

Network and Service Interworking in Layer 2 VPNs over MPLS

- By Matthew Bocci matthew.bocci@alcatel.co.uk

Outline

- > Motivation for Converging L2 Services on MPLS
- > Network and Service Interworking
- > Expectations on the New Converged Packet Network
- > Interworking the User Plane
- > Interworking the Control Plane
- > Interworking the Management Plane (OAM)
- > Conclusions
- > Further Reading

Service Convergence over MPLS

- > Service providers are introducing new MPLS based packet switched core networks
 - They are introducing Ethernet in the access
- > Motivations:
 - Generate new revenues by broadening the range of services delivered from the IP network
 - Extend the reach of existing Ethernet/FR/ATM services to new sites
 - Interconnect regional ATM networks over a national IP/MPLS network
 - Reduce CAPEX and possibly OPEX
 - Avoid per-service/per-technology networks

Standard Service Convergence Solutions

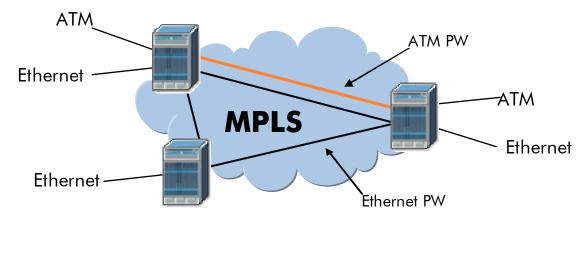
> Based on Layer 2 Network and Service Interworking functions

> Network Interworking:

- Allows networks to communicate transparently across different link layer technologies
- Interworking is performed at the link layer (L2) by encapsulating one link layer in the other
- Typically deployed inside the network and is not visible to end-users

> Service Interworking:

- Allows CPEs to exchange service layer PDU across different link layer technologies
- Interworking is performed by terminating the link layers and translating based on knowledge of the payload service context
- Constraints visible to end-users


Network and Service Interworking Benefits

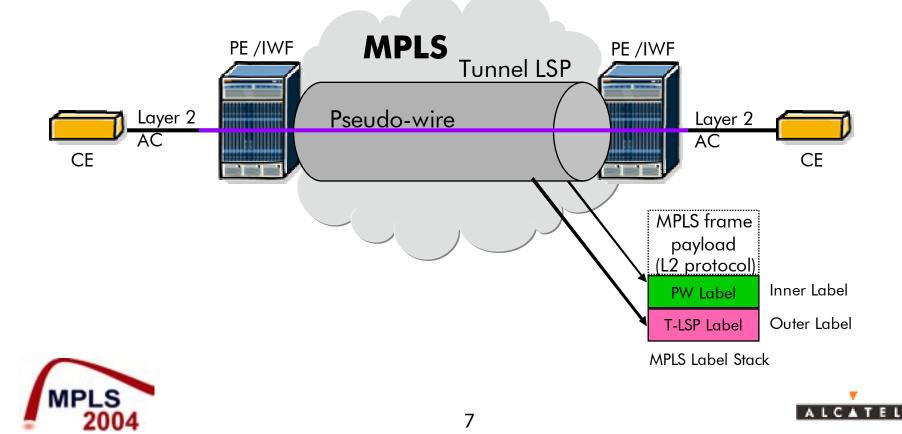
> Network Interworking:

- OPEX & CAPEX reduction across the combined service portfolio and consolidated infrastructure
- Growing existing service revenues

> Service Interworking:

 Developing new revenue opportunities from a more flexible service offering e.g. offer an Ethernet access service to customers that already have ATM or FR access to a layer 2 VPN

Expectations of the New Converged Packet Network


- > Coping with traffic growth in a cost-effective way
 - Enhance utilization of infrastructure
- > Carrier class protection and restoration
 - Offer flexible levels of protection (e.g., hot-standby versus warm-standby backup, local versus end-to-end protection)
 - Provide reactive and pro-active OAM capabilities
- > Service level differentiation
 - Offer different services with different performance objectives (e.g., VoIP, Virtual Leased Lines, Internet access)
 - Offer multiple grades of the same service (e.g., VoIP gold, silver)
- > Intelligent edge policy decision
 - Ability to have visibility and to select specific network resources and apply different policies for routing customer traffic at edge
- > Maintaining integrity of L2 services
 - Transparent carriage of existing L2 services
 - Seamless interworking with new services at the user, control, and management (OAM) planes

