

MPLS convergence – IGP and BGP Convergence Impacts

-By Susan Hares skh@nexthop.com

Why worry about Performance:

Reduce Operational expense

- Reduce downtime
- Reduce outages due to configuration and provisioning errors
- Reduce outages due to Security attack
- Increase services
 - VPN services
 - VOIP services
 - Access Services

Convergence

Convergence issues

Caveats on Model

- Model versus Reality
 - Believe the Real Data
 - Real IPv4 Data: Beacon Experiments, Route Views, Telstra Data base
 - Problem: No L3 VPN data recorded separate
- Model tries to match benchmarking with Real data
 - 1st pass based on IGP + BGP models
 - 1st pass light on the LDP and RSVP models
- Feedback on Model's appreciated

MPLS Model of Convergence

- Models for Convergence
 - Link, IGP, BGP, LDP, RSVP-TE
 - Route Traffic models
- Benchmark
 - Single Node vs Multiple Nodes
- Results

Link Failures Times

Link

Failure

Detect

- Model Equation: D = Minimum(3*Link-timer, Sout)
 - Best: Hardware detection
 - Planned: Link-Timer : "alive" timer for the link
 - S-out = 3 times Link-Timer

Physical link

- Sonet:Link Time up/down = 10 ms
 - Improvements if change to 1 ms
- Ethernet, Wireless: Use of Signaled Link Down
- IP layer BFD light weight Hello

IGP Convergence times

LoC(p) = D + O + QSP + (h * F) + SPF(n) + RIB(p) + FIB(p)+ DD + CRR

- D: Failure is detected
- O: New LSP is originated
 - Insertion of External routes occurs here
- QSP: cumulative queuing, serialization, propagation,
- H*F: LSP is flooded up to rerouting node
- SPF: Shortest path calculation
- RIB: RIB is updated
- FIB: FIB is updated
- DD: LCs are updated
- CRR: BGP recursion is fixed

References: <u>www.nanog.org/mtg-</u> <u>0202/ppt/cengiz.pdf</u>; mtg-0010/ppt/cengiz.pdf

Dominate variables With high speed/bandwidth links

IGP Topologies (OSPF, ISIS)

- Types of topology
 - Lightly connected (1-2 links/ router)
 - Medium connected (2-3 links/router
 - Highly connected (4-5 links/router)
 - Least Squares Test topology

OSPF Convergence time

Convergence for LSA Square Network

Caveat: Cisco utilized medium mesh; GateD utilizes heavily meshed

OSPF External Routes caveat

- The deployment of the OSPF code may be in a single area or in multiple areas.
 - Model equation gives single Area equation (most used)
- A more complex mode adds:
 - Inter-Area SPF computation
 - Intra-Area Database Lookup
 - Intra-Area SPF calculations for AS-External (type-5) and NSSA Computations
 - Summary Computations for an Area Border Router [Summary network (type-3) and Summary ASBR (type-4)]
- Benchmarking may give this
 - With internal sensors, or
 - For simple situations in black box

BGP Convergence

- rumor protocols with paths
- BGP is Policy Protocol
 - Amount policy matters in convergence
- BGP distributes routes from IGPs and Labels from MPLS
 - Redistribution times matter
- BGP is widely deployed
 - Data of BGP routes patterns matter
 - Processing patterns matter: Fractal or Markov

nexthop

Multi-AS Convergence for Beacon with multiple routes

Convergence Terms as seen by AS 2 Router 1

- $\bullet T0 1^{st}$ change received from AS 1
- $\bullet T1 1^{st}$ change sent to AS 3

- •T2 Last change received from AS 1
- •T3 Last change received from AS 1

Beacon Experiments are collecting data !!

Received E-BGP updates

E-BGPec(p) = Ur + (Tr + QSP + RS-Policy + PV + RIB)(rts) + IBGPec + EBGP-lpec + EBGP-ASpec + FIB + CRR

- Ur: Update is received
- Tr transmission of Update
- QSP: cumulative queuing, serialization, propagation
- RS-Policy: Route Selection Policy
- PV: Path Vector Calculation
- RIB: RIB is updated
- **DS-Policy: Distribution Policy**
- IBGP-ec IBGP convergence based on exterior routes
- EBGP-lpec Convergence EBGP Peers for BGP peer local to receiving BGP router
- EBGP-ASpec Convergence of EBGP Peers for BGP peers within AS
- FIB: FIB is updated
- CRR BGP Route Recursion is check

