#### **Implementing QoS in a Service Provider IP/MPLS Core Network – A Case Study**

- By Lei Wang lei.wang@telenor.com





#### **Overview**

- Driving factors
- QoS design in depth
- Challenges encountered
- Lessons learned
- A few words to vendors





## Introducing QoS in core Driving Factors (1)

#### A costly fully redundant infrastructure



## Introducing QoS in core Driving Factors (2) P2P traffic: over 60% identified





**MPLS** 

## Introducing QoS in core Driving Factors (3)

#### Denial of Service (DoS) attack



#### **Primary Goals**

- Reduce the cost of a redundant infrastructure while still sustain SLA for VPN customers
- Protect business traffic under DoS attacks from Internet
- Secure low latency and low jitter for voice traffic





# Three DiffServ tunneling models for an IP packet in a MPLS cloud



## QoS design in depth Core and Edge QoS domain



## QoS design in depth Points of Marking and Queuing



## QoS design in depth Queuing – three queues



## QoS design in depth Marking Scheme (plan)

| Marking/Mapp<br>-ing points | IP Precedence | VPN (inner)<br>Label EXP     | IGP (outer)<br>Label EXP   |
|-----------------------------|---------------|------------------------------|----------------------------|
| Internet Border             | Unchanged     | N/A                          | 0                          |
| Internet Access             | Unchanged     | N/A                          | 0                          |
| VPN QoS<br>(Managed CE)     | Unchanged     | = IP Prec                    | Prec 5 -> 5<br>Others -> 3 |
| VPN non-QoS                 | Unchanged     | = IP Prec                    | 3                          |
| VPN QoS<br>InterAS          | Unchanged     | = EXP of<br>incoming packets | EXP 5 -> 5<br>Others -> 3  |
| VPN WholeSale               | Unchanged     | = IP Prec                    | 0                          |





## QoS design in depth Marking Scheme (implementation)

| Marking/Mapp<br>-ing points | IP Precedence | VPN (inner)<br>Label EXP     | IGP (outer)<br>Label EXP         |
|-----------------------------|---------------|------------------------------|----------------------------------|
| Internet Border             | Unchanged     | N/A                          | 0                                |
| Internet Access             | 0*            | N/A                          | 0                                |
| VPN QoS<br>(Managed CE)     | Unchanged     | = IGP EXP*                   | 5 -> 5<br>0 -> 2*<br>Others -> 3 |
| VPN non-QoS                 | Unchanged     | = IGP EXP*                   | 2*                               |
| VPN QoS<br>InterAS          | Unchanged     | = EXP of<br>incoming packets | 5 -> 5<br>Others -> 3            |
| VPN WholeSale               | Unchanged     | = IGP EXP*                   | 0                                |



\* Work arounds



## Challenges Encountered Clean cut between core and edge QoS domains



## Challenges Encountered Clean cut between core and edge QoS domains

Alternative solution: explicit-null between PE-CE

- Existing QoS configuration between PE-CE would need to be re-configured.
- Adding requirements for CE devices to support MPLS might increase the cost of CE devices
- Our suggestion: configuration knob to set EXP on each label individually on ingress interface of a MPLS/VPN PE where multiple labels are imposed.





#### **Challenges Encountered**

- Prioritizing of router originated traffic
  - Routing protocols: LDP, OSPF, BGP, RSVP
  - SNMP, Netflow, Radius (Cisco default PREC 0)
- Accounting Information/MiB counters
  - Queuing: Forwarding/Discarding statistics
  - Marking: Marked packets statistics per Prec/EXP





#### **Summary: Lessons learned**

- The importance of a clear boundary between Core and Edge QoS domain
- Building blocks for the boundary setting
  - Pipe/short pipe model
  - Clear definition which Diffserv information fields to be used in which domain
  - Flexibility to set Diffserv information fields individually in a label stack.





#### **Summary: Lessons learned**

- The importance of NMS integration
  - Critical for SLAs of VPN customer that marking and queuing is done properly, monitoring of all marking and queuing points becomes very important.
  - Critical for Network Planning: new scaling rule
    - Before QoS: 70% per link 50% per ring

After QoS:

70% per link 50% per voice + Business class per ring Requires forwarding statistics per queue!





#### **A Few Words to the Vendors**

- We do need marking on MPLS EXP in a scalable way!
- We do need statistics on marking and queuing points!
- We do need marking on per protocol basis for router originated traffic!
- We do need possibility to set EXP on each label individually when multiple labels are imposed at same operation!





#### Additional: P2P traffic downstream: 60%



2500 ADSL subscribers downstream traffic in 5 day period





#### Additional: P2P traffic upstream: 80%



2500 ADSL subscribers upstream traffic in 5 days period





## Additional: Our work around to solve InterAS site queuing

