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Theory and Practice of Bloom Filters for
Distributed Systems

Sasu Tarkoma, Christian Esteve Rothenberg, and Eemil Lagerspetz

Abstract— Many network solutions and overlay networks uti-
lize probabilistic techniques to reduce information processing
and networking costs. This survey article presents a number of
frequently used and useful probabilistic techniques. Bloom filters
and their variants are of prime importance, and they are heavily
used in various distributed systems. This has been reflected in
recent research and many new algorithms have been proposed for
distributed systems that are either directly or indirectly based on
Bloom filters. In this survey, we give an overview of the basic and
advanced techniques, reviewing over 20 variants and discussing
their application in distributed systems, in particular for caching,
peer-to-peer systems, routing and forwarding, and measurement
data summarization.

Index Terms— Bloom filters, probabilistic structures, dis-
tributed systems

I. I NTRODUCTION

Many network solutions and overlay networks utilize prob-
abilistic techniques to reduce information processing andnet-
working costs. This survey presents a number of frequently
used and useful probabilistic techniques. Bloom filters (BF)
and their variants are of prime importance, and they are heavily
used in various distributed systems. This has been reflectedin
recent research and many new algorithms have been proposed
for distributed systems that are either directly or indirectly
based on Bloom filters.

Fast matching of arbitrary identifiers to values is a basic
requirement for a large number of applications. Data objects
are typically referenced using locally or globally unique identi-
fiers. Recently, many distributed systems have been developed
using probabilistic globally unique random bit strings as node
identifiers. For example, a node tracks a large number of peers
that advertise files or parts of files. Fast mapping from host
identifiers to object identifiers and vice versa are needed. The
number of these identifiers in memory may be great, which
motivates the development of fast and compact matching
algorithms.

Given that there are millions or even billions of data
elements, developing efficient solutions for storing, updating,
and querying them becomes increasingly important. The key
idea behind the data structures discussed in this survey is that
by allowing the representation of the set of elements to lose
some information, in other words to become lossy, the storage
requirements can be significantly reduced.

The data structures presented in this survey for probabilistic
representation of sets are based on the seminal work by Burton
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Bloom in 1970. Bloom first described a compact probabilistic
data structure that was used to represent words in a dictionary.
There was little interest in using Bloom filters for networking
until 1995, after which this area has gained widespread interest
both in academia and in the industry. This survey provides
an up-to-date view to this emerging area of research and
development that was first surveyed in the work of Broder
and Mitzenmacher [1].

Section II introduces the functionality and parameters of the
Bloom filter as a hash-based, probabilistic data structure.The
theoretical analysis is complemented with practical examples
and common practices in the underpinning hashing techniques.
Section III surveys as many as twenty-three Bloom filter
variants discussing their key features and their differential be-
haviour. Section IV covers a number of recent applications in
distributed systems, such as caches, database servers, routers,
security, and packet forwarding relying on packet header size
Bloom filters. Finally, Section V concludes the survey with a
brief summary on the rationale behind the widespread use of
the polymorphic Bloom filter data structure.

II. B LOOM FILTERS

The Bloom filter is a space-efficient probabilistic data struc-
ture that supports set membership queries. The data structure
was conceived by Burton H. Bloom in 1970 [2]. The structure
offers a compact probabilistic way to represent a set that can
result in false positives (claiming an element to be part of
the set when it was not inserted), but never in false negatives
(reporting an inserted element to be absent from the set). This
makes Bloom filters useful for many different kinds of tasks
that involve lists and sets. The basic operations involve adding
elements to the set and querying for element membership in
the probabilistic set representation.

The basic Bloom filter does not support the removal of ele-
ments; however, a number of extensions have been developed
that also support removals. The accuracy of a Bloom filter
depends on the size of the filter, the number of hash functions
used in the filter, and the number of elements added to the set.
The more elements are added to a Bloom filter, the higher the
probability that the query operation reports false positives.

Broder and Mitzenmacher have coined theBloom filter
principle [1]:

Whenever a list or set is used, and space is at a
premium, consider using a Bloom filter if the effect
of false positives can be mitigated.

A Bloom filter is an array ofm bits for representing a set
S = {x1, x2, . . . , xn} of n elements. Initially all the bits in the
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filter are set to zero. The key idea is to usek hash functions,
hi(x), 1 ≤ i ≤ k to map itemsx ∈ S to random numbers
uniform in the range1, . . .m. The hash functions are assumed
to be uniform. The MD5 hash algorithm is a popular choice
for the hash functions.

An elementx ∈ S is inserted into the filter by setting the
bits hi(x) to one for1 ≤ i ≤ k. Conversely,y is assumed a
member ofS if the bits hi(y) are set, and guaranteed not to
be a member if any bithi(y) is not set. Algorithm 1 presents
the pseudocode for the insertion operation. Algorithm 2 gives
the pseudocode for the membership test of a given elementx
in the filter. The weak point of Bloom filters is the possibility
for a false positive. False positives are elements that are not
part ofS but are reported being in the set by the filter.

Data: x is the object key to insert into the Bloom filter.
Function: insert(x)
for j : 1 . . . k do

/* Loop all hash functions k */
i← hj(x);
if Bi == 0 then

/* Bloom filter had zero bit at
position i */
Bi ← 1;

end
end
Algorithm 1 : Pseudocode for Bloom filter insertion

Data: x is the object key for which membership is tested.
Function: ismember(x) returns true or false to the

membership test
m← 1;
j ← 1;
while m == 1 and j ≤ k do

i← hj(x);
if Bi == 0 then

m← 0;
end
j ← j + 1;

end
returnm;
Algorithm 2 : Pseudocode for Bloom member test

Figure 1 presents an overview of a Bloom filter. The Bloom
filter consists of a bitstring of length 32. Three elements have
been inserted, namelyx, y, andz. Each of the elements have
been hashed usingk = 3 hash functions to bit positions in
the bitstring. The corresponding bits have been set to 1. Now,
when an element not in the set,w, is looked up, it will be
hashed using the same three hash functions into bit positions.
In this case, one of the positions is zero and hence the Bloom
filter reports correctly that the element is not in the set. Itmay
happen that all the bit positions of an element report that the
corresponding bits have been set. When this occurs, the Bloom
filter will erroneously report that the element is a member of
the set. These erroneous reports are called false positives. We
observe that for the inserted elements, the hashed positions
correctly report that the bit is set in the bitstring.

Figure 2 illustrates a practical example of a Bloom filter
through adding and querying elements. In this example, the

Fig. 1. Overview of a Bloom filter

Fig. 2. Addition and query example using a Bloom filter

Bloom filter is a bitstring of length16. The bit positions are
numbered0 to 15, from right to left. Three hash functions
are used:h1, h2, and h3, being MD5, SHA1 and CRC32,
respectively. The elements added are text strings containing
only a single letter. The Bloom filter starts out empty, with
all bits unset, or zero. When adding an element, the values
of h1 throughh3 (modulo16) are calculated for the element,
and corresponding bit positions are set to one. After adding
a and b, the Bloom filter has positions15, 9, 8, 3 and1 set.
In this case,a and b have one common bit position (8). We
further add elementsy and l. After this, positions15, 14, 13,
10, 9, 8, 7, 5, 3 and1 are set. When we query forq andz, the
same hash functions are used. Bit positions that correspond
to q and z are examined. If the three bits for an element
are set, that element is assumed to be present. In the case
of q, position0 is not set, and thereforeq is guaranteed not to
be present in the Bloom filter. However,z is assumed to be
present, since the corresponding bits have been set. We know
that z is a false positive: it is reported present though it is not
actually contained in the set of added elements. The bits that
correspond toz (positions15, 10 and7) were set through the
addition of elementsb, y and l.

For optimal performance, each of thek hash functions
should be a member of the class of universal hash functions,
which means that the hash functions map each item in the
universe to a random number uniform over the range. The
development of uniform hashing techniques has been an
active area of research. An almost ideal solution for uniform
hashing is presented in [3]. In practice, hash functions yielding
sufficiently uniformly distributed outputs, such as MD5 or
CRC32, are useful for most probabilistic filter purposes. For
candidate implementations, see the empirical evaluation of 25
hash functions by Henke et al. [4]. Later in Section II-C we
discuss relevant hashing techniques further.

A Bloom filter constructed based onS requires spaceO(n)
and can answer membership queries inO(1) time. Givenx ∈
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TABLE I

KEY BLOOM FILTER PARAMETERS

Parameters Increase

Number of hash functions (k) More computation, lower false positive rate ask → kopt

Size of filter (m) More space is needed, lower false positive rate

Number of elements in the set (n) Higher false positive rate

S, the Bloom filter will always report thatx belongs toS, but
given y 6∈ S the Bloom filter may report thaty ∈ S.

Table I examines the behaviour of three key parameters
when their value is either decreased or increased. Increasing
or decreasing the number of hash functions towardskopt can
lower false positive ratio while increasing computation in
insertions and lookups. The cost is directly proportional to the
number of hash functions. The size of the filter can be used to
tune the space requirements and the false positive rate (fpr).
A larger filter will result in fewer false positives. Finally, the
size of the set that is inserted into the filter determines the
false positive rate. We note that although no false negatives
(fn) occur with regular BFs, some variants will be presented
later in the article that may result in false negatives.

A. False Positive Probability

We now derive the false positive probability rate of a Bloom
filter and the optimal number of hash functions for a given
false positive probability rate. We start with the assumption
that a hash function selects each array position with equal
probability. Letm denote the number of bits in the Bloom
filter. When inserting an element into the filter, the probability
that a certain bit is not set to one by a hash function is

1−
1

m
. (1)

Now, there arek hash functions, and the probability of any
of them not having set a specific bit to one is given by

(

1−
1

m

)k

. (2)

After insertingn elements to the filter, the probability that
a given bit is still zero is

(

1−
1

m

)kn

. (3)

And consequently the probability that the bit is one is

1−

(

1−
1

m

)kn

. (4)

For an element membership test, if all of thek array
positions in the filter computed by the hash functions are set
to one, the Bloom filter claims that the element belongs to the
set. The probability of this happening when the element is not
part of the set is given by

(

1−

(

1−
1

m

)kn
)k

≈
(

1− e−kn/m
)k

. (5)
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Fig. 3. False positive probability rate for Bloom filters.