E-BGP with no IBGP peers

 $E-BGPec(p) = Ur(_{T2-To}) + (Tr + QSP + RS-Policy + PV + RIB)(rts)$ + nEBGP-lpec (DS-Policy + RIB + Uo + Tx) +nEBGP-Asp-ec(Uo + Tr + QSP + RS-Policy) + FIB + CRR

- Ur: A sequence of New Updates are received
- Uo update originated
- Tr processing reception of the New Updates with Route(s)
- QSP: cumulative queuing, serialization, propagation
- RS-Policy: Route Selection Policy
- PV: Path Vector Calculation
- RIB: RIB is updated
- DS-Policy: Distribution Policy
- TX Update is transmitted
- FIB: FIB is updated
- CRR BGP Route Recursion is check

I-BGP convergence: transit

BGPlec(p) = \mathbf{Ur} + N-Peers (Tr + QSP + RS-Policy + PV + RIB + DS-Policy+ RIB + Tx) + FIB + CRR

- D: Failure is detected
- LoC(p): IGP convergence
- Uo: New Update is originated
- Uor: New Update is originated based on E-BGP received
- Tr transmission of Update
- Tx Update is transmitted
- QSP: cumulative queuing, serialization, propagation
- RS-Policy: Route Selection Policy
- DS-Policy: Route Distribution Policy
- PV: Path Vector Calculation
- FIB: FIB is updated
- RIB: RIB is updated
- CRR Route Recursion is check

Worse Case = Sequential N-Peers
Best case = 1

 $\frac{1}{2}$ peers

I-BGP convergence: Originated

BGPoc(p) = D + LoC(p) + Uo + N-Peers (Tr + QSP + RS-Policy + PV + RIB + DS-Policy + RIB + Tx) + FIB + CRR

- D: Failure is detected
- LoC(p): IGP convergence
- Uo: New Update is originated
- Uor: New Update is originated based on E-BGP received
- Tr transmission of Update
- Tx Update is transmitted
- QSP: cumulative queuing, serialization, propagation
- RS-Policy: Route Selection Policy
- DS-Policy: Route Distribution Policy
- PV: Path Vector Calculation
- FIB: FIB is updated
- RIB: RIB is udpated
- **BGP** Route Recursion is check

•Worse Case = Sequential N-Peers

• Best case = 1 $\frac{1}{2}$ peers

LDP Convergence- IGP/LDP node

LDPoc(p) = D + LoC(p) + LO + (h * (LDP-node))*Path + LIB + LFIB

LDP-node = Lr + LSP-RS-Policy + LD + LSP-DS-Policy + Lx + LIB + LFIB (preliminary)

- D: Failure is detected
- LoC(p): IGP convergence [From OSPF]
- LO: New Update to Labels are originated
- h hops for LDP distribution from ingress to egress
- Path Pathways factor
- LDP-node per node distribution
- Lr Label update received
- Lx Label update sent

MPI S

- LIB label information base updated
- LFIB label forwarding base updated

•Worse Case = All paths sequential

• Best case = 1 or $1\frac{1}{2}$ paths

RSVP-TE Convergence times

LoC(p) = RR + RRO + QSP + (h * (rspv-node)) + LIB + LFIB

- RR: Reservation Requested
- RRO: New RSVP Request
 - Insertion of External routes occurs here
- QSP: cumulative queuing, serialization, propagation,
- H*F: LSP is flooded up to rerouting node
- SPF: Shortest path calculation
- RIB: RIB is updated
- FIB: FIB is updated
- DD: LCs are updated
- CRR: BGP recursion is fixed

Benchmarking Performance

- •IGP
 - Data stream: Generated OSPF LSA/ISIS LSP Sent to node
 - Internal measures: SPF convergence, inter-area,

•Data stream parameters: Prefix mixtures, # of AS in Path

No substitute for the Real data mixtures

Models: Fractal (blast) or Markov arrival rates

•Policy parameters: RS-Policy and DS-Policy in term of ACLs or route maps

•TCP Parameters

•BGP protocol: off WRD, IBGP synchronization, Smoothing, Min-Route Advertisement time

•Measurements: Blackbox (tcpdump) versus Internal

•L3 VPN

•Data stream: BGP test patterns with Label insertion based on translation

•Measurement: blackbox (tcpdump) vs internal

•LDP

- Data stream:
 - Generated OSPF LSA/ISIS LSP inserted into Node
 - •LDP generates label per prefix
- Internal measures: SPF convergence, inter-area,

RSVP

•Data stream: Generated Requests based on Traffic manager model

•External measurement: TCP dump or TR2

The Internet Continues to Grow

IP v6 is emerging

Date

The Number of Unique Networks (AS) is growing

Networks are getting more connected

Less network prefixes per AS

MPLS 2004