MPLS Layer 3 and Layer 2 VPNs over an IP only Core

Rahul Aggarwal Juniper Networks

rahul@juniper.net

Agenda

- MPLS VPN services and transport technology
- Motivation for MPLS VPN services over an IP only core
- IP only core transport requirements
- Applicability analysis of IP only core transport choices
- IETF status
- Conclusion

MPLS VPN Services

- BGP/MPLS Layer 3 VPNs
 - draft-ietf-l3vpn-rfc2547bis-02.txt
- BGP/MPLS Layer 3 Multicast VPNs
 - Draft-raggarwa-l3vpn-mvpn-vpls-mcast-00.txt
- Layer 2 point to point services
 - RSVP signaled: draft-raggarwa-pwe3-rsvp-te-00.txt
 - LDP signaled: draft-ietf-pwe3-control-protocol-10.txt
- Layer 2 VPNs
 - BGP signaled: draft-ietf-l2vpn-vpls-bgp-02.txt
- VPLS
 - BGP signaled: draft-ietf-l2vpn-vpls-bgp-02.txt
 - LDP signaled: draft-ietf-l2vpn-vpls-ldp-05.txt

Transport Technology Choices

- MPLS transport tunnels
 - Most commonly deployed for Layer 3 unicast VPNs and Layer 2 services
- IP transport tunnels
 - Currently commonly deployed for Layer 3 multicast VPNs
- Choice determined by application requirement
 - MPLS VPN service architecture doesn't enforce a particular transport technology

IP Transport Tunnels in Perspective

Disadvantages

- MTU decreased by at least 16 bytes
- Multiple encapsulation options
- No support for resource reservation
- No support for explicit routing
- Incipient fast reroute technology
- However IP transport tunnels have a role...

Why MPLS VPN Services over an IP Core ?

- Transit routers may not support MPLS
 - Legacy equipment in the network
- The Service Provider may not want to deploy MPLS
 - Some people have a "technology religion" !
- As a migration path to a MPLS core from an IP core
 - What to do in the interim ?

Extending the Reach of MPLS

Migration to MPLS

IP Only Core Transport Tunnel Requirements

- Multi-service transport tunnel technology
 - Ability to carry multiple services on the same transport tunnel
 - Avoid point solutions
- Minimize the number of additional mechanisms
 - Minimize changes to protocols already used by VPN services
 - Minimize introduction of new protocols
 - An IP transport technology shouldn't require a new signaling protocol to enable a VPN service

IP Only Core Transport Tunnel Requirements ...

Operational ease

- Configuration and management
- Tunnel liveliness mechanism
- Security considerations

IP Only Core Transport Choices Applicability Analysis

- MPLS over IP
- MPLS over GRE
- MPLS over IPsec
- MPLS over L2TPv3
- Let us analyze the applicability of these to various MPLS VPN applications
 - Will focus on BGP/MPLS unicast VPNs and VPLS
- A system wide view must be taken while evaluating the above – system = service provider infrastructure

IP Only Core Encapsulation

- MPLS over IP
 - draft-ietf-mpls-in-ip-or-gre-05.txt
- MPLS over GRE
 - draft-ietf-mpls-in-ip-or-gre-05.txt
- MPLS over IPsec
 - draft-ietf-mpls-in-ip-or-gre-05.txt
- MPLS over L2TPv3
 - draft-townsley-l2tpv3-mpls-01.txt

IP Only Core Encapsulation...

MPLS Over IP

MPLS Over GRE

IP Only Core Encapsulation...

MPLS Over IPSec (Transport Mode)

MPLS Over L2TPv3

IP Only Core BGP/MPLS Unicast VPNs

- MPLS over IP and MPLS over GRE
 - No change to BGP VPN mechanisms
 - draft-ietf-l3vpn-rfc2547bis-02.txt and draft-ietf-l3vpn-gre-ip-2547-02.txt
- MPLS over IPsec
 - Requires an additional protocol: IKE for key exchange
 - No change to BGP VPN mechanisms
- MPLS over L2TPv3
 - Requires additional mechanism in BGP to exchange L2TPv3 session and cookie information
 - draft-townsley-l3vpn-l2tpv3-00.txt
 - draft-nalawade-kapoor-tunnel-safi-01.txt

IP Only Core VPLS over IP

- MPLS over IP and MPLS over GRE
 - BGP based VPLS with no changes to BGP mechanisms.
 - LDP based VPLS with no changes to LDP mechanisms and BGP based or manual auto-discovery
- MPLS over IPsec
 - IKE for key exchange
 - BGP based VPLS with no changes to BGP mechanisms.
 - LDP based VPLS with no changes to LDP mechanisms and BGP based or manual auto-discovery
- L2TPv3
 - Auto-discovery ? BGP ?
 - Currently requires L2TPv3 based signaling: draft-ietf-l2tpextl2vpn-01.txt

Multi-Service IP Transport MPLS over IP or GRE

Application Specific IP Transport MPLS over L2TPv3

Meeting the Requirements Multi-Service Transport Technology

- MPLS over IP and MPLS over GRE support all MPLS VPN services
 - IPsec supports only ingress replication with Multicast VPNs
- The same MPLS over IP, GRE and IPsec tunnel can be used for providing different MPLS VPN services
- The same L2TPv3 tunnel can NOT be used for providing different VPN services
- The "complete" VPLS solution with L2TPv3 is not clear
- Applicability of L2TPv3 to Multicast VPNs is not clear

Meeting the Requirements Minimize Additional Mechanisms

- Minimize changes to the MPLS VPN enabling technology
 - MPLS over IP, GRE and IPsec do not require any changes
 - MPLS over L2TPv3 requires enhancements to BGP for BGP/MPLS L3VPNs
- Minimize the number of new protocols
 - MPLS over IP and GRE do NOT require new protocols
 - IPsec requires IKE
 - L2TPv3 requires L2TPv3 signaling for L2 transport
 - L2TPv3 doesn't reduce the BGP/MPLS L3VPN protocols or the L2 services auto-discovery protocol

