

An Overview of the Mathematical Theory of Games 

William F. Lucas, Cornell University 
Management Science [ 181 

5.2. Sequence form 

The exponential blowup associated with the normal form makes the standard solution 
algorithms an unrealistic option for many games. Recently, however, a new approach to 
solving imperfect information games was developed by Koller, Megiddo, and von Stengel 

[ 121. This approach uses an alternative representation called the sequence form, which 
avoids the exponential blowup associated with the normal form. I6 We will describe the 
main ideas briefly here; for more details see [ 12,13,33]. 

The sequence form is based on a different representation of the strategic variables. 
Rather than representing probabilities of individual moves (as in the extensive form), 
or probabilities of full pure strategies (as in the normal form), the variables represent 

the reakution weight of different sequences of moves. 
Essent:ially, a sequence for a player corresponds to a path down the tree, but it isolates 

the moves under that player’s direct control, ignoring chance moves and the decisions 
of the other players. In our poker game of Fig. 5, for example, the gambler has 13 
sequence.s: in addition to the empty sequence (which corresponds to the root of the 
game) he has four sequences for each card c: [bet on c] (in which case there is no 

third round), [pass on c] , [pass on c, bet in the last round], and [pass on c, pass in the 
last rounfd]. The dealer also has 13 sequences: the empty sequence, and for each card 
d, the four sequences [bet on d after seeing a pass], [pass on d after seeing a pass], 
[bet on d after seeing a bet], [pass on d after seeing a bet]. 

More precisely, let k be a player, and let p be a node of the game tree. There is a 
unique path from the root to p. On this path, certain edges correspond to moves of player 
k. The string of labels of these edges is denoted by d(p) and is called the sequence 
of choices of player k leading to p. It may be the empty sequence 8, for example if p 
is the root. Essentially, the sequence d(p) describes the choices that player k has to 

make so that p can be reached in the game. That is, a pure strategy n-k can only reach 
p if it chooses to make every move in gk(p) at the information set when the move is 

relevant. 
Our goal is to describe a randomized strategy via some set of weights associated with 

sequences. (Just as, for mixed strategies, we described a randomized strategy via a set 
of weights associated with pure strategies.) We therefore consider the probability that, 
for a given randomized strategy pk, a certain sequence is realized in play. Clearly, a 

I6 In 1996. it was discovered that the sequence form was first suggested by Romanovsky [26]. But Ro- 
manovsky’s paper was published only in Russian and so his result was completely unknown to the scientific 

community in the West. This led to the later but independent development of the sequence form by Koller, 

Megiddo, and von Stengel. 
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player cannot unilaterally determine whether a sequence is realized. For example, the 
sequence [pass on c, bet in the last round] can only be realized if the dealer decides 
to bet in her turn. However, the player’s strategy does determine whether a sequence is 

realized given that the appropriate decision points in the game are reached. 

Thus, for a given randomized strategy pk, we define the realization weight of a 
sequence uk (some sequence for player k) as a conditional probability: 

Definition 9. The realization weight of a sequence gk under pk, denoted ,&((Tk), is 
defined to be the probability that player k, playing according to ,%k, will take the moves 
in @k, given that the corresponding information sets are reached in the game. The set of 

realization weights pk (a:), . . . , pk (a? ) , where (+i, . . . , up is the set of sequences of 
player k, is called a realization plan for player k. 

It is fairly easy to see that the realization weight pk( (+k) is simply the product of the 

probabilities, according to ,&, of the moves listed in (Tk. 
We can find equilibrium strategies for player k by searching over the space of possible 

realization plans. More precisely, as described at the beginning of this section, we treat 
the realization weights of player k as variables xi,. . . , ~7, and search over the space 

of possible assignments to these variables for one that satisfies our optimality conditions 
(e.g., minimax). Note that there is at most one sequence, and therefore one variable, 
for each node in the game tree. Compare this to the exponential number of variables 

required to represent a strategy in the normal form. 
Several crucial properties are required in order to make this process feasible. First, in 

order to substitute a search over realization plans for a search over randomized strategies, 
we must provide a correspondence between the two spaces. Clearly, not every vector of 
numbers (of the right length) actually represents some randomized strategy. 

Lemma 10 (Koller and Megiddo [ 111) . Zf player k has perfect recall, then there exists 

a matrix E and a vector e such that a non-negative vector x of dimension mk represents 

a randomized strategy for player k tf and only if Ex = e. Furthermore, the matrix E 

and vector e can be derived from the game tree in linear time. 

