INTER-PROVIDER QUALITY OF SERVICE

BRUCE DAVIE Cisco Fellow bsd@cisco.com

Agenda

- Motivation
- QoS Deployment in Single Provider VPNs
- Inter-provider QoS Challenges
- Service Specification Issues
- Mechanisms for Service Delivery
- Measurement and Monitoring
- Conclusions

Scope of the problem

- Inter-provider QoS issues are also relevant to the public Internet, independent of MPLS
- MPLS VPNs a driving application for inter-provider QoS
 Higher customer expectations for QoS
 QoS deployment becoming the norm in *single* provider VPNs
 Don't need to solve all the inter-organizational issues
 e.g. Yahoo's idea of "critical" traffic may differ from mine
- \rightarrow Moving from single-provider VPN QoS to multi-provider VPN QoS an appealing incremental deployment strategy

Motivation

- QoS a key requirement for many VPN users
- Providers want to increase value by delivering QoS
- Some MPLS-VPN providers looking to increase "footprint" through peering

QoS-enabled peering the logical next step

- IPSEC the "easy" way to do inter-provider VPNs today, but unlikely to offer inter-provider QoS anytime soon
- Inter-provider QoS could speed adoption of MPLS VPNs
 Some global companies see it as the reason for MPLS

Motivation (cont.)

By enabling interprovider QoS, providers could grow overall market for IP/MPLS-based services

Enable migration of more critical applications to IP/MPLS

- Analogy: today's multi-provider Internet has much higher utility than "closed" packet networks of the past
- Ignoring interprovider QoS has two risks:
 - Third parties will meet the need using overlays
 - Tragedy of the Commons lower overall utility as each provider pursues his own local optimum

Single Provider QoS: Current Status

Diffserv deployment in MPLS VPNs

- Edge bandwidth is expensive enough to warrant complexity of Diffserv – don't want to buy enough BW to provide voice-like QoS to all traffic
 - No need to run bulk data at 30% utilization
 - Relative burstiness of data makes matters worse
- Service often competes with/replaces Frame Relay (w/ CIR), so QoS expected
- 200+ providers running RFC2547 VPNs the majority offer Diffserv-based QoS
- Not much incremental cost to do Diffserv in the core once implemented on edge

Delay/Load Tradeoff

If I Can Keep EF Traffic < α %, I Will Keep EF Delay Under *M1* ms If I Can Keep AF1 Traffic < β %, I Will Keep AF1 Delay Under *M2* ms

MPLS

2004

Diffserv on the edge

Diffserv in single provider VPNs

- Customers typically subscribe to 2-4 service classes
 - Number of classes and their definitions vary among providers

Examples:

- "VOIP" class offers low latency, low loss up to a rate limit
- Usually implemented as EF using priority queue (LLQ)
- Premium data" class offers bounded latency, low loss, with ability to burst above agreed rate
- Implemented as AFx with class-based queue
- Best effort

Interprovider QoS: Challenges

Inter-provider QoS: Issues for Providers

- For providers with global reach, inter-provider QoS opens door to competition
- Lack of customer ownership
- Settlements/revenue recognition
- Finger pointing when SLAs are not met
- Concern about commoditization
- Data/topology hiding

Interprovider Routing Issues

Customers can't easily predict which ISPs their traffic will traverse

- With whom do I negotiate my SLA, to whom do I complain?
- What speed of light delay will I see?
- Will all SPs in path deliver QoS?

Service Concatenation Challenges

- What service is obtained when the services of several providers are concatenated?
- Lack of common service definitions makes this especially hard

•e.g., if one provider measures jitter over a month and one measures over 5 minutes, how is jitter defined when these two providers are concatenated?

Even consistent services can be hard to concatenate

An analogy: Octane ratings

Three aspects of standardization

- A technical definition of the octane rating scale
- A defined test to measure octane rating
- Standardized "tiers" of octane (regular, mid-grade, super)
- Still some opportunities for differentiation
 - e.g. go beyond the minimum requirement for "super" with 94-octane

Service Specification Issues

- Need to define the performance metrics (e.g. jitter, loss) consistently (cf. Octane)
- Need a small set of common services that can be concatenated across providers (cf. Regular, Mid, Super)
 Providers free to offer additional services
- Specifications must be consistent at a detailed level
 E.g. same delay percentiles, same averaging intervals
- Axiom: Implementation mechanisms must be left to the providers

Anything from simple overprovisioning to DS-TE

Example service definition - Telephony

Packets marked as "EF" PE polices EF from customer using a token bucket rate & burst are negotiated SLA parameters For "in-contract" traffic, provider commits to

- Loss < x% in any y minutes</p>
- Mean delay < D in any y minutes</p>
- **-**99th percentile delay $< D_1$ in any y minutes
- **-**99.9th percentile delay $< D_2$ in any y minutes

Concatenation challenges

- Many aspects of service need to be consistent among providers (e.g. measurement interval "y")
- Adding delay percentiles is pessimistic
 - Sum the 99th percentile across 3 providers and you have the 97th percentile
- Uncertainty about number of providers in path
 Sum of mean delays may get too big

Routing

- Problem: how to ensure that traffic needing QoS traverses providers who can deliver QoS?
- Possible approach:
 - Define a small set of services
 - Use a small number of BGP community attributes to indicate which services an AS supports
 - Route QoS-enabled traffic to QoS-enabled ASes
 - Note: may require QoS-aware forwarding

Implementation Mechanisms

Service Delivery Mechanisms

- Overprovisioning
- Basic Diffserv (or MPLS-Diffserv as in RFC3270)
- MPLS TE
- Diffserv-aware TE (DS-TE)
- Aggregate RSVP (RFC 3175)
- Inter-AS TE