We note thate−kn/m is a very close approximation of(1−
1
m )kn [1]. The false positive probability decreases as the size
of the Bloom filter,m, increases. The probability increases
with n as more elements are added. Now, we want to minimize
the probability of false positives, by minimizing(1−e−kn/m)k

with respect tok. This is accomplished by taking the derivative
and equaling to zero, which gives the optimal value ofk

kopt =
m

n
ln 2 ≈

9m

13n
. (6)

This results in the false positive probability of
(

1

2

)k

≈ 0.6185m/n. (7)

Using the optimal number of hasheskopt, the false positive
probability can be rewritten and bounded

m

n
≥

1

ln 2
. (8)

This means that in order to maintain a fixed false positive
probability, the length of a Bloom filter must grow linearly
with the number of elements inserted in the filter. The number
of bits m for the desired number of elementsn and false
positive ratep, is given by

m = −
n ln p

(ln 2)2
. (9)

Figure 3 presents the false positive probability ratep as a
function of the number of elementsn in the filter and the filter
sizem. An optimal number of hash functionsk = (m/n) ln 2
has been assumed.

There is a factor oflog2 e ≈ 1.44 between the amount of
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space used by a Bloom filter and the optimal amount of space
that can be used. There are other data structures that use space
closer to the lower bound, but they are more complicated (cf.
[5], [6], [7]).

Recently, Bose et al. [8] have shown that the false positive
analysis originally given by Bloom and repeated in many sub-
sequent articles is optimistic and only a good approximation
for large Bloom filters. The revisited analysis proves that the
commonly used estimate (Eq. 5) is actually a lower bound and
the real false positive rate is larger than expected by theory,
especially for small values ofm.

B. Operations

Standard Bloom filters do not support the removal of
elements. Removal of an element can be implemented by
using a second Bloom filter that contains elements that have
been removed. The problem of this approach is that the false
positives of the second filter result in false negatives in the
composite filter, which is undesirable. Therefore a number of
dedicated structures have been proposed that support deletions.
These are examined later in this survey.

A number of operations involving Bloom filters can be
implemented easily, for example theunion and halving of a
Bloom filter. The bit-vector nature of the Bloom filter allows
the union of two or more Bloom filters simply by performing
bitwise OR on the bit-vectors. Given two setsS1 and S2, a
Bloom filter B that represents the unionS = S1 ∪ S2 can
be created by taking the OR of the original Bloom filters
B = B1 ∨B2 assuming thatm and the hash functions are the
same. The merged filterB will report any element belonging
to S1 or S2 as belonging to setS. The following theorem
gives a lower bound for the false positive rate of the union of
Bloom filters [9]:

Theorem 1:The false positive probability ofBF (A∪B) is
not less than that ofBF (A) andBF (B). At the same time,
the false positive probability ofBF (A) ∪BF (B) is also not
less than that ofBF (A) andBF (B).

If the BF sizem is divisible by 2,halving can be easily
done by bitwise ORing the first and second halves together.
Now, the range of the hash functions needs to be accordingly
constrained, for instance, by applying themod(m/2) to the
hash outputs.

Bloom filters can be used to approximate setintersection;
however, this is more complicated than the union operation.
One straightforward approach is to assume the samem and
hash functions and to take the logical AND operation between
the two bit-vectors. The following theorem gives the proba-
bility for this to hold [9]:

Theorem 2:If BF (A ∩ B), BF (A), andBF (B) use the
samem and hash functions, thenBF (A ∩ B) = BF (A) ∩
BF (B) with probability (1− 1/m)k

2|A−A∩B||B−A∩B|.
The inner product of the bit-vectors is an indicator of

the size of the intersection [1]. The idea of abloomjoin
was presented by Mackert and Lohman in 1986 [10]. In a
bloomjoin, two hosts,A andB, compute the intersection of
two setsS1 andS2, whenA has the first set andB the second.
It is not feasible to send all the elements fromA toB, and vice

versa. In a bloomjoin,S1 is represented using a Bloom filter
and sent fromA to B. B can then compute the intersection
and send back this set. HostA can then check false positives
with B in a final round.

C. Hashing techniques

Hash functions are the key building block of probabilistic
filters. There is a large literature on hash functions spanning
from randomness analysis to security evaluation over many
networking and computing applications. We focus on the best
practices and recent developments in hashing techniques which
are relevant to the performance and practicality of Bloom filter
constructs. For further details, deeper theoretical foundations
and system-specific applications we refer to related work, such
as [4], [11], [12], [13].

One noteworthy property of Bloom filters is that the false
positive performance depends only on the bit-per-element ratio
(m/n) and not on the form or size of the hashed elements.
As long as the size of the elements can be bounded, hashing
time can be assumed to be a constant factor. Considering the
trend in computational power versus memory access time, the
practical bottleneck is the amount of (slow) memory accesses
rather than the hash computation time. Nevertheless, whenever
a filter application needs to run at line speed, hardware-
amenable per-packet operations are critical [13].

In the following subsections, we briefly present hashing
techniques that are the basis for good Bloom filter implemen-
tations. We start with perfect hashing, which is an alternative
to Bloom filters when the set is known beforehand and it is
static. Double hashing allows reducing the number of true hash
computations. Partitioned hashing and multiple hashing deal
with how bits are allocated in a Bloom filter. Finally, the use
of simple hash functions is considered.

1) Perfect Hashing Scheme:A simple technique called
perfect hashing(or explicit hashing) can be used to store a
static setS of values in an optimal manner using a perfect hash
function. A perfect hash function is a computable bijection
from S to an array of|S| = n hash buckets. The n-size
array can be used to store the information associated with
each elementx ∈ S [5].

Bloom filter like functionality can be obtained by, given
a set of elementsS, first finding a perfect hash functionP
and then storing at each location anf = 1/ǫ bit fingerprint,
computed using some (pseudo-)random hash functionH.
Figure 4 illustrates this perfect hashing scheme.

Lookup ofx simply consists of computingP (x) and check-
ing whether the stored hash function value matchesH(x).
Whenx ∈ S, the correct value is always returned, and when
x /∈ S a false positive (claiming the element being inS) occurs
with probability at mostǫ. This follows from the definition of
2-universal hashing by Carter and Wengman [14], that any
elementy not in S has probability at mostǫ of having the
same hash function valueh(y) as the element inS that maps
to the same entry of the array.

While space efficient, this approach is disconsidered for
dynamic environments, because the perfect hash function
needs to be recomputed when the setS changes.
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Element 1 Element 2 Element 3 Element 4 Element 5

Fingerprint(4) Fingerprint(5) Fingerprint(2) Fingerprint(1) Fingerprint(3)

Fig. 4. Example of explicit hashing

Another technique for minimal perfect hashing was intro-
duced by Antichi et al. [15]. It relies on Bloom filters and
Blooming Trees to turn the imperfect hashing of a Bloom
filter into a perfect hashing. The technique gives space and
time savings. This technique also requires a static setS, but
can handle a huge number of elements.

2) Double Hashing:The improvement of thedouble hash-
ing technique over basic hashing is being able to generate
k hash values based on only two universal hash functions
as base generators (or “seed” hashes). As a practical conse-
quence, Bloom filters can be built with less hashing operations
without sacrificing performance. Kirsch and Mitzenmacher
have shown [16] that it requires only two independent hash
functions,h1(x) and h2(x), to generate additional “pseudo”
hashes defined as:

hi(x) = h1(x) + f(i) ∗ h2(x) (10)

wherei is the hash value index,f(i) can be any arbitrary
function of i (e.g.,i2), andx is the element being hashed. For
Bloom filter operations, the double hashing scheme reduces the
number of true hash computations fromk down to two without
any increase in the asymptotic false positive probability [16].

3) Partitioned Hashing: In this hashing technique, thek
hash functions are allocated disjoint ranges ofm/k consec-
utive bits instead of the fullm-bit array space. Following
the same false positive probability analysis of Sec. II-A, the
probability of a specific bit being 0 in a partitioned Bloom
filter can be approximated to:

(1− k/m)n ≈ e−kn/m (11)

While the asymptotic performance remains the same, in
practice, partitioned Bloom filters exhibit a poorer false posi-
tive performance as they tend to have larger fill factors (more
1s) due to them/k bit range restriction. This can be explained
by the observation that:

(1− 1/m)k∗n > (1− k/m)n (12)

4) Multiple Hashing: Multiple hashing is a popular tech-
nique that exploits the notion of having multiple hash choices
and having the power to choose the most convenient candidate.
When applied for hash table constructions, multiple hashing
provides a probabilistic method to limit the effects of collisions
by allocating elements more-or-less evenly distributed. The
original idea was proposed by Azar et al. in his seminal work
on balanced allocations [17]. Formulating hashing as a balls
into bins problem, the authors show that ifn balls are placed
sequentially intom for m = O(n) with each ball being

placed in one of a constantd = 2 randomly chosen bins,
then, after all balls are inserted, the maximal load in a bin is,
with high probability,(ln ln n)/ln d+ O(1). Vöcking et al.
[18] elaborate on this observation and propose the always-go-
left algorithm (ord-left hashing scheme) to break ties when
inserting (chained) elements to the least loaded one among the
d partitioned candidates.

As a result this hashing technique provides an almost
optimal (up to an additive constant) load-balancing scheme.
In addition to the balancing improvement, partitioning the
hash buckets (i.e., bins) into groups makesd-left hashing
more hardware friendly as it allows the parallelized look-
up of the d hash locations. Thus, hash partitioning and tie-
breaking have elevatedd-left hashing as an optimal technique
for building high performance (negligible overflow probabil-
ities) data structures such as the multiple level hash tables
(MHT) [19] or counting Bloom filters [20]. A breakthrough
Bloom filter design was recently proposed using an open-
addressed multiple choice hash table based ond-left hashing,
element fingerprints (a smaller representation like the last f
bits of the element hash) and dynamic bit reassignment [21].
After all optimizations, the authors show that the performance
is comparable to plain Bloom filter constructs, outperforms
traditional counting Bloom filter constructs (see d-left CBF
in Sec. III-B), and easily extensible to support practical
networking applications (e.g., flow tracking in Sec. IV-D).