Basics of Pseudo-Wires

Pseudo Wires are the building blocks of a converged packet network

Outline

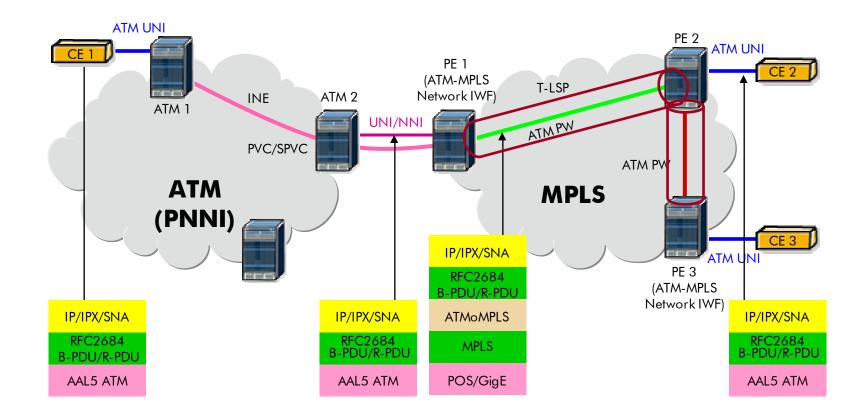
- Motivation for Converging Services on a Common Packet Network
- > Network and Service Interworking
- > Expectations of the New Converged Packet Network

> Interworking the User Plane

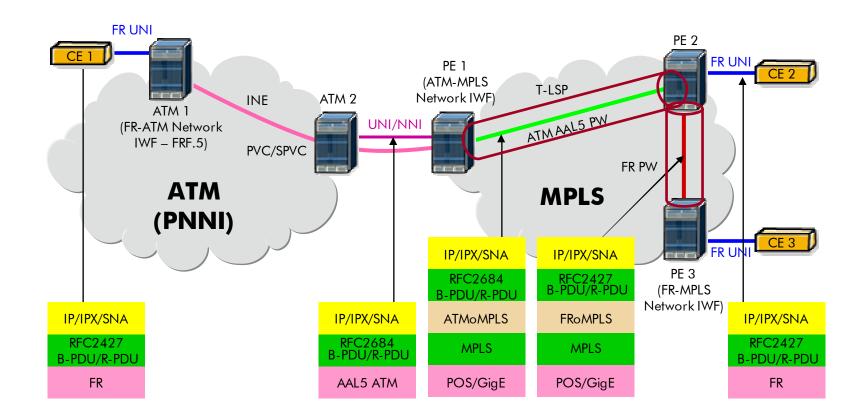
- > Interworking the Control Plane
- > Interworking the Management Plane (OAM)
- > Conclusions
- > Further Reading

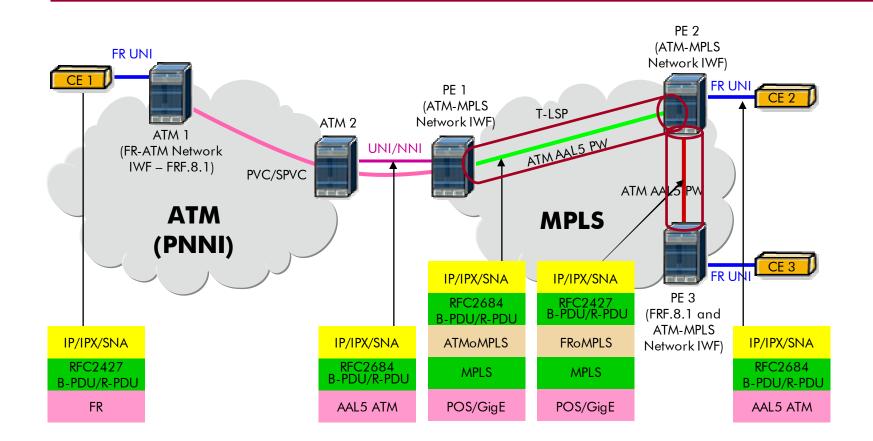
Some L2 VPN Terminology...