That is, for a vector to represent a randomized strategy, it must satisfy certain con- 
straints. These constraints (as encoded in the matrix E and the vector e) are quite 
simple: They force the weights to “add up” the right way. For example, the weight of 
the sequences [pass on c, bet in the last round] and [pass on c, pass in the last round], 
denoted [Pi, P:] and [ ~c, B:] , must add up to the weight of the sequence [pass on c] , 
denoted [ pc ] . 

More generally, let (+k be the sequence for player k leading to an information set at 
which player k is to move, I7 and let cl, . . . , cl be the possible moves at that information 
set. The sequence uk is realized if and only if one of its continuations is realized, and 
these are mutually exclusive events. Therefore, we must have that x,~ = xUI-toc, + . . . + 
xgkoc,, where Uk o c is the sequence obtained from concatenating the move c to the 

I7 The perfect recall assumption implies that there is at most one sequence cq leading to this information set. 
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Fig. 11. Constraints on realization plans for 3-card poker. 

sequence (+k. The only other constraints are that the realization weight of the empty 
sequence is 1 (because the root of the game is realized in any play of the game), and 

that x, > 0 for all (T. 
Thus, a realization plan for the gambler is a 13-element vector x satisfying the 

constraints in Fig. 11 (a). The constraints are written under the assumption that the 
sequences are ordered as in Fig. 12. Thus, the constraints asserting that the weights 

of [P,, P:] and [P,, B:] sum up to the weight of [P,] (for each of the three different 
values of c) are encoded in lines 3, 5, and 7 of the matrix. Similarly, a realization plan 
for the dealer is a 13-element vector y satisfying the constraints in Fig. 11 (b) . 

The sequence form transformation allows us to accomplish the task of searching over 
the space of randomized strategies, by searching over the space of vectors satisfying the 
constraints. Furthermore, once an appropriate vector is found, we can easily recover the 
corresponding randomized strategy. That is, if a realization plan satisfies the condition 
of Lemma 10, then we can recover the corresponding randomized strategy pk from 
the realization weights. Let c be a possible move at some node p in the game tree 
where player k is to move, and let Uk be the sequence of player-k moves leading to p. 
Then 

if xCk > 0. Otherwise, we can define Pr,,(c) arbitrarily. It is straightforward to verify 
that the resulting strategy ,Uk induces the realization plan x. 

The analysis above shows that we can represent a randomized strategy as a realization 
plan, and easily convert between the two representations. However, it is still not clear 
what advantages we have gained from doing so. The key point is that we describe the 
payoff function H as a linear function of the realization plan variables; this linearity 
was the key to the normal-form solution algorithms. 
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Fig. 12. Payoff matrix for the sequence form for simplified poker. 
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To derive this linearity property, we must divide each path in the game tree into its 
components. The probability that a path is actually taken in a game is the product of 
the probability of all of the moves on the path. This product can be re-expressed as the 
product of the realization weights of all the players’ sequences on that path, times the 
probability of all the chance moves on the path. That is, for a given tuple (PI,. . . , pN> 
of randomized strategies, 

where p(p) denotes the product of the chance probabilities on the path to p. Incorpo- 
rating this expression into Definition 2, we obtain that: 

N 

H(F) = c h(P) .P(P) q--JPk(akm. (1) 
leaves p k=l 

If x is a realization plan for player k corresponding to the strategy ,Uk, then ,&((+k) 
is precisely xUk, so that H(p) is, indeed, linear in the realization weight variables for 
each of the players. 

In the two player case, the linearity of Eq. ( 1) allows us to achieve a matrix formu- 
lation analogous to the one we used for the normal form. In this representation, called 
the sequence form, we again define a matrix A (or a pair of matrices A, B) . But here, 
the rows correspond to the sequences (rather than pure strategies) of player 1, and the 
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columns correspond to the sequences of player 2. The entry aij is the weighted sum of 

the payoff at the leaves that are reached by the pair of sequences ai and u-& i.e., 

aij = c P(P) * h(P). 