The power of (two) choices has been exploited by Lumetta
and Mitzenmacher to improve the false positive performance
of Bloom filters [22]. The key idea consists of considering not
one but two groups ofk hash functions. On element insertion,
the selection criteria is based on the group ofk hash functions
that sets fewer bits to 1. The caveat is that when checking for
elements, both groups ofk hash functions need to be checked
since there is no information on which group was initially used
and false positives can potentially be claimed for either group.
Although it may appear counter-intuitive, under some settings
(highm/n ratios), setting fewer ones in the filter actually pays
off the double checking operations.

Fundamentally similar in exploiting the power of choices
in producing less dense (improved) Bloom filters, the method
proposed by Hao et al. [23] is based on a partitioned hashing
technique which results in a choice of hash functions that set
fewer bits. Experimental results show that this improvement
can be as much as a ten-fold increase in performance over
standard constructs. However, the choice of hash functions
cannot be done on an element basis as in [22], and its
applicability is constrained to non-dynamic environments.

5) Simple hash functions:A common assumption is to
consider output hash values as truly random, that is, each
hashed element is independently mapped to a uniform location.
While this is a great aid to theoretical analyses, hash function
implementations are known to behave far worse than truly ran-
dom ones. On the other hand, empirical works using standard
universal hashing have been reporting negligible differences in
practical performance compared to predictions assuming ideal
hashing (see [24] for the case of Bloom filters).

Mitzenmacher and Vadhany [25] provide the seeds to for-
mally explaining this gap between the theory and practice
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of hashing. In a nutshell, the foundation of why simple
hash functions work can be explained naturally from the
combination of the randomness of choosing the hash function
and the randomness in the data. Hence, only a small amount
of randomness in the data is enough to mimic truly random
hash function in practice. These results apply for any hash-
based technique, and as a practical consequence, they suggest
that simple (non-cryptographic) “commodity” hash functions
(e.g., CRC32) are well suited for high performance Bloom
filter applications.

III. B LOOM FILTER VARIANTS

A number of Bloom filter variants have been proposed
that address some of the limitations of the original structure,
including counting, deletion, multisets, and space-efficiency.
We start our examination with the basic counting Bloom filter
construction, and then proceed to more elaborate structures
including Bloomier and Spectral filters.

A. Counting Bloom Filters

As mentioned with the treatment on standard Bloom filters,
they do not support element deletions. A Bloom filter can
easily be extended to support deletions by adding a counter
for each element of the data structure. Probabilistic counting
structures have been investigated in the context of database
systems [26]. A counting Bloom filter hasm counters along
with the m bits. Fan et al. [27] first introduced the idea of a
counting Bloom filter in conjunction with Web caches.

The structure works in a similar manner as a regular Bloom
filter; however, it is able to keep track of insertions and
deletions. In a counting Bloom filter, each entry in the Bloom
filter is a small counter associated with a basic Bloom filter
bit. When an item is inserted, the corresponding counters
are incremented; when an item is deleted, the corresponding
counters are decremented. To avoid counter overflow, we need
choose sufficiently large counters.

The analysis from [27] reveals that 4 bits per counter should
suffice for most applications [1], [28]. To determine a good
counter size, we can consider a counting Bloom filter for a set
with n elements,k hash functions, andm counters. Let c(i) be
the count associated with theith counter. The probability that
the ith counter is incrementedj times is a binomial random
variable:

P (c(i) = j) =

(

nk

j

)

(
1

m
)j(1−

1

m
)nk−j (13)

The probability that any counter is at leastj is bounded above
by mP (c(i) = j), which can be calculated using the above
formula.

The counter counts the number of times that the bit is set
to one. All the counts are initially zero. The probability that
any count is greater or equal toj:

Pr(max(c) ≥ j) ≤ m

(

nk

j

)

1

mj
≤ m

(

enk

jm

)j

. (14)
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Data: x is the item to be inserted.
Function: insert(x)
for j : 1 . . . k do

/* Loop all hash functions k */
i← hj(x);
/* Increment counter Ci */
Ci ← Ci + 1;
if Bi == 0 then

/* Bit is zero at position i */
Bi ← 1;

end
end

Algorithm 3 : Pseudocode for counting Bloom filter inser-
tion

As already mentioned the optimum value fork (over reals)
is ln 2m/n so assuming that the number of hash functions is
less thanln 2m/n we can further bound

Pr(max(c) ≥ j) ≤ m

(

e ln 2

j

)j

. (15)

Hence takingj = 16 we obtain that

Pr(max(c) ≥ 16) ≤ 1.37× 10−15 ×m. (16)

In other words if we allow 4 bits per count, the probability of
overflow for practical values ofm during the initial insertion
in the filter is extremely small. Figure 5 illustrates overflow
probability as a function of counter size.

Algorithm 3 presents the pseudocode for the insert operation
for elementx with counting. The operation increments the
counter of each bit to whichx is hashed. The counting
structure supports the removal of elements using the delete
operation presented in Algorithm 4. The delete decrements the
counter of each bit to whichx is hashed. The corresponding
bit is reset to zero when the counter becomes zero.

A counting Bloom filter also has the ability to keep approx-
imate counts of items. For example, inserting elementx three
times results in thek bit positions being set, and the associated
counters incremented by one for each insert. Therefore, thek
counters associated with elementx are incremented at least
three times, some of them more if there are overlaps with other
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Data: x is the item to be removed.
Function: delete(x)
for j : 1 . . . k do

/* Loop all hash functions k */
i← hj(x);
/* Decrement counter Ci */
Ci ← Ci − 1;
if Ci ≤ 0 then

/* Reset bit at position i */
Bi ← 0;

end
end

Algorithm 4 : Pseudocode for counting Bloom filter dele-
tion

inserted elements. The count estimate can be determined by
finding the minimum of the counts in all locations where an
item is hashed to.

In [29], Ficara et al. refine the upper bound presented
above. They obtain an order of magnitude lower upper bound,
producingPr(max(c) > 15) < 1.51×10−16. The upper bound
is given by the formula below.

Pr(max(c) > j) < Pr(max(c) = j − 1) (17)

Ficara et al. also propose a data structure called MultiLayer
Compressed Counting Bloom Filter (ML-CCBF). The struc-
ture expands upon the idea of the CBF by adding a hierarchy
of hash-based filters on top of the CBF. These are used to
add space to counters that would otherwise overflow. The
authors also employ Huffman coding to compress counter
values, obtaining space savings. The ML-CCBF eliminates
possibility of counter overflow, and retains the quick lookups
of the standard BF. The cost of insert and delete operations
is increased, however. For a detailed performance comparison,
see [29].

B. d-left Counting Bloom Filter

Bonomi et al. [20] presented a data structure based ond-
left hashingand fingerprints that is functionally equivalent to
a counting Bloom filter, but saves approximately a factor of
two or more space.

The d-left hashing scheme divides a hash table intod
subtables that are of equal size. Each subtable hasn/d buckets,
where n is the total number of buckets. Each bucket has
capacity for c cells, each cell being of some fixed bit size
to store a fingerprint of the element along with a counter.
When an element is placed into the table, following the d-
left hashing technique,d candidate buckets are obtained by
computingd independent hash values of the element. A hash-
based fingerprintfx = H(x) is stored in the bucket that
contains more empty cells (i.e., least inserted elements per
bucket). In case of a tie, the element is placed in the bucket
of the leftmost subtable with the smallest number of elements
examined.

Element lookups use parallel search of thed subtables to
find the fingerprint and obtain the value of the counter. In
case of a deletion the counter is decremented by one. It is
noteworthy that these counters can be much smaller than

counters in the standard CBF due to the fewer collisions
resulting from the fingerprint-based d-left construction.

The problem of knowing which candidate element finger-
print to delete – in case of fingerprint collisions – can be
neatly solved by breaking the problem into two parts, namely
the creation of the fingerprint, and finding thed locations by
making additional (pseudo)-random permutations.

C. Compressed Bloom Filter

Compressing a Bloom filter improves performance when
a Bloom filter is passed in a message between distributed
nodes. This structure is particularly useful when information
must be transmitted repeatedly, and the bandwidth is a limiting
factor [7].

Compressed Bloom filters are used only for optimizing
the transmission (over the network) size of the filters. This
is motivated by applications such as Web caches and P2P
information sharing, which frequently use Bloom filters to
distribute routing tables. If the optimal value of the number
of hash functionsk in order to minimize the false positive
probability is used then the probability that a bit is set in the
bitstring representing the filter is1/2. Given the assumption
of independent random hash functions, this means that the
bitstring is random, and thus it does not compress well.

The key idea in compressed Bloom filters is that by
changing the way bits are distributed in the filter, it can be
compressed for transmission purposes. This is achieved by
choosing the number of hash functionsk in such a way that
the entries in them vector have a smaller probability than1/2
of being set. After transmission, the filter is decompressedfor
use. The size ofk selected for compression is not optimal for
the uncompressed Bloom filter, but may result in a smaller
compressed filter. Compression can result in a smaller false
positive rate as a function of the compressed size compared to
a Bloom filter that does not use compression. The compressed
Bloom filter requires that some additional compression algo-
rithm is used for the data that is transmitted over the network,
for example, Arithmetic Coding [7].

D. Deletable Bloom filter

The Deletable Bloom filter (DlBF) [30] addresses the issue
of enabling element deletions at a minimal cost in memory —
compared to previous variants like the CBFs — and without
introducing false negatives. The DlBF is based on a simple yet
powerful idea, namely keeping record of the bit regions where
collisions happen and exploiting the notion that elements can
be effectively removed if at least one of its bits is reset. The
DlBF divides the bit array of sizem into r regions. The
compact representation of the collisions information consists
of a bitmap of sizer that codes with0 a collision-free region
(i.e., bit deletions are allowed) and with1 otherwise (see
Fig. 6).

