## Quantitative Comparison of MPLS Resiliency Approaches

 By Ramesh Nagarajan rameshn@lucent.com





### Outline

- Types of Failures and Data Plane Recovery Mechanisms
- Packet 1+1 and Standby LSP recovery mechanisms
- Comparison of Resiliency Mechanism Attributes
- Conclusion





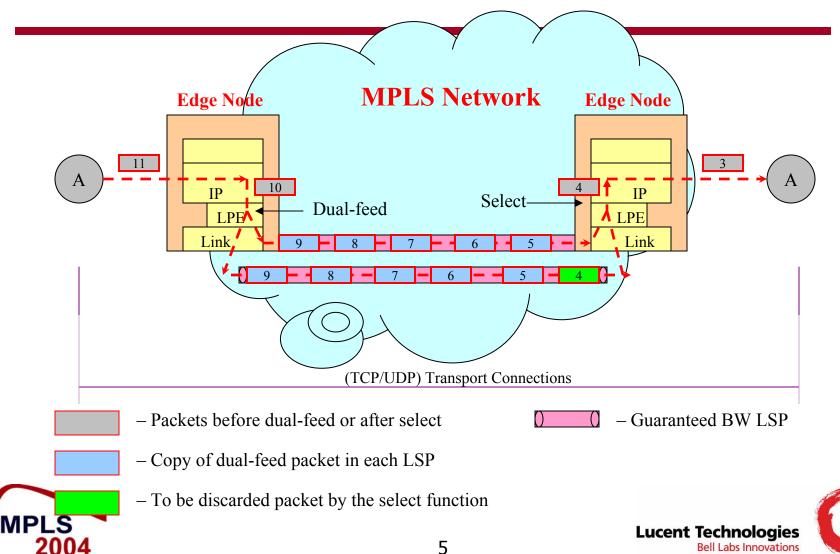
### **Types of Network Failures**

- Data Plane Failures: Physical failures such as interfaces and fiber cuts, soft failures such as incorrect label swapping, packet drops ...
- Control Plane Failures: Protocol and software crashes, control processor crash, software upgrade ..





### **Data Plane Recovery**


- Packet 1+1: Standardized for optical signaling application in ITU-T G.7712 and MPLS protection switching in ITU-T Y.1720.
- Standby LSP: Standardized in ITU-T Y.1720/Y.1711.
- Fast Reroute: Being standardized in IETF (draft-ietfmpls-rsvp-lsp-fastreroute-07.txt)
- Attributes of Resiliency Mechanism
  - Failure coverage, restoration time, redundant network capacity and service availability.

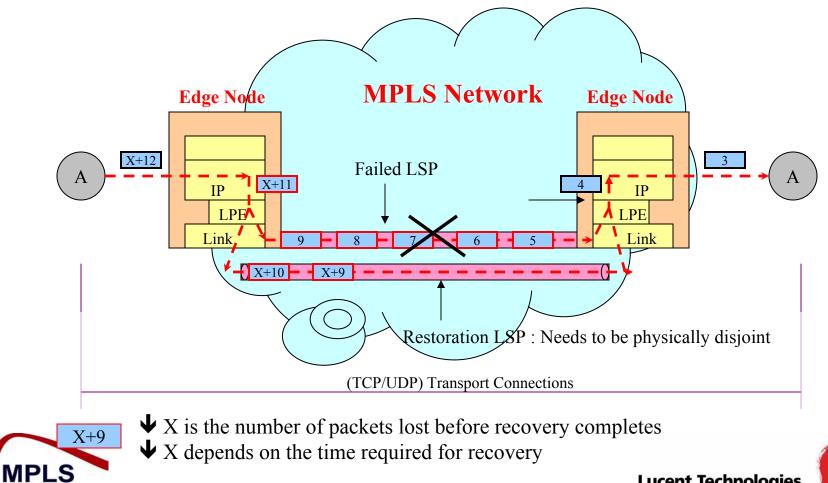




# Packet 1+1 Restoration Service

□ Packet 1+1 using physically disjoint LSPs




### Packet 1+1 LSP Service

- Packets are dual fed at LSP source and one of two duplicates selected at LSP destination.
- Failure Detection: Implicit
  - Packet selection algorithm automatically and implicitly selects from surviving LSP
- Failure Notification: None
- LSP Switching: None





# Standby LSP

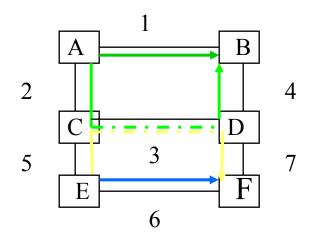


2004

### **Standby LSP Service**

#### Failure Detection

- MPLS OAM packets inserted (in data path) periodically
- Destination monitors OAM packets If no OAM packet in N consecutive intervals of T msec, flagged as failure. For N=3, T=10 msec, failure detection time is 30 msec.


