
Allan Vidal

libfluid: a lightweight OpenFlow framework

Sorocaba, SP

8 de abril de 2015

Allan Vidal

libfluid: a lightweight OpenFlow framework

Dissertação de mestrado apresentada ao Pro-
grama de Pós-Graduação em Ciência da Com-
putação (PPGCCS) da Universidade Federal
de São Carlos como parte dos requisitos exigi-
dos para a obtenção do título de Mestre
em Ciência da Computação. Área de con-
centração: Arquiteturas Distribuídas de Soft-
ware.

Universidade Federal de São Carlos – UFSCar

Centro de Ciências em Gestão e Tecnologia – CCGT

Programa de Pós-Graduação em Ciência da Computação – PPGCCS

Orientador: Fábio Luciano Verdi
Co-orientador: Christian Rodolfo Esteve Rothenberg

Sorocaba, SP
8 de abril de 2015

Vidal, Allan.
V649l libfluid : a lightweight OpenFlow framework. / Allan Vidal. – – 2015.

 108 f. : 30 cm.

Dissertação (mestrado)Universidade Federal de São Carlos, Campus
Sorocaba, Sorocaba, 2015

Orientador: Fábio Luciano Verdi
 Banca examinadora: Carlos Alberto Kamienski, Gustavo Maciel Dias

Vieira
 Bibliografia

1. Rede de computador protocolo. 2. Engenharia de software. I. Título. II.
SorocabaUniversidade Federal de São Carlos.

CDD 004.6

Ficha catalográfica elaborada pela Biblioteca do Campus de Sorocaba.

To all my family and friends.

Acknowledgements

I’d like to thank,

my parents, Lenita and Reinaldo Vidal, for their hard work, their full support in my life
and throughout my studies,

my coworker, Eder Fernandes, for the partnership in this work and for patiently guiding
me into the SDN world,

my coworker, Marcos Salvador, for supporting and pushing forward awesome work, even
when it sounded crazy and impossible,

my advisors, Fabio Verdi and Christian Rothenberg, for guiding me into the world of
networking, giving me new ideas when I was short of them and for their hard work reviewing
and advising my work,

the people at CPqD, for providing a pleasant work environment and all the conditions
for part of this work to get done,

my girlfriend, Adriana Amaral, for the partnership in life during this work (including
a review of this dissertation), and for always understanding why I was away from her while
working on this,

my host parents as an exchange student in the US, Don and Gina Arnold, for taking
me in their home a few years ago, making the task of writing this dissertation in English much
easier,

the members of the examination board for this dissertation, Gustavo Vieira and Carlos
Kamienski, for their valuable feedback,

all the awesome people who build the knowledge and the software that makes this work
possible,

all my teachers, who from early on taught me lots of the little and big things that go
into this work.

“[...] I still fervently believe that the only way to make software secure, reliable, and fast is
to make it small. Fight Features.”

– Andrew S. Tanenbaum

“The nice thing about standards is that you have so many to choose from.”

– Andrew S. Tanenbaum

“The best code is no code at all.”

– Jeff Atwood

Abstract
Software-defined networking (SDN) introduces a network control paradigm that is cen-
tered in controller software that communicates with networking devices via standardized
protocols in order to configure their forwarding behavior. Current SDN control protocol
implementations (such as OpenFlow) are usually built for one controller or networking de-
vice platform, and restrict choices regarding programming languages, protocol versions and
feature. A single software architecture that enables controllers and networking devices to
use the OpenFlow protocol (for existing and future protocol versions) can benefit network
application developers and manufacturers, reducing development effort. Towards this goal,
we present libfluid: a lightweight (simple and minimalistic) framework for adding OpenFlow
support wherever it is needed. We built a single code base for implementing protocol
support in a portable, fast and easy to use manner, a challenge that involved technology
choices, architectural decisions and the definition of a minimal API. The implementation
was shown to work in all proposed scenarios and contributes to the state-of-the-art with a
few novel paradigms for OpenFlow frameworks.

Keywords: Computer networks. Software-defined networks. OpenFlow protocol.

Resumo
Redes-definidas por software (SDN) introduzem um paradigma de controle de redes que
é centralizado em um software controlador, que se comunica com dispositivos de rede
através de protocolos padronizados para configurar suas políticas de encaminhamento.
Implementações existentes de protocolos SDN (como OpenFlow) são geralmente cons-
truídas para uma plataforma de controlador ou dispositivo de rede e restringem escolhas
como linguagem de programação, versões do protocolo a serem usadas e características
suportadas. Uma arquitetura de software que permita controladores e dispositivos de rede
usarem o protocolo OpenFlow (em versões existentes e futuras) pode beneficiar desenvol-
vedores de aplicações de redes e fabricantes, reduzindo o esforço de de desenvolvimento.
Para este fim, apresentamos libfluid: um arcabouço leve (simples e minimalista) para
adicionar suporte a OpenFlow onde ele for necessário. Construímos uma única base de
código para implementar suporte ao protocolo de maneira portável, rápida e fácil de usar,
um desafio que envolve escolhas de tecnologia, decisões arquiteturais e a definição de
uma API mínimalística. A implementação foi testada com sucesso em todos os cenários
propostos e contribui com o estado da arte através de alguns novos paradigmas para
arcabouços OpenFlow.

Palavras-chave: Redes de computadores. Redes definidas por software. Protocolo Open-
Flow.

List of Figures

Figure 1 – Overview of traditional and SDN networking approaches. 26
Figure 2 – Northbound and southbound interfaces in an SDN controller. 27
Figure 3 – Flow tables and their role in an OpenFlow datapath. 35
Figure 4 – The NOX network model. 37
Figure 5 – tinyNBI abstracts differences in OpenFlow protocol versions. 39
Figure 6 – Conceptual view of the libfluid architecture showing architectural blocks. 50
Figure 7 – Module relationship diagram of the libfluid architecture. 51
Figure 8 – Conceptual view of the flexible controller. 78
Figure 9 – Comparing throughput for controllers running a L2 learning switch

application (higher is better). 83
Figure 10 – Comparing latency in controllers running a L2 learning switch applica-

tion (lower is better). 84
Figure 11 – Throughput behavior when varying the number of threads and connected

switches. 85
Figure 12 – Event handling unbalance. 87
Figure 13 – Throughput with different event handling approaches for a workload of

32 switches distributed in 2 threads, with traffic from one switch being
logged to a file. 90

Figure 14 – Building blocks of the libfluid example switch. 92

List of Tables

Table 1 – Requirements mapped to the libfluid architectural blocks. 57
Table 2 – Evaluation approaches for the requirements. 75
Table 3 – Metrics for evaluating performance. 77
Table 4 – The different controllers implemented using libfluid. 80
Table 5 – Best event handling approach for optimizing average throughput. 89
Table 6 – Best event handling approach for optimizing average latency. 89

List of abbreviations and acronyms

API Application Programming Interface

HTTP Hypertext Transfer Protocol

IO or I/O Input/Output

IP Internet Protocol

MAC Media Access Control

MPLS Multiprotocol Label Switching

NAT Network Address Translation

NETCONF Network Configuration Protocol

OS Operating System

QoS Quality of service

SDN Software-defined Networking

SNMP Simple Network Management Protocol

TCP Transmission Control Protocol

TLS Transport Layer Security (protocols)

VLAN Virtual Local Area Network

VPN Virtual Private Network

Contents

1 INTRODUCTION . 25
1.1 Motivation . 28
1.2 Contributions . 28
1.3 Text structure . 29

2 BACKGROUND AND RELATED WORK 31
2.1 OpenFlow . 32
2.2 OpenFlow controllers . 36
2.2.1 NOX . 36
2.2.2 Beacon . 38
2.3 OpenFlow switch agents, frameworks and messaging libraries 38
2.3.1 tinyNBI . 39
2.3.2 Trema . 40
2.3.3 Indigo . 40
2.3.4 ROFL . 40
2.3.5 OpenFlowJ, libopenflow, loxigen and others 41

3 THE LIBFLUID FRAMEWORK . 43
3.1 Issues in current work . 43
3.1.1 Issue #1: Little reuse between switch agents and controller frameworks . . 44
3.1.2 Issue #2: Protocol implementations are inflexible 44
3.1.3 Issue #3: No lightweight and portable OpenFlow implementation 44
3.1.4 Issue #4: Protocol implementation core and message handling are mixed . . 45
3.1.5 Issue #5: No clear path for building standalone applications 45
3.1.6 Issue #6: Protocol implementation behavior is not configurable 45
3.2 Requirements . 46
3.2.1 Req. #1: Unified protocol implementation for controllers and switches . . . 46
3.2.2 Req. #2: More flexibility in the core of the protocol implementation 46
3.2.3 Req. #3: A lightweight and portable implementation 47
3.2.4 Req. #4: Independence from messaging libraries and protocol versions . . . 47
3.2.5 Req. #5: Enable standalone applications 47
3.2.6 Req. #6: Configurable protocol options 48
3.3 Software architecture . 48
3.3.1 Overview . 49
3.3.2 Blocks and modules . 50
3.3.2.1 Event loop and handlers . 50

3.3.2.2 Network connection . 53

3.3.2.3 Core server and client . 53

3.3.2.4 OpenFlow server and client . 54

3.3.2.5 OpenFlow client and server settings . 54

3.3.2.6 OpenFlow connection . 55

3.3.2.7 OpenFlow message building/parsing . 56

3.3.3 Requirements vs. Architecture . 56

4 IMPLEMENTATION . 59
4.1 Components . 59
4.1.1 EventLoop . 59
4.1.2 BaseOFHandler . 60
4.1.3 BaseOFConnection . 60
4.1.4 BaseOFServer . 62
4.1.5 BaseOFClient . 63
4.1.6 OFConnection . 65
4.1.7 OFServer . 66
4.1.8 OFClient . 67
4.1.9 OFServerSettings . 68
4.1.10 OFClientSettings . 70
4.1.11 TLS . 70
4.1.12 libfluid_msg . 71
4.2 Using libfluid . 72

5 EVALUATION . 75
5.1 Evaluation tools and metrics . 76
5.2 Evaluation applications . 77
5.2.1 Flexible controller . 77
5.2.1.1 Benchmarks . 81

5.2.2 Event handling . 85
5.2.2.1 Benchmarks . 88

5.2.3 Switch agent . 92
5.2.4 Portability . 93
5.2.4.1 Cross-platform build . 94

5.2.4.2 Other programming languages . 94

5.2.5 Standalone application . 95
5.3 Comparison to related work . 97
5.3.1 Controllers . 97
5.3.2 Switch agents, frameworks and messaging libraries 98

6 CONCLUDING REMARKS . 101
6.1 Future work . 101
6.2 Publications and awards . 102

Bibliography . 103

25

1 Introduction

Software-defined networking (SDN) emerged as a proposed solution to several
problems common to computer networks, such as the increasingly hard management in
the face of ever-growing demands (FEAMSTER; REXFORD; ZEGURA, 2013).

Early ideas proposed ways of segmenting physical networking equipment in logical
components, such as the use of VLANs and the deployment of VPNs. However, these
solutions still required manual configuration, and making them respond to network changes
was not an easy task, since network devices did not expose an easy and standardized
interface for monitoring state and modifying configuration programmatically when needed.
Furthermore, the lack of a standard for managing and configuring devices brings several
challenges when different hardware platforms (from different vendors) are put together.

In the SDN approach, most of the complexity is placed in an external, remote
software that controls the hardware. This was not a completely new idea by itself; it
comes from a long tradition of networking research, which started to gain a clearer focus
on central control in the early 2000s, based on the needs of network administrators and
traffic engineers who were dealing simultaneously with more demanding applications and
increasingly complex and larger networks (FEAMSTER; REXFORD; ZEGURA, 2013).
Most of this research breaks free from current architectures in use, and their central tenet
consists in providing a clearer separation of the management/control and data planes.

Network devices can be divided in three layers (or planes), each representing an
activity performed by the device (PEPELNJAK, 2013): they expose a management
plane to users, which provides command line interfaces and remote access protocols in
order to configure the control plane, which interacts with other devices in order to enable
network functions. Finally, the data plane is composed by the parts of the device that
effectively process and forward traffic based on configuration and instructions specified by
the other planes.

Figure 1 illustrates how the separation between the management/control and
data planes happens: administrative functions (belonging to the management plane) and
common network logic implemented in network devices (such as routing, QoS and firewalls,
which belong to the control plane) are removed from specific devices and placed in the hands
of software developers. Network administrators (which can be the developers themselves)
then interact with the network through abstractions rather than directly dealing with
devices and their traditional administration interfaces (typically, command-line or graphical
user interfaces provided by vendors).

The introduction of SDN requires two pieces of software: the controller and the

26 Chapter 1. Introduction

Network
administrator

Network device A

Adm. interface A

Network
administrator

Network device A

SDN interface

Network device B

SDN interface

SDN application
and logic

Traditional networks

Network logic A

Network device B

Adm. interface B

Network logic B

SDN networks

Figure 1 – Overview of traditional and SDN networking approaches.

network device protocol agent. The controller runs in a remote computer and is
responsible for instructing network devices on how to make forwarding decisions; in order
to communicate with devices, it uses an SDN protocol. The network device protocol agent
runs in network devices and is responsible for interpreting the SDN protocol messages and
converting the requests into rules and configurations which are then applied to the device.

Typically, an SDN controller provides southbound interfaces (the protocols
that control the network devices) and a northbound interface (the API exposed to
developers).

The northbound interface consists of all the programming interfaces that may be
useful for developers who are building functionality on top of controllers such as network
services and applications (switching, deep packet inspection, firewalls, QoS, routing, etc).
We will refer to this custom-developed software as applications. There is no standard
northbound interface, since this is what differentiates controllers and provide unique
features and ways for applications to be developed.

The southbound interface of a controller is responsible for interacting with network
devices in order to program behavior into the network. A controller may implement more
than one southbound API, so that it can control devices that use different SDN protocols.
It is even possible to emulate SDN using traditional configuration interfaces to network
devices or popular networking protocols such as SNMP or NETCONF (KREUTZ et al.,
2015). Differently from northbound interfaces, southbound interfaces require a standardized
specification so that different controllers and network devices can interoperate.

The main purpose of the core of a controller implementation is to provide the
bridge between its northbound interface and one or more southbound interfaces. The
controller itself may provide additional services and features to applications in order to
ease their development and orchestrate the environment.

27

Controller

Northbound interface

Southbound interfaces

Application 1 Application 2

Network device B

Protocol B agent Protocol Y agent

Hardware

Protocol X impl. Protocol Y impl.

Network device A

Protocol X agent Protocol A agent

Hardware

Figure 2 – Northbound and southbound interfaces in an SDN controller.

At the other end of the SDN model, network devices also need to implement the
SDN protocol in order to interact with the controller (informing it about network events
and receiving instructions). A network device may also support more than one SDN
protocol, and support for each of these protocols will be provided by different protocol
agents.

More software is needed in the network device for making the conversion between
the SDN protocol abstractions and the hardware-specific commands. All of the SDN
software stack in a network device, from the protocol agents to the software that effectively
implements SDN in the hardware, is typically provided by equipment manufacturers. There
are however initiatives like the Open Compute Project - Networking (Open Compute
Project, 2014) aiming to develop fully open network devices in which a user would be able
to customize the SDN software stack.

Figure 2 illustrates how controllers and network devices expose their interfaces in
order to interact with each other, the applications and the underlying hardware in the
SDN paradigm. Each network device can expose one or more protocols for controllers to
interact with them. As an example in Figure 2, Network device A supports protocols A
and X. The controller interacts with this device via the protocols it can use, in this case
protocol X.

Both the southbound interfaces of a controller and the protocol agents of a network
device share similar functionality. They need to provide two important services:

• Connectivity: manage the establishment of a control channel which is used for
communication between the network device and the controller;

28 Chapter 1. Introduction

• Messaging: provide message handling tools, converting to and from the high-level
description used by software and the low-level (binary) protocol message format
(wire-format).

One of the most popular approaches to implementing SDN is the OpenFlow
protocol (Open Networking Foundation, 2014b) (KREUTZ et al., 2015), which defines the
southbound API that controllers can use to communicate with network devices (switches).
We detail OpenFlow in Chapter 2.

1.1 Motivation

There is a multitude of controllers and other software implementing the OpenFlow
protocol, many targeting different use cases: academic research, large worldwide networks,
proof of concept architectures, etc. Network switches from several manufacturers started
featuring OpenFlow support in different versions and using different implementations of
the protocol agent. It is not an understatement to say that OpenFlow is what has brought
SDN into the spotlight of the networking industry.

All this popularity helped the OpenFlow ecosystem gain enormous traction and
variety, from academic research networks (BERMAN et al., 2014) (SALLENT et al., 2012)
to very large-scale deployments (JAIN et al., 2013). Developing for SDN became almost
synonymous of OpenFlow, even though SDN is a much more encompassing concept, while
OpenFlow is simply an enabler of SDN.

Therefore, OpenFlow is positioned as an important cornerstone of recent develop-
ment in SDN. Building software and hardware that supports the OpenFlow protocol is
important for those wishing to compete in the industry.

In this dissertation, we analyse existing software implementing the OpenFlow
protocol (both as southbound APIs for controllers and as protocol agents for switches) and
highligt some issues present in them, such as: little code reuse, inflexible implementations,
too much functionality embedded in the core and limited portability.

Based on these issues, we proceed to devise and build a lightweight, configurable,
portable and fast OpenFlow protocol implementation that improves on the state-of-the-art.
We also give insights into the challenges and trade-offs involved in the implementation of
SDN protocols, and more specifically, OpenFlow.

1.2 Contributions

Our key contributions in this work are:

1.3. Text structure 29

1. Highlighting the issues that are common to OpenFlow protocol implemen-
tations (and in SDN in general) and establishing a few requirements for improving
the state-of-the-art in protocol implementations;

2. Defining a software architecture for a lightweight OpenFlow implementa-
tion that uses as guidance the acquired set of requirements while introducing novel
paradigms for OpenFlow frameworks;

3. The implementation of the software architecture in a way that fully satisfies
the established requirements and integrates with the existing SDN ecosystem.

Lightweight and portable implementation

We define a lightweight implementation of the OpenFlow protocol as one which provides just
the most basic tools for protocol support (either for controllers or switch agents), without including
additional features such as application management or messaging libraries. We are not interested in
defining processor and memory usage when declaring an implementation lightweight, since this is
highly dependent on the workload.

A portable implementation is one which works on different computer platforms (CPU
architectures and operating systems). We also extend the definition of portability to say that a
portable implementation should work in different programming languages by the construction of
bindings for these languages.

1.3 Text structure

In this Introduction we outlined the fundamental concepts upon which we build
our dissertation.

In Chapter 2 we detail background work and related technologies, going deeper
into how they are designed and how they relate to our work.

In Chapter 3 we discuss issues in current (and related) work and a few general
requirements to solve these issues. Then we propose a software architecture to address
these requirements. We further discuss the inner working of this architecture and how it
can be implemented.

In Chapter 4 we showcase the implementation of our architecture, detailing how it
is built in software and how the components interact with each other.

In Chapter 5 we describe evaluation metrics and approaches in qualitative (how
does the implementation fulfill the requirements?) and quantitative terms (how does the
implementation perform in benchmarking tests?). We wrap up the chapter with a brief
comparison with the related work, highlighting similarities and differences.

30 Chapter 1. Introduction

In Chapter 6 we conclude the dissertation by analysing its impact and results and
presenting possible future work and improvements.