Hence, element removal is only probabilistic and depends
on the sizer of the bitmap (see Fig. 7). Depending on how
much memory space one is willing to invest, different rates on
element deletability and false positives rates (before andafter
element deletions) can be achieved. The DlBF is a simple
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Fig. 6. Example of a DlBF withm = 32, k = 3 andr = 4, representingS = {x, y, z}. The
1s in the firstr bits indicate collisions in the corresponding regions and bits therein cannot be
deleted. All elements are deletable as each has at least one bit in a collision-free zone.
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Fig. 7. Deletability estimate as function of the filter density
m/n for different collision bitmap sizesr.

extension that can be easily plugged to existing BFs variants
to enable probabilistic element deletions.

E. Hierarchical Bloom Filters

Shanmugasundaram et al. [31] presented a data structure
called Hierarchical Bloom Filter to support substring match-
ing. This structure supports the checking of a part of string
for containment in the filter with low false positive rates.
The filter works by splitting an input string into a number
of fixed-size blocks. These blocks are then inserted into a
standard Bloom filter. By using the Bloom filter, it is possible
to check for substrings with a block-size granularity. This
substring matching may result in combinations of strings that
are incorrectly reported as being in the set (false positives). For
example, a concatenation of two blocks from different strings
would be incorrectly recognized as an inserted substring.
Figure 8 illustrates the hierarchical nature of this construction.

The hierarchical Bloom filter construction improves match-
ing accuracy by inserting the concatenation of blocks into
the filter in addition to inserting them separately. This means
that two subsequent single block matches can be verified by
looking up their concatenation. This approach generalizesto a
sequence of blocks; however, storage space requirements grow
as more block sequences are added to the structure.

This filter was used to implement a payload attribution
system that associates excerpts of packet payloads to their
source and destination hosts. The filter was used to create
compact digests of payloads. The system works by dividing the
payload of each packet into a set of blocks of a certain fixed
size. Each block is appended with its offset in the payload:
(content||offset). The blocks are then hashed and inserted into
a Bloom filter. A hierarchical Bloom filter is a collection of
the standard Bloom filters for increasing block sizes.

When a string is inserted, it is first broken into blocks
which are inserted into the filter hierarchy starting from the
lowest level. For the second level, two subsequent blocks are
concatenated and inserted into the second level. This block-
based concatenation continues for the remaining levels of the
hierarchy. The resulting structure can then be used to verify
whether or not a given string occurs in the payload. The search

S0S1S2S3 | 0

S0S1 | 0 S2S3 | 1

S0 | 0 S1 | 1 S2 | 2 S3 | 3

S0 S1 S2 S3

offsets 0 1 2 3

Hierarchical Bloom filter

Fig. 8. Example of inserting a string into a hierarchical Bloom filter

starts at the first level and then continues upwards in the
hierarchy to verify whether the substrings occurred together
in the same or different packets.

F. Spectral Bloom Filters

Spectral Bloom filters generalize Bloom filters to storing
an approximate multiset and support frequency queries [32].
The membership query is generalized to a query on the
multiplicity of an element. The answer to any multiplicity
query is never smaller than the true multiplicity, and greater
only with probability ǫ. In this sense,spectral refers to the
range within which multiplicity answers are given. The space
usage is similar to that of a Bloom filter for a set of the same
size (including the counters to store the frequency values).
The time needed to determine a multiplicity ofk is O(log k).
The query time isΘ(log( 1ǫ )). The answer estimate is given
by returning the minimum value of thek counters determined
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by the hash functions. Element additions using the minimum
increase (MI) method consist of increasing only the smallest
counter value(s). This helps in reducing the error rate (i.e.,
fraction of answer values larger than the true multiplicity)
at the cost of disabling deletions. A further improvement of
the error rate can be achieved using the recurring minimum
(RM) method, which consists of storing elements with a single
minimum (among thek counters) in a secondary Spectral
Bloom filter with a smaller error probability.

G. Bloomier Filters

Bloom filters have been generalized toBloomierfilters [33]
that compactly store function values. The Bloomier filter can
encode functions instead of sets and allows the associationof
values with a subset of the domain elements. Bloomier filters
are implemented using a cascade of Bloom filters.

A Bloomier filter encodes a functionf(x) by associating an
arbitrary value with each memberx ∈ S. For each member
x ∈ S, it always returns the correct value (no false negatives).
For a non–member, it returns⊥ as a symbol for anundefined
value not in the range off(x), with high probability (1− ǫ).
False positives occur with probabilityǫ and result in a query
for x /∈ S returning a value within the range off(x).

The query time of a Bloomier filter is constant and space
requirement is linear. The basic construction of a Bloomier
filter requiresO(n log n) time to create;O(n) space to store
andO(1) time to evaluate. Although a Bloomier filter can be
made mutable, the setS is immutable. This means that in a
mutable Bloomier filter, function values can be changed but
set membership (inS) cannot change.

The Bloomier filter can be implemented as a pipeline of
parallel Bloom filters. Each parallel filter is associated with
one of the values off(x). The filter pipeline is checked in
pairs. Each pair of filters in the sequence are programmed
with the false positives of the previous stage. For example,let
filters F (A0) andF (B0) represent subsets ofS that map to
valuestrue andfalse, respectively. To obtain the value forx,
we check the value ofF (A0)(x) andF (B0)(x). If x receives
a non-⊥ value for one filter only, its value is that value. Ifx
receives a defined value for both filters of the pair, we move
on to the pairF (A1)(x) and F (B1)(x), which contain the
true positives ofF (A0) that are false positives inF (B0) and
the true positives ofF (B0) that are false positives inF (A0),
respectively. For multiple values, the filtersF (Ai), i ≥ 1
contain the pairwise false positives with the filtersF (Ji−1)
for all J \A.

Charles and Chellapilla [34] propose alternate construction
methods of Bloomier filters that yield faster alternatives,
O(n) vs. O(nlogn), and more practical and space-efficient
constructs at the cost of increased creation time. Similarly,
Dietzfelbinger and Pagh [35] propose a retrieval data structure
applicable to the approximate membership problem in almost
optimal space and with linear construction time. Similar results
are attainable with the approach by Porat [6] as an alternate
method to hold a succint, one-sided error dictionary data
structure in the spirit of Bloom filters.

H. Decaying Bloom Filters

Duplicate element detection is an important problem, es-
pecially pertaining to data stream processing [36]. In the
general case, duplicate detection in an unbounded data stream
is not practical in many cases due to memory and processing
constraints. This motivates approximate detection of duplicates
among newly arrived data elements of a data stream. This can
be accomplished within a fixed time window. Techniques for
space-efficient approximate counts over sliding windows have
been proposed in [37].

The Decaying Bloom Filter (DBF)structure has been pro-
posed for this application scenario. DBF is an extension of
the counting Bloom filter and it supports the removal of stale
elements from the structure as new elements are inserted. DBF
may produce false positive errors, but not false negatives as
is the case with the basic Bloom filter. For a given spaceG
bits and sliding window sizeW , DBF has an amortized time
complexity ofO(

√

G/W ) [38]. A variant of DBF has been
applied for hint-based routing in wireless sensor networks[39].
Time Decaying Bloom filters [40] have been proposed to take
time into account by decrementing counter values.

I. Stable Bloom Filter

The Stable Bloom Filter or SBF [41] is another solution
to duplicate element detection. The SBF guarantees that the
expected fraction of zeros in the SBF stays constant. This
makes the SBF suitable for duplicate detection in a stream
of data. The authors show measurements that verify the SBF
performs well in the scenario and outperforms e.g. standard
buffering and standard Bloom filters. The SBF introduces both
false positives and false negatives, but with rates improved
from standard Bloom filters or standard buffering.

Each cell in the SBF is a counter ofd bits, and thus has
a maximum valueMax = 2d − 1. The adding function for a
SBF differs from the counting Bloom filter. When adding an
element,P counters chosen at random are first decremented
(by one). Then thek counters that correspond to the element
to be added are set toMax. The parameterP can be chosen
based on the other parameters for a Bloom filter, and a user-
specified accepted false positive ratiof , for examplef = 0.01.
The authors suggest choosing P using the following formula:

P =
1

( 1
(1−f1/k)1/Max − 1)(1/k − 1/m)

(18)

Please see the full paper [41] for details on setting all the
parameters.

J. Space Code Bloom Filter

Per-flow traffic measurement is crucial for usage accounting,
traffic engineering, and anomaly detection. Previous method-
ologies are either based on random sampling (e.g., Cisco’s
NetFlow), which is inaccurate, or only account for the ”ele-
phants”. A data structure calledSpace Code Bloom Filter
(SCBF)can be used to measure per-flow traffic approximately
at high speeds.
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A SCBF is an approximate representation of a multiset.
Each element in this multiset is a traffic flow and its mul-
tiplicity is the number of packets in the flow. SCBF employs
a Maximum Likelihood Estimation (MLE)method to measure
the multiplicity of an element in the multiset. Through param-
eter tuning, SCBF allows for graceful tradeoff between mea-
surement accuracy and computational and storage complexity.
SCBF also contributes to the foundation of data streaming by
introducing a new paradigm called blind streaming [42].

K. Adaptive Bloom filters

The Adaptive Bloom Filter (ABF) [43] is an alternative
construction to counting Bloom filters especially well suited
for applications where large counters are to be supported with-
out overflows and under unpredictable collision rate dynamics
(e.g., network traffic applications). The key idea of the ABFis
to count the appearances of elements by an increasing set of
hash functions. Instead of working with fixedc-bit counting
cells like traditional CBFs, an ABF takes the same form as a
plain m-bit BF.