Concatenated SLAs

- Provider A aggregates traffic from end customers and negotiates an SLA with Provider B much like any other customer of B
- Note that any provider may choose to deliver his SLAs using Diffserv PHBs, overprovisioning or other methods

Overprovisioning

- A fine solution for many providers today
- Potentially costly in terms of fiber & routers
 - Need to engineer the network to meet the most stringent needs of any class, for all offered traffic
 - Some argue that this is offset by lower opex
- May be risky in event of link/node failure
- Lack of differentiation among classes

Diff-Serv-Aware TE (DS-TE)

- DS-TE is more than MPLS TE + MPLS Diff-Serv
- DS-TE makes MPLS TE aware of Diff-Serv:
 - DS-TE engineers separate LSPs for different QoS classes
 DS-TE takes into account the bandwidth available to each class (e.g. to queue)
 - DS-TE takes into account separate engineering constraints for each class
 - e.g. I want to limit voice traffic to 70% of link max, but I don't mind having up to 100% of BE traffic
 - e.g. I want overbooking ratio of 1 for voice but 3 for BE
 - DS-TE may take into account different metrics (e.g. delay)
- DS-TE ensures specific QoS level of each Diff-Serv class is achieved

Diffserv-aware Traffic Engineering

- Provider builds a traffic matrix for "premium" traffic
 - Based on measurements, SLAs, growth projections, etc.
- DS-TE provides means to engineer paths for that traffic independent of best effort and with different utilization targets

Per-Class Traffic Engineering

Aggregate RSVP

- Defined in RFC 3175
- Provides somewhat similar capabilities to DS-TE
 - Allocate resources along a path for some traffic aggregate (e.g. all EF traffic from pop A to pop B)
 - But only along the shortest path
 - Naturally works across area and AS boundaries, if all providers support it

Inter-AS Traffic Engineering

- When providers have suitable knowledge of traffic matrices, inter-AS TE LSPs can be used to provide pop-pop guarantees
- Potential n² problem for widespread use

Deployment Scenarios: Extended/Virtual POP

A Global Service Provider (GSP) Expands Its Reach in a Region where a Regional Service Provider (RSP) Has Already Established Presence

Virtual POP

Per-AS Path Calculation

- One approach: use of "loose" route
- Headend calculates path only as far as it can "see"
 i.e. to an egress ASBR
- ASBR expands the route—calculates path to next ASBR
 And so on until destination is reached
- Main problem: headend must choose an ASBR
 - Doesn't know enough to pick "best" ASBR
 - There may be no valid path from that ASBR to destination
 - This problem is repeated at each ASBR along path
 - No guarantee that path found is the shortest

Loose Hop Expansion

Distributed Path Computation

- Key idea: use a "path computation element" (PCE) in each AS
- PCEs communicate with each other to gather information about the topology and resources along a sequence of ASes
- PCE for each AS calculates a set of shortest paths from all its ingress ASBRs to the destination
- Each PCE reports only those paths that meet the constraints to the next AS
- Able to calculate shortest path that meets the constraints

Limitation: Topology at the AS level must be a tree

Distributed Path Computation

Comparison of Approaches

PER AS PATH CALCULATION

- No impact on routing or signaling scalability
- Minor protocol extensions
- Doesn't find shortest path in general
- May fail to find paths that exist

2004

DISTRIBUTED PCE APPROACH

- No impact on routing or signaling scalability
- More complex protocol extensions and need for PCEs
- Will find shortest path in general
- Will find a path if one exists

Bottom Line: Two Valid Approaches, Complexity vs. Optimality Tradeoff

Measurement & Monitoring

Importance of measurement

- Customer wants to know if his SLAs are getting met
- Providers need to be able to
 - Monitor the performance of peers
 - Troubleshoot & locate cause of SLA violations
 - Verify customer problems
- Much more demanding than single provider case

Measurement Approaches

Active

- Enhanced ping
- Possible to gather lots of data but at a cost (extra traffic & processing)

Passive

 Attempt to infer network behavior by monitoring user traffic

Active Measurement

- Ping enhancements a standardization opportunity
- Cisco's "Service Assurance Agent" demonstrates one model:
 - UDP packet sent to a "responder"
 - Packet carries timestamp & sequence # for loss, delay, jitter measurement
 - Send probes with range of DSCP values and lengths to assess performance of all traffic classes

Scaling Active Measurement

- Getting a full picture of the network's performance by probing implies heavy probe load
 - Challenge for the probing platforms as well as generating extra traffic
- Possible approaches:
 - Probe less often when all is well, more often when troubleshooting
 - Probe segments of end-to-end path, rather than full mesh of PE-PE probes
 - "Trust but verify" SP can report his measurements to other SPs, who may initiate probes to verify reported data

Scaling Active Measurement

Concluding Remarks

- Would be best to standardize
 - Performance metrics
 - Small set of service classes
 - Measurement techniques
 - Reporting methods
- SPs who want to support interprovider QoS need to
 Work out bilateral agreements with each other (N²), or
 Agree on common approach among themselves (e.g. what measurement & reporting requirements must be met)
- Common approach may be easier for large N

Conclusions

- Inter-provider QoS is needed by customers to reap full benefits of MPLS VPNs
 - Thus, a revenue opportunity for providers
- Depends on some providers backing off from the "single omnipresent provider" approach
- Key technical requirements:
 - Performance metrics
 - Small set of common services offered by multiple providers
 - Routing support
 - Measurement and reporting
 - Freedom to adopt diverse implementation techniques