31

2 Background and related work

In this chapter we will discuss background work (OpenFlow and SDN) in Section 2.1).
In order to contextualize our proposal in Chapter 3, we present the state-of-the-art
in network device protocol agents, frameworks and libraries that provide OpenFlow
functionality to controllers and switches in Sections 2.2, 2.3.

Before we go into details about background and related work, there is an important
distinction to be made regarding libraries and frameworks. We will build upon Martin
Fowler’s definitions (FOWLER, 2004) and slightly adapt it to the realm of OpenFlow
software:

• Library: a set of functions (organized in classes or not) that can be called by other
software in order to do some work and promptly return control.

• Framework: a set of (usually abstract) classes with well-defined points of interaction
which can be extended by applications in order to provide the desired functional-
ity; the framework code will typically run by itself and be responsible for calling
application code when needed.

When applying this to the existing realm of OpenFlow software, we came up with
four categories:

• Controller: while most controllers are typically implemented as frameworks (per
Fowler’s definition), they usually provide abstractions to applications at a higher-level
then a framework would do (such as application lifecycle management, global view
of the network, management interfaces and routing algorithms). Controllers provide
the control and management planes in the OpenFlow network model, without being
concerned with implementing network device protocol agents or other reusable pieces
of code.

• Switch agent: the software that goes into switches for implementing the OpenFlow
protocol (once again, they typically work as frameworks). This software layer is
responsible for sending and receiving protocol messages to/from the controller. When
a message requires some action by the hardware, the action is delegated to another
layer of software that is responsible for triggering hardware specific features that
implement it. Switch agents only provide the switch agent side of the OpenFlow
network model, without being concerned with implementing controllers or other
reusable pieces of code. Previously in this text, we used the term network device

32 Chapter 2. Background and related work

protocol agents; hereafter, we will use the term switch agent to refer to this type of
software.

• Framework: a network-oriented framework (as is the case with OpenFlow frame-
works), usually only provides fundamental IO/event handling and messaging abstrac-
tions to applications, which are called in response to network events. Controllers
are usually built on top of these frameworks. They may also be used for
implementing switch agents. The terms “driver” or “protocol driver” may also be
used to refer to frameworks.

• Messaging library: software implementing abstractions for manipulating protocol
messages (usually object-oriented). They are responsible for converting programming-
language constructs representing OpenFlow messages (such as objects) into the
network representation of these messages. They can also perform the opposite task:
converting the network representation of messages into representations usable by
programmers. They typically work with one or a handful of protocol versions. In
this text, we may also refer to them as message building/parsing libraries.

2.1 OpenFlow

Introducing new features to networks had become a challenge due to the difficulty
in testing new ideas in real-world scenarios. A Stanford networking study group released a
whitepaper in 2008 detailing their proposal for a solution to the lack of programmability
in networks: the OpenFlow network model and its associated protocol (MCKEOWN et
al., 2008).

OpenFlow was initially conceived as way for researchers to run their experiments
on campus networks, using existing commercial switches adapted to support the OpenFlow
protocol. The protocol allows access to some fundamental features of switches, without
the need for full disclosure of their inner working.

OpenFlow takes advantage of the fact that most Ethernet switches implement
features such as NAT, QoS, firewalls, etc. as programmable structures, but do not expose
them to an external interface. A protocol that exposes these interfaces to the hardware
could benefit researchers interested in testing new ideas. The OpenFlow protocol provides
an abstraction to these hardware features, and exposes them to applications running in
external agents. These external agents would be responsible for instructing the hardware
on how to behave, thus introducing programmability into the network, at device level.

The difference between OpenFlow and previous ideas towards programmable
networks is that long tested technologies (e.g.: TCP/IP, Ethernet, VLANs) are embraced

2.1. OpenFlow 33

rather then replaced, without excluding the possibility for the future innovation promised
by less pragmatic clean-slate solutions (FEAMSTER; REXFORD; ZEGURA, 2013).

As an example, we will explain how packet1 switching happens in a traditional
scenario (using non-OpenFlow switches), and then compare it to what would happen in an
OpenFlow environment. We will highlight how software interacts in this workflow, since it
will be useful when explaining our work further ahead in this text.

Consider an Ethernet learning switch, a network device that has some degree of
distributed knowledge about networking topology inferred from network traffic. When
a switch first receives a packet from a connected host (a network connected device), it
inspects the packet and creates an association so that traffic is forwarded to the correct
destination, avoiding unnecessary flooding to all switch ports in order for packets to reach
their destinations (as a hub would do). For the purposes of this example, consider a host
X, connected to port A of switch S, attempting to establish bidirectional communication
with host Y, connected to port B of switch S.

In a traditional, non-OpenFlow scenario, upon receiving an initial network
packet from host X, switch S notices the source MAC address of the packet can be used
to make an association-pair: (source MAC address, switch port), meaning that packets
having source MAC address as destination can be forwarded to the same switch port
in order to reach their correct destination.

The control software embedded in the hardware of switch S stores this information
in a special forwarding memory. When making the decision about to which port a packet
should be output, the switch hardware consults the forwarding memory. If the destination
address is present in this forwarding memory, the switch reads the port that should be
used as an output. If the destination is not present in the forwarding memory, the switch
will output a copy of the packet to all ports (a flood). For the purposes of this example,
assume the latter case is what happens.

Host Y, upon receiving the packet that was flooded, will eventually respond with
another packet. When the response packet reaches switch S, it can then be used to learn
the information on how to reach host Y just as it was done with host X. From now on,
the switch will not need to analyse the packets’ source address and source port when
forwarding packets between hosts X and Y. It can simply use the forwarding memory,
which is a hardware-optimized structure that allows traffic to be forwarded with high
throughput and low latency.

In an SDN/OpenFlow scenario, the process is very similar to the one outlined
before, but the intelligence which was embedded in hardware is replaced by a controller.
Upon receiving the request packet from host X, which does not match any entry in its flow
1 In order to make the text easier to follow, we may sacrifice perfect terminology throughout this

dissertation and use the term “packet” to refer to Ethernet frames, IP datagrams and TCP segments.

34 Chapter 2. Background and related work

table (a structure similar to the forwarding memory illustrated earlier in this example),
the switch forwards the packet (encapsulated in an OpenFlow packet-in message) to its
controller via a dedicated control interface2. The controller receives the packet-in message
and, assuming it is implemented as to act as a traditional Ethernet switch, learns that
the MAC address of host X can be reached by forwarding packets to the port A, since
this is the port from which the packet came from. The controller then sends an OpenFlow
flow-mod message to the switch, which will instruct the switch to store the forwarding
rule in its forwarding memory (the flow table). Finally, the controller also instructs the
switch to output the packet to all ports (flooding), since it still does not know the packet’s
correct destination.

Host Y, upon receiving the original packet, will eventually send another packet
in response. When this response reaches the switch, it can then be used to learn the
forwarding rule on how to reach host Y just as it was done with host X. From now on,
the switch will have both entries in its flow table (for hosts X and Y). A flow table is
typically a hardware-optimized structure; in many current OpenFlow switches, it is the
same component used for non-OpenFlow forwarding.

As highlighted in this example, the most defining part of an OpenFlow switch is
its flow table3 , which contains a set of flow rules (which will be called flows from now on)
and is controlled by an external agent: the controller. A flow is a rule that will be applied
when deciding how to forward a given packet. Packets are matched against flows (each
flow has a unique matching description), and an action is taken based on this flow’s list of
actions. Figure 3 illustrates a flow table being used in an OpenFlow datapath: a packet
being sent from host X to host Y is matched against the datapath’s flow table, and the
appropriate action is taken (output the packet port B).

What makes an OpenFlow flow table different from the forwarding memory in
traditional Ethernet switches is that it is programmable. OpenFlow switches are not limited
to Ethernet-only (L2) fields and actions: they can also forward traffic based on higher-level
network protocols, such as IP, MPLS, TCP and perform actions such as modifying packet
headers or dropping packets.

2 This is a simplification which is not valid for all OpenFlow versions, but we will assume that in order
to keep the explanation simple

3 This name is used in the OpenFlow whitepaper (MCKEOWN et al., 2008) to denote the set of forward-
ing rules a switch uses. Its precise definition depends on the hardware and software implementation of
a switch.

2.1. OpenFlow 35

OpenFlow data path (switch)

Host
X

Packet
From: Device X
To: Device Y

Action:
Output to port: A

Match
To: Device X

Action:
Output to port: B

Match
To: Device Y

Action:
Send to controller

Match
To: Device W

Action:
Drop packet

Match
From: Device Z

Port
A

Port
B

Host
Y

Flow table

Figure 3 – Flow tables and their role in an OpenFlow datapath.

Control and data path/plane

There are some very important terms that will be used throughout this text:

A data path is a structure that contains a flow table and performs the actions defined
by this flow table. A switch (or any other network device) is said to support OpenFlow when it
implements an OpenFlow data path. A data path is also known as the implementation of the data
plane when describing SDN in general. The term OpenFlow switch will be used to refer to an
OpenFlow data path in this text.

The control path is the software that instructs a data path on how to behave via control
messages and by filling its flow table. It is typically implemented by a controller, which is how we
will refer to the control path in this text. The control path is also known as the control plane when
describing SDN in general (and it may also encompass the management plane).

A control channel is used to connect the control plane to the data plane. In OpenFlow,
this channel is usually represented by a TCP connection.

This example also highlights the importance of the control software in the OpenFlow
paradigm: it must react quickly, in order to avoid overhead when compared to a local,
hardware-based implementation. However, OpenFlow controllers are not responsible for
forwarding traffic: they should only instruct switches on how to do that. The optimal way
of programming the hardware is before a packet even reaches the switch; in this case, the
control application is said to be proactive. If a control application only configures the
switch to react to an event after it occurs, it is said to be reactive.

Most importantly, while behavior cannot be easily changed in hardware, it is very

36 Chapter 2. Background and related work

easy to change it in the control software. It becomes easy to implement new features and
networking approaches. It also enables advanced applications to be built, such as firewalls
and routers, without the need for explicit hardware support.

Nowadays, different hardware vendors (such as HP, Juniper, NEC, Pica8 and many
others) implement OpenFlow support in their traditional networking equipment. Software-
based switches supporting OpenFlow are also heavily used in virtualized environments
and as development and prototyping tools (PFAFF et al., 2009). There is also a wealth of
controllers, from open source projects to commercial solutions (KREUTZ et al., 2015). The
OpenFlow specification is currently managed and maintained by the Open Networking
Foundation (Open Networking Foundation, 2015), which was created to oversee the
promotion and adoption of SDN via OpenFlow and other open standards.

2.2 OpenFlow controllers

The OpenFlow specification does not dictate how controllers should be built: it
only specifies the protocol structures (wire-format) and a few of the behaviors expected
from switches and controllers. It is up to control software developers to choose the best
design.

The most widespread model is that of a network operating system, in which a
central controller runs several applications at the same time in a managed environment,
each acting according to their purpose. For example, a controller can run routing and
firewall applications at the same time, and each would react to events and act on the
network elements. It is up to the controller to orchestrate these applications, providing
resources when needed and avoiding conflicts.

There are other variations to this approach, such as distributed controllers (KO-
PONEN et al., 2010) which reduce the risk and costs of centralizing all network control in
a single point. Others abstract the use of OpenFlow entirely and provide the means for
deploying multiple southbound protocols (OpenDaylight project, 2015).

In this section we will detail two controllers that have influenced our work due to
their implementations of the OpenFlow protocol.

2.2.1 NOX

The NOX controller was the original OpenFlow controller, initially published in
2008. At the time, it provided a vision not only for OpenFlow, but also for SDN in general.
The authors proposed an approach to networking that resembles that of operating systems:

2.2. OpenFlow controllers 37

Standard server

NOX

Application 1 Application 2 ...

Global network
view

OpenFlow switch

OpenFlow switch

OpenFlow switch

Control link

Data link

Network API

OpenFlow network

Figure 4 – The NOX network model.

a layer of software that observes and controls hardware, providing an API for applications
that run on top of it and use the hardware as means of achieving their purposes.

NOX tries to abstract switches in the network by providing a common API, chosing
the OpenFlow switch model to do so. It also features a global view of the network, which
is provided to applications in order to aid state monitoring and decision making. By
doing this, applications do not have to deal with specific protocols or network devices
individually. Figure 4 illustrates this paradigm, which has been highly influential to many
SDN projects.

In practice, however, the ideas behind NOX were never fully implemented to the
point that applications were truly abstracted from the underlying network. Nowadays, the
project seems to be idle, with occasional bug fixes, and without support for newer versions
of the OpenFlow protocol. However, its most important contribution is still observable in
the design of most current OpenFlow controllers: the use of applications running on top of
an API which tries to abstract the network as much as possible.

NOX provided some of the first implementations of OpenFlow libraries for build-
ing/parsing messages, built in C/C++ and Python (libopenflow). An evolution of NOX
supporting multiple threads (NOX-MT) added multi-threading support to NOX in order
to increase its performance and some of its contributions inspired our work as we will
detail later (TOOTOONCHIAN et al., 2012). POX, a Python-based controller for quick
development was also created based on NOX code.

38 Chapter 2. Background and related work

2.2.2 Beacon

The Beacon project (ERICKSON, 2013) is a Java-based controller that aims to
provide a fast and cross-platform basis for applications. It has been in development since
2010 and has been used in experiments and research since then. The goals of the Beacon
project can be shortly described as:

1. Developer productivity: Beacon looks for ways to maximize developer productivity
via its API and deployment utilities;

2. Runtime modularity: applications running on the controller should be easily control-
lable and changeable (an application can be replaced by another without affecting
running switches);

3. Performance: a multi-threaded architecture that is designed as the central point of
the architecture, allowing linear performance scaling.

Java is chosen as the programming language for implementing the controller, since
it helps in providing the goals mentioned above: (1) developer productivity is enhanced
since it is a high-level programming language, featuring fast compile times and automatic
memory management; (2) there are many ways to implement runtime modularity in Java.
The Beacon author chose to use the OSGi framework; (3) There are plenty of libraries
and ways of optimizing a Java application to a point where it can achieve near-native
performance. The results obtained with the Beacon implementation prove this: Beacon
was a top-performer in all benchmarks, sometimes by a wide margin.

Beacon’s core is composed by a number of IO loops (event loops) running in threads.
These threads are responsible for running code that reads from and writes to sockets and
dispatches events to application handlers. It is possible to use different event handling
approaches with Beacon (such as a synchronized queue, or a run-to-completion approach).
When evaluating our work in Chapter 5 we will present some of these approaches and
discuss their impact on performance.

2.3 OpenFlow switch agents, frameworks and messaging libraries

In this section we will present software libraries that relate more closely to the
objectives of our work: they provide controller frameworks, switch agents and message
building/parsing libraries for the OpenFlow protocol.

2.3. OpenFlow switch agents, frameworks and messaging libraries 39

tinyNBI

OpenFlow 1.0
stack

OpenFlow 1.1
stack

OpenFlow m.n
stack...

SwitchSwitch Switch

Application Controller

Application Application

Unified abstractions (Switch, Datapath, Flow Table, Flow, etc.)

Figure 5 – tinyNBI abstracts differences in OpenFlow protocol versions.

2.3.1 tinyNBI

tinyNBI (CASEY; SUTTON; SPRINTSON, 2014) was designed to overcome the
underlying complexity created by the lack of a formal OpenFlow specification. The authors
mention an often-discussed issue in the OpenFlow community: there are several versions
of the OpenFlow protocol, most of them in use, with a complex model of dependencies
between features and a lack of a formal definition for the protocol structures. Adding to
this, there is the fact that switches are not mandated to implement all protocol features,
so an application developer has to check for all possible variations of protocol versions and
device support for these versions and features.

In order to solve these issues, the authors proposed a programming interface that
exposes clearly defined SDN abstractions, and deals with the details of implementing them
on top of the several existing OpenFlow versions. Applications declare which features they
need, and tinyNBI takes care of making the necessary adaptations to application requests.
The application is informed in case a feature cannot be supported due to protocol version
or hardware constraints. Figure 5 illustrates the tinyNBI approach.

Some examples of abstractions tinyNBI provides are common to all OpenFlow
version: Switch, Connection, Datapath, Flow, Match, Meter, Instruction, etc. These
abstractions are available with slightly different variations in every OpenFlow version.

An API is developed on top of these abstractions, providing application developers
with a high-level view of the protocol, regardless of version or switch support. Event
handling can be synchronous, which allows for an application to drive the controller

40 Chapter 2. Background and related work

(asking for events), or asynchronous, which allows the controller to drive an application
(informing about events).

2.3.2 Trema

Trema (Trema project, 2014a) is a lightweight framework providing a complete
OpenFlow stack: a controller framework, a switch emulator and applications. It was designed
to provide an easy way for control applications to be written in Ruby and C, using a
common code base for both languages. It supports OpenFlow 1.0 in its main release, and
OpenFlow 1.3 support is being added in a new version (Edge) still in development (Trema
project, 2014b). Applications are expected to implement several callbacks for common
OpenFlow events (switches joining or leaving the network, packet-in messages, errors,
etc.).

In its current design, it is single-threaded, meaning that applications can only
make use of one thread when handling events (the Edge version adds some multithreading
capabilities). The bindings for Ruby enables developers to easily build controllers and
applications using a high-level, dynamic language. Trema also provides a network and host
emulator that can be used to test controllers and applications in a simulated environment.

2.3.3 Indigo

Indigo (Project Floodlight, 2014) is a switch agent framework which aims to enable
OpenFlow support on physical and software switches. It provides OpenFlow support upon
a hardware abstraction layer (HAL) for switches. By doing that, adding OpenFlow support
to a switch is a matter of implementing the OpenFlow features in the hardware using the
HAL, since Indigo takes care of establishing the OpenFlow control channel and calling the
appropriate HAL functions in order to implement OpenFlow in the hardware.

2.3.4 ROFL

The Revised OpenFlow Libraries set (ROFL, also known as ROFL-core) was
developed as a general-purpose set of C/C++ libraries for adding OpenFlow support
in software such as control applications, controllers frameworks and switches. ROFL is
composed by three sub-libraries:

• ROFL-common: provides an implementation of basic OpenFlow primitives such as
control channel connections (in both the client and server sides), event loops and
message handling utilities for parsing and building OpenFlow messages. It provides
a C++ API and supports OpenFlow versions 1.0, 1.2, 1.3 and 1.4.

2.3. OpenFlow switch agents, frameworks and messaging libraries 41

• ROFL-pipeline: a platform-independent pipeline that provides OpenFlow message
processing and data modeling functionality. It is intended to be used in an OpenFlow
switch to take care of the OpenFlow state in the hardware (tracking flow tables, for
example).

• ROFL-hal: a hardware abstraction layer for OpenFlow, deploying ROFL-pipeline to
integrate it with the hardware. It is intended to provide a unified hardware interface
for ROFL-pipeline.

The last two sub-libraries, ROFL-pipeline and ROFL-hal are not of interest to us.
They implement features that are mostly hardware-oriented.

ROFL-common is the sub-library that is of interest to us. ROFL-common is built
as a set of independent pieces for several purposes (socket/IO manipulation, message and
packet building/parsing, an event loop implementation). These pieces can be combined
together to form a complete application, either as a controller or as a switch agent.

The term “library” is used for describing ROFL-common. However, following the
definitions we proposed at the beginning of this chapter, it would be categorized as both a
library and a framework, since it includes several pieces of software that may be useful
to OpenFlow controllers and switch agents, and some of these pieces act as a framework
when put together.

