Vision for a new optical generation and Resonant communication network architecture (RENA)

- By Tadanobu OKADA, NTT Network Service Systems Laboratories okada.tadanobu@lab.ntt.co.jp

Contents

- Broadband Services in Japan: Proliferation and Usage Trends
- Creation of Carrier-grade IP Networks: RENA (resonant communication network architecture)
- IP Optical Technologies for Resonant Communications

1. Broadband Services in Japan: Proliferation and Usage Trends

Explosive development of mobile phone & Internet in Japan

Growth in Broadband Access

Subscribers (million)

Rapid growth of FTTH subscribers in Japan

Number of Internet users

Internet penetration rate at the end of 2003

Proliferation rate for Internet in Japanese households

2 Creation of Carrier-grade IP Networks

"Deadly" business model

The one of cheapest countries in the world thanks to fierce competition

However, no ISPs can profit enough money to invest new tech.

Changes in the use of contents with/ without broadband access

An expected change in the use of the Internet

- End-to-end, direct communication between arbitrary users will prevail.
- The characteristics of end-to-end communication could be interactive and multimedia.

Concerns of Internet Users

Network assistance to end-to-end communications

Four-stage model for a carrier-grade IP network

3 IP Optical Technologies for Resonant Communications

Explosion of broadband traffic

System capacity of Commercial IP Router

Incorporation of Optical and IP Technologies

- Direct optical path setup among edge nodes without electrical IP processing in transit nodes. (cut-through by optical path)
- Considering that the whole backbone network is a virtual huge router

Optical core network

 Carrier's optical backbone for multiple service networks
Multi-layer

Photonic Internet Lab. (PIL) http://www.pilab.org/

Broadband application

IP/MPLS NW 1 GMPLS router

TDM NW

GMPLS network (backbone)

OC192

Opt. cross col

Optical NW

- The Photonic Internet Lab. (PIL) was founded in 2002. PIL is supported by the MIC (Ministry of Internal Affairs and Communications) in Japan.
- PIL is promoting R&D standardization on nextgeneration photonic network control protocols based on photonic technologies for managed networks.

High-resolution

digital cinema

IP/MPLS NW 2 (metro NW)

TCP/IP

470Mbit/s

iPOP2005

International Conference on IP + Optical Network http://www.pilab.org/ipop2005/

- Time: February 21-22, 2005
- Venue: Tokyo Fashion Town (TFT) Hall, Tokyo, Japan
- Sponsors: PIL(Photonic Internet Lab), ISOCORE, and PIF (Photonic Internet Forum)
- CALL FOR PAPERS
 - Technical area: Field trial report, operators requirements, international standards, inter-operability experiment, new services, multi-region/multi-layer, P&R, Protocol design, experiment, theory, implementation, and operational experiences are solicited.

Submission Deadline is November 1

- CALL FOR SHOWCASE EXIBITOR PROPOSALS
 - Showcase inter operability demonstration for the leading-edge technologies
 - Technical area (TBD): multi-region/multi-layer network, P&R, Layer-one VPN, etc.

Early Bird Deadline is November 1

 Audience: over 200 attendees, made up of network operators, service providers, and equipment vendors are anticipated

Thank you!