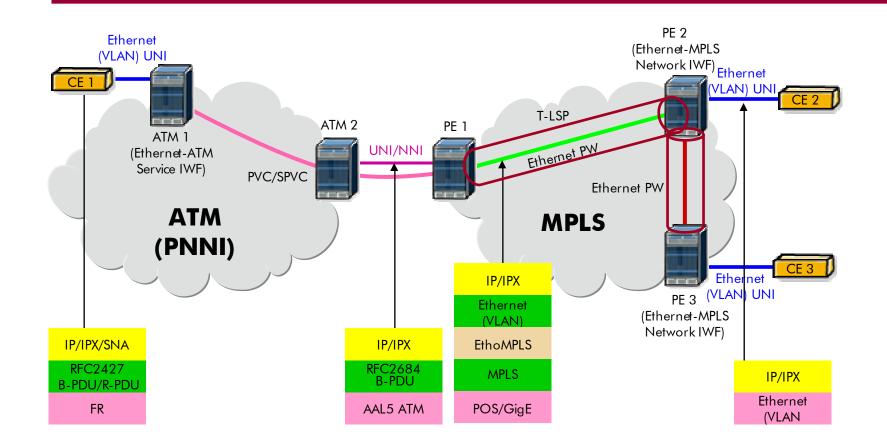
- > An end-to-end virtual circuit in a L2 VPN consists of a 3 segment set: <AC, PW, AC>
 - AC: attachment Circuit; PW: Pseudo-Wire
- > A L2 VPN circuit is homogeneous if AC and PW types are the same
 - E.g., ATM circuit: <ATM AC, ATM PW, ATM AC>
- > A L2 VPN circuit is heterogeneous if any two segments of the circuit are of different type
 - E.g., IP interworking circuit: <ATM AC, IP PW, ATM AC>, or <ATM AC, IP PW, FR AC>


Types of Interworking over MPLS

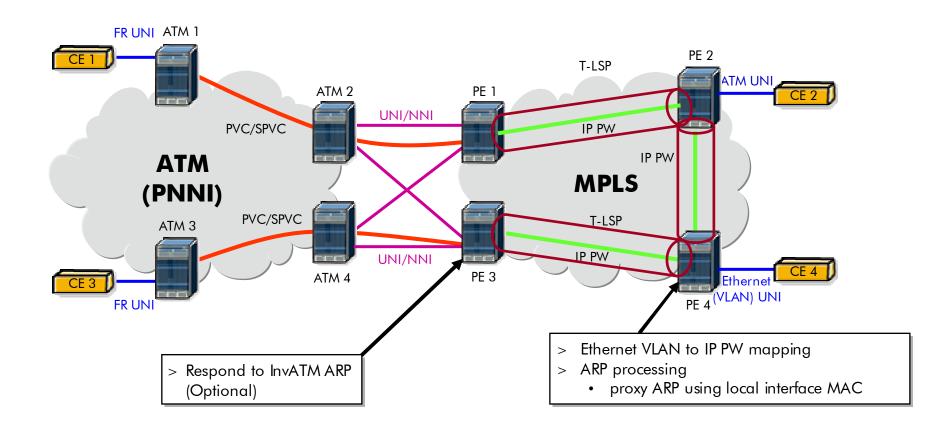
- > Network Interworking
 - ATM/MPLS using <ATM AC, ATM PW, ATM AC> circuits
 - FR/MPLS using < FR AC, FR PW, FR AC> circuits
 - Ethernet/MPLS using < Eth AC, Eth PW, Eth AC> circuits
 - FR-ATM network interworking (FRF.5) using <FR AC, ATM/FR PW, ATM AC> circuits
- > Service Interworking
 - FR-ATM service interworking (FRF.8.2) using <FR AC, ATM/FR PW, ATM AC> circuits
 - Ethernet interworking using < Eth/ATM/FR AC, Eth PW, Eth/ATM/FR AC> circuits
 - IP interworking using <Eth/ATM/FR AC, IP PW, Eth/ATM/FR AC> circuits


