GMPLS-based Traffic Engineering in Multi-Region / Multi-Layer Service Network

- By Kohei Shiomoto and Takashi Kurimoto {shiomoto.kohei,kurimoto.takashi}@lab.ntt.co.jp

Outline

- IP optical network
- Multi-layer service networks
- IP optical multi-region traffic engineering

Broadband service price comparison

Cheapest in the world thanks to fierce competitionBut, no ISPs can profit enough money to invest new tech.

Traffic on IXs of Japan

 The amount of traffic has been increasing rapidly (Gbps)

Trend of router throughput

Limitation of electrical processing beyond 40Gb/s

IP optical network architecture

 Direct optical path setup among edge nodes without electrical IP processing in transit nodes. (cut-through by optical path)

IP optical network architecture

- Multi-layer service networks
- IP optical multi-region traffic engineering

Multi layer network architecture concept

- ITU-T has agreed on a new recommendation called Y.2011. There is a section to conceptually include the multi layer network architecture.
- This is a natural extension of GMPLS multi regional network concept.

Multi-layer service network architecture utilizing IP optical network concept

- Accommodate Multiple different layer network service, different type of service, in different control technologies (i.e., address spaces)
- Dynamic optical path control enabling advanced service realization

Accommodate Multiple service-networks

Accommodate multiple service-networks utilizing independent control technologies and address spaces

Autonomous optical path control

 Autonomous optical path control according to different conditions in each service network

IP optical multi-region traffic engineering

- TE based on dynamic reconfiguration of VNT
 - Lambda-layer provides VNT for packet-layer
 - VNT is re-configured by LSP setup/teardown.
 - Lambda-LSP is routed over the fiber topology.

New VNT $(P_{1,1} P_{1,2} \Lambda P_{1,n})$ $P_{2,1} P_{2,2} \Lambda P_{2,n}$ M M O M $P_{n,1} P_{n,2} \Lambda P_{n,n}$

Heuristic VNT calculation algorithm

LSP setup for increasing traffic

- New lambda-LSP is set up so that multi-hop packet LSPs over the congested lambda-LSP (> T_{upper}) can get routed.
- LSP teardown for decreasing traffic
 - Lambda-LSP is torn down if its traffic is decreasing (< T_{lower}).

Effect of dynamic VNT reconfiguration

Topology : LATA network model Lambda path cap. : 2.5 Gb/s

MPLS

t(i,j) : fixed uniform Cost : proportional to # of ports (E and O)

Simulation example (r0, r1)=(0,0.3)

- Assumption
 - Traffic demand rij is assumed to be uniformly distributed in the range (r0, r1).
- Observation
 - Maximum load of lambda LPSs is well controlled by establishing and releasing lambda LSPs. (Tupper=0.8)

Summary

- IP optical network
 - Traffic growth
 - Electrical processing limitation
- Multi-layer service networks
 - Different service network is overlayed over GMPLS-based IP optical networks
 - Address space separation
 - Autonomous optical path control
- Multi-region traffic engineering in IP optical networks
 - VNT is reconfigured by setting up /tearing down optical LSP using GMPLS protocols
 - Network resource information in different regions (IP and optical) are consolidated into a single database using GMPLS protocols.
 - VNT calculation (traffic demand & current VNT)
 - Network cost is reduced while achieving the network performance.