In order to increment the count of an element, the ABF
checkssequentiallyhow many independent hashes (N ) map
to bits set to one (in addition to thek bits set on element
insertion). When theN +k+1th hash hits an empty cell, it is
set to 1 to guarantee that element frequency queries return
at leastN + 1, corresponding to the 1s set so far by the
sequential hashes of the element. In membership queries, the
additional number of hash functionsN indicates the number
of appearances of each entry. False positives among the first
k bits work like in plain BF constructs. The main caveat is
that the estimate of the multiplicity of a each key element
becomes less precise as the ABF gets filled, since bits set by
other elements result in largerN values. To its benefit, the
ABF requires less memory and does not require knowledge
on the estimated multiplicity of individual key elements (e.g.,
skewed unpredictable data set in real network traffic).

L. Variable Length Signatures and Double Buffering

A Bloom filter with Variable-length Signatures (VBF)is
similar to the BF; however, the construction differs when
inserting and querying elements [44]. When inserting an
element, onlyt(≤ k) bits of h(x) computed usingk hash
functions are set to 1. This effectively allows the setting of a
partial signature. For queries, an elementx is reported to be
present if at leastq(≤ k) bits are set to 1.

The VBF construction allows to test element membership
when the set is time-varying, e.g., dynamic under insertions
and deletions of elements. The VBF construction has been
applied for network flow management. The key idea is to take
advantage of differing flow sizes and increase or decrease
the signature lengths of flows making them more easy or
less easy to identify in the filter. Flow lengths can also be
examined by analyzing the signature lengths. The construction
can adaptively reduce the false positive rate by removing some
bits of the signature, thus effectively removing the flow from
the structure. The limitation of this approach is that such
removal of bits may result in other valid flows being removed

as well resulting in false negatives. Partial signatures can be
used to alleviate this problem of false negatives. Aging of the
filter can be achieved by resetting the Bloom filter bits in a
round-robin fashion.

A related technique for handling time-varying sets, called
double buffering, uses two bitmaps, active and inactive, to
support time-dependent Bloom filters. When the active bitmap
is half full, new signatures are stored in both bitmaps and
only the active one is queried. When the inactive bitmap gets
half full, it becomes active and the previously active bitmap
becomes inactive and is reset. This cycle is then repeated [45].

M. Filter Banks

The standard BF only answers whether or not an element
is a member of the set with some probability for misclassifi-
cation. In many cases, there is a need to find which element
or elements of a set are related with the input element. There
is thus a requirement to support multiple binary predicates.

One straightforward technique to support multiple binary
predicates is to use a set of standard BFs. For example, in
a caching solution, each BF corresponds to an interface. An
element originating from a certain interface is recorded inthe
BF corresponding to the interface. When querying for element
membership, each BF is then consulted and zero or more will
report containment. If multiple interfaces report containment,
a number of techniques can be used to solve the issue, for
example by treating the case as a cache miss and reclassifying
the element in question [46].

A similar technique involving a filter bank is used to real-
ize approximate action classification [44]. This classification
answers the question, which element ofS is X? This requires
⌈log2 |S|⌉ filters. This corresponds to the selection of an action
from a set of actions for a given element. This classification
is important for various routing and forwarding tasks.

N. Scalable Bloom filters

One caveat with Bloom Filters is having to dimension the
maximum filter size (m) a priori. This is commonly done by
application designers by establishing an upper bound on the
expectedfpr and estimating the maximum required capacity
(n). However, it is often the case that the number of elements
to be stored is unknown, which leads to over-dimensioning
the filters for the worse case, possibly by several orders
of magnitude. Moreover, in some applications, BFs are not
simply preloaded with elements and then used, but elements
are added and queried independently as time passes. This may
result in wasted storage space.

Scalable Bloom Filters (SBF) [47] refer to a BF variant
that can adapt dynamically to the number of elements stored,
while assuring a maximum false positive probability. The
proposed mechanism adapts to set growth by adding “slices”
of traditional Bloom Filters of increasing sizes and tighter error
probabilities, added as needed. When filters get full due to the
limit on the fill ratio (i.e. ρ = 0.5), a new one is added.
Set membership queries require testing for element presence
in each filter, thus the requirement on increasing sizes and
tightening of error probabilities as the BF scales up. Successive



11

BFs are created with a tighter maximum error probability on
a geometric progression, allocatingm · ai−1bits for its i–th
BF slice, wherea is a given positive integer and1 < i < s.
As a result, the compounded probability over the whole series
converges to the target design value, even accounting for an
infinite series.

Parameters of the SBF in addition to the initial bit sizem
and targetfpr include the expected growth rate (s) and the
error probability tightening ratio (r). Careful choosing of these
extra 2 parameters ultimately determines the space usage gains
of SBF compared to standard BF constructs.

O. Dynamic Bloom Filter

Standard BFs and its mainstream variations suffer from inef-
ficiencies when the cardinality of the set under representation
is unknown prior to design and deployment. In stand-alone
applications with dynamic sets (i.e., with element addition
and removal operations), the inefficiency arises from the
impossibility of determining the optimal BF parameters (m,k)
in advance. Without knowledge of the upper bound on the
number of elements to be represented, a target false positive
probability threshold cannot be guaranteed unless the BF is
rebuilt from scratch each time the set cardinality changes.
These limitations are not only a challenge for stand-alone
applications. In distributed applications, BF reconstruction is
cumbersome and may hinder interoperability.

Dynamic Bloom filters (DBF) address the requirement for
dynamically adjusting the size of a probabilistic filter [48].
The DBF construction is based on a dynamics×m bit matrix
that consists ofs standard (or counting) Bloom filters. The
filter sizem and the number of hash functionsk are system
parameters. The number of BF slices is adjusted at runtime to
allow the DBF to grow dynamically.

The DBF is based on the notion of an active Bloom filter.
Only one Bloom filter in DBF is active at a time and others are
inactive. The number of elements inserted into each constituent
Bloom filter in a DBF is tracked. During insertion, the first
BF that has its element counter less than the given threshold
(system parameter) is selected as the active BF. If such an
active BF cannot be found, a new BF is created and designated
as the active BF. The element is then inserted into the active
BF. The query element membership operation iterates the set
of BFs in the DBF and returns true if any of the BFs contain
the element. Removing an element requires first finding the
sub-BF claiming that the element is present. In case only oneis
found, the element is removed by decrementing thek counters
by one. If multiple filters return true, the element removal may
result in, at most,k potential false negatives. In this case, to
conserve the false negative free properties, the element bit cells
are not decremented. Such element deletion failures contribute
to a gradual increase in the false positive behaviour.

The DBF has been intended for a number of distributed
environments, especially those in which new data is inserted
(and potentially removed) frequently. The DBF requires that
the filter size and the number of hash functions are consistent
among all nodes. The key applications include Bloomjoins,
informed search, and index search.

P. Split Bloom Filters

A Split Bloom filter (SPBF) [49] employs a constants ×
m bit matrix for set representation, wheres is a pre-defined
constant based on the estimation of maximum set cardinality.
The SPBF aims at overcoming the limitation of standard BFs
which do not take sets of variable sizes into account. The basic
idea of the SPBF is to allocate more memory space to enhance
the capacity of the filter before its implementation and actual
deployment. The false match probability increases as the set
cardinality grows. An existing SPBF must be reconstructed
using a new bit matrix if the false match probability exceeds
an upper bound.

Q. Retouched Bloom filters

The Retouched Bloom filter (RBF) [50] builds upon two
observations. First, for many BF applications, there are some
false positives, which are more troublesome than others and
can be identified after BF construction but prior to deployment.
Second, there are cases where a low level of false negatives is
acceptable. For filter applications fulfilling these two require-
ments, the RBF enables trading off the most troublesome false
positives for some randomly introduced false negatives.

The novel idea behind the RBF is thebit clearing process
by which false positives are removed by resetting individual
bits. Performance gains can be measured by the proportion of
false positives removed compared to the proportion of false
negatives introduced.

In case of arandom bit clearing process, the gains are
neutral, i.e., thefpr decrease equals thefnr increase. A better
performance can be achieved using aselectiveclearing ap-
proach, which first tests for false positives for a given training
set, and then resets only the bits belonging to “troublesome”
elements. The authors propose four algorithms for decreasing
the fpr more than the correspondingfnr increase.

R. Generalized Bloom Filters

The basic idea of the Generalized Bloom Filter (GBF) [51]
is to employ two sets of hash functions, one (g1, . . . , gk0

)
for setting bits and another (h1, . . . , hk1

) to reset bits. A
GBF starts out as an arbitrary bit vector set with both 1s
and 0s, and information is encoded by setting chosen bits
to either 0 or 1, departing thus from the notion that empty
bit cells represent the absence of information. As a result,
the GBF is a more general binary classifier than the standard
Bloom filter. In the GBF, the false-positive probability is upper
bounded and it does not depend on the initial condition of
the filter. However, the generalization brought by the set of
hash functions resetting bits introduces false negatives,whose
probability can be upper bounded and does not depend either
on the bit filter initial set-up.

Element insertion works by setting to 0 the bits defined
by g1(x), . . . , gk0

(x) and setting to 1 thek1 bits at positions
h1(x), . . . , hk1

(x). In case of a collision, the bit is set to 0.
Analogously, membership queries are done by verifying if all
bits defined byg1(x), . . . , gk1

(x) are set to 0 and all bits
determined byh1(x), . . . , hk1

(x) are set to 1. The GBF returns
false if any bit is inverted, i.e. the queried element does not
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belong to the set with a high probability. The false positive
and false negative estimates can be traded off by varying the
numbers of hash functions,k0 andk1.

S. Distance-sensitive Bloom filters

Distance-sensitive Bloom filters (DSBF) [52] were con-
ceived by Kirsch and Mitzenmacher to answer approximate
set membership queries in the form ofis x close to an item
of S?, where closeness is measured under a suitable metric.
More specifically, given a metric space(U, d), a finite set
S ⊂ U , and parameters0 ≤ ǫ < δ, the filter aims to effectively
distinguish between inputsu ∈ U such thatd(u, x) ≤ ǫ for
somex ∈ S and inputsu ∈ U such thatd(u, x) ≥ d for every
x ∈ S.

