
libfluid
a lightweight OpenFlow framework

MSc. Defense

Allan Vidal 1

Advisor: Prof. Dr. Fabio Verdi 1

Co-advisor: Prof. Dr. Christian Rothenberg 2

1 Departamento de Computação
Universidade Federal de São Carlos (UFSCar)

2 Faculdade de Engenharia Elétrica e Computação (FEEC)
Universidade Estadual de Campinas (UNICAMP)

April 8th, 2015

Introduction
Software-defined networking

What is SDN?

Software-defined networking (SDN) is an approach aiming to
improve network programmability, removing logic and functionality
from closed hardware and putting them in the hands of developers.

Why SDN?

It emerged as a way to control networks using software, as a solution
to several management problems common to networks worldwide:

Automatic, scalable network configurations

Global view of the network

Custom software on commodity hardware

Introduction
Comparison of traditional and SDN networking approaches.

Network
administrator

Network device A

Adm. interface A

Network
administrator

Network device A

SDN interface

Network device B

SDN interface

SDN application
and logic

Traditional networks

Network logic A

Network device B

Adm. interface B

Network logic B

SDN networks

Introduction
The software in software-defined network.

SDN introduces two pieces of software:

Controller

Runs in a remote computer and is responsible for instructing
network devices on how to make forwarding decisions; in order to
communicate with devices, it uses an SDN protocol.

Network device protocol agent

Runs in network devices and is responsible for interpreting the SDN
protocol messages and converting the requests into rules and
configurations which are then applied to the device.

Introduction
The software in software-defined network: interfaces.

Controller

Northbound interface

Southbound interfaces

Application 1 Application 2

Network device B

Protocol B agent Protocol Y agent

Hardware

Protocol X impl. Protocol Y impl.

Network device A

Protocol X agent Protocol A agent

Hardware

Introduction
OpenFlow

OpenFlow is one of the most popular approaches to SDN
nowadays;

The OpenFlow specification defines the protocol that switches
and controllers use to interact with each other;

We will detail OpenFlow throughout this presentation, since it
is central to our work in many aspects.

Introduction
Motivation

There is a multitude of software implementing the OpenFlow
protocol.

This popularity, along with a strong industry demand positions
OpenFlow as an important cornerstone in the area of SDN.

We want to analyse implementations of the OpenFlow protocol
and propose improvements to the state-of-the-art.

Introduction
Objectives

With our work, we aim to:

1 Highlight the issues that are common to OpenFlow protocol
implementations

2 Define a software architecture for a lightweight OpenFlow
implementation

3 Implement and evaluate the proposed software architecture

Introduction
Methodology

1 We start with an overview of work in the field of OpenFlow
controllers, frameworks and libraries;

2 Based on observations about the related work, we will identify
strengths and issues;

3 With the issues listed and defined, we outline a set of general
requirements that can solve them;

4 We use that issue list as a guideline for the implementation and
evaluation of our work.

Background and related work
Types of related work

Before diving into related work, we will present an overview of the
OpenFlow specification (and protocol), which serves as background
for the related work and ours.

Based on two definitions (framework and library) and observations,
we divided the related work in four categories:

Controllers

Switch agents

Frameworks

Messaging libraries

Background and related work
But first, what is a framework?

There is not a single definition, but most agree that a framework is
a skeleton for software, with the following defining characteristics:

Inversion of control

Default behavior

Extensibility by the user

Background and related work
OpenFlow

Introducing and testing new features in existing networks had
become a challenge;

To solve this issue, a Stanford networking group published a
whitepaper on the OpenFlow network model and its associated
protocol, initially as an academic/research initiative;

OpenFlow is slightly different from previous, similar alternatives
in that it seeks to embrace existing technologies, rather than
replacing them.

Background and related work
Flow tables and their role in an OpenFlow datapath.

OpenFlow data path (switch)

Host
X

Packet
From: Device X
To: Device Y

Action:
Output to port: A

Match
To: Device X

Action:
Output to port: B

Match
To: Device Y

Action:
Send to controller

Match
To: Device W

Action:
Drop packet

Match
From: Device Z

Port
A

Port
B

Host
Y

Flow table

Background and related work
Categorized listing of related work

Controllers

NOX and Beacon

Switch agents and controller frameworks

tinyNBI

Trema

Indigo

ROFL

Messaging libraries

OpenFlowJ, libopenflow, loxigen and others

Proposal
Issues vs. Requirements

Issue Extracted requirement

There is little reuse between switch
agents and controller frameworks

Unified protocol implementation for con-
trollers and switches

Applications are constrained More flexibility for applications

There is no lightweight and portable
OpenFlow implementation

A lightweight and portable implementa-
tion

Implementations mix protocol support
and message handling

Independence from messaging libraries
and protocol versions

There is no way to build standalone ap-
plications

Enable standalone applications

Protocol implementation behavior is not
configurable

Configurable protocol options

Proposal
libfluid

In order to address the previously outlined requirements, we
present libfluid.

Originally started as a project to be submitted to the Open
Networking Foundation “OpenFlow Driver Competition”.