2.3.5 OpenFlowJ, libopenflow, loxigen and others

Messaging libraries are one of the most modular pieces in controllers and switch
agents, being constantly reused in several projects. Some examples are:

1. OpenFlowJ, which started as a Java implementation of the OpenFlow protocol, and
is used in several projects, such as FlowVisor, OpenDayLight and Beacon.

2. libopenflow was the library used in the NOX controller (as a C/C++ and Python
library) and later improved in the POX controller (as a Python library).

3. Loxigen, which aims to provide automatically generated messaging bindings for
several programming languages. It is a more ambitious project than other messaging
libraries because it attempts to automatically build a fully functional messaging
library for different protocol versions based on the parsing of the OpenFlow specifi-
cation (the C header defined in it). It is developed by Big Switch Networks, and is
used in the Indigo switch agent and in the Floodlight controller.

42 Chapter 2. Background and related work

These libraries are not directly related to the objectives of our work. We will describe
an implementation of a messaging library that complements our work in Chapter 4 and
exemplify how these libraries can be used in conjunction with our work in Chapter 5.

43

3 The libfluid framework

This chapter is divided into three main sections. Section 3.1 outlines issues with
the related work mentioned in Chapter 2. Section 3.2 provides a list of requirements
that solves the issues identified in the previous section. The remainder of the chapter
(section 3.3) details a software architecture aimed at implementing the requirements, along
with explanations on how this is done.

By the end of the chapter, we will have detailed the core of our proposal: libfluid,
a lightweight OpenFlow framework.

The origin of libfluid

The trigger for the development of libfluid was the Open Networking Foundation (ONF) “OpenFlow
Driver Competition”a. The goal of this competition was to foster the development of open source
libraries for OpenFlow, making it easier for third-parties to build software that uses the protocol.

The term “OpenFlow driver” is related to the term “device driver” used in operating systems:
a software layer that lies between the applications and the device, abstracting the device and
providing a programming interface to the operating system and its applications (CORBET; RUBINI;
KROAH-HARTMAN, 2005). In the case of OpenFlow, a driver would be the software that allows a
computer program (and thus the computer) to control OpenFlow devices. Additionally, it could also
be used in a network switch, enabling its hardware to use the OpenFlow protocol. In this text, we
simply call the “driver” a framework.

Our team, then at CPqD, took part in this competition and we eventually won it. Our
submission was regarded as the most compliant with the competition requirements.

The framework/driver that is the core of our proposal is part of what was submitted to
the competition. The issues we list in this chapter and the proposed solutions are the result of our
experiences and observations of related work in the field of SDN and OpenFlow that led to the
development of libfluid.
a <https://www.opennetworking.org/competition>

3.1 Issues in current work

In this section we present issues in existing SDN frameworks, controllers and switch
agents; some of these issues are relevant not only for OpenFlow, but also for SDN in
general (i.e.: they may be relevant for SDN protocols other than OpenFlow).

This list of issues will foster the elaboration of a requirements list for the core of
our proposal.

https://www.opennetworking.org/competition

44 Chapter 3. The libfluid framework

3.1.1 Issue #1: Little reuse between switch agents and controller frameworks

The connectivity layer on network control protocols can sometimes be understood
as a server-client architecture: a control software (server) listens to connections from
equipment (client) asking for a control service; this is the OpenFlow network model.

Since client and server OpenFlow implementations share some common responsi-
bilities (namely, the connectivity and messaging services described in Chapter 1), it is
possible to reuse code more effectively.

Current OpenFlow protocol implementations (with the exception of ROFL) target
only one side of this client-server architecture.

3.1.2 Issue #2: Protocol implementations are inflexible

Current implementations of OpenFlow frameworks, controllers and switch agents
offer default event handling approaches and other safe-defaults that cannot be easily
changed, such as data structures used inside the core of the framework.

These safe-defaults may make it hard to code in a way that reduces development
time, or that optimizes implementations for throughput, latency or fairness. It is impossible
to provide all these guarantees at the same time, but the architecture of a protocol
framework should enable the developer to choose what is important by tweaking parameters
or adding incremental layers of software only when necessary.

A related aspect (to be further detailed in Issue #4) is the bundling of a messaging
library in the core of existing implementations, meaning that developers will be forced to
use a default library, potentially incurring unnecessary overhead.

3.1.3 Issue #3: No lightweight and portable OpenFlow implementation

Most portable implementations of OpenFlow, such as Beacon and Maestro (CAI
ALAN L. COX, 2011), are written in Java (and they base their portability claim on this
fact). However, they are not lightweight, providing many features that go beyond the scope
of an OpenFlow framework and requiring the setup of an environment for the controller.
Lightweight implementations (such as Trema, ROFL-common and Indigo) are restricted
to one or two of programming languages and architectures.

Developers could benefit from a protocol implementation that works across program-
ming languages and computer platforms. This means that there could be less restrictions
and compromises when choosing technologies for applications.

3.1. Issues in current work 45

3.1.4 Issue #4: Protocol implementation core and message handling are mixed

Current implementations of the OpenFlow protocol use libraries that provide
protocol message building/parsing in their core. This means that, for every new version of
the protocol, the core framework has to be adapted even though there are ways to leave
most (if not all) of this task to a dedicated message building/parsing implementation. In
other words, the cores of existing OpenFlow controllers, switch agents and frameworks are
bigger than they should be.

3.1.5 Issue #5: No clear path for building standalone applications

Most controllers are oriented towards running several applications at the same
time, and there is no bare-bones solution that allows programmers to build single-purpose,
stand-alone applications. ROFL-common and Trema allow for this, but not in an easy or
straightforward manner (and they do not advertise it as an use case).

Researchers seeking to build network control applications to test new ideas, or
students wishing to dive straight into the protocol need first to learn how to compile, run
and develop for existing controllers. The application will always need the chosen controller
in order to run, incurring unnecessary overhead in simple use cases.

Standalone applications may also prove to be interesting when hardware is limited
or requirements are stringent. Developing a single, standalone application that performs a
few functions without the overhead of a full controller should allow for extreme tweaking
of performance metrics and fine-grained control over memory and CPU usage.

3.1.6 Issue #6: Protocol implementation behavior is not configurable

OpenFlow controllers, switch agents and frameworks do not provide easy ways
for fine-tuning protocol implementation details. As an example, it is not always trivial
to specify the protocol versions the controller, switch agent or framework will use if it
supports more than one, and some behaviors cannot be overridden by the user (such as
liveness checks and handshake behavior). While this is fine for most use cases, sometimes
users run into incompatibilities between controllers and switches1, and there is no simple
way to override the faulty behavior other than directly changing the code responsible for
this behavior.

It would be desirable to have an easy way to enable, disable and customize protocol
features to allow users to command the behavior of the implementation, working around
1 As an example, a controller may expect a switch to send a keep-alive message every 15 seconds, but

the switch only sends one every 30 seconds, causing the connection to be closed by the controller.

46 Chapter 3. The libfluid framework

incompatibilities or fine-tuning settings that can improve performance.

3.2 Requirements

These requirements are directly derived from the issues identified in the previous
section. This is not an extremely detailed requirement listing, but rather a general guideline
for the design of our proposal.

3.2.1 Req. #1: Unified protocol implementation for controllers and switches

In the context of SDN, a unified protocol implementation is one which can be used
to add protocol support in all parts of the network in which it is needed. Given proper
software abstractions, a single solution can be built which works for devices of all types,
be they in control or being controlled. In order to achieve this, it is necessary to extract
common functionality, so that code can be reused for different purposes.

We focus on the OpenFlow network model and see how a unified protocol layer
can be implemented so that a single code base can serve for both servers (controllers)
and clients (switches). This issue should tackled from a formal software-engineering point
of view: decomposing the architecture in multiple levels and then implementing it using
modularization techniques and extracting reusable pieces when possible.
This requirement addresses Issue #1: Little reuse between switch agents and controller
frameworks.

3.2.2 Req. #2: More flexibility in the core of the protocol implementation

The task of providing advanced OpenFlow/SDN functionality will be left to the
user. This means that using a single implementation, different requirements for latency,
throughput or fairness can be achieved by customizing a common core. We will also explore
how different performance or architectural requirements can be addressed by tweaking
configuration parameters (such as threading configuration and memory allocation) and
choosing different data structures (that are implemented at a higher-level and not as part
of the framework core).

By avoiding default and unchangeable features (such as event handling methods and
message building/parsing libraries) our implementation should be adaptable for different
purposes (such as specific tools or SDN controller plugins), since we will only be providing
a lean core that can be customized for different purposes.
This requirement addresses Issue #2: Protocol implementations are inflexible.

3.2. Requirements 47

3.2.3 Req. #3: A lightweight and portable implementation

In order to keep the implementation lightweight, the public API should be as
small as possible, helping keep our implementation lightweight (as per our definition)
and minimalistic. By doing this, we will also make it easier to create bindings for other
programming languages, since there are less public-facing entities to port and adapt.

The implementation should be written using technologies widely available in differ-
ent computer platforms (we chose using C/C++ and restricting ourselves to POSIX as
much as possible). The implementation must also use proper methods for dealing with
endianness and avoid using compiler-specific features. These restrictions are known to
make code easier to port to other computer platforms.
This requirement addresses Issue #3: No lightweight and portable OpenFlow implementa-
tion.

3.2.4 Req. #4: Independence from messaging libraries and protocol versions

We have chosen a viable method for dealing with the issue of protocol imple-
mentations working with only a handful of protocol versions. The OpenFlow protocol
specification allows us to make a few basic assumptions that can be used to implement
version independence – that is, there are some protocol characteristics that are guaranteed
to never change.

Therefore, if version X.Y of OpenFlow protocol specification is released in the
future, the underlying implementation should not have to change, since it supports the
core features of every OpenFlow version (even future ones), as long as basic protocol
characteristics (message header structure) are unchanged, as guaranteed by the OpenFlow
specification.

By using these unchanging features to implement version negotiation, the only
requirement for implementing support for new protocol versions becomes the messaging
library. This library has to be built or adapted so that it can work with the constructs of
the new protocol version and advanced features can be used.
This requirement addresses Issue #4: Protocol implementation core and message handling
are mixed.

3.2.5 Req. #5: Enable standalone applications

It must be possible to compile the code as a shared or static library2, so that it
can be embedded in applications in order to provide OpenFlow protocol support. This
2 The implementation is still a framework, but one which is packaged in a software library.

48 Chapter 3. The libfluid framework

also means that our solution will not have a single entry-point of execution, and different
parts of it must be easy to embed and reuse as needed.

Enabling the implementation to be used in standalone applications paves the way
for building embeddable applications in limited hardware or simply ad-hoc applications,
which can be simpler to deploy and reason about. Examples of these applications can
be network traffic simulation, firewalls and router applications deploying custom routing
engines.
This requirement addresses Issue #5: No clear path for building standalone applications.

3.2.6 Req. #6: Configurable protocol options

There must be a way to configure and choose protocol implementation details,
such as handshake behavior, memory management policies and the use of potentially
troublesome features.

This configuration method must also be easy to extend by adding new configuration
parameters. These parameters will be detailed when we discuss the architecture further in
this text, since some of them are very specific to implementation details.
This requirement addresses Issue #6: Protocol implementation behavior is not configurable.

3.3 Software architecture

In this text (and during the development of libfluid), we adopted a leveled design
breakdown as proposed by Steve McConnell (MCCONNELL, 2004) in his book, Code
Complete:

1. At first, the system is pictured as a whole;

2. The system is broken down into subsystems or packages;

3. Each subsystem is divided into classes;

4. Each class is divided into data and routines;

5. Finally, each routine is detailed.

For the first level, we have libfluid as an OpenFlow framework; an overview of it is
present in Subsection 3.3.1. We chose to develop a framework because it was the simplest
way to have a lean implementation that works for both controllers and switch agents.

The second level is shown in Subsection 3.3.2: we chose to rename subsystems to
blocks. McConnell states that in small systems, design can jump from the first to the

3.3. Software architecture 49

third level. In the case of libfluid, we think that it is beneficial to show the blocks and
outline their interactions in broad terms in order to aid comprehension.

An overview of the third level is also shown in Subsection 3.3.2, as modules which
compose the blocks. Modules are roughly equivalent to classes, but we chose to call them
differently because they may also feature additional parts.

Finally, the implementation details of the third, fourth and fifth levels are shown
in Chapter 4.

3.3.1 Overview

In order to have a unified architecture for both controllers and switch agents, we
need to extract common functionality available in both of them and expose it in a reusable
form.

We chose to apply the client-server paradigm to our frameworks’s architecture,
with servers being OpenFlow controllers (which provide a control service to switches), and
switches acting as clients (connecting to controllers and asking for the control service). This
is how OpenFlow controllers and switches have always been designed, but this terminology
is not the usual one. In our text, we use both interchangeably: OpenFlow controllers are
OpenFlow servers, and OpenFlow switches are OpenFlow clients.

In common, both clients and servers need to manage the lifecycle of one or more
connections and read and write data to the network using these connections. This lead us
to a three-tier architecture3 for separating responsibilities:

0. Fundamental IO and event handling code that can be reused for both controllers
and switch agents, providing only the fundamental pieces for OpenFlow support.

1. Customizable OpenFlow clients and servers built using the abstractions defined in
tier 0. Adds support for OpenFlow features.

2. User-built code, building fully-functional software on top of libfluid.

This conceptual view of the architecture is illustrated by the diagram in Figure 6,
which contains several blocks outlining functional groupings in the framework.

In Figure 7 we further break down the blocks of Figure 6, exposing the modules
in each block. A module is a set of one or more classes, associated functions and constants,
providing some specific functionality in the framework. In practice, these modules are
3 The traditional definition of a three-tier architecture is that divided in data, logic and presentation

tiers. This is not the meaning we intended here, even though we used the same term: ours is simply
an architecture divided in 3 parts.

50 Chapter 3. The libfluid framework

Tier 0
Core IO/event handling abstractions

Tier 2
User implementation

Tier 1
Basic OpenFlow implementation

Network connection

Event loop and
handlers

(Reactor design pattern)

OpenFlow server and
client

Controller Switch agent

OpenFlow server and
client settings

Core server and client

OpenFlow connection

configures

creates
and

tracks

uses event loops and
implements handlers

wraps and
extends

extends

extends

defines defines

creates

OpenFlow message
building/parsing

May be used by Controllers and Switch agents

Figure 6 – Conceptual view of the libfluid architecture showing architectural blocks.

typically mapped to a class, following the relationship patterns outlined in Figure 7. The
is-a relationship is represented by inheritance, and the uses-a or has-a relationships are
represented by association (and its specializations: aggregation and composition).

However, we will not get into this level of detail now. In Chapter 4 we show the
implementation of this architecture, correlating it with the the modules and relationships
illustrated in Figure 7.

3.3.2 Blocks and modules

Each part of this subsection represents a block in the conceptual view illustrated
in Figure 6. Inside each part, we further explain the role of each block in the architecture
and break them down in modules. The attributes and behaviors of each module are also
detailed in each part.

3.3.2.1 Event loop and handlers

There is no formal definition of what is an event loop. It is typically understood to
be a programming construct that waits for events to happen and then dispatches these
events for processing. The application defines which events are to be dispatched, and then
defines the behavior that happens in response to these events.

3.3. Software architecture 51

Level 2
User implementation

Level 0
Core IO/event handling abstractions

Level 1
Basic OpenFlow implementation

Network
connection

Event handler

Event loop

OpenFlow
server

Controller

OpenFlow
server settings

OpenFlow
client settings

Specialized
server

Specialized
client

A is a B

A uses a B
or
A has a B

OpenFlow
client

Switch agent

OpenFlow
connection

A

A

B

B

Figure 7 – Module relationship diagram of the libfluid architecture.

As an example, consider a web server. It has to listen to HTTP requests from
users. Upon the establishment of a TCP connection (via a socket), it needs to read the
HTTP request data and interpret it. Based on the request, it needs to dispatch it to the
correct (web) application for a response to be served. In this scenario, an event loop is
part of the core web server code: it detects that data is ready to be read from the TCP
connection, then it reads the data, and notifies the application responsible for that request.
The application processes the request and gives back a response, which is queued for
sending in the event loop when the socket is ready to have data written to it. There are
several minor variations possible in this design (application event handling itself can be
queued, for instance), but this is the overall model of an event loop.

A network-oriented application typically connects to several peers, receiving infor-
mation from them in a non-deterministic fashion (it is impossible to know exactly when
or how much data will be transmitted). Compounding this issue, IO is usually a blocking
operation in most operating systems.

One way of dealing with these issues is to use threads dedicated for every connection:
the threads block waiting for data to be received or transmitted, and follow the normal
application workflow (event handling) whenever IO is completed. There are drawbacks
in this approach: threading may lead to poor performance (due to synchronization and
context switching) and concurrency control can become complex. A high number of threads
is undesirable, since it can worsen these issues and end up creating a bottleneck.

52 Chapter 3. The libfluid framework

An alternative to threads is using a single-threaded event loop that uses asyn-
chronous or non-blocking operating system primitives to manage IO events. These prim-
itives are known as OS event demultiplexers: in the case of network application they
receive a list of sockets and block until an IO event happens (e.g.: data received). In
UNIX and UNIX-like systems there are several implementations of event demultiplexers
with different fine-tunings of behavior: select, poll, epoll, kqueue, etc. In Windows
systems, which uses asynchronous IO (a callback is called when an event happens, much
like an UNIX signal), blocking event demultiplexing can be emulated with the function
WaitForMultipleObjects.

A common way of implementing an event loop to deal with IO in an object-oriented
design is by using the Reactor pattern (SCHMIDT, 1995). It is a pattern commonly
identified in network-oriented applications, and it describes a way to implement the
relationship among:

• Event sources (such as sockets in network programming);

• The events, that can be IO-related (such as data ready to be read or written) or
management-related, such as a connection establishment or disconnection events;

• Data handling functions (the event handlers).

In the Reactor design pattern, a Reactor component makes the call to the OS event
demultiplexer based on a list of handles (connections, files, etc.) and then dispatches the
events to an abstract event handler. The application implements a concrete event handler
based on the abstract event handler API, providing the actual functionality.

An application that implements the Reactor pattern benefits from improvements
to its modularity (IO code is separated from the event handling), reusability (IO-related
code can be reused in other applications) and portability (IO functions and semantics,
which almost always have to be adapted for different operating systems, can be easily
changed). However, care must be taken in order not to perform blocking operations during
event handling, since this may impact other connections allocated to the same event loop.
Debugging also becomes more challenging, since flow of control is constantly changing
among functions that perform IO, OS event demultiplexing and event handling.

Frameworks typically implement patterns (JOHNSON, 1997), and the core pattern
of libfluid is the Reactor pattern. This pattern is used in the design of the event loop which
is implemented by the Event loop module. The Event loop module is responsible for
dispatching events to handlers, represented by the Event handler module. It is possible
to run more than one event loop simultaneously, each in its own thread.

3.3. Software architecture 53

3.3.2.2 Network connection

A network connection is a connection established for sending and receiving data
via a network. In traditional OS terminology, it is roughly the same as a socket. In libfluid,
a network connection wraps a socket, providing functionality for reading and writing data
from/to the network. It also wraps a socket life cycle management (open/close/error).

In the libfluid architecture, when an Event loop notices that it is possible to read
data from the network, code present in the Network connection module performs the
actual reading of the data from a buffer.

The Network connection module is not intended to be reusable in non-OpenFlow
scenarios: when reading messages, it is necessary to know their length, so basic knowledge
of the protocol OpenFlow protocol header is necessary (Open Networking Foundation,
2014b).