The DSBF is implemented using locality-sensitive hash
functions [53], [54] and allows false positives and false
negatives. By comparison, standard Bloom filters are false-
negative-free corresponding to the case whereǫ = 0 and δ is
any positive constant. While false positives and especiallyfalse
negatives require special consideration at application design
time, a DSBF can provide speed and space improvements
for networking and database applications, which can avoid
full nearest-neighbor queries or costly comparison operations
against entire sets. Moreover, overarching DSBFs can be
constructed on top of a collection of conventional BFs to
provide a quick (probabilistic) answer to questions of the form,
Are there any sets in the collection very close to this query set?,
which may assist traditional BF-based distributed applications.

T. Data Popularity Conscious Bloom Filters

In many information processing environments, the underly-
ing popularities of data items and queries are not identical,
but rather they differ and skewed. For example in many
networks data popularity has been observed to be similar to
the Zipf distribution. The standard Bloom filter does not utilize
information pertaining to the underlying data element distri-
bution. An intuitive approach to take data item popularity into
account is to use longer encodings and more hash functions
for important elements and shorter encodings and fewer hash
functions for less important ones. A larger number of hash
functions will result in fewer false positives for popular data
elements. It may result in more false positives for unpopular
data items; however, since they are requested less frequently
this is not expected to become an issue [55].

Thus the Bloom filter construction lends itself well to data
popularity-conscious filtering as well; however, this requires
the minimization of the false positive rate by adapting the
number of hashes used for each element to its popularities in
sets and membership queries. To this end, an object importance
metric was proposed in [55]. The problem was modeled as a
constrained nonlinear integer program and two polynomial-
time solutions were presented with bounded approximation
ratios. The aim of the optimization problem, modeled as
a variant of the knapsack problem, is to find the optimal
number of hash functions for each element. The popularities
of elements are used to reduce the solution search space.

The results include a 2-approximation algorithm with
O(N c) running time (c ≥ 6 in practice) and a(2 + ǫ)
approximation algorithm with running timeO(N2/ǫ), ǫ > 0.
Experimental evaluation results indicate that the popularity-
conscious Bloom filters can achieve significant false-positive
probability reduction (or reduced filter sizes when the false
positive rate is kept constant) compared to standard Bloom
filters. On the other hand, the popularity-conscious filters
require offline computation for estimating input distribution
popularities and storage for the custom hash scheme.

U. Memory-optimized Bloom Filter

A memory-optimized Bloom filter was proposed in [56] that
uses an additional hash function to select one of the possible
k locations in a Bloom filter. Thus only a single bit is set
for each element instead ofk bits leading to memory savings.
The idea of using a separate hash function to make the result
of the k hash functions more uniform has also been proposed
in [46].

V. Weighted Bloom filter

Bruck et al. [57] propose Weighted Bloom filter (WBF), a
Bloom filter variant that exploits the a priori knowledge of
the frequency of element requests by varying the number of
hash functions (k) accordingly as a function of the element
query popularity. Hence, a WBF incorporates the information
on the query frequencies and the membership likelihood of the
elements into its optimal design, which fits many applications
well in which popular elements are queried much more often
than others. The rationale behind the WBF design is to con-
sider the filterfpr as a weighted sum of each individual ele-
ment’s false positive probability, where the weight is positively
correlated with the element’s query frequency and is negatively
correlated with the element’s probability of being a member.
As a consequence, in applications where the query frequencies
can be estimated or collected and result for instance in a step
or the Zipf distribution, the WBF largely outperforms infpr
the traditional Bloom filter. Even a simple binary classification
of elements between hot and cold can result in false positive
improvements of a few orders of magnitude.

W. Secure Bloom filters

The hashing nature of Bloom filters provide some basic
security means in the sense that the identities of the set
elements represented by the BF are not clearly visible for an
observer. However, plain BFs allow some leak of information
such as the approximate total number of elements inserted.
Morever, BFs are vulnerable to correlation attacks where the
similarity of BFs’ contents can be deduced by comparing
BF indexes for overlaps, or lack thereof. Furthermore, in
applications where the hash functions are known, a dictionary
attack provides probabilistic arguments for the presence of
elements in a given BF.

To overcome these limitations, several proposals have sug-
gested secured BF variants as a natural extension of the prob-
lem of constructing data structures with privacy guarantees.
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TABLE II

KEY FEATURES OF THEBLOOM FILTER VARIANTS, INCLUDING THE ADDITIONAL CAPABILITIES : COUNTING (C), DELETION (D),

POPULARITY-AWARENESS(P), FALSE-NEGATIVES (FN), AND THE OUTPUT TYPE.

Filter Key feature C D P FN Output

Standard Bloom filter Is elementx in setS? N N N N Boolean

Adaptive Bloom filter Frequency by increasing number of hash functions Y N N N Boolean

Bloomier filter Frequency and function value Y N N N Freq.,f(x)

Compressed Bloom filter Compress filter for transmission N N N N Boolean

Counting Bloom filter Element frequency queries and deletion Y Y N M Boolean or freq.

Decaying Bloom filter Time-window Y Y N N Boolean

Deletable Bloom filter Probabilistic element removal N Y N N Boolean

Distance-sensitive Bloom filters Is x close to an item inS? N N N Y Boolean

Dynamic Bloom filter Dynamic growth of the filter Y Y N N Boolean

Filter Bank Mapping to elements and sets Y Y M N x, set, freq.

Generalized Bloom filter Two set of hash functions to codex with 1s and 0s N N N Y Boolean

Hierarchical Bloom filter String matching N N N N Boolean

Memory-optimized Bloom filter Multiple-choice single hash function N N N N Boolean

Popularity conscious Bloom filter Popularity-awareness with off-line tuning N N Y N Boolean

Retouched Bloom filter Allow some false negatives for better false positive rateN N N Y Boolean

Scalable Bloom filter Dynamic growth of the filter N N N N Boolean

Secure Bloom filters Privacy-preserving cryptographic filters N N N N Boolean

Space Code Bloom filter Frequency queries Y N M N Frequency

Spectral Bloom filter Element frequency queries Y Y N M Frequency

Split Bloom filter Set cardinality optimized multi-BF construct N N N N Boolean

Stable Bloom filter Has elementx been seen before? N Y N Y Boolean

Variable-length Signature filter Popularity-aware with on-line tuning Y Y Y Y Boolean

Weighted Bloom filter Assign more bits to popular elements N N Y N Boolean

The secure indexes [58] by Goh enhance the BF insert and
query operations by applying pseudo-random functions twice,
first to generate element codewords using a secret key, and
second to derive thek index bits after including a set-specific
identifier as input to the keyed hash functions.

Finally, Goh proposes a simple technique to further obscure
the BF by randomly setting additional bits increasing the bar
for attackers at the cost of afpr increase.

Encrypted Bloom filters by Bellovin and Cheswick [59]
propose a privacy-preserving filter variant of Bloom filters
which introduces a semi-trusted third party to transform one
party’s queries to a form suitable for querying the other
party’s BF, in such a way that the original query privacy
is preserved. Instead of undisclosing the keys of all parties
and securing the BF operations with keyed hash functions as
per Goh [58], Bellovin and Cheswick propose a specialized
form of encryption function where operations can be done on
encrypted data. More specifically, their proposal is based on
the Pohlig-Hellman cipher, which forms an Abelian group over
its keys when encrypting any given element.

Yet another refinement on privacy-preserving variants of
Bloom filters is the cryptographically secure Bloom filter
protocol proposed by [60]. In addition to providing a rea-
sonable security definition, the proposed protocol suite avoids
employing third parties by using cryptographic primitives
known as blind signature schemes and oblivious pseudoran-

dom functions.

X. Summary and discussion

Table II summarizes the distinguishing features of the
Bloom filter variants discussed in this section. The different
Bloom filter designs aim at addressing specific concerns
regarding space and transmission efficiency, false positive rate,
dynamic operation in terms of increasing workload, dynamic
operation in terms of insertions and deletions, counting and
frequencies, popularity-aware operation, and mapping to ele-
ments and sets instead of simple set membership tests. For
each variant, table II indicates the output type (e.g., boolean,
frequency, value) and whether counting (C), deletion (D),
or popularity-awareness (P) are supported (Yes/No/Maybe),
or false negatives (FN) are introduced. Bloom filter variants
with counting capabilities can also be used to probabilistically
encode arbitrary functions by considering the cardinalityof
each set element being functional value and each set element
being a variable.

Bloom filters come in many shapes and forms, and they
are widely used in distributed systems due to their compact
nature and configurable trade-off between size and accuracy.
Making this choice and optimizing the parameters for the
expected uses cases are fundamental factors to achieve the
desired performance in practice.
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Fig. 9. Bloom filter variants grouped by usage scenarios.

Since there is no Bloom filter that fits all, one key question
that application designers should ask is whether false negatives
are tolerable or not. Relaxing this constraint can help drasti-
cally in reducing the overall false positive rate (cf. retouched
Bloom filters [50]), but raises also the question whether
the Bloom filter is the right data structure choice despite
alternative designs specific to the application domain (cf.[61]),
approximate dictionary-inspired approaches [6], [35], cache-
efficient variants (blocked Bloom filter) and Golomb coding
implementations as proposed by Putzeet al [62], space-
efficient versions of cuckoo hashing [63], and more complex
but space-optimal alternatives [5], [6].

Each variant or replacement introduces a specific trade-
off involving execution time, space efficiency, and so on.
Ultimately, which probabilistic data structure is best suited
depends a lot on the application specifics. Indeed, the varia-
tions of the standard Bloom filter discussed in this Section are
commonly the result of specific requirements of network and
distributed system applications, a variety of which we present
in the following survey section.

IV. B LOOM FILTERS IN DISTRIBUTED COMPUTING

We have surveyed techniques for probabilistic representa-
tion of sets and functions. The applications of these structures
are manyfold, and they are widely used in various networking

systems, such as Web proxies and caches, database servers,
and routers. We focus on the following key usage scenarios:

• Caching for Web servers and storage servers.
• Supporting processing in P2P networks, in which prob-

abilistic structures can be used for summarizing content
and caching [28], [64].