ATM-MPLS Network Interworking

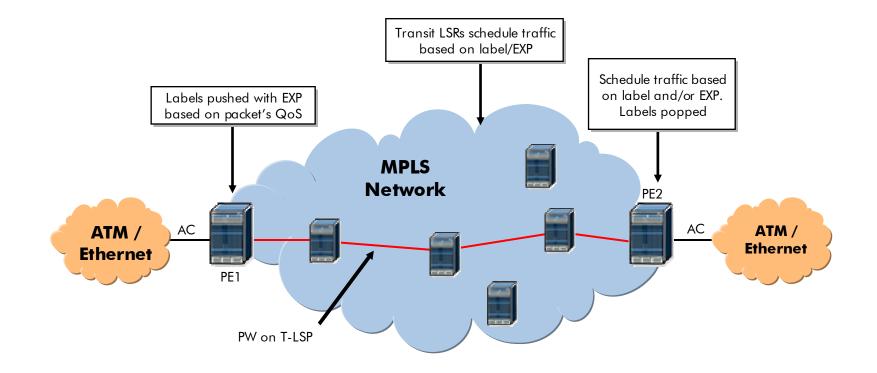

FR-ATM and FR-MPLS Network Interworking over MPLS



FR-ATM Service Interworking over MPLS


FR-ATM Service Interworking over MPLS

IP Interworking over MPLS

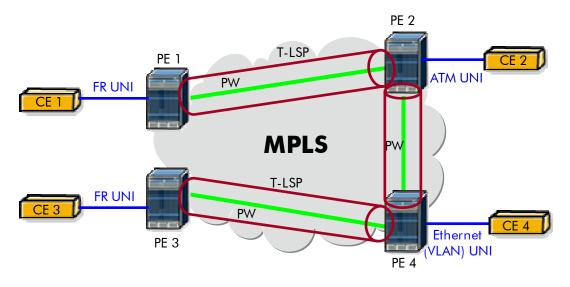

End-to-End QoS

- > Ingress Classification
 - MFC, DSCP, 802.1p, L2 I/F context (e.g., ATM Service category & CLP)
 - <CoS, DP> assigned to packet
- > Ingress Policing
 - Per L2 CoS policing, e.g., Per VPI/VCI/CLP in a ATM AC
- > Queuing and Scheduling in PE
 - Based on assigned <CoS, DP>
- > Admission control in PE
 - Tunnel LSP is assigned bandwidth
 - PW are CACed against tunnel bandwidth
- > Egress remarking in PE
 - Configurable mapping of <CoS, DP> to EXP
- > Queuing and Scheduling in Core LSR
 - According to the label value and EXP value for a L-LSP
 - According to the EXP value for a E-LSP

Example of QoS Support

Outline

- Motivation for Converging Services on a Common Packet Network
- > Network and Service Interworking
- > Expectations of the New Converged Packet Network
- > Interworking the User Plane
- > Interworking the Control Plane
- > Interworking the Management Plane (OAM)
- > Conclusions
- > Further Reading

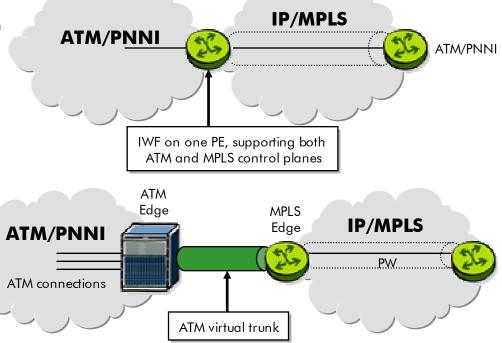

Connectivity Scenarios Across the MPLS Network

- > Scenario 1:
 - Connectivity of sites attached to the MPLS network
- > Scenarios 2 & 3:
 - Connectivity of sites attached to FR/ATM networks across the MPLS network
- > Scenario 4:
 - Connectivity of a site attached to a FR/ATM network to a site attached to the MPLS network

Scenario 1: Targeted LDP Signaling

- > Targeted LDP is used for PW setup and maintenance
- > Provides PW setup/release and status e.g. down
- > draft-ietf-pwe3-control-protocol-08.txt

Scenario 2 & 3: Integrated vs. Distributed Approaches

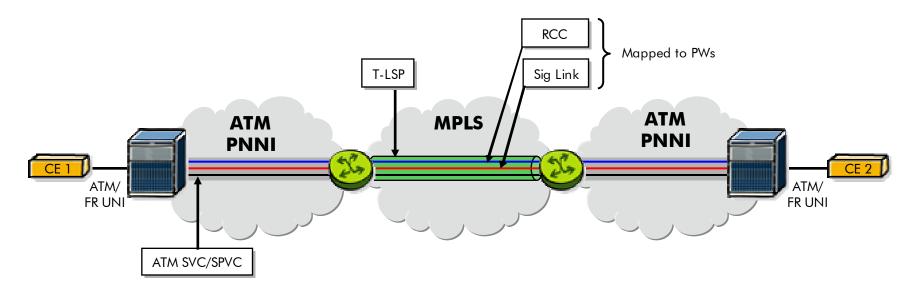

Two approaches to ATM<->MPLS network interconnection

Integrated Model

Interworking function supported on a single PE with both MPLS and ATM (PNNI/AINI) control planes >Direct ATM control of MPLS tunnel resources >1:1 mapping from ATM connections to PWs

Distributed Model

- ATM & MPLS control planes supported on different edge devices
- >Maintains admin separation between ATM & MPLS networks
- >ATM control plane tunnelled over a virtual trunk, mapped to a PW (N:1 mapping)