It won the competition and is available as an open source
project.

Proposal
Architecture

First, we envisioned the system, libfluid, as a framework for
the OpenFlow protocol.

Then we broke down the system into blocks that group
artifacts with similar or related purposes.

These blocks were then broken down into classes and then
into data and routines. We will not got into this level of
detail in this presentation.

Proposal
Conceptual view of the libfluid architecture showing architectural blocks.

Tier 0
Core IO/event handling abstractions

Tier 2
User implementation

Tier 1
Basic OpenFlow implementation

Network connection

Event loop and
handlers

(Reactor design pattern)

OpenFlow server and
client

Controller Switch agent

OpenFlow server and
client settings

Core server and client

OpenFlow connection

configures

creates
and

tracks

uses event loops and
implements handlers

wraps and
extends

extends

extends

defines defines

creates

OpenFlow message
building/parsing

May be used by Controllers and Switch agents

Implementation
Overview

libfluid is implemented as a C/C++ library, with around 2.2k
lines of code.

This dissertation details libfluid base, which implements the
framework.

We use libevent as the foundation. It is a library/API for
monitoring events (IO, signals, timeouts) and dispatching them
to handlers via an event loop.

Implementation
A typical stub for a controller written in C++ using libfluid

#include <fluid/OFServer.hh>

class Controller : public OFServer {

public:

Controller(const char* address = "0.0.0.0" ,

const int port = 6653) :

OFServer(address, port, 4, false, OFServerSettings().

supported_version(1).

supported_version(4)) {

// Controller initialization code

}

virtual void message_callback(OFConnection* ofconn,

uint8_t type, void* data, size_t len) {

// Message handling code

}

virtual void connection_callback(OFConnection* ofconn,

OFConnection::Event type) {

// Connection event handling code

}

}

Controller c;

c.start();

// Wait for user interruption

c.stop();

Evaluation

Evaluation is based on the previously listed requirements

Several applications/extensions are built on top of libfluid in
order to evaluate it:

1 Flexible controller
2 Event handling
3 Switch agent
4 Portability
5 Standalone application

Results are evaluated in qualitative (does libfluid fulfill the
requirement?) and/or quantitative (how does libfluid perform
in benchmarking tests?) terms.

Some tools and metrics were used to conduct the evaluation

Evaluation
Tools and metrics

Tools:

cbench

Mininet

Valgrind (Not used directly in the evaluation, but rather as a development aid.)

Metrics (used with cbench):

Throughput (kflows/ms)

Latency (µs)

Fairness (-)

Evaluation - Flexible controller
The flexible controller architecture

Controller abstractions
Basic OpenFlow controller abstractions

Controllers
Different applications and settings

Application

Switch

raw

loci

Controller
(extends OFServer)

msg

sends OpenFlow messages

sends event
notifications

configures
(via OpenFlow

messages)

Event notification

creates

secure

L2 learning switch

Benchmarking

L2 learning switch

Benchmarking

L2 learning switch

L2 Learning Switch

implements

configures
and runs

subscribes to event
notifications

Evaluation - Flexible controller benchmarks
Comparing throughput for controllers running a L2 learning switch application
(higher is better).

NOX MT Floodlight msg Beacon raw
0

2

4

6

8

2.31
±

0.0047

2.49
±

0.0039

5.01
±

0.0424

7.68
±

0.0159

7.93
±

0.0467

T
h

ro
u

g
h

p
u

t
(k

fl
ow

s/
m

s)

Evaluation - Flexible controller benchmarks
Comparing latency in controllers running a L2 learning switch application (lower is
better).

BeaconNOX MT Floodlightmsgraw
0

1

2

3

4

5

4.98
±

0.0451

4.58
±

0.1744

5.23
±

0.1035

5.21
±

0.0439

5.18
±

0.0409

L
a

te
n

cy
(µ

s)

Evaluation - Flexible controller benchmarks
Average throughput as the number of threads changes (raw controller,
Benchmarking application, 16 switches, higher is better).

1 2 4 8 16

4

6

8

2.78

5.41

8.78
8.6

6.94

threads

T
h

ro
u

g
h

p
u

t
(k

fl
ow

s/
m

s)

Evaluation - Flexible controller benchmarks
Average throughput as the number of connected switches changes (raw controller,
L2 learning switch application, 8 threads, higher is better).

1 4 16 64 256 1000

2

4

6

8

2.33

7.13

8.01

7.51
7.33 7.39

switches

T
h

ro
u

g
h

p
u

t
(k

fl
ow

s/
m

s)

Evaluation - Flexible controller
Requirements vs. Applications

This application shows that libfluid implements the following
requirements:

Unified protocol implementation for controllers and switches

More flexibility for applications

Independence from messaging libraries and protocol versions

Configurable protocol options

Evaluation - Event handling
The problem

 libfluid

Thread 2Thread 1

Client #1
(OF Switch)

User application/controller

Client #2
(OF Switch)

Client #3
(OF Switch)

Connection #1
event handler

Packet forwarding

Packet parsing

Connection #1

Connection #2
event handler

Packet logging

Packet forwarding

Connection #2

Packet parsing

Connection #3

Connection #3
event handler

Packet forwarding

Packet parsing

Data flow

Event handling activity

Evaluation - Event handling
The problem (cont.)