For example, the matrix entry for the pair of sequences [bet on a Queen] (denoted BQ ) 

and [pass on a Jack after seeing a bet] (denoted P”,) is 1 (obtained from the one leaf 

consistent with this pair of sequences). Note that if a pair of sequences is not consistent 
with any path to a leaf, the matrix entry is zero. Thus, the matrix entry for the pair [bet 
on a Queen] and [pass on a Jack after seeing a pass] is 0. Fig. 12 shows the matrix 

for the sequence form for the simplified poker game. 
Let x denote a realization plan for player 1, and y denote a realization plan for 

player 2. The entry xi of x is the weight of the sequence af at the ith row of A, i.e., 

xi = ,ut (di ), where ,ut is the randomized strategy co~csponding to n (assuming one 

exists). Similarly, yi = ,u,z(&~>. It now easily follows from the definitions of aij, xi, and 
yj, and from Eq. ( 1) that 

Hi (x,Y) = xTAy, 

precisely as for the normal form. 
We can now solve (*) using realization weights as our strategic variables. The 

similarity between the normal form and sequence form formulations of (*) allow the 
use of very similar techniques to those used in the proofs of Theorems 7 and 8, resulting 
in the following theorems: 

Theorem 11 (Keller et al. [ 121) . The sequence form of a zero-sum game defines a 

linear program (LP) whose solutions are the equilibria (maximin strategies) of the 

game. 

As before, standard LP solution algorithms provide us with polynomial time algo- 
rithms for solving such games. 

In the more general case: 

Theorem 12 (Keller et al. [ 121). The sequence form of a general ho-grayer game 
defines a linear complementarity problem (LCP) ~&ose soEutiuns are the equilibria of 
the game. One of these solutions (each of which corresponds to an equilibrium) can be 

found by Lemke’s algorithm [ 161. 

Lemkes algori~m is a simple variant of the ace-~owson algo~thm, with the 
same general characteristics. 

At first glance, these results seem very similar to the normal-form results, so it 

might not be clear what we have gained. The key is that the sequence form (and the 
representation of a realization plan) is at most linear in the size of the game tree, since 
there is at most one sequence for each node in the game tree, and one constraint for 
each information set. Furthermore, it can be generated very easily by a single pass over 
the game tree. Thus, for example, the LP algorithm for zero-sum games is polynomial 
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Fig. 13. Architecture of the Gala system. 

in the size of the game tree as opposed to polynomial in the size of the normal form. 

(The algorithms for the general case are analogous, except that the worst-case behavior 
is exponential in the size of the corresponding representation.) Since the normal form is 
typically exponential in the size of the game tree, these results provide an exponential 

time reduction over the standard normal-form algorithms! 

6. The Gala system 

The Gala system builds on the techniques described in the previous sections to provide 

a complete system for specifying and solving games. The system, described in Fig. 13, 
uses three main stages for processing a game: generating a game tree from a Gala 
specification, solving the game tree, and examining the strategies. 

The system as a whole provides end-to-end functionality, from the game specification 

to the examination of the optimal strategies. The result is a very useful package for 
experimental game-theoretic analysis. To illustrate this process, consider the game of 
poker. As demonstrated in Section 3.5, the specification of the general game is compact 
and natural. Appropriate instantiations of the parameters of the program allow the gen- 
eration of a variety of games. These games can be effectively solved, and the strategy 
interpreted. We illustrate this below. 

6.1. Game tree generation 

In the first stage, the system receives as input a game specified in the Gala language 
(as described in Section 3). The system interprets the Gala code, running through the 
various possible executions of the game. The interpreter works by maintaining the game 
state, including the local state of the agents, and updating it according to the Gala 
semantics (Section 3). When the interpreter reaches a choice point, it explores all of 
the possible outcomes, in a depth-first fashion. 
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The interpreter is implemented in Prolog, relying on the underlying Prolog interpreter 
for interpreting the embedded Prolog predicates in the Gala code. It also utilizes the 
ability of F’rolog to deal with nondeterminism to facilitate the generation of the different 

possible plays of the game. 
As a result, the interpreter searches the entire execution tree of the program. During the 

generation of the execution tree, the corresponding game tree, as defined in Section 3.6, 
is generated. Whenever a choose statement is encountered, a node in the game tree 
is created. The node is added to the appropriate information set: the information set 
consisting of all nodes where the player’s local state is the same (according to Prolog 

structural equality). 

6.2. Solving the game 

In the second stage of processing, the system solves the resulting extensive-form 
game. Cmrently, this occurs via one of two methods. The first is using the sequence 
form. The Gala system converts the game tree to its sequence form, and outputs the 
resulting matrices. These can be read by the appropriate solution algorithm. The current 

implementation of the system supports only the solution of zero-sum games, by using 
commercial linear programming software packages I8 over the resulting sequence form. 