• Packet routing and forwarding, in which Bloom filters
and variants have important roles in flow detection and
classification.

• Monitoring and measurement. Probabilistic techniques
can be used to store and process measurement data
summaries in routers and other network entities.

• Supporting security operations, such as flow admission
and intrusion detection.

Figure 9 shows an overview of Bloom filter variants that
can be used in the usage scenarios that this section focuses
on. For more detail, see Figure 15 at the end of this article.

A. Caching

Bloom filters have been applied extensively to caching in
distributed environments. To take an early example, Fan, Cao,
Almeida, and Broder proposed the Summary Cache [27], [28]
system, which uses Bloom filters for the distribution of Web
cache information. The system consists of cooperative proxies
that store and exchange summary cache data structures, es-
sentially Bloom filters. When a local cache miss happens, the
proxy in question will try to find out if another proxy has a
copy of the Web resource using the summary cache. If another
proxy has a copy, then the request is forwarded there.

In order for distributed proxy-based caching to work well,
the proxies need to have a way to compactly summarize
available content. In the Summary Cache system, proxies
periodically transfer the Bloom filters that represent the cache
contents (URL lists). Figure 10 illustrates the use of a Bloom
filter-based summary cache at a proxy. The summary cache
is consulted and used to find nearest servers or other proxies
with the requested content.

Dynamic content poses a challenge for caching content and
keeping the summary indexes up to date. Within a single
proxy, a Bloom filter representing the local content cache
needs to be recreated when the content changes. This can be
seen to be inefficient and as a solution the Summary Cache
uses counting Bloom filters for the maintenance of their local
cache contents, and then based on the updates a regular Bloom
filter is broadcast to other proxies.

The summary cache-based technique is used in the popular
Squid Web Proxy Cache1. Squid uses Bloom filters for so-
called cache digests. The system uses a 128-bit MD5 hash of
the key, a combination of the URL and the HTTP method, and
splits the hash into four equal chunks. Each chunk modulo the
digest size is used as the value for one of the Bloom filter hash
functions. Squid does not support deletions from the digestand
thus the digest must be periodically rebuilt to remove stale
information.

Bloom filters have been applied extensively in distributed
storage to minimize disk lookups. As an example, we consider

1www.squid-cache.org
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Google’s Bigtable system that is used by many massively
popular Google services, such as Google Maps and Google
Earth, and Web indexing. Bigtable is a distributed storage
system for structured data that has been designed with high
scalability requirements in mind, for example capability to
store and query petabytes of data across thousands of com-
modity servers [65].

A Bigtable is a sparse multidimensional sorted map. The
map is indexed by a row key, column key, and a timestamp.
Each value in the map is an uninterpreted array of bytes.
Bigtable uses Bloom filters to reduce the disk lookups for
non-existent rows or columns [65]. As a result the query
performance of the database has to rely less on costly disk
operations and thus performance increases.

Apache Hadoop [66] is a framework for running applica-
tions on clusters of commodity hardware. Hadoop implements
the map/reduce paradigm in which an application is divided
into smaller fragments in order to achieve parallel efficiency.
The Hadoop implementation uses various Bloom filter struc-
tures to optimize the reduce stage.

B. P2P Networks

Bloom filters have been extensively applied in P2P environ-
ments for various tasks, such as compactly storing keyword-
based searches and indices [67], synchronizing sets over
network, and summarizing content.

In [68], the applications and parameters of Bloom filters
in P2P networks are discussed. The applications identified
by the authors include peer content summarization and the
filter length, compression, and hash types used, semantic
overlays using peer Bloom filter similarity, and query routing
by Bloom filter similarity. Updating of peer Bloom filters is
also discussed.

The exchange of keyword lists and other metadata between
peers is crucial for P2P networks. Ideally, the state shouldbe
such that it allows for accurate matching of queries and takes
sublinear space (or near constant space). The later versions of
the Gnutella protocol use Bloom filters [68] to represent the
keyword lists in an efficient manner. In Gnutella, each leaf
node sends its keyword Bloom filter to an ultra-node, which

Ultra node

Ultra node

Ultra node

Ultra node layer

Flooding

(Bloom filters)

Leaf

Leaf Leaf
Leaf

Data transfer

Fig. 11. 2-tier Gnutella

can then produce a summary of all the filters from its leaves,
and then sends it to neighbouring ultra-nodes. The ultra-nodes
are hubs of connectivity, each being connected to more than 32
other ultra-nodes. Figure 11 illustrates this two-tier Gnutella
architecture.

Rhea and Kubiatowicz [69] designed a probabilistic routing
algorithm for P2P location mechanisms in the OceanStore
project. Their aim was to determine when a requested file has
been replicated near the requesting system. This system uses
a construction calledAttenuated Bloom filter, which is simply
an array ofd basic Bloom filters. Theith basic filter keeps
record of what files are reachable withini hops in the network.
The attenuated Bloom filter only finds files withind hops, but
the returned paths are likely to be the shortest paths to the
replica. In the distributed system, a node maintains attenuated
filters for each neighbour separately, and updates are broadcast
periodically.

The OceanStore system uses a two-tiered model, in which
the attenuated filter is part of the first tier. If the probabilistic
search fails, the search can then fallback to a deterministic
overlay search using Tapestry.

In [70], the authors propose to exploit two-dimensional lo-
cality to improve P2P system search efficiency. They presenta
locality-aware P2P system architecture called Foreseer, which
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explicitly exploits geographical locality and temporal locality
by constructing a neighbor overlay and a friend overlay,
respectively. Each peer in Foreseer maintains a small number
of neighbors and friends along with their content filters used
as distributed indices.

Exponentially Decaying Bloom filters probabilistically en-
code routing tables in a highly compressed way that allows for
efficient aggregation and propagation of routing information in
unstructured peer-to-peer networks [71].

Bloom filters can be applied for approximate set recon-
ciliation and data synchronization [72]. This applicationis
important for P2P systems, in which a peer may send a
compact data structure to another peer that represents items
that the peer already has. Bloom filters are not directly ideal
for this kind of set reconciliation applications, because of the
possibility for false positives. Therefore a number of Bloom
filter-based structures have been developed [73], [74].

Bloom filters have also been used in social networks, for
example in Tribler [75], a social P2P file sharing system.
Tribler uses Bloom filters to keep the databases that maintain
the social trust network synchronized between peers. The
Bloom filters are used to filter out peers already known by
message destination nodes from swarm discovery messages.
Tribler can reach common friends–of–friends of two peers by
using a Bloom filter of260 bytes in size, enabling a peer to
exchange information with thousands of others in a short time.

C. Packet Routing and Forwarding

Bloom filters have been used to improve network router
performance [76]. Song et al. used a Counting Bloom Filter
to optimize a hash table used in network processing, such
as maintaining per-flow context, IP route lookup, and packet
classification. The small, on-chip Bloom filter eliminates slow,
off-chip lookups when the searched flow is not found, and
minimizes the number of lookups required when the flow
is found. This is done by associating a hash table bucket
with each Bloom filter counter. The bucket associated with
the counter with the lowest value and lowest index is then
always accessed, and the corresponding item is stored in that
bucket. Counters are also artificially incremented to eliminate
collisions. This leads to one worst-case off-chip lookup for
flows stored.

In [77], Bloom filters are used for high-speed network
packet filtering. A regular Bloom filter with a collision listis
implemented in kernel space in a Linux network driver. The
filter is populated by signatures of (protocol, IP address, port)–
tuples. Incoming packets are matched against the filter and
matches given to a user-space network monitoring program.
Wildcards are supported by setting one of the tuple fields to
zero when populating the filter, and on input packets when
querying. The authors also implement a threaded network
packet processor to offload packet processing from the Linux
kernel to a separate thread. With the Bloom filter the authors
almost quadruple the performance of the existing driver, as
compared to when capturing all packets and filtering in user-
space only.

In the remainder of the subsection, we focus on impor-
tant uses of Bloom filter variants in routing and forwarding
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tasks. These cases include IP lookups, loop and duplicate
detection, forwarding engines, and deep packet scanning. We
also briefly discuss the use of Bloom filters for content-based
publish/subscribe and multicast, which is an active research
area.

1) IP Lookups:Bloom filters can be applied in various parts
in a routing and forwarding engine. Probabilistic techniques
have been used for efficient IP lookups. IP routers forward
packets based on their address prefixes. Each prefix is as-
sociated with the next hop destination. CIDR-based routing
and forwarding uses the longest prefix match for finding the
next hop destination. This is commonly solved using a binary
search, a trie search, or a TCAM. IP lookups can be made
more efficient by dividing the addresses into tables based on
their length and then utilizing binary search to find the longest
common prefix. Thed-left hashing technique has been used
to make this lookup more compact and efficient [78].

Many different probabilistic structures have been developed
for fast packet forwarding. To take one example, an algorithm
that uses Bloom filters forLongest Prefix Matching (LPM)was
introduced in [79]. The algorithm performs parallel queries on
Bloom filters, to determine address prefix membership in sets
of prefixes sorted by prefix length. This work indicates that
Bloom filter–based forwarding engines can offer favorable per-
formance characteristics compared to TCAMs used by many
routers. Figure 12 illustrates this design for high–speed prefix
matching. The idea is to have different regular Bloom filters
for different address prefixes. These BFs are implemented in
hardware and updated by a route computation process. The
route manager uses counting Bloom filters to keep track of
how the regular BFs should be instrumented.

Asymmetric Bloom filters that allocate memory resources
according to prefix distribution have been proposed for LPM.
By using direct lookup array andControlled Prefix Expansion
(CPE), worst-case performance is limited to two hash probes
and one array access per lookup. Performance analysis indi-
cates that average performance approaches one hash probe per
lookup with less than 8 bits per prefix [79].