3.3.2.3 Core server and client

The core server and client block represents modules providing a minimal set of clien-
t/server functionalities for other modules that build on top of them. These functionalities
are:

• Listening for network connections (server);

• Establishing a network connection (client);

• Starting event loops to handle network connection events (both client and server);

• Implementing code for handling events and forwarding them to upper layers (both
client and server).

In the libfluid architecture, the Specialized server and Specialized client
modules implement these functionalities. They are said to be specialized because they use
the core modules (tier 0) of the libfluid architecture, assuming a default set of behaviors
and interfaces is available.

A Specialized server is responsible for starting any number of event loops, using
threads to provide parallelism (an event loop blocks the calling thread waiting for events).
It also listens to incoming network connections, assigning them to an event loop.

A Specialized client is responsible for attempting a connection to a remote
server and starting and stopping the event loop.

54 Chapter 3. The libfluid framework

3.3.2.4 OpenFlow server and client

The OpenFlow server and client block represents modules providing minimal
OpenFlow support in order to establish and keep an OpenFlow connection according to
the protocol specification (Open Networking Foundation, 2014b). Among the functionalities
of these modules, we have:

• Performing protocol handshake and version negotiation (both server and client);

• Checking connection status using features defined in the protocol (both server and
client);

• Implementing code for handling events and forwarding them to upper layers (both
server and client);

• Keeping a list of network connections (both server and client);

• Exposing configurable parameters (both server and client). These parameters are
detailed in the next part of this subsection.

The OpenFlow handshake

The OpenFlow handshake is a process that controllers and switches go through when they establish
a control channel connection. It is performed in order to negotiate an OpenFlow protocol version to
be used in communication (since peers may support more than one version). During the handshake,
the switch also notifies the controllers of its features and capabilities.

In libfluid, we are only interested in providing automated version negotiation, and the
treatment of switch capabilities is left to the user.

In the libfluid architecture, the OpenFlow server and OpenFlow client modules
implement the previously listed functionalities. These are the first modules that actually
implement OpenFlow behavior, and they expose an interface that is similar to the inter-
faces exposed by the Specialized server and Specialized client modules (as will be
detailed in Chapter 4).

User applications (controllers and switch agents) will implement a is-a relationship
with the OpenFlow server and OpenFlow client modules, providing code for handling
events in both server and client contexts as necessary.

3.3.2.5 OpenFlow client and server settings

The OpenFlow client and server settings block represents modules providing
configuration parameters to the OpenFlow server and OpenFlow client modules. These

3.3. Software architecture 55

modules provide ways for reading and writing configurations parameters in categories such
as:

• Supported versions: a list of protocol versions the framework will accept when
negotiating with peers (controllers or switches);

• Handshake behavior: enable or disable automatic handshake by the framework;

• Liveness check behavior: enable or disable automatic liveness checking by the frame-
work, and define the timeout for these checks;

• Message filters: allow framework users to define which messages they are interested
in;

• Memory management policies: allow framework users to optimize memory manage-
ment and avoid unnecessary memory copies;

• Potentially troublesome protocol details: enable or disable features that can cause
incompatibility with peers (e.g.: OpenFlow 1.3.1 hello elements).

In the libfluid architecture, the OpenFlow server settings and OpenFlow client
settings modules implement these functionalities. These modules do not feature any ac-
tual code to perform the behaviors they define. OpenFlow server and OpenFlow client
receive an object representing the configuration (via dependency injection (FOWLER,
2004)) and then read the configuration parameters in order to define their own behavior.

3.3.2.6 OpenFlow connection

The OpenFlow connection block represents modules providing OpenFlow-specific
connection semantics, and is used by the OpenFlow server and OpenFlow client modules.
It wraps a Network connection object, representing read and write operations in its
behalf. It also provides ways for storing and retrieving the following information:

• Negotiated version (for both servers and clients);

• Connection state (at the OpenFlow level, for both servers and clients);

• Application-defined data related to the connection.

In the libfluid architecture, the OpenFlow connection module implements these
functionalities. This module is exposed to user applications (controllers and switch agents)
as means for them to interact with their respective OpenFlow peers (switches in case of
controllers, and controllers in the case of switches).

56 Chapter 3. The libfluid framework

3.3.2.7 OpenFlow message building/parsing

The libfluid framework does not define a message building/parsing block in its
architecture. The function of this library is to provide developers with a high-level represen-
tation of OpenFlow messages (usually object-oriented). Messages coming from the network
are parsed and converted into this high-level representation. When writing messages,
developers can build them using the same high-level abstractions and convert them into
binary format, ready to be sent through the OpenFlow control channel to a peer.

Since libfluid aims to provide independence regarding OpenFlow version, it is
counterproductive to embed a message building/parsing library into the core of the
framework. Doing this would mean that for every new OpenFlow protocol version, this
library would have to be first adapted, and only then the framework would be able to use
it. Additionally, the user would have the overhead of an additional library, which is not
always desired, especially if it is not being used outside the framework’s core (as would
happen if the user favored another messaging library).

In Figure 6 the OpenFlow message building/parsing block is depicted in a special
way to denote this choice. It means that tools for handling protocol messages are not part
of the libfluid architecture, even though any implementation of these libraries will fit into
the framework.

This is an important design decision that defines much of what is unique to libfluid
when compared to other OpenFlow frameworks. A negative aspect of this decision is that
we are offloading complexity to the user. On the other hand, users are then free to choose
any messaging library, without being restricted to a default that may not address their
needs.

In light of this, an implementation of a messaging library called libfluid_msg is
available, and it can be easily used with the libfluid framework. It was developed alongside
the libfluid framework, but it is not implemented by the author of this dissertation. It will
be described in further detail in Chapter 4.

3.3.3 Requirements vs. Architecture

Table 1 shows the requirements described in Section 3.2 and how they are imple-
mented in the libfluid architecture. The table describes the architectural blocks (listed in
Subsection 3.3.2) which are most related to how these requirements are answered, along
with an explanation.

3.3.
Software

architecture
57

Requirement Architectural blocks Explanation

Req. #1: Unified protocol im-
plementation for controllers and
switches

OpenFlow server and client The OpenFlow server and OpenFlow client modules enable users
to build both controllers and switch agents, while sharing common
ancestor modules in the architecture.

Req. #2: More flexibility in the
core of the protocol implementa-
tion

Event loop and handlers, Open-
Flow server and client settings,
OpenFlow message building/pars-
ing

By building a multi-threaded event-loop design and allowing cus-
tomizations to default behavior of minor implementation details such
as memory allocation, it is possible to tweak libfluid for different use
cases. Additionally, not requiring a default message building/parsing
library also enables further flexibility when using libfluid.

Req. #3: A lightweight and
portable implementation

- Answering this requirement involves choices made when actually
writing the code, so it is not directly influenced by the architec-
ture. However, libfluid’s simplified architecture helps when creating
bindings for other programming languages, since it features a small
number of modules that are exposed to users.

Req. #4: Independence from mes-
saging libraries and protocol ver-
sions

OpenFlow server and client, Open-
Flow message building/parsing

By implementing only the minimum necessary to enable a functional
OpenFlow connection and delegating message building/parsing func-
tions to a third-party module (an external message building/parsing
library), libfluid becomes version-independent.

Req. #5: Enable standalone appli-
cations

OpenFlow server and client By extending just the OpenFlow server module, it is possible to
build fully-functional OpenFlow applications that run on their own,
without the need for full controllers.

Req. #6: Configurable protocol
options

OpenFlow server and client set-
tings

The settings modules provide an easy way to customize the OpenFlow
server and OpenFlow client modules, allowing users to redefine
or override default behaviors.

Table 1 – Requirements mapped to the libfluid architectural blocks.

59

4 Implementation

In Section 4.1 we will detail each component of the libfluid implementation and
some related components that may be used along with it. Then in Section 4.2 we will
briefly show how libfluid can be used by controllers, applications and switch agents.

The implementation described in this dissertation is available in the form of the
libfluid_base library. It is written in C/C++, with approximately 2200 lines of code,
and was implemented by the author of this text. We use the name libfluid to refer to
libfluid_base throughout the work.

The libfluid_msg library is an optional companion library that can be used with
libfluid_base for message building/parsing. It was implemented by Eder Leão Fernandes,
and is not the subject of this dissertation (though there is a section dedicated to it in this
chapter).

In addition to these libraries, sample applications (detailed in Chapter 5) and
additional documentation is provided in the libfluid repository, that is a home for both
libraries (libfluid project, 2014).

4.1 Components

The following subsections describe different components of the libfluid implementa-
tion, which are implemented as classes, functions and libraries in code. These components
are mapped to modules in the libfluid architecture (which were introduced in Section 3.3.2).

4.1.1 EventLoop

Implementation to architectural module mapping

EventLoop implements the Event Loop module of the libfluid architecture.

The actual implementation of the Reactor pattern (as mentioned in Subsec-
tion 3.3.2.1) is not done in libfluid. Since this is a widely known and used design pattern,
there are several libraries implementing it, such as libevent (MATHEWSON, 2012),
libev (LEHMANN, 2015) and libuv (libuv project, 2015). These libraries provide a high
degree of portability (to different operating systems and architectures). We chose to use
libevent, mostly because it was well-documented and actively maintained.

60 Chapter 4. Implementation

The EventLoop class in libfluid provides a simplified wrapper for the Reactor-based
event loop implemented by libevent, with two main methods: run and stop. Running an
event loop is a blocking operation (an operation which suspends the caller until execution
is done), and all program execution will happen inside event loops. Several event loops
can be run in separate threads, improving resource utilization in modern computers. The
use of event loops with threads will be detailed further ahead, when we talk about the
BaseOFServer class.

The use of the Reactor design pattern for an event loop is by no means a unique
contribution of libfluid: several controllers and other OpenFlow libraries make use of it.
The main difference here is that libfluid delegates this implementation to a third-party
library instead of implementing the event loop algorithm and the Reactor pattern itself.
Only the Beacon (ERICKSON, 2013) controller features a similar approach, using the
Netty framework.

4.1.2 BaseOFHandler

Implementation to architectural module mapping

BaseOFHandler implements the EventHandler module of the libfluid architecture.

The BaseOFHandler abstract class defines a simple interface that should be imple-
mented by any classes providing basic OpenFlow event handling: connection and message
events. It defines two important methods:

• base_connection_callback: called when an event happens to a connection;

• base_message_callback: called when a message is received.

In libfluid, classes implementing the BaseOFHandler interface are expected to
provide general callbacks for message and connection events, without making assumptions
about protocol-specific (OpenFlow) features. BaseOFHandler allows both controllers and
switch agents to share a common interface for their basic connection and message event
handling.

4.1.3 BaseOFConnection

Implementation to architectural module mapping

BaseOFConnection implements the Network connection module of the libfluid architecture.

4.1. Components 61

The BaseOFConnection class implements the basic mechanisms for connection
state tracking and IO (reading/writing). A BaseOFConnection instance is constructed as
in Listing 1.

BaseOFConnection(int id,
BaseOFHandler* ofhandler,
EventLoop* evloop,
int fd,
bool secure);

Listing 1 – BaseOFConnection constructor.

id is an externally defined ID for the connection (i.e.: a connection manager
defines it upon connection establishment). ofhandler is an object that implements the
BaseOFHandler interface, providing event handling callbacks. evloop is the EventLoop
instance that will be tied to this BaseOFConnection instance, being responsible for waiting
for events and triggering callbacks. fd is a file descriptor, which will be the socket used for
the connection. secure is a boolean value indicating whether the connection should use
transport-layer security.

BaseOFConnection is responsible for calling the message callback (implemented
by a BaseOFHandler instance) whenever a message arrives. It also defines defines three
events which are passed to the connection callback of a BaseOFHandler instance:

• EVENT_UP: fired when the connection is successfully established;

• EVENT_DOWN: fired when the connection has been closed by the other end (the peer);

• EVENT_CLOSED: fired when the connection has been effectively closed and its resources
freed.

There is an important distinction to be made between EVENT_DOWN and EVENT_CLOSED.
EVENT_DOWN will only be fired when the other end terminated the connection; after this
happens, an EVENT_CLOSED is also fired when the connection is done processing its re-
maining data and freeing its resources. On the other hand, when the user asks for a
BaseOFConnection to be closed, EVENT_DOWN will not be fired, and only EVENT_CLOSED
will be fired as a result.

A BaseOFConnection instance also provides the methods for:

• Sending data to the other end of the connection;

• Scheduling a callback to be invoked in regular intervals (the callback will be invoked
as long as the connection is open);

62 Chapter 4. Implementation

• Closing the connection;

• Freeing buffers allocated by the connection when reading messages.

BaseOFConnection does not implement any OpenFlow-specific behavior, just the
handling of basic IO and events (the first treatment of events before forwarding to other
layers). However, it is able to process OpenFlow message headers (which are guaranteed by
the specification to never change), and it needs to do so in order to figure out the length
of the messages being read. Such a simplistic design is used because it allows third-parties
to easily override the desired OpenFlow-specific support (such as handshake behavior,
connection state management) at an upper level, since they are not embedded in the core
of the connection abstraction.

A BaseOFConnection can be wrapped by a manager object, which will be respon-
sible for providing additional features for network connections. In libfluid, this manager is
implemented by the OFConnection class, which defines further OpenFlow-specific seman-
tics on top of this connection.

4.1.4 BaseOFServer

Implementation to architectural module mapping

BaseOFServer implements the Specialized server module of the libfluid architecture.

BaseOFServer implements the BaseOFHandler interface and acts as a server, lis-
tening for incoming connections. It is intended to be used as the basis for OpenFlow
controllers, but without implementing any OpenFlow semantics. A BaseOFServer instance
is constructed as in Listing 2.

BaseOFServer(const char* address,
const int port,
const int nevloops = 1,
const bool secure = false);

Listing 2 – BaseOFServer constructor.

address and port are respectively: a null-terminated string describing an address
and a port number. Both are used for binding a socket which will listen to connections.
nevloops is the number of event loops that will be run when the server starts: one event loop
per thread, and the threads are started and managed automatically by the BaseOFServer
instance. secure is a boolean value indicating whether connections established in this
server will be secured by TLS.

4.1. Components 63

In addition to implementing the methods required by BaseOFHandler, BaseOFServer
also provides two other methods:

• start: starts the BaseOFServer instance, listening at the address and port declared
in the constructor and assigning connections to event loops running in threads;

• stop: stops listening to new connections and signal the event loops to stop running
(causing connections to be closed).

BaseOFServer provides a multi-threaded internal design. When a BaseOFServer
instance is created, one or more EventLoop instances can be created. Since EventLoop
instances block the threads they are running on, several threads are needed in order
to provide parallelism. BaseOFServer takes care of automatically creating these threads
when the start method is called. The threads spawned by a BaseOFServer instance
are managed internally, eliminating the need for manual thread management by users of
libfluid (users are still responsible for providing concurrency control).

The connections in a BaseOFServer instance are represented by BaseOFConnection
instances and the EventLoop instance running in the first thread is used for listening for
new connections. This means that the first thread will have an additional overhead, but it
should be insignificant unless connections are constantly being started and closed, which
is not normal in OpenFlow environments, that typically feature long-running connections
as the norm.

Connections are assigned to an event loop when they are established, and all
events happening in this connection will be tracked by the event loop of that thread.
This means that several threads will be calling the callbacks upon events (as defined in
BaseOFHandler).

A BaseOFServer instance does not provide any OpenFlow-specific behavior such
as connection liveness checking or version negotiation. Connections are simply established
at this point in the architecture, and classes wishing to provide a functional OpenFlow
controllers must inherit from BaseOFServer. Connection tracking management is not
provided either: a BaseOFServer instance does not keep track of the connections it is
currently managing. Implementations building on top of BaseOFServer must use the
connection event handler to detect and keep information on BaseOFConnection instances.

4.1.5 BaseOFClient

64 Chapter 4. Implementation

Implementation to architectural module mapping

BaseOFClient implements the Specialized client module of the libfluid architecture.

The current implementation is not yet integrated with the core of the libfluid framework
(libfluid_base) because we judged it still does not meet the quality we expected in terms of
modularity, testing and documentation.

BaseOFClient is the other part of the OpenFlow paradigm: like BaseOFServer it
also implements the BaseOFHandler interface, but with the purpose of building switch
agents instead of controllers. A BaseOFClient instance is constructed as in Listing 3.

BaseOFClient(int id,
char* address,
int port);

Listing 3 – BaseOFClient constructor.

id is an ID for the connection, akin to the id defined in BaseOFConnection.
address and port are respectively the address and port of an OpenFlow controller to
which this client will connect.

In addition to implementing the methods required by BaseOFHandler, BaseOFClient
also provides two other methods:

• start: starts the BaseOFClient instance by attempting to connect to a controller
listening at the address and port declared in the constructor. Also starts an EventLoop
which will notify of message and connection events.

• stop: closes the connection and stops the EventLoop instance.

When attempting to start a connection with a controller, a BaseOFClient instance
will keep trying every 5 seconds, until it is finally established. If the connection is interrupted,
no attempts to reconnect will be made.

A BaseOFClient instance does not provide any OpenFlow-specific behavior such
as connection liveness checking or version negotiation. A connection to a controller is
simply established at this point, and classes wishing to provide a functional OpenFlow
switch agent must inherit from BaseOFClient.

4.1. Components 65

Interactions between base components

Upon connection establishment, the BaseOFServer instance creates a BaseOFConnection object
which will be responsible for managing the file descriptor associated with the connection (socket).

The BaseOFConnection instance is also tied to an EventLoop instance (the BaseOFServer
instances performs the mapping), meaning that this event loop will be responsible for notifying the
BaseOFConnection instance when events of interest happen (data to be read, socket read for writing,
peer closed the connection, etc.).

Code in BaseOFConnection will provide the initial treatment for connection events, and
forward an interpretation of these events to a BaseOFHandler instance.

If a BaseOFClient were used, it would act just as a BaseOFServer instance, but attempting
to establish a connection rather than listening for connections.

4.1.6 OFConnection

Implementation to architectural module mapping

OFConnection implements the OpenFlow connection module of the libfluid architecture.

OFConnection wraps a BaseOFConnection instance and enables some OpenFlow-
specific attributes and methods, such as:

• Liveness checking: a flag that indicates whether the connections is alive or not,
according to the OpenFlow echo mechanism. The liveness checking is performed at
regular intervals. The OFServer class is responsible for automatically sending and
receiving OpenFlow echo messages and toggling this flag accordingly.

• Version negotiation information: a value indicating which OpenFlow version
was negotiated during handshake.

• Timed callbacks: registers a function to be called at regular intervals.

• Connection ID: a unique connection ID automatically assigned by OFServer.

• Application data: a pointer to application-specific data, which allows users of
libfluid to store any information in OFConnection instances. This is useful because
it allows persistent data to be stored and be available across callback invocations. A
typical use case for this is keeping track of session data (e.g.: a L2 table in a learning
switch application) or pointing to a higher-level construct (e.g: a user-defined class
representing switch objects which use a connection).

• Wrappers: simple wrappers for BaseOFConnection methods for closing connections
and sending data.

66 Chapter 4. Implementation

A OFConnection instance is defined as in Listing 4.

OFConnection(BaseOFConnection* bofconn,
OFHandler* ofhandler);

Listing 4 – OFConnection constructor.

bofconn is the BaseOFConnection instance being wrapped by this OFConnection.
ofhandler is an instance of the OFHandler class, which is analogous to the BaseOFHandler
class, but represents an event handler that is at a higher level in the architecture, imple-
menting OpenFlow-specific behavior, which in our case is an OFServer instance (it is not
listed in the section for the sake of brevity).