We are currently working on the implementation of the case of general two-player 
games. The Gala system is the first to provide an implementation of any of the sequence 

form algorithms. 
The other solution method is via an interface to the GAMBIT system [ 191, a state- 

of-the-art game theory software package which provides a number of game-theoretic 
solution algorithms (primarily for the normal form). Gala outputs the extensive form 
of a game in a format readable by GAMBIT, and calls the appropriate GAMBIT routines 
over the result. In particular, GAMBIT provides algorithms for multi-player games, so 
that such games written in the Gala language can be solved using the two systems in 
combinatmn. 

The Gala system, via its interface to GAMBIT, allows us to compare the performance 

of the sequence form and the normal form algorithms on practical problems. We experi- 
mented with two games: simplified poker, instantiated from the Gala program in Figs. 7 

and 8, and inspection game, instantiated from the program of Fig. 6. 
The experiments were performed as follows: The Gala system was used to generate 

different variants of these games, induced by different instantiations to the parameters. 

We generated poker games with different numbers of cards in the deck, and inspec- 
tion games with a varying number of stages and inspections. For the sequence form 
experiments, the extensive form was transformed to the sequence form by the Gala 
solution engine and the resulting linear program was solved using CPLEX. The times 
for the conversion to sequence form and the solution of the linear program were added 
together. 

For the normal form experiments, the game trees were printed to a file and converted 
to normal form by the GAMBIT system. The normal form linear program was again 

I8 CPLEX, Matlab and OSL are all supported. 
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Fig. 15. Time for genemting and solving the sequence form. 

solved using CPLEX. The times for the conversion to normal form and the solution of 

the linear program were added together. 
The resulting running times are shown in Fig. 14. They are as one would expect in a 

comparison between a polynomial and exponential algorithm. The results are continued 

for the sequence form in Fig. 15. (It was impossible to obtain normal-form results for 
the larger games.) In more recent experiments, we have solved poker games with over 
140,000 nodes (see below}. The largest games we have solved take about an hour on a 

Sun UltraSPARC II. 
We believe that the Gala system can easily be modified to deal with much larger 

games, simply by streamlining the implementation. Fig. 15 also shows the division of 

time between generating the sequence form and solving the resulting linear program. For 
the poker games, we can see that generating the sequence form takes the bulk of the time. 
Solving even the largest of these games takes less than 10 seconds. Thus, we believe 
that the system can be made to run considerably faster by optimizing the sequence-form 
generator. Furthermore, the current implementation of this generator stores the game 
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fig. 16. Parameters of largest poker games solved. 

tree in main memory as it is generated. As a consequence, the amount of main memory 
available posed the most severe constraint on the size of our experiments. A more careful 
implementation would write the game tree to disk as it is created, and then generate the 
sequence form from it (a process which can be done in a single pass over the tree). 
We believe that these minor modifications will allow the system to efficiently deal with 
much larger games. 

In general, the main influences on the complexity of solving a sequence form game 
are the number of nodes in the tree and the structure of the information sets. In poker, 
for example, the total size of the tree is determined by the initial number of deals and 

the number of nodes in the subtree for each deal, which in turn depends on cash - ante. 

Fig. 16 shows the number of cards in the deck, the number of cards dealt to each player, 
and the number of rounds for the largest games solved so far. The most extreme points 

are 127 card deck, 1 card each, 1 round; 3 card deck, 1 card each, 11 rounds; and 
11 card deck, 5 cards each, 3 rounds. 

The influence of the information-set structure is apparent when we compare the per- 

formance of the sequence-form algorithm for poker games and for inspection games. 
Games such as poker, which are wide and shallow, tend to have many parallel informa- 
tion sets (information sets which cannot be reached in the same play of a game) ; they 
typically gain the most from the use of the sequence form. In the inspection game, on 
the other hand, the tree tends to be deep and narrow, reducing the computational savings 

obtained from the sequence-form representation. 

6.3. Examining the strategies 

The final stage of processing allows the user to examine the optimal strategies dis- 
covered .by the solution engine. The user can navigate the game tree and view the 
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Fig. 18. Dealer strategies for S-card poker. 

optimal behavior strategy at any information set. The GAMBIT interface is also useful, 
since GAMBIT offers a nice graphical user interface for displaying game trees and the 
resulting strategies. 