Extended PNNI

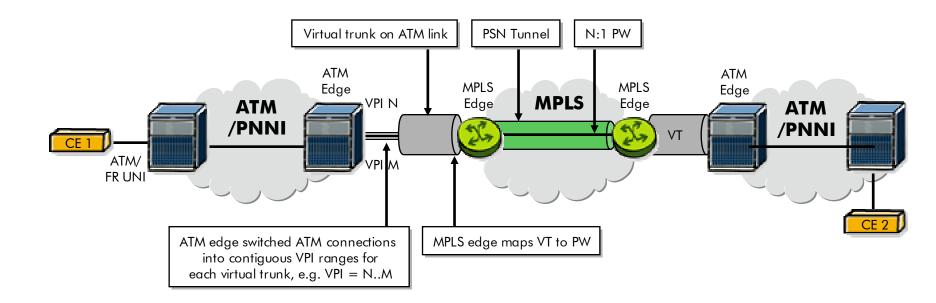
- > Designed for transparently interconnecting ATM/PNNI networks using SVCs and SPVCs over MPLS core
- > ATM/PNNI and MPLS both run on the PE (Integrated model)
- > Extension to PNNI allows it to allocate PW label on PSN tunnel
 - 1:1 mapping between ATM connections and PWs, but can use any PW encapsulation (1:1, N:1, AAL5 SDU, AAL5 PDU)
 - PSN tunnel looks like a virtual PNNI port
- > Standardised in ATM Forum: AF-CS-0197
- > Interoperability demonstrated at SuperComm 2004

Extended PNNI: Architecture

ATM Signaling for ATM-MPLS Network Interworking: >ATM Forum AF-CS-0197.000 >draft-bocci-l2vpn-pnni-mpls-iw-00.txt

Properties of Extended PNNI

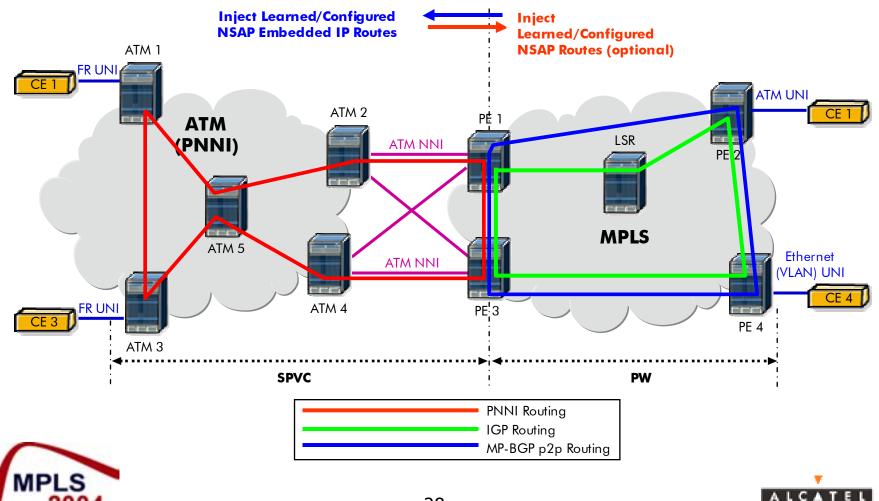
- > Independence between IGP and PNNI routing domains
- > Requires PNNI and MPLS on the same PE
 - No changes to any other switches or LSRs
- > Uses any of the standard ATM PW types, but maps 1 ATM connection to 1 PW
 - Simple QoS support
 - Same OAM model as ATM today
- > No impact on MPLS core from high ATM signalling loads
- Full transparency to all ATM switched services and future evolution of PNNI
- > PNNI can be used for ATM PW protection / restoration


Virtual Trunking

- > Range of ATM connections with the same VPI mapped to a virtual trunk at ATM edge
- > Virtual trunk is mapped to a N:1 PW at the MPLS edge
- > Targeted at the distributed model
- > Virtual trunk is established by provisioning
- > Two QoS models under discussion:
 - Implicit QoS: Each VT is a single QoS class, PW is effectively an L-LSP
 - Explicit QoS: Each packet of a given VT can have a different QoS treatment, specified using MPLS EXP bits, PW is effectively an E-LSP
 - Requires communication of QoS setting from ATM switch to PE.

Virtual Trunking: Architecture

> PNNI RCCs and Sig links tunnelled transparently over VT.> One VT for each pair of interconnected ATM switches.


