

Fast Reroute for IP and LDP based Networks

By Albert J. Tian and Naiming Shen Redback Networks {tian,naiming}@redback.com

Need for IP/LDP Fast Reroute

IP/LDP network is no longer best effort

- Mission Critical Application
- Delay sensitive services such as VoIP, Video over Broadband, Video on Demand, Pseudo Wire etc
- L3VPN, L2VPN, and L1VPN mainly use IP/LDP in the provider backbone
- Goal is to achieve under 50ms repair time when a network element fails

Existing Solutions insufficient for IP/LDP

Fast reroute for RSVP-TE LSP

- Protect RSVP-TE LSP traffic
- 50ms repair time
- Difficult to protect IP traffic: need full mesh edge to edge TE LSPs
- IGP/LDP fast convergence
 - Minimize packet loss for IP/LDP traffic
 - Sub-second repair time, hard to achieve under 50ms

Requirements for IP Fast Reroute

- Repair time within 50ms
- Protect variety of traffic types: IP unicast, IP multicast, LDP, RSVP-TE, etc
- 100% repair coverage regardless of network topology
- Work across area/level/domain boundary
- Guaranteed repair time regardless of network topology and size
- Solution complexity do not increase with network size

Three Questions on Fast Reroute

- Q1: Where to terminate the repair paths?
- Q2: How to calculate the repair paths?
- Q3: How to implement the repair paths?

Answers: Nexthop Fast Reroute (NHFRR) and Alternative Shortest Path (ASP)

- Termination: Next-Hop Fast Reroute:
 - terminate at nexthop or next-nexthop <draft-shen-nhop-fastreroute-01.txt>
- Calculation:
 - Alternative Shortest Path: exclude the link/node being protected and re-calculate SPF
 - <draft-tian-frr-alt-shortest-path-01.txt>
 - Full CSPF with QoS constraints
- Implementation:

Next-Hop Fast Reroute Link Protection

- repair path terminate on nexthop B
- can protect many types of traffic on link A-B

Big Picture for Link Protection

Black is shortest path tree from SPF

Minimum one repair path for each protected link

Need 3 repair paths to cover 3 links

Next-Hop Fast Reroute Node Protection

- repair paths terminating on next-nexthops
- Since each nexthop may have multiple nextnexthops, may need multiple repair paths to cover all traffic going through one nexthop

Big Picture for Node Protection

Black is the shortest path tree from SPF

Minimum one repair path for each next-nexthop

Need 6 repair paths to cover 3 nexthops

Node Protection for LDP Traffic

Rerouted traffic is tunneled to next-nexthop D

- PLR A needs to know next-nexthop D's label
- LDP extension to learn next-nexthop label

<draft-shen-mpls-ldp-nnhop-label-01.txt>

LDP targeted neighbor to all next-nexthops

Node Protection for Multicast

- Repair paths to all downstream next-nexthops
- Replicate onto all repair paths
- Rerouted traffic has to be tunneled (encapsulated) all the way along the repair paths

Finding Next-Nexthops for Multicast

- Normally multicast routing protocols only know immediate downstream neighbors that are interested in a group
- Extensions are needed to learn downstream next-nexthop neighbors that are interested in a group: <draft-shen-pim-nnhop-nodes-01.txt>

Inter-Area Node Protection

- when a border router leaks routes into another area/level, it can optionally attach the nexthop information
- the nexthop information from other areas can be used to setup repair paths across areas/levels
- <draft-shen-isis-interarea-route-info-00.txt>

Repair Path Calculation

- A repair path is an explicit path with a constraint that it can not go through the link or node that is being protected.
- A simple solution Alternative Shortest Path: exclude the link or node that is being protected and re-calculate SPF
- Full CSPF
 - Can take QoS parameters and other policies into account
 - Can produce multiple repair paths to share the rerouted traffic

Complexity of Alternative Shortest Path

- Maximum N SPF computations for PLR, where N is the number of nexthops
- Link Protection:
 - Each SPF is calculated excluding a link being protected
- Node Protection:
 - Each SPF is calculated excluding a nexthop being protected

Repair Path Implementation – RSVP-TE

- PLR signal the repair paths using RSVP-TE
- Assuming N nexthops, H next-nexthops
- For Link Protection, Maximum N repair paths need to be signaled
- For Node Protection, Maximum H repair paths need to be signaled
- In reality, N and H are small

Summary

- Next-Hop Fast Reroute and Alternative Shortest Path are very simple and intuitive
- 100% repair coverage regardless of topology
- Maintain small number of repair paths, regardless of network size, great scalability
- The only solution that covers multicast
- Using RSVP-TE, which is mature technology
- The only solution that can take QoS and other policies into consideration, great flexibility

Uniform solution protect all traffic types

Micro Loop Prevention

- Could happen when routers converge in the wrong order
- Ordered convergence would solve the problem
- Orthogonal to Fast Reroute solutions

Compare to Loop-Free Alternative

- draft-ietf-rtgwg-ipfrr-spec-base-00.txt>
- Computation wise the same as Alternative Shortest Path (without loose segment optimization)
- Loop-free is simpler in repair path implementation when protecting IP unicast
- Loop-free Alternative has limited coverage for unicast
- Loop-free does not cover multicast