4.1.7 OFServer

Implementation to architectural module mapping

OFServer implements the OpenFlow server module of the libfluid architecture.

OFServer extends the minimal set of functions in BaseOFServer and adds impor-
tant features for OpenFlow support:

• Connection tracking: OFServer keeps a list of connections (represented by OFConnection
instances), allowing users to retrieve them by their IDs (and not only when a callback
is called).

• OpenFlow version negotiation: OFServer implements an algorithm for version
negotiation that is flexible enough for current and future OpenFlow versions. The
algorithm does all that is needed in order to perform the OpenFlow handshake and
version negotiation as defined by the protocol specification (sending messages and
processing incoming responses).

• Liveness checking: checking the liveness of a connection is done by periodically
sending OpenFlow echo request messages and waiting for a response from peers (this
is a feature defined by the protocol specification). OFServer does this by instructing
connections managed by it to periodically send an echo request, and then waiting
for the response: if the response arrives before another echo request is bound to be
made, the connection is considered alive. Otherwise, it is marked as stale and closed.

• Customizable behavior: it is possible to disable or tweak most of the behaviors
implemented in OFServer, including the ones mentioned above. This is done by
configuring it via a OFServerSettings object.

4.1. Components 67

An OFServer instance is constructed as in Listing 5.

OFServer(const char* address,
const int port,
const int nthreads = 4,
const bool secure = false,
const struct OFServerSettings ofsc = OFServerSettings());

Listing 5 – OFServer constructor.

address, port, nevloops and secure are the same as in the BaseOFServer class.
The only addition is the ofsc parameter, which specifies the OFServerSettings object
used to define the behavior of the OFServer instance. If no value is provided, a default set
of configuration parameters is used.

OFServer allows the user to extend its default behavior via two methods (which
come from the OFHandler abstract class from which it inherits):

• message_callback: called when an OpenFlow message is received;

• connection_callback: called when an OpenFlow-relevant event happens to a con-
nection.

By implementing these two methods, all the scope of possible events is covered,
since events either relate to the control connection itself, or to OpenFlow messages being
received.

4.1.8 OFClient

Implementation to architectural module mapping

OFClient implements the OpenFlow client module of the libfluid architecture.

The current implementation is not yet integrated with the core of the libfluid framework
(libfluid_base) because we judged it still does not meet the quality we expected in terms of
modularity, testing and documentation.

The OFClient class is analogous to the OFServer class, and it works by extending
the minimal set of functions in BaseOFClient and adding important features for OpenFlow
support:

• Connection attempts: OFClient tries to connect to a controller, and keeps trying
indefinitely until a connection is established.

68 Chapter 4. Implementation

• OpenFlow version negotiation: OFClient also implements the algorithm for
version negotiation available in OFServer, adapting its behavior for an OpenFlow
client connection.

• Liveness checking: checking the liveness of a connection is done in the same way
as in the OFServer class.

• Customizable behavior: while it is not currently implemented, it will be possible
to configure OFClient instance behavior with a OFClientSettings object1.

An OFClient instance is constructed as in Listing 6.

OFClient(const int id,
const char* address,
const int port,
uint64_t datapath_id,
const struct OFClientSettings ofcs = OFClientSettings())

Listing 6 – OFClient constructor.

id, address and port are the same as in the BaseOFClient class. The only
additions are:

• The datapath_id field, containing a the id for an OpenFlow data path as mandated
by the specification;

• The ofcs parameter, which specifies the OFClientSettings object used to define
the behavior of the OFClient instance. If no value is provided, a default set of
configuration parameters is used.

The callbacks via which OFClient allows the user to customize it are the same as
in OFServer: message_callback and connection_callback.

4.1.9 OFServerSettings

Implementation to architectural module mapping

OFServerSettings implements the OpenFlow server settings module of the libfluid architecture.

The OFServerSettings class provides the writing and reading of configuration for
a OFServer that works via dependency injection (FOWLER, 2004): a OFServerSettings
1 In the example provided in the libfluid repository, OFClient configuration is done via a

OFServerSettings object, since it resembles very closely a future OFClientSettings object.

4.1. Components 69

object is built by the user and passed to a OFServer instance during initialization, thus
defining its behavior. The user writes configuration parameters to a OFServerSettings
instance, and the OFServer instance reads these parameters when deciding how to handle
a certain event. These configuration parameters are:

• Liveness check: defines whether the default liveness check (via OpenFlow echo
messages) should be done by the OFServer instance.

• Echo interval: the inverval between two OpenFlow echo-request messages used to
check connection liveness. It also defines the maximum time an echo-reply message
may take to arrive.

• Handshake: defines whether the default handshake algorithm should be performed
by the OFServer instance upon connection establishment.

• Supported versions: a set of OpenFlow versions that the OFServer instance will
accept when performing the handshake with switches.

• Message dispatching: defines whether all messages should be dispatched, including
those concerning handshaking and liveness checking.

• Hello elements: defines whether the OpenFlow hello elements introduced in Open-
Flow 1.3.1 should be used when performing handshakes (these elements can poten-
tially break peers with incompatible or older protocol implementations).

• Memory ownership: defines whether the user or the OFServer instance should
be responsible for freeing dynamically allocated memory (buffers) used to store the
OpenFlow messages. If the user decides to take ownership of this data, there is no
need to copy it for later use, slightly improving performance in some cases.

It is easy to extend this set of configuration parameters in the future, so users can
further customize a OFServer instance in different ways.

An OFServerSettings instance is constructed and initialized as in Listing 7.

OFServerSettings()
.supported_version(0x01)
.supported_version(0x04)
.use_hello_elements(false);

Listing 7 – OFServerSettings constructor.

The object is constructed with default values, and then its methods are called in
order to alter these values. Each method call to set a parameter returns a new copy of

70 Chapter 4. Implementation

the object with the specified parameter set, along with all the ones that were previously
set. This is done purely for stylistic reasons (it makes the initialization easier to read in
code). In this example, an OFServerSettings instance is created, and then support for
OpenFlow 1.0 (0x01) and 1.3 (0x04) is added. Additionally, the use of hello elements is
disabled. The resulting object can then be passed to a OFServer instance to configure it
at runtime.

4.1.10 OFClientSettings

Implementation to architectural module mapping

OFServerSettings implements the OpenFlow client settings module of the libfluid architecture.

The OFClientSettings is analogous to the OFServerSettings class. It is currently
not implemented (with the OFServerSettings being used in its place for now), but it
should define all the configuration parameters available in OFServerSettings in a way
that is suited for an OpenFlow client. It should also define additional parameters, such as
enabling or disabling connection attempts and a timeout for these attempts.

The coding style and usage of the OFClientSettings class should be very similar
to what is present in the OFServerSettings class.

4.1.11 TLS

Implementation to architectural module mapping

TLS is added as an extra component and is not described in the libfluid architecture.

The OpenFlow protocol specification says that switches and controller should
support secure connections. Transport layer security (the concept, not the TLS protocols)
is an optional feature in libfluid to enable secure connections, which is not part of its core
architecture. It enables BaseOFConnection objects to use authentication and encryption
for securing the OpenFlow control channel. It is currently enabled only for controllers using
libfluid and follows the traditional public-key infrastructure model of the Transport Layer
Security (TLS) Protocol v. 1.2 (DIERKS, 2008). It is implemented using the OpenSSL
library (OpenSSL Project,), and can be enabled via two functions shown in Listing 8.

The first one, libfluid_tls_init enables transport layer security. It requires a
certificate to be used by the controller (signed by a certificate authority), a private key
which will be used to encrypt data, and a certificate authority’s certificate which will be
used to define trust in switches connecting to the controller. The libfluid_tls_clear

4.1. Components 71

void libfluid_tls_init(const char* cert,
const char* privkey,
const char* trustedcert);

void libfluid_tls_clear();

Listing 8 – TLS enablement function.

function is used to free the memory and resources used for implementing the secure
channel.

In addition to using these two functions, the user is required to enable the secure
flag when using any of the OFServer, BaseOFServer or BaseOFConnection classes. Defin-
ing the flag at OFServer will be enough for enabling transport layer security for all
connections to that instance, since the flag’s value will be passed to BaseOFServer and
all of the BaseOFConnection instances created by it. It is possible to have both secured
and non-secured instances of an OFServer running at the same time, listening on different
ports.

4.1.12 libfluid_msg

Implementation to architectural module mapping

libfluid_msg was not implemented by the author of this dissertation and is not part of the libfluid
framework described in this dissertation (which is available in libfluid_base).

libfluid_msg is implemented as a standalone, independent messaging library. It
simplifies message building/parsing in controllers and switch agents by providing classes to
build OpenFlow messages with marshalling (pack) and unmarshalling (unpack) methods.

Packing an object results in an OpenFlow message in the network byte order
(wire format), ready to be sent through the network. For unpacking, the library parses
OpenFlow wire format data (properly adapting byte ordering) and builds a representation
of the contents as C++ objects that can be manipulated via methods (mostly getters and
setters).

libfluid_msg is not a direct part of the architecture proposed in this text. It
was developed at the same time as the libfluid core and following similar guidelines for
architecture, portability and performance. Its documentation is available together with
the libfluid bundle, and it ties in perfectly with the libfluid framework.

libfluid_msg is similar to other efforts in the area of messaging libraries for
OpenFlow, such as OpenFlowJ (OpenFlow 1.0 in Java) and libopenflow (OpenFlow
1.0 in C++ and Python). Also, like these libraries, libfluid_msg follows the manually

72 Chapter 4. Implementation

coded approach: all structures for manipulating messages are written by a developer.
Loxigen (Project Floodlight, 2014) provides an alternative approach: a generator takes as
input the OpenFlow specification headers and outputs a set of functions and classes for
developers to manipulate binary message data.

The libfluid architecture is flexible enough that it can work with any of these
messaging libraries. Some examples illustrating this capability are provided with the code.
Chapter 5 shows a sample libfluid-based controller that uses Loxigen-generated code for
manipulating messages.

All of the previously existing libraries mentioned above (OpenFlowJ, libopenflow,
Loxigen-generated libraries) are used in controllers and switch agents, so this is not our
contribution. The controllers and switches make extensive use of these libraries, embedding
them into their core frameworks, so that replacing or changing them later can become a
daunting task.

The libfluid architecture proposes the separation between the framework compo-
nents (BaseOFConnection, BaseOFServer, OFConnection and OFServer classes) and the
messaging library. The framework code has to implement its own set of basic OpenFlow
message building/parsing support (and this is done via raw byte manipulation using C
structures).

Finding this minimal set of features in an OpenFlow framework is one of the
contributions of this work, and it provides us with the ability to easily become independent
of OpenFlow version in the framework. Additionally, the developer is then able to choose
its own messaging library, without the imposition of a mandatory default.

4.2 Using libfluid

In order to build a minimally functional controller, a developer needs to
perform the following tasks:

1. Compile and install libfluid;

2. Include libfluid’s OFServer.hh header file;

3. Create a class definition which inherits from OFServer;

4. Compile the code, linking to libfluid.

This minimal controller is able to listen for connections from switches, follow the
OpenFlow handshake procedures, negotiate the protocol version and keep the connection

4.2. Using libfluid 73

alive indefinitely (by properly replying to echo requests). It does not perform any other
functions. Listing 9 exemplifies such a controller in code.

1 #include <fluid/OFServer.hh>
2

3 class Controller : public OFServer {
4 public:
5 Controller() : OFServer("0.0.0.0" , 6653) {}
6 };
7

8 Controller c;
9 c.start();

10 // Wait for user interruption
11 c.stop();

Listing 9 – A minimal libfluid controller in C++.

Listing 10 shows an example of a typical controller stub that allows the user to
specify listening address and port, enables support for OpenFlow 1.0 and 1.3 connections,
uses 4 threads and secure connections. The two callback methods are provided with
empty bodies, but they would normally contain user-defined code for handling events.
Functionally, this controller is roughly equivalent to that of Listing 9.

Further customization is possible via different OFServer constructor arguments,
especially when using an OFServerSettings object. A fully functional controller can be
built by implementing the two callbacks which are called by OFServer upon connection
and message events (see Subsection 4.1.7).

In Chapter 5 we will show examples of more functional OpenFlow controllers –
which implement these two methods, while also introducing the concept of applications.

The setup required for building an OpenFlow switch agent with libfluid is
slightly more involved, because in order to have it work minimally, we need to implement
(or simulate) a lot of structures available in a switch, such as ports and forwarding tables
that are beyond the scope of this work. Despite that, the use of OFClient is analogous to
that of OFServer, with similar callbacks and methods.

For more details on the OFClient implementation and the a software-based switch
that uses it, see the example implementation provided with the libfluid bundle2 and the
discussion around it in Chapter 5.

2 <https://github.com/OpenNetworkingFoundation/libfluid/tree/master/examples/switch>

https://github.com/OpenNetworkingFoundation/libfluid/tree/master/examples/switch

74 Chapter 4. Implementation

1 #include <fluid/OFServer.hh>
2

3 class Controller : public OFServer {
4 public:
5 Controller(const char* address = "0.0.0.0" ,
6 const int port = 6653) :
7 OFServer(address, port, 4, false, OFServerSettings().
8 supported_version(1).
9 supported_version(4)) {

10 // Controller initialization code
11 }
12

13 virtual void message_callback(OFConnection* ofconn,
14 uint8_t type, void* data, size_t len) {
15 // Message handling code
16 }
17

18 virtual void connection_callback(OFConnection* ofconn,
19 OFConnection::Event type) {
20 // Connection event handling code
21 }
22 }
23

24 Controller c;
25 c.start();
26 // Wait for user interruption
27 c.stop();

Listing 10 – A typical stub for a libfluid controller in C++.

75

5 Evaluation

The evaluation is based on the requirements listed in Chapter 3. For each require-
ment, we define evaluation approaches that can be qualitative (does libfluid fulfill the
requirement?) and/or quantitative (how does libfluid perform in benchmarking tests?).
We give an overview of the tools and metrics used for testing and evaluating libfluid in
Section 5.1.

Several applications were developed on top of libfluid to enable these evaluation
approaches. These applications are detailed in Section 5.2. Table 2 shows the relationship
between the requirements, evaluation approaches and applications.

Finally, in Section 5.3 we compare libfluid with the related work in the field of
OpenFlow frameworks, controllers and switch agents (which were previously described in
Chapter 2).

Requirement Evaluation approach Applications

Req. #1: Unified proto-
col implementation for con-
trollers and switches

Implement both a switch agent and a
controller based on the same code base
that works with existing switches and con-
trollers (and with each other).

Switch agent
Flexible controller

Req. #2: More flexibility
in the core of the protocol
implementation

Implement different controllers and event
handling mechanisms, tweak their settings
and analyze how they perform in terms
of throughput, latency and fairness under
different workloads.

Flexible controller
Event handling

Req. #3: A lightweight
and portable implementa-
tion

Port libfluid to a different CPU platform
and to different programming languages.
Show that applications still run success-
fully.

Portability

Req. #4: Independence
from messaging libraries
and protocol versions

Implement a controller and an application
that can simultaneously handle switches
using different protocol versions.

Flexible controller

Req. #5: Enable stan-
dalone applications

Build an application that uses libfluid di-
rectly (without a controller) and analyze
the results.

Standalone application

Req. #6: Configurable pro-
tocol options

Show different configuration parameters
when starting a controller, and discuss how
they impact libfluid’s behavior.

Flexible controller

Table 2 – Evaluation approaches for the requirements.

76 Chapter 5. Evaluation

5.1 Evaluation tools and metrics

We used some popular tools for evaluating that libfluid works properly and to
conduct benchmarks to measure its performance.

Mininet (LANTZ; HELLER; MCKEOWN, 2010) is used to simulate OpenFlow
networks with different topologies. It enables from simple connectivity tests (using tools
such as ping and iperf) to more advanced network traffic simulation, by emulating switches
and hosts. It requires few resources and can run on a standard laptop. It is used to test
several libfluid controllers and applications presented in this chapter in a qualitative way
(i.e. the application works as expected).

While not discussed in this text, we used tools from theValgrind project (NETHER-
COTE; SEWARD, 2007) for checking libfluid for memory leaks and improper memory
access during its development.

The cbench tool (SHERWOOD, 2013) is used to measure the performance of
OpenFlow controllers with two metrics: flow installation throughput and latency. These
measurements and the way they are performed are described in Table 3. cbench works by
simulating the control connections (TCP) of a number of OpenFlow switches connected to
a controller.

When conducting a benchmark with cbench, the controller is expected to be
running a L2 learning switch application. Such an application should respond with flow-
mod messages to the cbench-simulated switch packet-in messages, which are meant to
instruct the switch to install rules for the traffic flows being detected (or in this case,
simulated).

However, the simulated switches only account for flow-mod messages and ignore
them, never actually learning and thus always sending packet-in messages to the controller
as if they were always necessary. On the other hand, the controller application being
benchmarked may store its local cache of the L2 learning table, thus learning and potentially
becoming more efficient as the benchmarks runs and packet-in messages are repeated
by cbench (measuring the efficiency of this cache is also important, as it is part of the
application).

For both measurements, cbench runs a number of sequential loops of a given
time length (both parameters are customizable) and then displays the numbers for each
simulated switch in each loop. At the end of the benchmark (when the last loop is finished),
cbench displays the average and standard deviation for all switches, considering all loops.

5.2. Evaluation applications 77

Metric Description Unit

Throughput cbench simulates the control channel connec-
tions of a number of OpenFlow switches fill-
ing the TCP buffers with as many OpenFlow
packet-in messages as possible. Throughput
is measured as the number of flow-mod mes-
sages – matching a previously sent packet-in
message – that a controller can send in a given
period of time.

kflows per millisecond
The higher the better.

Latency cbench simulates the control channel con-
nections of a number of OpenFlow switches,
sending one OpenFlow packet-in message and
waiting for the controller to respond with an
OpenFlow flow-mod message. Latency is mea-
sured as the time it took from the moment
the packet-in message was sent until the time
the flow-mod message arrived in response.

microseconds
The lower the better.

Fairness The standard deviation of (flow installation)
throughput on a set of switches. A controller
could prioritize a small subset of connected
switches while others are starved, which is
not desired (and thus the importance of this
measurement).

relative to metric
The lower the better.

Table 3 – Metrics for evaluating performance.

5.2 Evaluation applications

5.2.1 Flexible controller

The flexible controller example was built to demonstrate the key points of the
libfluid architecture when building a controller. It is actually not a single application, but a
common core upon which different controller variations are built. The different controllers
are built to show that the requirements proposed in Chapter 3 are in fact implemented by
libfluid.

The overall architecture of the flexible controller is shown in Figure 8. There is a
common core, illustrated in the Controller abstractions portion of the diagram, providing
key utilities that are usually present in several existing OpenFlow controllers:

• Controller: a class representing the controller, which builds on top of libfluid’s
OFServer class for providing OpenFlow functionality. Different controller variations
inherit from this class.

78 Chapter 5. Evaluation

Controller abstractions
Basic OpenFlow controller abstractions

Controllers
Different applications and settings

Application

Switch

raw

loci

Controller
(extends OFServer)

msg

sends OpenFlow messages

sends event
notifications

configures
(via OpenFlow

messages)

Event notification

creates

secure

L2 learning switch

Benchmarking

L2 learning switch

Benchmarking

L2 learning switch

L2 Learning Switch

implements

configures
and runs

subscribes to event
notifications

Figure 8 – Conceptual view of the flexible controller.