IP Only Core Transport Configuration and Management

- MPLS over IP and GRE tunnels can be dynamically created between the ingress and egress PE routers
 - No additional mechanisms are required
 - Several vendors are shipping "soft-GRE" implementations
- IPsec tunnels require IKE configuration
- L2TPv3 tunnels can be dynamically created when L2TPv3 signaling is not used
 - Additional mechanisms are required to exchange L2TPv3 session and cookie

IP Only Core Transport Tunnel Liveliness Mechanism

- BFD can be used for liveliness detection on the MPLS over IP, GRE, IPsec or L2TPv3 tunnel.
 - BFD session will be established between the tunnel endpoints
 - Provides scalable and sub-second liveliness detection
 - L2TPv3 keep-alives are insufficient on their own as they are not suited to sub-second liveliness detection

IP Only Core Transport Security Considerations

System wide perspective
SP infrastructure including CE-PE link
Look at some threats
DoS Attacks
VPN packet spoofing
Does L2TPv3 add value ?
The role of IPsec

Security Considerations System Wide Perspective

- "The chain is as strong as its weakest link"
- Need to look at the whole system, and how to protect it against ALL security threats that are possible in practice
- This presentation will discuss only some of the security threats

Security Considerations Some Threats

Denial of Service (DoS)

- Attacks the router's control plane
- Impacts ALL the customers on the attacked PE (not just one VPN)
- VPN packet spoofing
 - Impacts only the specific VPN

Security Considerations Preventing DoS Against a Router

Protect route processor

- Limit access to known sources requires ACL
- Rate limit traffic to central processor
- Prevent source address spoofing
 - Filtering at ingress to service provider requires
 ACL
- Must be at line rate

Protecting Against DoS Attacks

IP Transport Tunnel

VPN Packet Spoofing Are ACLs used for protecting against DoS sufficient ?

- To protect against DoS:
 - Each router limits traffic to lo0 to only sources within its own service provider
 - Each ingress router should reject packets whose source address is from the address block used by the service provider for its infrastructure
- To protect against VPN packet spoofing with 2547 over IP/GRE:
 - Filter out packets from "outside" which have source addresses that belong "inside", and
 - Filter out on each PE all packets which have source addresses that belong "outside"

Bottom line: requirements for protecting against VPN packet spoofing with 2547 over IP/GRE are satisfied by the mechanisms to protect against DoS

Protecting Against VPN Spoofing Attacks

Security Considerations Does L2TPv3 Add Value ?

- 2547 over L2TP focuses only on protection against spoofing of VPN traffic:
 - "If the IP network which MPLS packets are being carried over is vulnerable to spoofing attacks which could bypass these boundary ACLs then the L2TPv3 Cookie provides ample protection..." (draft-townsley-l2tpv3-mpls-01.txt)
- 2547 over L2TP or L2TP PWs do NOT mitigate DoS attacks against the router
- Line rate boundary ACLs are required to prevent DoS attacks
 - Also protect against VPN packet spoofing

Bottom line: 2547 over L2TPv3 does not eliminate the need for (line rate) ACLs and doesn't provide a value add.

Security Considerations The Role of IPsec

Secures the CE to PE link

- Required for securing the end-to-end MPLS VPN service
- Cryptographic authentication
 - Protection against packet spoofing between PE and CE
 - Ensures payload integrity
- Encryption
 - Ensures payload privacy

Meeting the Requirements Score Card

- Multi-service Transport
 MPLS over IP, GRE.
- Minimize changes to the enabling MPLS over IP, GRE, IPsec MPLS VPN technology
- Minimize # of signaling protocols
 MPLS over IP, GRE
- Configuration and management
- Tunnel liveliness mechanism
- Security considerations

- MPLS over IP, GRE, IPsec, L2TPv3
- All require boundary ACLs

Bottom line: MPLS over IP/GRE is the "multi-service" MPLS over IP transport technology. IPsec has limited applicability. L2TPv3 doesn't provide a value add.

MPLS over IP/GRE/IPsec (draft-ietf-mpls-in-ip-or-gre-05.txt):

- Passed WG Last Call
- Passed IETF Last Call
- In the IESG review
- 2547 Unicast VPNs over IP/GRE (draft-ietf-l3vpn-gre-ip-2547-02.txt)
 - L3VPN WG document
 - Passed IETF Last Call
 - In the IESG review

IETF Status...

2547 Multicast VPNs over IP/GRe

 Only requires MVPN signaling and draft-ietf-I3vpn-gre-ip-2547-02.txt

MPLS PWs over IP/GRE/IPsec

- Only requires draft Martini and draft-ietf-mpls-in-ip-or-gre-05.txt
- L2VPNs over IP/GRE/IPsec
 - Only requires BGP signaling and draft-ietf-mpls-in-ip-or-gre-05.txt
- VPLS over IP/GRE/IPsec
 - Only requires BGP signaling and draft-ietf-mpls-in-ip-or-gre-05.txt

IETF Status...

2547 over L2TP:

- draft-townsley-I3vpn-I2tpv3-00.txt Not a WG document
- draft-townsley-l2tpv3-mpls-01.txt Not a WG document
- draft-nalawade-kapoor-tunnel-safi-01.txt Not a WG document

Conclusion

- MPLS VPN services over an IP only core have to be supported
- A system wide perspective must be taken while choosing the IP transport technology
- MPLS over IP and GRE is the "multi-service" MPLS over IP transport technology
- IPsec has its role
- L2TPv3 does not provide a value add