Properties of Virtual Trunking

- > Independence between IGP and PNNI routing domains
- > Allows separation of PNNI and MPLS between ATM edge and MPLS edge
- > Uses only N:1 ATM PW, maps many ATM connections to each PW
 - Must be provisioned a-priori
 - OAM treatment of a VT needs to be defined
- > No impact on MPLS core from high ATM signalling loads
- > Full transparency to all ATM switched services and future evolution of PNNI
- > PNNI can be used for ATM PW protection / restoration
- > Not yet standardised: Under development in MPLS/FR Alliance

Scenario 4: SPVC-PW Interworking

Overview of SPVC-PW Interworking

- > Routing
 - LER reachability is configured in the ATM-MPLS GW (PE1/PE3)
 - LERs are assigned IP embedded NSAP addresses
 - PE1 advertises configured IP embedded NSAP routes into PNNI peer-group as externally reachable prefixes
 - SPVC launched from PNNI endpoint
 - ATM/MPLS GW (PE1/PE3) does not advertise PNNI routes to LERs
 - Routing interworking of PNNI and MP-BGP not required initially
- > Signaling
 - End-to-end SPVC consists of a bi-directional PNNI source routed SPVC and a bi-directional PW
 - Requires synchronization of call handling procedures between bidirectional PNNI/AINI/UNI signaling and unidirectional LDP signaling
 - Limited translation of signaling messages between PNNI/AINI/UNI and LDP

Described in: draft-swallow-pwe3-spvc-iw-01.txt draft-watkinson-I2vpn-pnni-psn-framework-01.txt

Properties of SPVC-PW Interworking

- > Independence between IGP and PNNI routing domains
- > Allows separation of PNNI and MPLS between ATM edge and MPLS edge
- > Only applicable to ATM/FR S-PVCs S-PVPs
- > Impact on MPLS core from high ATM signalling loads during S-PVC reroute
- > S-PVCs can only originate in the ATM network and cannot extend beyond remote PE
- > PNNI and MPLS can be used for ATM PW and PE protection / restoration
- > Under development in IETF & MPLS/FR alliance

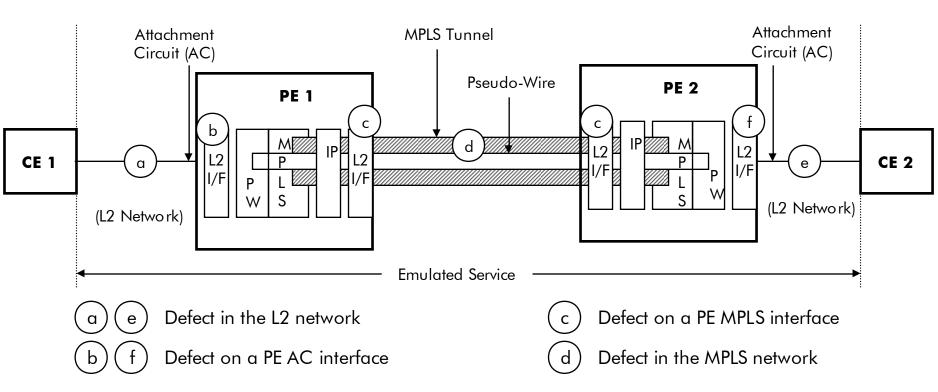
Outline

- Motivation for Converging Services on a Common Packet Network
- > Network and Service Interworking
- > Expectations of the New Converged Packet Network
- > Interworking the User Plane
- > Interworking the Control Plane
- > Interworking the Management Plane (OAM)
- > Conclusions
- > Further Reading

Convergence on IP/MPLS and Implications on OAM

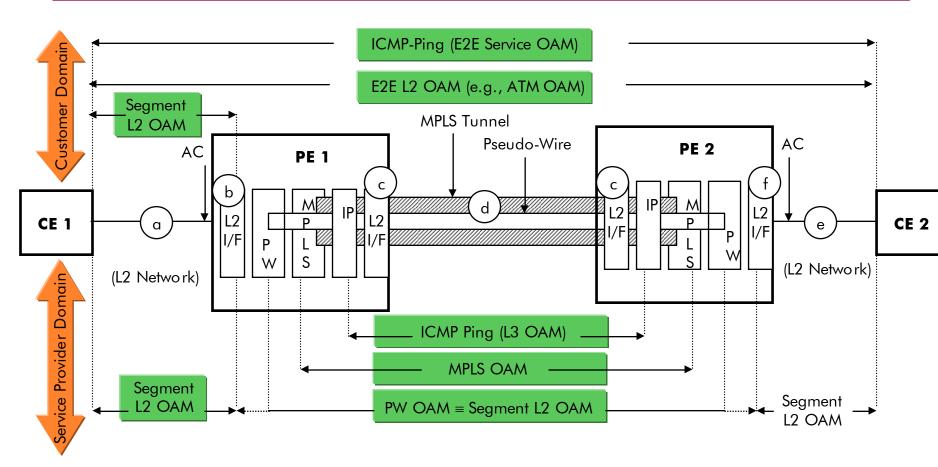
Reluctance to converge premium services over IP/MPLS without OAM as robust as today's data networks. Critical to OPEX reduction.