The Gala system also provides other useful information about the equilibrium solution. 
Once a pair of strategies is fixed, every branch in the game tree has a v&e, which is 
the expected outcome of the game given that the branch is taken and from that point the 

players continue to play according to the specified strategies. Also, the strategies induce 
a probability distribution over the plays of the game. Therefore, at any of her information 
sets, the player can derive a belief state-the resulting probability distribution over the 

nodes in the information set. Gala allows the user to examine the value of any action 
and the belief state of a player. 

Figs. 17 and 18 present the strategies resulting from this analysis for an eight-card 

version of the simplified poker discussed throughout the paper. (We have an eight- 
card deck, each player is dealt one card, has an ante of $1, and another dollar with 
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which to bet.) l9 They provide an interesting example of the insights that can be 
achieved by such an analysis. Consider the probability that the gambler bets in the 
first round: it is very high on a 1, 0 on the middle cards, and then goes up for the 
high cards. The behavior for the low cards corresponds to bluffing, a characteristic 

that one tends to associate with the psychological makeup of human players. Similarly, 
after seeing a pass in the first round, the dealer bets on low cards with very high 
probability. Psychologically, we interpret this as an attempt to discourage the gambler 
from “changing his mind” and betting in the final round. In more complex games, we 
see other e:xamples where “human” behavior (e.g., underbidding) is game-theoretically 

optimal. 
The fact that such “psychological” properties are game-theoretically optimal in poker 

was first pointed out by Kuhn [ 141. It was a result of a laborious manual analysis 
for the 3-card poker game described above. The Gala system makes this type of anal- 

ysis an effortless process, and allows it to be carried out for much more complex 
games. 

As this example illustrates, the system also provides the exact probabilities for the 
various actions (e.g., bluffing on a low hand). Thus, the output of the system can be 
implemented directly. Before, only very simple games could be solved exactly. Thus, 
the outcome of a game-theoretic solution process was a strategy for a greatly simplified 

game, preventing the results from being directly applicable. 

7. Discussion 

7.1. Equilibrium and optimality 

Throughout the paper, we have not questioned the use of Nash equilibrium as the 
definition of the desired solution. In practice, however, the Nash equilibrium is not al- 

ways appropriate, particularly in the case of extensive-form games. The problem arises 

even in the (relatively very simple) case of zero-sum games. The definition of a max- 
imin strategy (as set out in Theorem 6) only requires that the strategy ,~i be optimal 
in the worst case, i.e., when player 2 is playing optimally. This situation is unlikely 
to materialize when human players are involved: human players invariably make mis- 

takes. 
The maximin criterion results in strategies that are guaranteed to do no worse against a 

suboptimal adversary than against an optimal one. But the strategies are not guaranteed 
to take advantages of mistakes when they become apparent. This can lead to very 
counterintuitive behavior. For example, assume that player 1 is guaranteed to win $1 
against an optimal player 2. But now, the latter makes a mistake which allows player 1 to 
immediately win $10000. It is perfectly consistent with the definition for the “optimal” 

I9 The game was generated and solved in under 2 seconds using the Gala system. The corresponding normal 

form algorithm did not terminate after two days of execution. 
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(maximin) strategy to continue playing so as to win the $1 that was the original 

goal. 
It is interesting to compare this behavior and the one resulting from an optimal 

strategy for a perfect information game. In the perfect information case, the maximin 
definition also allows for strategies with the same bizarre behavior. However, the specific 

backward induction algorithm used to solve the game avoids such strategies by picking, 
at each node, the move which is optimal at that node. Unfortunately, in the case of 
imperfect information games, it is much harder to define a notion of “optimal from this 

point on” (see Section 7.2 for some discussion). Essentially, the player might not know 
which node the game is actually at, and designing strategies that are optimal from an 
information set is much more complicated. 

These difficulties are well known, and have led to the development of an extensive 
suite of alternative (more refined) solution concepts. The discussion of the different 

options is beyond the scope of this paper; see [ 301 for a survey. Currently, there seems 
to be no consensus as to the “right solution” to this problem. Nevertheless, it would be 
useful to incorporate one or more of the alternative solutions into the Gala system. Work 

is in progress on the computational aspects of these more refined solution concepts. See 
[ 20,3 1 ] for some results. *O 

There is an alternative approach to the problem of dealing with less-than-perfect 
players. Rather than simply reacting to suboptimality when it is detected, we can try 
to learn the type of mistake that a certain player is prone to make. This approach can 
be used when there is a long-term interaction with the same player (or with players 
sharing similar flaws in play), either within a single (long) game or over a series of 
games. The ability of the Gala language to capture regularities in the game may be 
particularly useful in this context, since the high-level description of a game state can 

provide features for the learning algorithm. 

