

Multicast and MPLS

Matthew Finlayson VP Development and Requirements Networking Protocols Group

matthew.finlayson@dataconnection.com

Why is Multicast Important?

- Video broadcast
 - Media
 - Corporate
 - Near Video-On-Demand
- Video conferencing
- Financial
- Defense / Simulation
- DSL / Cable

How Does IP Multicast Work?

- End station receivers (sinks) announce that they want to listen to specific multicast addresses (channels)
- Multicast routers work out an "optimal" way of routing the data
 - What is "optimal"?

Broadcasters (sources) just start sending

Multicast Sources, Routers and Sinks - 1

Multicast Sources, Routers and Sinks – 2

The sinks register their interest

Multicast Sources, Routers and Sinks – 3

The multicast routers work out an optimal route

Multicast Sources, Routers and Sinks – 4

The sources start sending

IP Multicast Protocols and Terms – 1

- IGMP (Internet Group Management Protocol)
 - Used by sinks/receivers to register their interest in particular traffic
 - MLD is the IPv6 equivalent
 - IGMP Proxy, IGMP Snooping
- PIM-SM v2
 - Protocol Independent Multicast Sparse Mode
 - Probably the most popular Multicast Routing Protocol
 - Uses "shared trees"

IP Multicast Protocols and Terms – 2

"PIM-SSM"

- PIM Source Specific Mode
- Subset of PIM-SM v2
- Allows receivers to register for specific origin addresses
- BIDIR-PIM
- PIM-DM

Other Multicast Protocols

DVMRP

- Substantial historical deployments (MBONE)
- Now less interesting

MOSPF, CBT

Basically irrelevant at the moment

Multicast across Domains

- MSDP
 - Very simple protocol to allow information about PIM-SM sources to be shared
 - Requires coordination of multicast addresses
 - Doesn't scale to lots of sources
- PIM-SSM
 - Side-steps requirement for PIM-SM
 - Good way of getting things working
- BGMP
 - The "architectural" way to do things
 - Not coming any time soon

So why Multicast and MPLS? - 1

- Similar reasons that applied to IP Unicast
 - Fast switching
 - Traffic Engineering
 - Bandwidth Management
 - Fast Reroute around failures

So why Multicast and MPLS? - 2

Lack of multicast in the core

- Growing... ~500 ASs now, compared with ~300 in January 2004
- But compare with over 17,000 ASs in total!
- Fear that turning on multicast protocols will hit OAM, CPU/memory and stability

So why Multicast and MPLS? - 3

- Many SPs have deployed MPLS-based VPNs
 - Layer 2 and Layer 3
 - As the enterprise use of multicast grows these need to efficiently carry multicast traffic

How do you extend MPLS to support Multicast? - 1

- Historically, a number of approaches have been suggested
- Carry MPLS labels in PIM
 - Multicast equivalent of LDP
 - draft-farinacci-mpls-multicast-03 (expired 2001)

How do you extend MPLS to support Multicast? - 2

Use RVSP broadcast

- Transmit PATH messages out to all LSRs in the network and let them choose whether to respond
- Doesn't require external knowledge of where the tree should go
- Very different to existing RSVP-TE
- draft-choi-mpls-grouplabel-requirement (expired April 2004)

How do you extend MPLS to support Multicast? - 3

- Create P2MP trees based on external requirements
 - Similar concept to existing RSVP-TE
 - draft-ietf-mpls-p2mp-requirement
 - draft-raggarwa-mpls-rsvp-te-p2mp

Multicast and MPLS VPNs - 1

Layer 2 / VPLS

- In theory already support Multicast
- Inefficient
- Improve
 - with IGMP snooping
 - PIM NBMA
 - using BGP
 - using P2MP trees

Multicast and MPLS VPNs – 2

Layer 3

- Challenging problem to solve
- Several different solutions proposed
- Most popular uses non-overlapping PIM-SM domains for CE-PE and P-core communication
 - Other options suggest
 - Use of PIM-SSM
 - Use of BGP
- How does MPLS fit in?
 - MPLS in GRE
 - P2MP trees

Multicast is growing rapidly in importance

- New revenue areas and cost-savings obvious for SPs
- Significant work needed to allow MPLS to encourage future growth