#### Failure Notification

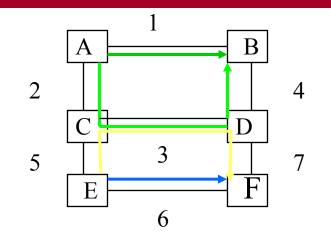
- Failure notification message sent by destination to source on disjoint alternate path setup for restoration (in reverse direction of original LSP). Failure notification time is 1/2 roundtrip time.
- Source switches to alternate LSP on reception of notification message. Switching time is implementation dependent but typically few msecs.

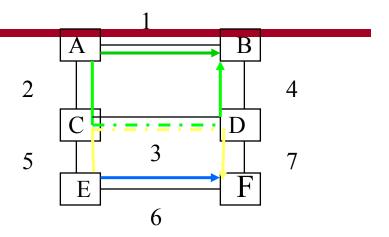




### **Restoration Capacity Sharing and Redundant Network Capacity**




Sample Standby LSP/Fast Reroute LSPs – Capacity Shared on C-D link


- A-B and E-F LSPs can share capacity on link C-D when we consider single failures.
  So, capacity needed on link C-D = Max(A-B bandwidth, E-F bandwidth).
- For packet 1+1, capacity needed on link C-D = A-B bandwidth + E-F bandwidth.





### **Service Availability**





Sample Packet 1+1 LSPs – Dedicated Capacity on link C-D Sample Standby LSP/Fast Reroute LSPs – Capacity Shared on C-D link

When links 1 and 6 fail, 1+1 LSPs are restorable but only one of the two LSPs in shared scenarios are restorable.  $\Rightarrow$  Shared Scenarios use less capacity but have lower availability.





## Failure Coverage and Restoration Time: Summary Comparison

| Resiliency Mechanism | Failure Coverage                            | Restoration<br>Time      |
|----------------------|---------------------------------------------|--------------------------|
| Packet 1+1           | All Hard Failures and Most<br>Soft Failures | Transparent              |
| Standby LSP          | All Hard Failures and Most<br>Soft Failures | 50-300 msec <sup>1</sup> |
| Fast Reroute         | Hard Failures <sup>2</sup>                  | 50 msec                  |

1 Depends of value of OAM Timers and Network Topology

2 Some soft failures can also be covered but recovery typically takes much longer





### Protection Capacity Overbuild: Summary Comparison

| Resiliency Mechanism | Network-US1 | Network-<br>US2 | European<br>Network |      |
|----------------------|-------------|-----------------|---------------------|------|
| Packet 1+1           | 233 %       | 221 %           | 188 %               | High |
| Standby LSP          | 94 %        | 64 %            | 72 %                | Low  |
| Fast Reroute         | 112 %       | 83 %            | 78 %                |      |
|                      |             |                 |                     | Med  |

#### Study considers dynamic LSPs where LSPs are setup and torn down over time





### **Comparison of Service Availability: Max Annual Downtime (Minutes)**

| Design      | Network A | Network B | Network C | Network<br>D |
|-------------|-----------|-----------|-----------|--------------|
| Packet 1+1  | 30        | 600       | 3         | 600          |
| Standby LSP | 80        | 1350      | 6         | 1250         |

Fast Reroute provides similar service availability to Standby LSP when node failures are covered in Fast Reroute



### Conclusion

- MPLS Resiliency approaches provide wide ranging values of resiliency attributes such as failure coverage, restoration time, redundant network capacity and service availability
  - Packet 1+1 provides transparent failure recovery and superior service availability at the expense of dedicated redundant capacity
  - Standby LSP and Fast Reroute mechanisms provide real-time recovery but with lower redundant capacity and lower service availability
- Resiliency approaches can be chosen to best match particular application needs