7.2. Scaling up 

While we can now solve games with tens of thousands of nodes, we are nowhere 
close to being able to solve huge games such as full-scale poker, and it is unlikely that 
we will ever be able to do so. A game tree for five-card draw poker, for example, where 
players are allowed to exchange cards, has over 1O25 different nodes. The situation (for 
zero-sum games) is now quite similar to that of perfect-information games: We have 
algorithms that are fairly efficient in the size of the game tree; unfortunately, the game 

tree is often extremely large. 

Nevertheless, chess-playing programs are very successful in spite of the fact that we 
currently cannot solve full-scale chess. Can the standard game-playing techniques be 
applied to imperfect information games? We believe that, in principle, the answer is yes, 
but the issue is nontrivial. 

*O [20] also contains an extensive survey of computational methods for finding equilibria of non-zero-sum 

games. 
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The standard algorithms for playing perfect-information games have the following 
general form: 

Expand an initial subtree of the game, beginning at the root node, and using a 
heuristic evaluation function to assign a payoff to the leaves of the subtree. 

Compute optimal pure strategies in the resulting subtree. *’ 
Choo:se the action at the root that is optimal in the subtree, and wait for the 
opponent to choose an action. 
Return to step 1, using the node reached as a consequence of the actions as the 

new root. 

Can we adapt this approach to solving imperfect-information games? Initially, every- 

thing seems to work out fine. Just as before, we expand an initial subtree of the game, 
beginning at the root node, and use a heuristic evaluation function to assign a payoff 
to the leaves of the subtree. We solve the resulting tree to obtain randomized strategies 
for each player. We now have a strategy for the initial stages of the game, so play can 

proceed. 
The problem arises when we attempt to apply this idea to subsequent positions in the 

game. At that point, the player might not know what node she is actually in. That is, 
the actual node might be p, while the player knows only that she is in the information 
set u which contains p. The player must therefore consider and somehow combine the 
subtrees rooted at each of the nodes in u, to obtain a single decision for the entire 

information set. 
Of course, the player also has beliefs over the nodes in the information set, as 

determined by the strategies computed before and the probabilities of the chance moves. 
Therefore, one might think that the problem can be solved by a simple process of 
reasoning by cases. We consider each of the nodes in the information set separately, 

generating a game tree representing the assumption that this is the true state of the 
world. We find an optimal move in each tree. Finally, we choose a randomized strategy, 
in which each move is weighted by the probability that the true state is one for which 

it is optimal. 
This approach is clearly flawed: it assumes that the player has perfect information 

when making her decision. Consider, for example, a variant of the inspection game 
where, in each round, the inspector also has the possibility of gathering intelligence 
before inspecting. This action has a cost, but does not waste an entire inspection. It 
might well be the optimal course of action. However, it will never be chosen by the 
algorithm d.escribed above. The algorithm considers two options: Either a violation has 
occurred, in which case one should simply inspect; or, a violation has not occurred, in 
which case the intelligence gather is a waste of resources. 

A somewhat more plausible approach incorporates the player’s uncertainty about the 
current pos-ition: The player creates a new game tree, in which the root node is a chance 
node, and its children are all the nodes in u. The chance move represents the player’s 

” The solution process is often interleaved with the process of generating the game tree, so that partial results 

can be used to guide the expansion process to more relevant parts of the game tree. 
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uncertainty, so that the probability of the chance move leading to each node agrees with 
the player’s belief state. The analysis now proceeds with the new tree. 