5.2. Evaluation applications 79

• Application: an application represents a user-defined piece of software that runs
on top of the controller. It asks the controller to be notified about events, and then
reacts to these events. Applications are specific to a controller, and they register
themselves in a Controller instance for receiving event notifications of interest to
them.

• Event notification: an event notification represents a network event (such as a
switch connecting or a packet-in message from the switch). The Controller class
create this type of object and then sends them to Application instances interested
in this type of notification.

On top of these key abstractions, we developed four different controllers, with their
own set of applications, as shown in the Controllers portion of Figure 8. Further details
on these controllers, and why they were built, are shown in Table 4.

There are two types of applications present in the controller implementations:

• L2 learning switch: L2 represents the data-link layer in the TCP/IP model. This
application implements a L2 learning switch (MAC-address based). It makes an
OpenFlow switch mimic the behavior of a traditional switch, enabling it to forward
packets in an L2 domain. It exercises important parts of an OpenFlow controller,
such as the parsing of packet-in messages, packet output, flow installation and switch
state tracking. It is also used in benchmarks when comparing with other controllers,
since this application is present in almost all OpenFlow controllers.

• Benchmarking: A benchmarking application intended to be used with the cbench
application in order to measure controller throughput and latency when comparing
different configurations in libfluid (that is, comparing libfluid with itself). This
application simply replies any packet-in message with a fixed-content flow-mod
message, without any processing or learning.

The implementations of these applications are not the same across controller
variations (only their names and purposes are the same). For example, the L2 learning
switch application in the raw controller is built using C code for byte manipulation,
while the same application in the msg controller application uses the object-oriented
libfluid_msg library for achieving the same purpose.

All controller variations, and all applications in them were successfully tested with
hardware and software-based switches and with the Mininet tool.

The raw and loci controllers show that libfluid can be used with different messaging
libraries without the major effort of rearchitecturing the controller.

80 Chapter 5. Evaluation

Controller Purpose Description

raw Build a high-performance, pure
libfluid controller

The raw controller builds on top of
libfluid and implements applications
using manual byte manipulation,
without the aid of any OpenFlow
message parsing/building library.
The L2 learning switch and
Benchmarking applications are
implemented in this controller.

msg Build a controller integrated with
the libfluid_msg library

The msg controller builds on top of
libfluid and implements applications
using the libfluid_msg library for
parsing and building OpenFlow mes-
sages, which is designed to be easy to
use together with libfluid.
The L2 learning switch and
Benchmarking applications are
implemented in this controller.

secure Show how secure and non-secure
connections can be used simulta-
neously in libfluid.

The secure controller builds on top of
libfluid and provides secure connections
using the SSL protocol. It shows that
it is possible to run controller applica-
tion instances (L2 learning switch)
and use them to control the network
via normal and secure channels simulta-
neously.
It uses the raw controller implementa-
tion as its basis, but only enables the
L2 learning switch application.

loci Show that libfluid can integrate
with third-party OpenFlow mes-
sage building/parsing libraries.

The loci controller uses code automat-
ically generated by the Loxigen project.
Only the L2 learning switch applica-
tion is implemented in this controller.

Table 4 – The different controllers implemented using libfluid.

5.2. Evaluation applications 81

The secure connection channel provided by the secure controller was successfully
tested with the Open vSwitch software (PFAFF et al., 2009).

The configurable options of libfluid were also used when implementing these
controllers, as shown in Listing 11. In this example, support for OpenFlow versions 1.0
and 1.3 is declared (versions 1 and 4, respectively). The keep_data_ownership flag is set
to false, indicating that the OFServer class should not free the memory allocated for the
OpenFlow messages it receives. This allows a Controller instance to pass the same chunk
of memory to applications, saving an unnecessary copy operation. When the applications
are done processing messages, the Controller instance then frees the allocated memory.
This setting produces small improvements in throughput and latency.

OFServerSettings()
.supported_version(1)
.supported_version(4)
.keep_data_ownership(false)

Listing 11 – OFServerSettings as used in the controllers.

5.2.1.1 Benchmarks

In addition to implementing the four controllers, we also conducted benchmarks
using cbench to measure throughput and latency as described in Table 3.

Four benchmarks were conducted, with different configurations of libfluid and other
OpenFlow controllers. They are not meant to be exhaustive, since there are too many
variables involved in each test, but they should show that a libfluid-based controller can
perform at least as well as existing controllers (Benchmarks 1 and 2), that it can take
advantage of the parallelism available in modern hardware (Benchmark 3) and that it
works well in larger networks (Benchmark 4). Benchmark results consist of the average
(and standard deviation as error bars) of 16 loops of 10 seconds each.

82 Chapter 5. Evaluation

Benchmarking setup

We used the following hardware and software combination to perform the benchmarks:

• Intel Core i7-2600 CPU (4 cores, 8 threads @ 3.4 GHz);

• 8 GB of RAM (@1333 MHz);

• Running Ubuntu 12.04.2 and its standard software stack.

Recommended benchmarking guidelines were used when available for each controller. TC-
Malloc was used for better performance in C/C++. OpenJDK 7 64-bit provides the JDK/JRE for
the Java controllers.

For more details on the setup, see:
<http://opennetworkingfoundation.github.io/libfluid/md_doc_Benchmarks.html>

A measurement of the throughput of different controllers running a L2
learning switch application is shown in Figure 9. The benchmark was conducted with
cbench simulating 16 switches, and comparing the Beacon, NOX MT, Floodlight,
raw and msg controllers when configured to run with 8 threads.

This benchmark is provided to show that a libfluid-based controller can perform at
least as well as existing controllers in terms of throughput. Since learning switch applica-
tions perform pretty much the same functions in all controllers (despite implementation
variations), this application is a good fit for this benchmark.

The result shows that libfluid in its fastest configuration (the raw controller) has a
slight advantage in throughput compared to the Beacon controller. It is also very well-
positioned when compared to the other controllers. Standard deviation is shown for all
controllers as error bars in the graph, but the numbers are very small when compared to
the overall throughput (around 0.6% of the throughput in the worst case).

The msg controller shows an intermediate performance, mostly because of the
overhead incurred by the constant creation and destruction of objects (several for each
message) in libfluid_msg. Beacon overcomes this issues via the smarter memory allocation
mechanisms present in Java. It is possible to improve the msg controller throughput by
minimizing object creation and destruction by using an object pool.

It is important to note that the throughput numbers for any of these controllers is
more than enough, since most switches cannot handle so much flow installation requests
anyway (APPELMAN; BOER, 2012).

A measurement of the latency of different controllers running a L2 learn-
ing switch application is shown in Figure 10. The benchmark was conducted with cbench
simulating 16 switches, and comparing the Beacon, NOX MT, Floodlight, raw and
msg controllers when configured to run with 8 threads. The purposes of this benchmark

http://opennetworkingfoundation.github.io/libfluid/md_doc_Benchmarks.html

5.2. Evaluation applications 83

NOX MT Floodlight msg Beacon raw0

1

2

3

4

5

6

7

8

2.31 ±
0.0047

2.49 ±
0.0039

5.01 ±
0.0424

7.68 ±
0.0159

7.93 ±
0.0467

T
hr
ou

gh
pu

t
(k
flo

w
s/
m
s)

Figure 9 – Comparing throughput for controllers running a L2 learning switch application
(higher is better).

are similar to the those of the previous one (throughput), but now for the measurement of
latency.

The result shows that libfluid latency performance is up to par with other controllers
in an idealized scenario. A latency benchmark in a real network still remains to be done,
and is likely to show that the differences in latency shown here are irrelevant when the cost
of physical network communication is taken into account (i.e. the figures for all controllers
would be similar to each other but much higher, rendering the microseconds differences
shown here irrelevant).

Latency and throughput have an inverse relationship: it is possible to improve
throughput by using larger buffers for reading and writing, but this increases latency.
It is possible to improve latency (decreasing it) by using less buffer space and reading
and writing more frequently via system calls (CAI ALAN L. COX, 2011). Finding a
balance between both is ideal for most applications, and libfluid does that by having
high-throughput without sacrificing too much latency. The benchmark shows that libfluid
is more constant regarding latency (along with Beacon), as shown by the smaller error
bars in the graph (depicting standard deviation).

A measurement of how throughput varies when threading configuration

84 Chapter 5. Evaluation

BeaconNOX MT Floodlightmsgraw0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

4.98 ±
0.0451

4.58 ±
0.1744

5.23 ±
0.1035

5.21 ±
0.0439

5.18 ±
0.0409

La
te
nc
y
(µ
s)

Figure 10 – Comparing latency in controllers running a L2 learning switch application
(lower is better).

changes is shown in Figure 11a. This benchmark was conducted with the Benchmarking
application of the raw controller, in a network with 16 switches. The number of threads
in use by the controller is changed in each test. This benchmark is intended to compare
libfluid with itself and show how throughput is affected as the number of deployed threads
changes.

The result shows that in an ideal scenario in which no thread synchronization is
required, libfluid’s throughput performance scales almost linearly up to the point where
it matches the number of available physical cores in the CPU (4). After reaching this
peak, throughput decreases slightly when using all cores (physical + virtual) in the CPU
(8); we attribute this result to memory access bottlenecks. When more cores are used
(16) than the CPU provides (8), throughput decreases even further (and starts to vary a
lot, as shown by the error bars in the graph), to a point where the number of threads is
detrimental to performance.

A measurement of the throughput when the network size changes is
shown in Figure 11b. This benchmark was conducted using the raw controller with the
Benchmarking application. The number of switches connected to the controller is changed
in each test. This benchmark is intended to compare libfluid with itself and show how its

5.2. Evaluation applications 85

1 2 4 8 16

4

6

8

2.78

5.41

8.78 8.6

6.94

threads

T
hr
ou

gh
pu

t
(k
flo

w
s/
m
s)

(a) Average throughput of 16 switches
as the number of threads changes
in raw controller running the
Benchmarking application (higher
is better).

1 4 16 64 256 1000
2

4

6

8

2.33

7.13
8.01

7.51 7.33 7.39

switches

T
hr
ou

gh
pu

t
(k
flo

w
s/
m
s)

(b) Average throughput as the number
of connected switches changes in
the raw controller running the L2
learning switch application with
8 threads (higher is better).

Figure 11 – Throughput behavior when varying the number of threads and connected
switches.

throughput scales as the number of active control connections increases.

The result shows that libfluid scales gracefully when the number of switches in the
network increases. Throughput reaches its peak when there are 2 switch connections per
thread, but it does not decrease too much when the number increases even further, to
125 switch connections per thread. Standard deviation is shown for all number of threads
as error bars in the graph, but it is not visible due to small values (around 1.7% of the
throughput in the worst case).

We attribute these good numbers (even with larger numbers of connections) to
libfluid’s event loop (actually implemented by libevent) which is designed with the C10K
problem in mind (KEGEL, 2011).

5.2.2 Event handling

Starting from the raw controller of subsection 5.2.1, we modified it to add packet
logging functionality to the L2 learning switch application. The purpose of this change
is to stress libfluid as much as possible in a kind of scenario in which it might perform
poorly: time-consuming operations (such as logging, in this case).

We want to show that by carefully analysing benchmarks with knowledge of the
libfluid architecture, it is possible for developers to optimize the usage of libfluid in their
code.

86 Chapter 5. Evaluation

For the purpose of stressing the controller (and thus libfluid), we simulated a
feature present in traditional Ethernet switches known as port mirroring: switches can
be configured to send a copy of network traffic in one switch port to another port. This
other port can then be connected to a monitoring interface on a computer, allowing for
intrusion detection or troubleshooting (SANDERS, 2011).

In this example, we adopt a slightly different approach to the port mirroring
concept: we log all packets that go through a given switch (and not a single port) instead
of instructing it on how to forward that traffic. The controller receives the packets, and
then logs and forwards them (using a packet-out OpenFlow message). We call the switch
whose traffic is being logged the logged switch.

This means that, for one or more switches in a given set, the learning switch
application instead acts as a traffic logging and forwarding application. We did not
implement the traffic logging logic for egress traffic, since the benchmarking tool we used
(cbench) only simulates ingress traffic, which is enough for our purposes. For switches whose
traffic is not being logged, no changes are made: the L2 learning switch application
acts normally, installing rules for traffic forwarding in the switch.

Log data is output to a capture file in the PCAP format (libpcap project, 2015),
which can be a costly operation (it may take a while and lock while data is buffered or
written to disk).

Long-running operations (such as disk-, network- and CPU-bound operations)
should be avoided in asynchronous, non-blocking event loops such as the ones we use in
libfluid. This is not a limitation, but rather an architectural trade-off. Sometimes however,
such as in the packet logging case (or deep packet inspection applications), it may be
unavoidable to have long running operations. We will analyze how to work around the
overhead imposed by this sort of operations1.

The diagram in Figure 12 illustrates a scenario in which three switches are connected
to a controller. Due to the distribution of switches among threads, this is a possible
scenario. Assuming that the traffic in Switch #2 is being logged, we can see that Thread
2 is potentially under more stress than Thread 1: not only it has to handle events from
two switches, it also has to perform the work of saving all packets going through Switch
#2. The Packet logging activity is specially resource and time consuming, because it
may require writes to disk. Other types of tasks that could cause the same problem are
CPU bound activities (cryptography, graph algorithms) and other blocking IO operations
1 As an example, consider the NodeJS platform for building asynchronous applications, which features

an event loop as the core of its design. In NodeJS (Joyent, Inc., 2014), synchronous file I/O operations
are offloaded to a thread pool instead of being run in the main loop. The result is communicated
back via internal threading communication mechanisms. We chose not to use this mechanism in order
to avoid making libfluid too complex and harder to port to other architectures and programming
languages.

5.2. Evaluation applications 87

 libfluid

Thread 2Thread 1

Client #1
(OF Switch)

User application/controller

Client #2
(OF Switch)

Client #3
(OF Switch)

Connection #1
event handler

Packet forwarding

Packet parsing

Connection #1

Connection #2
event handler

Packet logging

Packet forwarding

Connection #2

Packet parsing

Connection #3

Connection #3
event handler

Packet forwarding

Packet parsing

Data flow

Event handling activity

Figure 12 – Event handling unbalance.

(writing to disk or to a socket).

A possible solution to this issue would be offloading long-running or locking IO-
bound tasks from the main event loops to other threads, avoiding that event loops become
unnecessarily overloaded, impacting the handling of other connections’ events. However,
this brings the issue of thread synchronization: we need to use a synchronized data structure
in order to offload work to the other thread (otherwise, race conditions may happen).

We chose three event handling approaches to the work-offloading task, and we
compare how they fare regarding throughput and latency:

• Run-to-completion: all the event handling procedures are performed in libfluid’s
event loop callbacks: the packet is parsed, logged, and then the appropriate forwarding
action is taken. This is the easiest approach, and only requires using libfluid as it is
(without adding any event queue).

• Synchronized queue: the basic event handling procedures are performed in
libfluid’s event loops: the packet is parsed and forwarded. Logging, however, is
delegated to a dedicated thread via a synchronous queue (that is made thread-safe
by using mutexes).

• Ring buffer: the basic event handling procedures are performed in libfluid’s event
loops: the packet is parsed and forwarded. Logging, however, is delegated to a

88 Chapter 5. Evaluation

dedicated thread via a special data structure, a wait-free ring buffer (BLECHMANN,
2015).

The first two approaches are directly derived from the work on the Beacon con-
troller (ERICKSON, 2013). These are traditional ways of performing processing delegation
from an IO-bound thread to a CPU-bound thread. The third one uses a special implemen-
tation of a well-known data structure: a wait-free ring buffer.

A wait-free ring buffer is a data structure that can be used to implement a special
kind of queue: it allows one thread to add objects to a queue (producer), while another
threads reads the objects (consumer) without the use of expensive memory locking. This is
made possible by the use of atomic CPU instructions along with the memory organization
of a ring buffer acting as a queue.

In the Ring buffer and Synchronized queue approaches, the event loop thread
of libfluid adds packets to a queue (producer), and another thread is used to log packets
(consumer). This thread performs only packet logging and is executed as a lower-priority
thread (using Linux thread-scheduling primitives).

5.2.2.1 Benchmarks

For benchmarking purposes, we varied the number of threads (1, 2, 4 and 8) and
switches connected to the controller (8, 16, 32, 64, 128). In all benchmarks, traffic going
through one of the switches (for any number of switches) is being logged before being
forwarded. The results are formed by the average throughput and latency of 10 loops of
traffic bursts lasting 5 seconds each.

Benchmarking setup

We used the following hardware and software combination to perform the benchmarks:

• Amazon EC2 c4.2xlarge VM (8 vCPUs);

• 15 GB of RAM;

• Running Ubuntu 12.04.5 and its standard software stack.

The machine used for these benchmarks was not the same as the one we used in Subsec-
tion 5.2.1 because we did not have access to it anymore.

For more details on the setup, the scripts used to run the tests, and detailed results, see:
<https://github.com/alnvdl/lf_evhandling>

Tables 5 and 6 show which event handling approach offered maximum throughput
(Table 5) and minimum latency (Table 6), even when only by a slight margin. The results

https://github.com/alnvdl/lf_evhandling

5.2. Evaluation applications 89

show an overview of the sorts of scenarios (number of threads, switches) in which each
approach performs the best for different metrics.

switches

8 16 32 64 128

#
th
re
ad
s

1 RB RB RB RB RB

2 RB RB RB RB RB

4 RTC SQ SQ RTC SQ

8 SQ SQ SQ SQ SQ

Table 5 – Best event handling approach for optimizing average throughput.

RB Ring buffer

SQ Synchronized queue

RTC Run-to-completion

switches

8 16 32 64 128

#
th
re
ad
s

1 RB RB RTC RTC RTC

2 RTC RTC RTC RTC SQ

4 RTC SQ RB SQ SQ

8 RB RTC RTC RB RTC

Table 6 – Best event handling approach for optimizing average latency.

Table 5 shows that the Ring buffer approach offers the best throughput for
small numbers of threads (up to 2 threads). As the number of threads increases, the
Synchronized queue approach offers better throughput. This can be explained in part
because, as the number of threads increases, the overhead of mutex-based synchronization
used by the Synchronized queue approach becomes less important, since only one of
these threads is constrained by locking (the one handling events of the logged switch),
while the other threads are free to quickly respond to events.

Table 6 shows a less clear picture, but seems to point to a slight advantage of
the Run-to-completion approach, which can be explained by the smaller number of
threads used by it (one less: it does not make use of a packet logging thread, performing
logging operation in the event handling thread). Since there are fewer threads competing
for resources (adding to context switches costs), latency is slightly improved.

90 Chapter 5. Evaluation

Logged switch thread Other thread Both threads
0

0.5

1

1.5

2

2.5

3

3.5

4

1.65 ±
0.012

1.78 ±
0.009

3.43 ±
0.137

1.65 ±
0.018

1.78 ±
0.012

3.43 ±
0.139

1.72 ±
0.017

1.84 ±
0.007

3.56 ±
0.129

T
hr
ou

gh
pu

t
(k
flo

w
s/
m
s)

Run-to-completion Synchronized queue Ring buffer

Figure 13 – Throughput with different event handling approaches for a workload of 32
switches distributed in 2 threads, with traffic from one switch being logged to
a file.