- > Provide and coordinate OAM at the relevant levels in the IP/MPLS network
- > Proactive and reactive OAM mechanisms which are independent at all levels

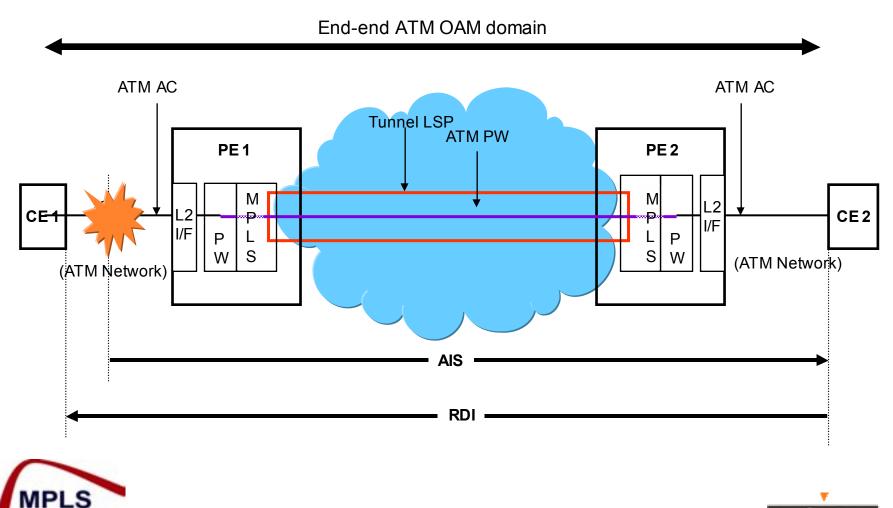

VC / PW Level e.g VCCV, PW status

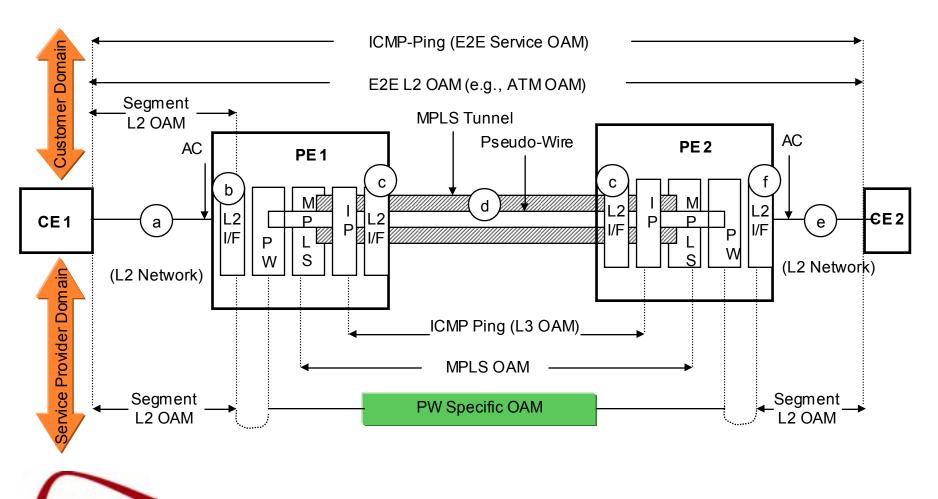
E.g MPLS OAM

Defect Locations

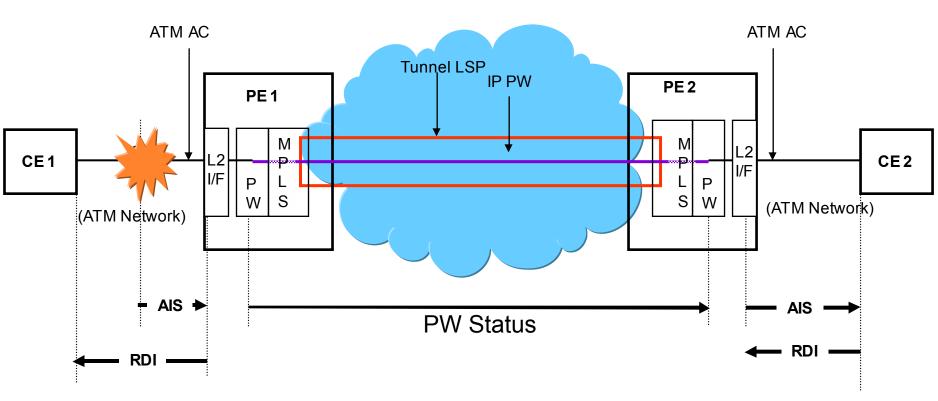

OAM Interworking Models

- > Homogeneous L2 VPN Circuit
 - AC link layer not terminated at PE
 - Native service OAM must run inband transparently over MPLS tunnel:
 - it is used for both AC and PW defect indication
 - Exceptions: FR and Ethernet network interworking for a lack of inband OAM
- > Heterogeneous L2 VPN Circuit
 - AC link layer terminated at PE
 - Native service OAM always terminates at the AC endpoint in a PE
 - requires PW specific defect indication
 - Out-of-band PW status signaling is used by default
 - Exception: FR-ATM service interworking when PW uses ATM cell mode
- > Need to be pragmatic:
 - PW status signaling is default when there is no in-band OAM on PW


Homogeneous Circuit OAM Model



Homogeneous Circuit OAM Example


Heterogeneous Circuit OAM Model

MPLS

Heterogeneous Circuit OAM Example

Outline

- Motivation for Converging Services on a Common Packet Network
- > Expectations of the New Converged Packet Network
- > Network and Service Interworking
- > Interworking the User Plane
- > Interworking the Control Plane
- > Interworking the Management Plane (OAM)
- > Conclusions
- > Further Reading

Conclusions

> Many carriers are looking at MPLS for Service Convergence

- Offering or extending the reach of revenue generating Layer 2 services over an MPLS backbone
- Converging layer 2 services to leverage the same backbone to provide enhanced revenue generating Layer 3 services

> Two approaches to support layer 2 services over MPLS