The flaw in this algorithm is more subtle. While it does incorporate the player’s 
uncertainty, it ignores the opponent’s uncertainty. After all, even if the player knows 

that the true state is one of the nodes in u, the opponent does not necessarily have the 
same information. Consider the second round in three-card poker when the dealer is 
trying to decide on her action following a pass by the gambler. The dealer knows her 
own hand, a Jack. The two nodes in her information set correspond to those where the 
gambler has a Queen and a King. In any game that begins by choosing one of these two 

nodes at random, the gambler will always have a better card than the dealer, and know 
it, so the dealer has no reason to bluff. However, in the actual game, if the gambler 
has a Queen he will not know that he has the better card. And, in fact, the optimal 
strategy requires that the dealer bluff with non-zero probability, to take advantage of 

this situation. 
The point is that the opponent’s information state can have a large effect on one’s 

strategy. Thus, one cannot eliminate nodes that the opponent considers possible, even 
if one knows for a fact that they are not. Similarly, nodes that neither player considers 
possible, but that one player thinks the other player considers possible, can also have 
an effect on a player’s strategy. The only nodes that can be completely eliminated from 
consideration are those for which it is common knowledge [6] that they cannot be 

reached. 22 
It might be possible to develop a solution approach, analogous to the one described 

above, where we only eliminate such nodes. The resulting algorithm may be useful 

in some games. For example, in a poker game which consists of a deal followed by 
many rounds of betting, the number of reachable nodes stays constant, since all bets are 

common knowledge. 23 Unfortunately, many games have a more complex information 
structure, in which knowledge is dynamically created and revealed. This is the case 
with the inspection game and with variants of poker in which cards are dealt during 
the course of the game. In such games, the elimination of unreachable nodes may not 
significantly reduce the size of the game tree. Some other method of pruning the tree 

is needed, perhaps one based on the value of information metric (see, e.g., [ 93 ). We 
believe that developing an algorithm that prunes the tree in a principled manner presents 

an interesting research problem. 
Besides the difficulties involved in pruning the tree, care must also be taken in 

designing the heuristic evaluation function used to evaluate nodes at the leaves of the 
subtree. This function must take into account the knowledge of the players in a state. In 
other words, the evaluation of a node must consider not only the node itself, but other 
nodes in the same information set. (In fact, the information state of all the players may 
conceivably affect the node’s value.) For example, a naive evaluation function for poker 
might estimate that the player with the better hand will win the current stake, but this 
fails to differentiate between the states where a player knows she has the better hand and 

22 A fact 4 is common knowledge if both players know 4, both players know that they both know 4, they 

know that they know that they know q5, and so on. 
23 Unfortunately, the main challenge in poker is not the depth of the tree but its width. 
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one where she does not, and this knowledge affects the value of the state. In three-card 
poker, if your opponent possesses a Jack, the state in which you possess a King is better 
than the one in which you possess a Queen, because you cannot be fooled by a bluff. 

Even if we were to circumvent all of these obstacles, the bounded-depth-search ap- 

proach is not a general solution. While it may work when the game tree is deep but not 
too wide, some game trees (full scale poker, for example) cannot even be expanded to 
depth 1. One approach that may be useful for such games (as well as for others) is 
based on abstraction. Many similar game states are mapped to the same abstract state, 
resulting in an abstract game tree much smaller than the original tree. The abstract tree 
can then be solved completely, and the strategies for the abstract game can be used to 

play the real game. 
In poker, for example, this approach is likely to work very well. It is implausible that 

each of the (552) hands that a player can get (in 5-card draw) generates a completely 
different strategy. Indeed, our experimental results in Section 6 reveal a lot of regularity 
in the strategies, with the gambler exhibiting identical behavior for the cards 6, 7 and 8. 
We believe that the solution for an appropriately abstracted game will result in strategies 

that are very close to optimal. We are currently in the process of experimenting with 
various possible abstractions. 

Gala’s ability to concisely and naturally represent a game via its rules may even allow 
us to construct appropriate abstractions automatically. Even more interestingly, it raises 
the intriguing possibility that we might, one day, develop solution algorithms that solve 

games dinectly from their rules. 

7.3. Conclusion 

The Gala system can provide the infrastructure for experimental game-theoretic re- 
search. Different abstractions and variants of a game can be generated easily and solved 

efficiently. Gala therefore provides a convenient tool for testing and evaluating different 

approaches for solving games. 
Perhaps more importantly, Gala can play a crucial role in making game-theoretic 

reasoning more accessible to people and computer systems. The system allows com- 
plex games to be described simply, in a language even a layperson (one who is 
not a game-theory expert) can use. This allows the game to be refined until it ad- 
equately models the given situation. The effective solution algorithms implemented 

in the system allow solutions to be obtained in a reasonable amount of time. Fi- 
nally, the solutions can be examined and interpreted in a way that is legible for 

a non-expert human. We hope that the public availability of Gala (available from 
http://robotics.stanford.edu/"koller/gala.html) will encourage the use of 
game-theoretic reasoning in day-to-day life. 
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