In addition to these general benchmarks, it is interesting to dive deeper into one of
the scenarios present in Table 5 to further understand the sorts of trade-offs a developer
would face when using libfluid with different event handling approaches. For that purpose,
we chose the throughput measurement with 2 threads and 32 switches because it provides
interesting results for analysis. The detailed results from this benchmark are shown in the
chart in Figure 13, which is divided in 3 parts:

• The first portion of the chart (Logged switch thread) shows the average throughput
of the 16 switches that are sharing a event handling thread with the switch that is
having its traffic logged (the logged switch). This average is formed by the 15 switches
not being logged, and by the logged switch. This thread has a higher workload,
since it has to perform the offloading of packets for logging to another thread (being
potentially subject to locking) in addition to installing rules for traffic forwarding.

• The second portion of the chart (Other thread) shows the average throughput of the
16 switches that are sharing an event handling thread. No switches in this thread

5.2. Evaluation applications 91

are having their traffic logged, so only the installation of rules for traffic forwarding
is performed.

• The third portion of the chart (Both threads) shows the average throughput of all 32
switches, regardless of the threads being used for handling their events. Standard
deviation is higher because this average takes into account the throughput of switches
being handled by the Logged switch thread (which is reduced due to the additional
workload) and switches being handled by the Other thread, thus causing greater
variation.

Average throughput when using the Ring buffer approach is slightly better than
when using the Run-to-completion and Synchronized queue approaches. This holds
true when considering both threads individually. When taking a complete average (32
switches in both threads), the results are inconclusive in terms of average throughput.

In contrast, fairness (which we measure based on standard deviation as described
in Table 3) is slightly improved in the scenario shown in Figure 13. This happens because
when using the Ring buffer approach, there is less throughput difference (in average)
between switches in threads with different workloads (logging vs. non-logging).

Thus, considering all metrics (inconclusive throughput, better fairness) in this
scenario (2 threads, 32 switches), the Ring buffer approach can be considered the best
fit. However, as the results in Tables 5 and 6 show, this is not always true, and different
event handling approaches yield different results when the scenario changes (number of
switches and threads), sometimes resulting in inconclusive numbers. For example: a higher
number of threads makes the Synchronized queue approach better for throughput.

Therefore, the best way to fine tune libfluid is developing the sort of event handling
approaches we outlined here and then conducting benchmarks. Performance alone may
not be the only reason for choosing an event handling approach though (especially in
edge cases where there are no clear-cut results). It is also important to take into account
development effort and code complexity. In this case, if the developer wishes for simpler
event handling, it is possible to choose a more traditional approach, such as the Run-
to-completion approach. The Synchronized queue and Ring buffer approaches are
slightly less straighforward to implement, but they may be a better fit if long-running
operations are constantly performed.

These three different approaches to event handling illustrate how developers are
able to leverage the threaded architecture of libfluid to fine tune their applications. By
changing the way threads are deployed and then using an appropriate data structure, it is
possible to favor latency, throughput, fairness or development effort, even in scenarios in
which libfluid is put under stress.

92 Chapter 5. Evaluation

Switch agent (OFClient)

Datapath

Port
1

Port
2

Port
3

Port
n

Flow table

Flow
1

Flow
2

Flow
3

Flow
n

Inbound OpenFlow
messages

Outbound OpenFlow
messages

Checks for matches

Network

Send
packets

Acts on
packets
(usually
forwarding)

libfluid

Builds (based on OpenFlow messages)

OpenFlow
Controller

Configures and
reacts to events

Figure 14 – Building blocks of the libfluid example switch.

5.2.3 Switch agent

In order to demonstrate how to implement a switch agent on top of libfluid, we
leveraged the OFClient class and implemented a very small software switch, which runs
as a program and simulates the behavior of a real switch by forwarding traffic between
virtual network interfaces. The switch is implemented to the point where it can act as a
learning switch when controlled by the libfluid controller described in Subsection 5.2.1. This
example was contributed to us by Eder Leão Fernandes (the developer of libfluid_msg).

Figure 14 illustrates the main blocks involved in this sample switch implementation.
The switch agent itself is just part of the overall implementation. It is implemented as an
OFClient instance, building upon libfluid to handle the interaction with the controller via
OpenFlow messages.

The datapath structure is the central point in this switch model, performing several
tasks:

5.2. Evaluation applications 93

• It builds the flow table from OpenFlow messages received from the controller (which
contains sets of flows: rules for forwarding traffic);

• It creates and manages the lifecycle of Port instances, which are responsible for
performing the actual network traffic forwarding;

• It forwards events of interest in the network to the controller (e.g.: inform the
controller about packets received from the network that could not be forwarded).

Packets are captured and forwarded by the ports using the libpcap library (libpcap
project, 2015). Each port runs in a dedicated thread and consults the flow table when
forwarding packets (all of this is inefficient, and it was done only because this was the
simplest way to do it for demonstration purposes).

libfluid’s footprint in this implementation is very small, providing only the support
for sending and receiving OpenFlow messages with a few lines of code. This example is
useful to highlight how libfluid can be leveraged not only to build control applications,
but also to implement OpenFlow into network switches.

The switch example has been successfully tested with the libfluid controllers of
Subsection 5.2.1. It was also embedded in Mininet as a switch that can be used in simulated
networks. Further details on how to run it are available in libfluid’s website.

5.2.4 Portability

In this text, we refer to portability as not only the ability to run software in different
computer platforms (e.g.: different microprocessor architectures and operating systems),
but also the ability to use the same software in different programming languages. libfluid
achieves both of these goals via architectural decisions and coding practices:

• Platform-specific code encapsulation: code that is specific to platforms is encapsulated
or wrapped by libfluid’s code.

• No platform-specific types in the public API: the API exposed to users uses only
primitive types such as strings, integers and binary values in a way that is portable
across different operating systems (using types defined by standard C headers).

• A minimal public API: in addition to only using primitive types, having a small
public-facing API helps when building bindings for other programming languages,
since there are less classes and methods to port and adapt.

• A third-party, cross-platform event loop: by using libevent, which can be compiled
in many operating systems and computer architectures, libfluid is able to be easily

94 Chapter 5. Evaluation

ported. The task of managing sockets, selectors, threads and IO mechanisms in
different operating systems would be much harder if we did not reuse an existing
work.

5.2.4.1 Cross-platform build

There is a port of libfluid to Android in ARM available in libfluid’s website (libfluid
project, 2014). It runs the L2 learning switch application of the msg controller described
in Subsection 5.2.1 as an Android application.

libfluid is cross-compiled to Android/ARM without any modifications using the
toolchain provided by Android (Android Open Source Project, 2015). In order to build it,
we also needed to cross-compile libevent (also without any modifications). In order to call
the C/C++ code in Java, it was necessary to create a minimal adapter using Java Native
Interface (JNI) (Oracle, 2015).

The application runs successfully on both the Android SDK emulator and in
Android (ARM) devices. We tested it by connecting a smartphone (Samsung Galaxy S2
Lite running Android 2.3) to a wireless network, creating a virtual network with a few
switches in Mininet running in a laptop that was also connected to the wireless network.
The controller running in the smartphone was able to react to network events and make
the virtual switches act as L2 switches.

5.2.4.2 Other programming languages

Using frameworks in programming languages other than the one used to write the
framework itself is considered a challenging task because most frameworks are closely tied
to features specific to a programming language (JOHNSON, 1997). libfluid overcomes this
issue by using a popular base language (C/C++) and neutral design decisions, as listed
earlier in this subsection.

Bindings for other programming languages are generated using the SWIG tool (BEA-
ZLEY et al., 1996). SWIG reads C/C++ header files with some special directives (.i files)
and outputs artifacts that enable the use of the C/C++ constructs in a target language
(Python, Java, PHP, C# and many others are among the supported languages).

When using SWIG to generate bindings from C/C++ code to other languages,
developers must take care with a few constructs and avoid using others. The specific details
depend upon the target language, and there is a manual describing the best practices and
workarounds (SWIG project, 2015).

We created Java and Python bindings for libfluid. One of our concerns when we
designed libfluid’s public API was to ease the generation of these bindings, and we did

5.2. Evaluation applications 95

it by making the API very small (just a handful of classes and methods) and using
primitive types when possible. libfluid is also object-oriented, which makes it easier to use
in languages such as Python and Java (developers in these languages are used to object
orientation constructs).

Code developed using these bindings ends up being very similar to their equivalent
C/C++ counterparts. As an example, compare the minimal controller shown in Listing 9
in Chapter 4 to its Python equivalent illustrated in Listing 12.

1 from fluid.base import OFServer, OFConnection
2

3 class Controller(OFServer):
4 def __init__(self):
5 OFServer.__init__(self, "0.0.0.0" , 6653, 1)
6

7 c = Controller()
8 c.start()
9

10 # Wait for user interruption
11 raw_input()
12

13 c.stop()

Listing 12 – A minimal libfluid controller in Python.

The bindings for Java and Python are available in libfluid’s repository. Variations of
the L2 learning switch application were built in each language and successfully tested
against physical and virtual switches. The Python bindings for libfluid_msg were also
used experimentally in the POX controller 2.

These bindings are still considered to be experimental, but they show how libfluid
can be easily made available and used in other programming languages.

5.2.5 Standalone application

A standalone application is one which can directly communicate with OpenFlow
switches in order to work, without the need to run on top of a third-party infrastructure
(such as an SDN controller). Typically, such an application will be a small, single-file
executable. Building a standalone executable may be useful for very small and focused
SDN applications for testing, debugging, teaching or research purposes.

While deciding which application to build in order to showcase this feature of
libfluid, we came across several ideas such as firewalling application and HTTP proxy
2 <https://mailman.stanford.edu/pipermail/openflow-discuss/2014-April/005315.html>

https://mailman.stanford.edu/pipermail/openflow-discuss/2014-April/005315.html

96 Chapter 5. Evaluation

applications. However, we ended up noticing that one of our previous work in the area of
SDN, RouteFlow (NASCIMENTO et al., 2011), was a perfect match for this paradigm.

RouteFlow is a project which aims to provide traditional virtualized IP routing
services (such as OSPF and BGP) on top of OpenFlow switches. By providing a way for
traditional routing protocols to run on top of OpenFlow switches using existing software
(e.g.: Quagga), RouteFlow creates a migration path towards SDN, in which SDN networking
devices may interact with legacy (non-SDN) infrastructure.

The RouteFlow architecture is composed by three layers:

• A virtualized routing environment: virtual machines (or containers) running
routing engines and a RouteFlow daemon called RFClient, which notifies a Route-
Flow server about changes in Linux routing tables.

• A routing server: represented by the RFServer module, which gathers routing
information from the connected RFClient daemons, processes these routes as needed,
translates them into a flow-representation and forwards them to a special application
running in an OpenFlow Controller.

• A controller application: represented by the RFProxy module, which runs on
top of existing SDN controllers (there are implementations for OpenFlow controllers
such as POX, NOX and Floodlight). Upon receiving a flow change instruction from
the RFServer, RFProxy converts it into an OpenFlow message to achieve the desired
behavior. RFProxy also listens for special packets on the network (such as routing
information packets), and forwards these packets to the virtual environment where
they are converted into routing table updates.
RFProxy was developed to run on top of existing controllers, and assumes a great
degree of freedom (i.e. it assumes that no other running application will interfere
with or be affected by its behavior).

Because of the its particularities, RFProxy is a good match for building a standalone
application. There is an existing implementation in C/C++ for the NOX controller, and
we used that as the basis for the libfluid implementation of the RFProxy standalone
application.

The NOX controller itself is not seeing much development recently, and so RFProxy
for NOX was also abandoned. However, we were able to port most of the code with a little
effort, and it worked fine with the rest of the RouteFlow code3. We successfully tested this
implementation with the default test cases provided by RouteFlow.

One of the advantages of having a C/C++ level controller is the lower latency
that is possible to achieve when forwarding packets from the controller application to the
3 The code is available at: <https://github.com/alnvdl/lf_rfproxy>

https://github.com/alnvdl/lf_rfproxy

5.3. Comparison to related work 97

virtualized environment4. Another advantage is that more powerful optimizations become
possible in C/C++, a lower-level programming language (compared to Python or Java).

Additionally, having a standalone application for RFProxy simplifies the RouteFlow
architecture a great deal in some scenarios. Since there is no need for an external controller,
the setup becomes much easier (it just involves compiling a small project with a few
dependencies).

Finally, it is possible to use switch virtualization features to make a standalone
application even more powerful: if just a subset of the ports available in a switch is allocated
to a given controller (in this case, the standalone application), it becomes possible to run
several applications on different segments of the same switch. An example of software that
enables this sort of virtualization is FlowVisor (SHERWOOD et al., 2010). In this scenario,
part of an OpenFlow switch could be running a RouteFlow-based router, while other ports
run a firewall, with both applications running as standalone, low-overhead implementations
based on libfluid, possibly enabling more flexible and cost-effective network setups. In
this case, the operating system could become the SDN controller, managing interactions
between applications competing for resources (network devices).

5.3 Comparison to related work

In the following Subsections we present a brief comparison with the related work
mentioned in Chapter 2, in order to evaluate and position our work by highlighting
differences and similarities.

5.3.1 Controllers

NOX: While the NOX design heavily influenced other controllers, it was meant
to provide high-level abstractions to programmers such as a global network view and
applications management. As for the new development on NOX-MT, its multi-threaded
design is similar to that present in libfluid and Beacon, but it is tightly integrated into the
controller, making it harder to reuse in switch agents or standalone applications. NOX and
NOX-MT also only support OpenFlow 1.0, though there are unofficial forks supporting
other versions (CPqD, 2013). The author of these versions described the work of extending
NOX to support these additional versions as complex. libfluid differs from NOX (and
4 We actually noticed this in our tests when comparing with the existing POX-based implementation,

but we will not go into further details because it would require an in-depth introduction to RouteFlow
that is beyond the scope of this work.

98 Chapter 5. Evaluation

NOX-MT) because it is built to provide only minimal OpenFlow support to controllers,
applications and switches, in a way that is easy to support newer OpenFlow versions.

Beacon: The work on Beacon differs from ours mostly in its purpose: Beacon is
concerned with implementing a high-performance, modular and fully-featured OpenFlow
controller. It is not concerned with implementing an OpenFlow framework (i.e. it does not
provide any means for building switch agents, nor for building other controllers on top of
it). However, it implements a networking IO pattern that is very interesting and can be
reused in any OpenFlow framework: the multithreaded IO/event handling architecture.
While this design is not exclusive to Beacon (in fact, it is a simple combination of existing
concepts in a very traditional way), the experience with Beacon provides an example of
this archictectural model being applied to OpenFlow controllers, and the advantages and
possible shortcomings of it. libfluid features a very similar IO/event handling architecture,
but it does not intend to go as far as providing a complete and modular OpenFlow
controller.

5.3.2 Switch agents, frameworks and messaging libraries

tinyNBI: tinyNBI provides a really interesting approach to an OpenFlow frame-
work, hiding from developers the complexity of the protocol and its several versions
and ambiguities, while also allowing for a flexible controller and application architecture.
Because of its different purposes, it cannot be directly compared to libfluid, but only
cited as an alternative (and perfectly valid) approach to the problem of writing OpenFlow
controllers.

With that in mind, and considering tinyNBI only as an OpenFlow framework for
controllers, one of its disadvantages is that applications will be highly dependent on the
high-level abstractions provided, thus making them harder to port to other environments,
since the abstractions are more than just protocol-level features. In addition to that, the
path for optimizing applications for performance, tuning behavior or supporting additional
features is not clearly defined. tinyNBI does not address the development of switch agents,
so we cannot compare it to our work in that aspect.

Trema: While Trema and libfluid share some similar goals, Trema’s design is
different. It is limited to specific OpenFlow versions for now, since it depends on the
implementation of the messaging library. It also adds Ruby support as a first-class citizen,
which requires adaptations to the code that make it difficult to add new features. The
Edge version of Trema, still in development, seems to add multithreading support, but
its design is still not clear. Finally, the task of replicating the network simulation tools
available in Trema is a good candidate for future work on libfluid.

Indigo: Indigo and libfluid have a different purposes, which only overlap slightly.

5.3. Comparison to related work 99

Indigo aims to provide an OpenFlow framework for switches only, including a hardware
abstraction layer that is meant to ease the work of hardware developers. libfluid can also
work in switches, but it only goes as far as providing OpenFlow support, without getting
to the hardware level. Making libfluid be more like Indigo would require additional code,
possibly in the form of an additional software library.

ROFL: ROFL shares the most similarities with lifluid. First of all, it is written in
C/C++ and has been ported to other architectures, in the form of another related project
(xdpd, an extensible datapath framework (Berlin Institute for Software Defined Networks
(BISDN) GmbH, 2014)). ROFL enables both controller and networking devices agents to
be built under a common code base. It also supports several OpenFlow protocol versions.
There are however a few key aspects in which ROFL and libfluid differ.

ROFL-common has been ported to other CPU architectures, but it does not support
other programming languages. While it is possible to add that support later, its larger
public API means that this might be a considerable challenge.

ROFL-common also mixes the messaging concerns and IO/event handling: code for
building/parsing messages is used when performing basic, unchanging protocol primitives
such as handshaking and version negotiation. This means that when adding support for
new OpenFlow versions, ROFL-common developers have to add support for the newer
messages in both the messaging parts of the library and in the core OpenFlow support
mechanisms. In libfluid, these concerns are separated: libfluid_base handles all the
fundamental OpenFlow support in all its versions (existing or future), and any other
messaging library can be used for building/parsing messages to/from the wire-format
(including parts of ROFL-common itself). This gives a little more flexibility to developers,
allowing them to choose their own messaging libraries without the overhead of a mandatory
default.

Another key difference is protocol behavior configurability: ROFL-common defines
some sane defaults for values in a hard-coded manner. As an example, we have the liveness
check interval, which defines the interval between two OpenFlow echo messages used to
check the status of the other peer. In ROFL-common, this interval is hard-coded in the
library. While it is possible to change this, this is not easily exposed to the developer.
libfluid allows developers to more easily customize protocol implementation features at
runtime via the use of OFServerSettings, allowing for more flexibility and easing the
development of workarounds for incompatible protocol implementations.

Finally, like most existing OpenFlow frameworks, ROFL-common reimplements all
of the core IO/event loop mechanism. This means that the framework developers have
to worry about sockets and event demultiplexing at OS level. This is a solved problem,
and many third-party libraries (e.g.: libevent, libuv, libev, Java’s Netty) implement these
functionalities, exposing them in a portable and very easy to user manner, freeing the

100 Chapter 5. Evaluation

OpenFlow framework developer from having to worry about these issues.

OpenFlowJ, libopenflow, loxigen and others: Our goal was to build an
independent, minimal IO/event handling framework for OpenFlow. If our work is successful
in its goals, any of these libraries can be used in conjunction with our work, but we are
not dependent on any of these libraries or similar ones. In a certain way, we are trying to
create an OpenFlow IO/event handling framework that is as modular as these messaging
libraries are, so that it can be reused in several projects.

In this text, we have shown that libfluid works with both libfluid_msg and
Loxigen-generated bindings, and nothing prevents it from working with other message
building/parsing libraries.

101

6 Concluding remarks

In this dissertation, we highlighted the issues that are common to OpenFlow
protocol implementations, then designed a software architecture for a minimal framework
that solves these issues and finally implemented and evaluated the architecture.

In Chapter 3 we outlined the issues in existing solutions, which were very broad in
their definitions, but gave us a sense of where to go when defining a set of requirements
for libfluid. Using concepts from the field of software engineering, we designed a software
architecture and showed how it can be used to fulfill the requirements we identified. Finally,
we detailed the code implementation and evaluated it in Chapters 4 and 5.