- Layer 2 Network Interworking & Service Interworking
- Will require comprehensive interworking at user, control and management planes to realise potential benefits

References*

- > Network and Service User Plane Interworking
 - ATM PW: draft-ietf-pwe3-atm-encap-06.txt
 - Frame Relay PW: draft-ietf-pwe3-frame-relay-03.txt
 - Ethernet PW: draft-ietf-pwe3-ethernet-encap-07.txt
 - IP interworking PW: draft-shah-l2vpn-arp-mediation-01.txt, draft-balus-pwe3-ip-pseudowire-01.txt
 - ATM-MPLS network interworking: ATM Forum af-aic-0178.001
 - ATM-MPLS network interworking: ITU-T Y.1411, Y.1412
 - FR-ATM network interworking: Frame Relay Forum FRF.5
 - FR-ATM service interworking: Frame Relay Forum FRF.8.2
 - FRF.8.2 over MPLS: MPLS FR Alliance work in progress
 - Ethernet interworking over MPLS: MPLS FR Alliance work in progress
- > Control Plane Interworking
 - PW signaling: draft-ietf-pwe3-control-protocol-08.txt
 - ATM Signaling for ATM-MPLS Network Interworking (Extended PNNI):
 - ATM Forum AF-CS-0197.000
 - draft-bocci-l2vpn-pnni-mpls-iw-01.txt
 - ATM-PWE3 signaling interworking:
 - draft-swallow-pwe3-spvc-iw-01.txt
 - draft-watkinson-l2vpn-pnni-psn-framework-01.txt

References* (II)

- > ATM OAM
 - ITU-T I.610 Recommendation
- > FR OAM
 - PVC Management (LMI): ITU-T Q.933 Annex A
 - OAM: Frame Relay Forum FRF.19
- > MPLS OAM
 - LSP-Ping and Trace-Route: draft-ietf-mpls-lsp-ping-04.txt
 - MPLS OAM requirements: draft-ietf-mpls-oam-requirements-02.txt
 - MPLS OAM framework: draft-allan-mpls-oam-frmwk-05.txt
 - MPLS OAM: ITU-T Y.1711
- > L2 VPN and Pseudo-Wire (PW) OAM
 - draft-ietf-l2vpn-vpls-ldp-04.txt
 - draft-aissaoui-l2vpn-vpws-iw-oam-01.txt
 - draft-ietf-pwe3-vccv-01.txt
 - draft-ietf-pwe3-oam-msg-map-00.txt
 - draft-ietf-pwe3-atm-encap-04.txt
 - ITU-T Y.1413

Thank You

Matthew Bocci matthew.bocci@alcatel.co.uk