We built an application that logs all incoming packets of one switch
to a PCAP file before forwarding. For other switches, the
applications instructs them to forward traffic normally.

The following event handling methods are implemented by the
application:

Run-to-completion

Synchronized queue

Ring buffer

We benchmarked the event handling methods with different
threading (1, 2, 4 and 8 threads) and network setups (8, 16, 32, 64
and 128 switches).

Evaluation - Event handling benchmarks
Throughput with different event handling approaches for a workload of 32 switches
distributed in 2 threads, with traffic from one switch being logged to a file.

Logged switch thread Other thread Both threads

0

1

2

3

4

1.65
±

0.012

1.78
±

0.009

3.43
±

0.137

1.65
±

0.018

1.78
±

0.012

3.43
±

0.139

1.72
±

0.017

1.84
±

0.007

3.56
±

0.129

T
h

ro
u

g
h

p
u

t
(k

fl
ow

s/
m

s)

Run-to-completion Synchronized queue Ring buffer

Evaluation - Event handling benchmarks
Overall results

Run-to-completion: tends to provide better results for
average latency

Synchronized queue: provides better average throughput for
larger numbers of threads (≥ 2)

Ring buffer: provides better average throughput for smaller
numbers of threads (≤ 2)

Our conclusion: libfluid allows for the implementation of several
event handling methods that can yield different results; always
implement and benchmark.

Evaluation - Event handling
Requirements vs. Applications

This application shows that libfluid implements the following
requirement:

More flexibility for applications

Evaluation - Switch agent
The sample switch architecture

Switch agent (OFClient)

Datapath

Port
1

Port
2

Port
3

Port
n

Flow table

Flow
1

Flow
2

Flow
3

Flow
n

Inbound OpenFlow
messages

Outbound OpenFlow
messages

Checks for matches

Network

Send
packets

Acts on
packets
(usually
forwarding)

libfluid

Builds (based on OpenFlow messages)

OpenFlow
Controller

Configures and
reacts to events

Evaluation - Switch agent
Requirements vs. Applications

This application shows that libfluid implements the following
requirement:

Unified protocol implementation for controllers and switches

Evaluation - Portability
The sample switch architecture

Cross-platform build

We built a port of libfluid for the ARM architecture running in
Android. No modifications were made to libfluid or its dependencies.
The application runs the L2 learning switch application of the
msg controller. It was tested successfully in a smartphone running
Android 2.3, with a Mininet instance running accross the network.

Other programming languages

Using SWIG, we built libfluid bindings for Java and Python. We
successfully implemented and tested small controllers and
applications written with these bindings.

Here we extend the term portability to not only refer to porting to other
computer platforms, but also to mean the porting of libfluid to other
programming languages.

Evaluation - Portability
Requirements vs. Applications

This application shows that libfluid implements the following
requirement:

A lightweight and portable implementation

Evaluation - Standalone application
The sample switch architecture

RouteFlow enables virtual IP routing services on top of a SDN
infrastructure. It is composed of three modules:

RFClient

RFServer

RFProxy

We rewrote the RFProxy module using libfluid.

It worked successfully with the rest of the existing RouteFlow
modules, and enabled a new way of running RouteFlow (no longer
requires an existing, fully-fledged OpenFlow controller).

Evaluation - Standalone application
Requirements vs. Applications

This application shows that libfluid implements the following
requirement:

Enable standalone applications

Evaluation
Comparison to related work

Controllers

NOX and Beacon: influenced our work; not directly related to it.

Switch agents and controller frameworks

tinyNBI: different goals, some shared intentions

Trema: similar goals, different implementation

Indigo: narrower scope, specialized, some similar goals

ROFL: very similar goals, different approaches

Messaging libraries

OpenFlowJ, libopenflow, loxigen and others: inspired us because
of their reusability; libfluid can be used with these libraries.

Conclusions

Our key contribution is the definition and implementation of
an OpenFlow framework with a very minimalistic API that
can be reused for different purposes.

With libfluid we won the ONF OpenFlow Driver Competition
and the best paper award at the Tools Session of SBRC 2014.

More recently, we have started to receive questions and
contributions from the community around the world.

Conclusions
Future work

Mundane tasks: better handling of error conditions, writing unit
tests, integrating OFClient code into the main implementation of
libfluid, etc.

Exploratory lines of work: implement hardware switch agents
(NetFPGAs are a good candidate), building plug-ins for the
southbound interfaces of controllers such as OpenDayLight.

Finally, we hope to see libfluid used in controllers, standalone
applications and switch agents and see how the needs of
users will change some of the ideas behind our work.

Bibliography and more information

For the bibliography with the references, see the dissertation:

http://[URLtobeincludedafterpublishing]

For more information on libfluid, including source code and
documentation, see the libfluid website:

http://opennetworkingfoundation.github.io/libfluid/

http://[URL to be included after publishing]
http://opennetworkingfoundation.github.io/libfluid/