The evaluation showed us that libfluid is up to par with the state-of-the art
regarding features and performance, and that it adds benefits in terms of portability to
different computer platforms and programming languages and flexibility for different use
cases (controllers, switch agents and standalone applications). We have also showed that
libfluid can be integrated with existing SDN applications, enriching the ecosystem.

To our knowledge, we have also introduced a few unique approaches to implementing
OpenFlow frameworks, namely: (a) the clear-cut division between the connectivity and
messaging responsibilities, making it easier to support new OpenFlow versions; (b) the
configurable parameters for fine-tuning the framework; (c) a very small code base that
can be easily ported to other programming languages and platforms.

Our key contribution is the definition and implementation of an OpenFlow frame-
work with a very minimalistic API that can be reused for different purposes. With libfluid
we won the ONF OpenFlow Driver Competition (Open Networking Foundation, 2014a)
and the best paper award at the Tools Session of the 32nd Brazilian Symposium on
Computer Networks and Distributed Systems (VIDAL; ROTHENBERG; VERDI, 2014).
More recently, we have started to receive questions and contributions from the community
around the world (libfluid project, 2015) (libfluid community, 2015).

6.1 Future work

libfluid continues to be developed, and we plan to keep on improving it. Some tasks
that remain to be done are more mundane, such as implementing better support for logging
and writing unit tests. Others require more effort, such as integrating the OFClient code
into the main implementation of libfluid (there is a patch from the community implementing
most of this integration).

102 Chapter 6. Concluding remarks

In a more exploratory line of work, we want to see how libfluid can be used to
implement hardware switch agents for NetFPGAs. Building plug-ins for the southbound
interfaces of controllers such as OpenDayLight (which should support not only OpenFlow,
but other protocols as well) is also a possible use case for libfluid. Conducting benchmarks
in real-world scenarios, especially in real SDN networks, is another important task that
remains to be done.

Finally, we hope to see libfluid used in controllers, standalone applications and
switch agents and see how the needs of users will change some of the ideas behind our
work.

6.2 Publications and awards

The main publication of our work is the following paper in the tools session of a
conference:

VIDAL, A.; ROTHENBERG, C. E.; VERDI, F. L. The libfluid OpenFlow Driver Implementation.
In: Proc. 32nd Brazilian Symposium on Computer Networks and Distributed Systems (SBRC). [S.l.:
s.n.], 2014. p. 1029–1036.

The paper won the best paper award in the tools session.

We also won a 50,000 USD prize for building the best OpenFlow driver (frame-
work) in a competition promoted by the Open Networking Foundation, the
organization that oversees the development of the OpenFlow protocol:

Open Networking Foundation. Open Networking Foundation Announces “OpenFlow Driver” Contest
Winner. 2014. Open Networking Foundation’s website. Available at: <https://www.opennetworking.
org/news-and-events/press-releases/1431>. Access date: Feb 22nd, 2015.

libfluid was made an open source project after winning the competition.

Another publication was made during this Master’s program, but it is not directly
related to the work on libfluid:

VIDAL, A. et al. Building upon RouteFlow: a SDN development experience. In: Proc. 31st Brazilian
Symposium on Computer Networks and Distributed Systems (SBRC). [S.l.: s.n.], 2013. v. 2013.

https://www.opennetworking.org/news-and-events/press-releases/1431
https://www.opennetworking.org/news-and-events/press-releases/1431

103

Bibliography

Android Open Source Project. Android NDK. 2015. Android Developer Documentation.
Available at: <https://developer.android.com/tools/sdk/ndk/index.html>. Access date:
Feb 22nd, 2015. Cited in page 94.

APPELMAN, M.; BOER, M. de. Performance Analysis of OpenFlow Hardware. [S.l.],
2012. Cited in page 82.

BEAZLEY, D. M. et al. SWIG: An easy to use tool for integrating scripting languages
with C and C++. In: Proceedings of the 4th USENIX Tcl/Tk workshop. [S.l.: s.n.], 1996. p.
129–139. Cited in page 94.

Berlin Institute for Software Defined Networks (BISDN) GmbH. xdpd. 2014. xdpd website.
Available at: <http://www.xdpd.org/>. Access date: Nov 16th, 2014. Cited in page 99.

BERMAN, M. et al. GENI: a federated testbed for innovative network experiments.
Computer Networks, Elsevier, v. 61, p. 5–23, 2014. Cited in page 28.

BLECHMANN, T. Class template spsc_queue. 2015. Next The Boost C++ Libraries
BoostBook Documentation Subset. Available at: <http://www.boost.org/doc/libs/1_55_
0/doc/html/boost/lockfree/spsc_queue.html>. Access date: Feb 22nd, 2015. Cited in
page 88.

CAI ALAN L. COX, T. S. E. N. Z. Maestro: Balancing Fairness, Latency and Throughput
in the OpenFlow Control Plane - Rice University Technical Report TR11-07. [S.l.], 2011.
2 citations in pages 44 and 83.

CASEY, C. J.; SUTTON, A.; SPRINTSON, A. tinyNBI: Distilling an API from essential
OpenFlow abstractions. arXiv preprint arXiv:1403.6644, 2014. Cited in page 39.

CORBET, J.; RUBINI, A.; KROAH-HARTMAN, G. Linux Device Drivers. O’Reilly
Media, 2005. ISBN 9780596555382. Available at: <https://books.google.com.br/books?
id=M7RHMACEkg4C>. Cited in page 43.

CPqD. nox13oflib. 2013. nox13oflib GitHub repository. Available at: <https:
//github.com/CPqD/nox13oflib>. Access date: Nov 16th, 2014. Cited in page 97.

DIERKS, T. The Transport Layer Security (TLS) Protocol Version 1.2. 2008. RFC 5246.
Cited in page 70.

ERICKSON, D. The Beacon OpenFlow Controller. In: ACM. HotSDN. [S.l.], 2013. 3
citations in pages 38, 60, and 88.

FEAMSTER, N.; REXFORD, J.; ZEGURA, E. The road to SDN. Queue, ACM, v. 11,
n. 12, p. 20, 2013. 2 citations in pages 25 and 33.

FOWLER, M. Inversion of Control Containers and the Dependency Injection pattern. 2004.
Martin Fowler’s website. Available at: <http://martinfowler.com/articles/injection.html>.
Access date: Nov 16th, 2014. 3 citations in pages 31, 55, and 68.

https://developer.android.com/tools/sdk/ndk/index.html
http://www.xdpd.org/
http://www.boost.org/doc/libs/1_55_0/doc/html/boost/lockfree/spsc_queue.html
http://www.boost.org/doc/libs/1_55_0/doc/html/boost/lockfree/spsc_queue.html
https://books.google.com.br/books?id=M7RHMACEkg4C
https://books.google.com.br/books?id=M7RHMACEkg4C
https://github.com/CPqD/nox13oflib
https://github.com/CPqD/nox13oflib
http://martinfowler.com/articles/injection.html

104 Bibliography

JAIN, S. et al. B4: Experience with a globally-deployed software defined WAN. In: ACM.
Proceedings of the ACM SIGCOMM 2013 conference on SIGCOMM. [S.l.], 2013. p. 3–14.
Cited in page 28.

JOHNSON, R. E. Frameworks=(components+ patterns). Communications of the ACM,
ACM, v. 40, n. 10, p. 39–42, 1997. 2 citations in pages 52 and 94.

Joyent, Inc. Node.js. 2014. NodeJS website. Available at: <http://nodejs.org/>. Access
date: Nov 16th, 2014. Cited in page 86.

KEGEL, D. The C10K problem. 2011. Dan Kegel’s Web Hostel. Available at:
<http://www.kegel.com/c10k.html>. Access date: Nov 16th, 2014. Cited in page 85.

KOPONEN, T. et al. Onix: A Distributed Control Platform for Large-scale Production
Networks. In: OSDI. [S.l.: s.n.], 2010. v. 10, p. 1–6. Cited in page 36.

KREUTZ, D. et al. Software-defined networking: A comprehensive survey. proceedings of
the IEEE, IEEE, v. 103, n. 1, p. 14–76, 2015. 3 citations in pages 26, 28, and 36.

LANTZ, B.; HELLER, B.; MCKEOWN, N. A Network in a Laptop: Rapid Prototyping
for Software-defined Networks. In: Proceedings of the 9th ACM SIGCOMM Workshop on
Hot Topics in Networks. New York, NY, USA: ACM, 2010. (Hotnets-IX), p. 19:1–19:6.
ISBN 978-1-4503-0409-2. Available at: <http://doi.acm.org/10.1145/1868447.1868466>.
Cited in page 76.

LEHMANN, M. libev. 2015. libev website. Available at: <http://software.schmorp.de/
pkg/libev.html>. Access date: Feb 22nd, 2015. Cited in page 59.

libfluid community. libfluid pull requests. 2015. libfluid GitHub repository. Available at:
<https://github.com/OpenNetworkingFoundation/libfluid_base/pulls>. Access date: Feb
22nd, 2015. Cited in page 101.

libfluid project. libfluid. 2014. libfluid’s website. Available at: <http:
//opennetworkingfoundation.github.io/libfluid/>. Access date: Nov 16th, 2014.
2 citations in pages 59 and 94.

libfluid project. libfluid mailing list. 2015. Google Groups. Available at: <https:
//groups.google.com/forum/#!forum/libfluid>. Access date: Feb 22nd, 2015. Cited in
page 101.

libpcap project. libpcap. 2015. TCPDUMP/LIBPCAP public repository. Available at:
<http://www.tcpdump.org/>. Access date: Feb 22nd, 2015. 2 citations in pages 86
and 93.

libuv project. libuv. 2015. libuv repository. Available at: <https://github.com/libuv/libuv>.
Access date: Feb 22nd, 2015. Cited in page 59.

MATHEWSON, N. Fast portable non-blocking network programming with Libevent. 2012.
Libevent’s website. Available at: <http://www.wangafu.net/~nickm/libevent-book/>.
Access date: Nov 16th, 2014. Cited in page 59.

MCCONNELL, S. Code Complete, 2nd Edition. [S.l.]: Wiley India Pvt. Limited, 2004.
ISBN 9789350041246. Cited in page 48.

http://nodejs.org/
http://www.kegel.com/c10k.html
http://doi.acm.org/10.1145/1868447.1868466
http://software.schmorp.de/pkg/libev.html
http://software.schmorp.de/pkg/libev.html
https://github.com/OpenNetworkingFoundation/libfluid_base/pulls
http://opennetworkingfoundation.github.io/libfluid/
http://opennetworkingfoundation.github.io/libfluid/
https://groups.google.com/forum/#!forum/libfluid
https://groups.google.com/forum/#!forum/libfluid
http://www.tcpdump.org/
https://github.com/libuv/libuv
http://www.wangafu.net/~nickm/libevent-book/

Bibliography 105

MCKEOWN, N. et al. OpenFlow: enabling innovation in campus networks. ACM
SIGCOMM Computer Communication Review, ACM, v. 38, n. 2, p. 69–74, 2008. 2
citations in pages 32 and 34.

NASCIMENTO, M. R. et al. Virtual Routers as a Service: The RouteFlow Approach
Leveraging Software-Defined Networks. In: ACM. Proceedings of the 6th International
Conference on Future Internet Technologies. [S.l.], 2011. p. 34–37. Cited in page 96.

NETHERCOTE, N.; SEWARD, J. Valgrind: a framework for heavyweight dynamic binary
instrumentation. In: ACM. ACM Sigplan notices. [S.l.], 2007. v. 42, n. 6, p. 89–100. Cited
in page 76.

Open Compute Project. Networking. 2014. Open Compute Project website. Available at:
<http://www.opencompute.org/projects/networking/>. Access date: Nov 16th, 2014.
Cited in page 27.

Open Networking Foundation. Open Networking Foundation Announces “OpenFlow
Driver” Contest Winner. 2014. Open Networking Foundation’s website. Available at:
<https://www.opennetworking.org/news-and-events/press-releases/1431>. Access date:
Feb 22nd, 2015. 2 citations in pages 101 and 102.

Open Networking Foundation. OpenFlow Switch Specification. 2014. Open Networking
Foundation website. Available at: <https://www.opennetworking.org/images/stories/
downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.3.4.pdf>.
Access date: Nov 16th, 2014. 3 citations in pages 28, 53, and 54.

Open Networking Foundation. Open Networking Foundation. 2015. Open Networking
Foundation website. Available at: <https://www.opennetworking.org/>. Access date: Feb
22nd, 2015. Cited in page 36.

OpenDaylight project. OpenDaylight. 2015. OpenDaylight website. Available at:
<http://www.opendaylight.org/>. Access date: Feb 22nd, 2015. Cited in page 36.

OpenSSL Project. OpenSSL. OpenSSL’s website. Available at: <https://www.openssl.org/
>. Cited in page 70.

Oracle. Java Native Interface. 2015. Java SE Documentation. Available at:
<http://docs.oracle.com/javase/7/docs/technotes/guides/jni/>. Access date: Feb 22nd,
2015. Cited in page 94.

PEPELNJAK, I. Management, Control and Data Planes in Network Devices
and Systems. 2013. ipSpace blog. Available at: <http://blog.ipspace.net/2013/08/
management-control-and-data-planes-in.html>. Access date: Feb 22nd, 2015. Cited in
page 25.

PFAFF, B. et al. Extending networking into the virtualization layer. In: Hotnets. [S.l.:
s.n.], 2009. 2 citations in pages 36 and 81.

Project Floodlight. Indigo. 2014. Project Floodlight website. Available at:
<http://www.projectfloodlight.org/indigo/>. Access date: Nov 16th, 2014. 2 citations in
pages 40 and 72.

http://www.opencompute.org/projects/networking/
https://www.opennetworking.org/news-and-events/press-releases/1431
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.3.4.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.3.4.pdf
https://www.opennetworking.org/
http://www.opendaylight.org/
https://www.openssl.org/
https://www.openssl.org/
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/
http://blog.ipspace.net/2013/08/management-control-and-data-planes-in.html
http://blog.ipspace.net/2013/08/management-control-and-data-planes-in.html
http://www.projectfloodlight.org/indigo/

106 Bibliography

SALLENT, S. et al. FIBRE project: Brazil and Europe unite forces and testbeds for the
Internet of the future. In: Testbeds and Research Infrastructure. Development of Networks
and Communities. [S.l.]: Springer, 2012. p. 372–372. Cited in page 28.

SANDERS, C. Practical Packet Analysis, 2nd Edition: Using Wireshark to Solve Real-world
Network Problems. No Starch Press, 2011. (No Starch Press Series). ISBN 9781593272661.
Available at: <https://books.google.com.br/books?id=Zl6LBAAAQBAJ>. Cited in page
86.

SCHMIDT, D. C. Using design patterns to develop reusable object-oriented communication
software. Communications of the ACM, ACM, v. 38, n. 10, p. 65–74, 1995. Cited in page
52.

SHERWOOD, R. Cbench. 2013. OpenFlowHub. Available at: <http://www.openflowhub.
org/display/floodlightcontroller/Cbench+(New)>. Access date: Nov 16th, 2014. Cited in
page 76.

SHERWOOD, R. et al. Can the Production Network Be the Testbed? In: Proceedings
of the 9th USENIX Conference on Operating Systems Design and Implementation.
Berkeley, CA, USA: USENIX Association, 2010. (OSDI’10), p. 1–6. Available at:
<http://dl.acm.org/citation.cfm?id=1924943.1924969>. Cited in page 97.

SWIG project. SWIG-2.0 Documentation. 2015. SWIG website. Available at:
<http://www.swig.org/Doc2.0/SWIGDocumentation.html>. Access date: Feb 22nd, 2015.
Cited in page 94.

TOOTOONCHIAN, A. et al. On controller performance in software-defined networks. In:
USENIX Workshop on Hot Topics in Management of Internet, Cloud, and Enterprise
Networks and Services (Hot-ICE). [S.l.: s.n.], 2012. v. 54. Cited in page 37.

Trema project. Trema. 2014. Trema website. Available at: <http://trema.github.io/trema/
>. Access date: Nov 16th, 2014. Cited in page 40.

Trema project. Trema Edge. 2014. Trema Edge repository. Available at: <https:
//github.com/trema/trema-edge>. Access date: Feb 22nd, 2015. Cited in page 40.

VIDAL, A.; ROTHENBERG, C. E.; VERDI, F. L. The libfluid OpenFlow Driver
Implementation. In: Proc. 32nd Brazilian Symposium on Computer Networks and
Distributed Systems (SBRC). [S.l.: s.n.], 2014. p. 1029–1036. 2 citations in pages 101
and 102.

VIDAL, A. et al. Building upon RouteFlow: a SDN development experience. In: Proc.
31st Brazilian Symposium on Computer Networks and Distributed Systems (SBRC). [S.l.:
s.n.], 2013. v. 2013. Cited in page 102.

https://books.google.com.br/books?id=Zl6LBAAAQBAJ
http://www.openflowhub.org/display/floodlightcontroller/Cbench+(New)
http://www.openflowhub.org/display/floodlightcontroller/Cbench+(New)
http://dl.acm.org/citation.cfm?id=1924943.1924969
http://www.swig.org/Doc2.0/SWIGDocumentation.html
http://trema.github.io/trema/
http://trema.github.io/trema/
https://github.com/trema/trema-edge
https://github.com/trema/trema-edge

	Title page
	Approval
	Dedication
	Acknowledgements
	Epigraph
	Abstract
	Resumo
	List of Figures
	List of Tables
	List of abbreviations and acronyms
	Contents
	Introduction
	Motivation
	Contributions
	Text structure

	Background and related work
	OpenFlow
	OpenFlow controllers
	NOX
	Beacon

	OpenFlow switch agents, frameworks and messaging libraries
	tinyNBI
	Trema
	Indigo
	ROFL
	OpenFlowJ, libopenflow, loxigen and others

	The libfluid framework
	Issues in current work
	Issue #1: Little reuse between switch agents and controller frameworks
	Issue #2: Protocol implementations are inflexible
	Issue #3: No lightweight and portable OpenFlow implementation
	Issue #4: Protocol implementation core and message handling are mixed
	Issue #5: No clear path for building standalone applications
	Issue #6: Protocol implementation behavior is not configurable

	Requirements
	Req. #1: Unified protocol implementation for controllers and switches
	Req. #2: More flexibility in the core of the protocol implementation
	Req. #3: A lightweight and portable implementation
	Req. #4: Independence from messaging libraries and protocol versions
	Req. #5: Enable standalone applications
	Req. #6: Configurable protocol options

	Software architecture
	Overview
	Blocks and modules
	Event loop and handlers
	Network connection
	Core server and client
	OpenFlow server and client
	OpenFlow client and server settings
	OpenFlow connection
	OpenFlow message building/parsing

	Requirements vs. Architecture

	Implementation
	Components
	EventLoop
	BaseOFHandler
	BaseOFConnection
	BaseOFServer
	BaseOFClient
	OFConnection
	OFServer
	OFClient
	OFServerSettings
	OFClientSettings
	TLS
	libfluid_msg

	Using libfluid

	Evaluation
	Evaluation tools and metrics
	Evaluation applications
	Flexible controller
	Benchmarks

	Event handling
	Benchmarks

	Switch agent
	Portability
	Cross-platform build
	Other programming languages

	Standalone application

	Comparison to related work
	Controllers
	Switch agents, frameworks and messaging libraries

	Concluding remarks
	Future work
	Publications and awards

	Bibliography