The system employs a set ofW Counting Bloom Filters
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whereW is the length of input addresses, and associates one
filter with each unique prefix length. A hash table is also
constructed for each distinct prefix length. Each hash tableis
initialized with the set of corresponding prefixes, where each
hash entry is a (prefix, next hop)–pair.

Based on the analysis, the expected number of hash probes
per lookup depends only on the total amount of memory
resources,M , and the total number of supported prefixes,N .
The number of required hash probes is given by( 12 )

M/N
ln 2 . The

result is independent of the number of unique prefix lengths
and the distribution of prefixes among the prefix lengths.

2) Loop Detection: Bloom filters can be used for loop
detection in network protocols. IP uses the Time-To-Live
(TTL) field to detect and drop packets that are in a forwarding
loop. The TTL counter is incremented for each network hop.
For small loops, TTL may still allow a substantial amount of
looping traffic to be generated.

Icarus is a system that uses Bloom filters for preventing
unicast loops and multicast implosions. The idea is straight-
forward, namely to use a Bloom filter in the packet header
as a probabilistic loop detection mechanism. Each node has a
corresponding mask that can be ORed with the Bloom filter
in the header of a packet, and then determine whether or not a
loop has occurred. Detection accuracy can be traded off against
space required in the packet header [80].

3) Duplicate Detection: In [41], Deng and Rafiei intro-
duce the Stable Bloom filter (SBF), which is a modified
Counting Bloom Filter. In the update process,p randomly
chosen counter values are decremented by1, and then thek
counters of the added element are set toMax, the maximum
counter value. This causes a probabilistic aging of counters
and eventual convergence of thefpr. This also results in
false negatives. The authors use the SBF in stream duplicate
detection, and achieve an improved false positive rate as
compared to a regular Bloom filter, and an improved false
negative rate compared to simple buffering.

Decaying Bloom filters (DBF)developed in [38] can also
be used for duplicate detection in an unbounded data stream.
The DBF is a Counting Bloom filter, in which thek counters
that map to a new element are set toW , the sliding window
size, when adding. Before adding, all counters are decremented
by one. The authors further improved the performance of the
DBF by dividing the DBF into blocks (bDBF) so that each
addition only takesm/T+k operations, whereT is the number
of blocks andm the number of counters. Unfortunately the
authors examine the false positive ratio with a much smaller
sliding window than in [41], so [38] and [41] are not directly
comparable. However, DBF appears, by interpolation, to have
a much lower false positive rate than SBF: less than2% at
4096 bits, compared to SBF’s8.2% at 16384 bits. Further-
more, DBF does not suffer from false negatives.

4) Forwarding Engines:Bloom filters can also be used
in multicast forwarding engines. A multicast packet is sent
through a multicast tree. A multicast router maps an in-
coming multicast packet to outgoing interfaces based on the
multicast address. Initially, Grönvall suggests an alternative
multicast forwarding technique using Bloom filters [81]. In
this technique, a router has a Bloom filter for each outgoing

interface. The filters contain the addresses associated with the
interfaces. When a multicast packet arrives on one interface,
the Bloom filters of each outgoing interface are checked for
matches. The packet is forwarded to all matching interfaces.
This technique is interesting, because it does not store any
addresses at the router; however, the addition and removal of
multicast addresses requires that the Bloom filters are updated,
e.g., using any BF variant supporting deletions.

A similar idea has been recently proposed for content-
centric networks [82], where packet forwarding decisions may
be based on a new identifier space for information objects (e.g.,
256-bit flat labels) or novel forwarding identifiers. An abstract
switching element can be built by querying in parallel a bank
of Bloom filters, one for each possible port-out (physical and
virtual). The evaluation of the SPSwitch in [82] argues for
a simpler system design and enhanced flexibility by relying
on a fingerprint-basedd-left hash table. The unifying Bloom
principle of information-centric networking applications is to
reduce the state requirements and simplify multicast support
by tolerating some overdeliveries due to false positives.

A similar tradeoff can be applied to enterprise and data
center networks, where the scalability of the data plane be-
comes increasingly challenging with the growth of forwarding
tables and link speeds. Simply building switches with larger
amounts of faster memory is not appealing, since high-speed
memory is both expensive and power hungry. Implementing
hash tables in SRAM is not appealing either because it requires
significant over-provisioning to ensure that all forwarding table
entries fit. The BUFFALO architecture [83] proposes Bloom
filters stored in a small SRAM to compress the information of
the addresses associated with each outgoing link. Leveraging
the flattening of IP addresses and the shortest-path routing,
BUFFALO proposes a practical switch design that gracefully
handles false positives without reducing the packet-forwarding
rate, while guaranteeing that packets reach their destinations
with bounded stretch with high probability. Routing changes
are handled by dynamically adjusting the filter sizes based on
Counting Bloom Filters stored in slow memory.

The other extreme approach to support multicast is to move
state from the network elements to the packets themselves in
form of Bloom filter-based representations of the multicast
trees. This notion has been exploited by Ratnasamy et al.
when revisiting IP multicast [84] and by Jokela et al. [85]
to provide a scalable forwarding plane for publish/subscribe
networks (See Fig. 13). While [84] insert the inter-domain
AS path information into a 800-bit Bloom filter-based header
(called shimheader), LIPSIN [85] departs from the IP inter-
networking model and handles link identifiers more generally,
from network interfaces to virtual links spanning multiple
hops. Link IDs take a Bloom filter form (i.e.,m bits with
only k bits set to 1) that can be ORed together to build
a source-routing Bloom filter. Forwarding nodes maintain a
small Link ID table whose entries are checked for presence
in the routing BF to take the forwarding decision. In a typical
WAN topology, using 256-bit BFs, multicast trees containing
around 40 links can be constructed to reach in a stateless
fashion up to 24 users while maintaining the false positive
rate (≈ 3%) and the associated forwarding efficiency within
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reasonable performance levels.
Applying the core idea of compressing source routes into

packet headers, the Switching with in-packet Bloom filters
(SiBF) architecture [86] proposes a Valiant load balanced
forwarding service tailored for data center networks. Based on
OpenFlow-capable switches, iBFs are carried in the Ethernet
source and destination fields which are re-written at Top-of-
Rack switches.

tian et al. have proposed an application-oriented multicast
(aom) protocol [87]. each router uses the standard unicast ip
routing table to determine necessary multicast copies and next-
hop interfaces. all the multicast membership and addressing
information traversing the network is encoded with bloom
filters for low storage and bandwidth overhead. the paper goes
on to prove that the aom service model is loop-free and incurs
no redundant traffic. the false positive performance of the
bloom filter implementation was also analyzed.

5) Deep Packet Scanning and Packet Classification:Bloom
filters have found applications also in deep packet scanning, in
which applications need to search for predefined patterns in
packets at high speeds. Bloom filters can be used to detect
predefined signatures in packet payloads. When a suspect
packet is encountered, it can then be moved for further
investigation. One advantage of Bloom filters is that they can
be efficiently implemented in hardware and parallelized [88],
[46], [89], which can result in high-performance and energy-
efficient operation.

The storage requirements of the well-known crossproduct
algorithm used in packet classification can be significantly
reduced by using on-chip Bloom filters. For packets that match
p rules in a rule set, a proposed algorithm requires4 + p+ e
independent memory accesses to return all matching rules,
wheree is a small constant that depends on the false positive

rate of the Bloom filters [90].
Packet classification continues to be an important chal-

lenge in network processing. It requires matching each packet
against a database of rules and forwarding the packet accord-
ing to the highest priority matching rule. Within the hash-
based packet classification algorithms, an algorithm that is
gaining interest is the tuple space search algorithm that groups
the rules into a set of tuple spaces according to their prefix
lengths. An incoming packet can now be matched to the rules
in a group by taking into consideration only those prefixes
specified by the tuples. More importantly, matching of an
incoming packet can now be performed in parallel over all
tuples. Within these tuple spaces, a drawback of utilizing
hashing is that certain rules will be mapped to the same
location, also called a collision. The negative effect of such
a collision is that it will result in multiple memory accesses
and subsequently longer processing time. The authors of [91]
propose a pruned Counting Bloom Filter to reduce collisionsin
the tuple space packet classification algorithm. The approach
decreases the number of collisions and memory accesses in
the rule set hash table in comparison to a traditional hashing
system. They investigate several well-known hashing functions
and determine the number of collisions and show that utilizing
the pruned Counting Bloom Filter can reduce the number of
collisions at least4% and by at most32% for real rule sets.

6) Content-based Publish/Subscribe:The content-based
publish-subscribe (pub-sub) paradigm for system design is
becoming increasingly popular, offering unique benefits for
many data-intensive applications. Coupled with peer-to-peer
technology, it can serve as a central building block for devel-
oping data-dissemination applications deployed over a large-
scale network infrastructure. A key open problem in creating
large-scale content-based pub-sub infrastructures relates to
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efficiently and accurately matching subscriptions with various
predicates to incoming events [92], [93]. A Bloom filter-based
approach has been proposed for general content-based routing
with predicates [93].

Bloom filters and additional predicate indices were used
in a mechanism to summarize subscriptions [94], [95]. An
Arithmetic Attribute Constraint Summary (AACS) and a
String Attribute Constraint Summary (SACS) were used to
summarize constraints, because Bloom filters cannot directly
capture the meaning of other operators than equality. The
subscription summarization is similar to filter merging, but
it is not transparent, because routers and servers need to be
aware of the summarization mechanism. In addition, the set
of attributes needs to be known a priori by all brokers and
new operators require new summarization indices. The benefit
of the summarization mechanism is improved efficiency, since
a custom-matching algorithm is used that is based on Bloom
filters and the additional indices.

D. Monitoring and Measurement

Network monitoring and measurement are key application
areas for Bloom filters and their variants. We briefly examine
some key cases in this domain, for example detection of heavy
flows, Iceberg queries, packet attribution, and approximate
state machines. Key functions for monitoring include flow
classification [96], [97] and approximate counting and sum-
marization of flows and packets [98], [99].

1) Heavy Flows: Bloom filters have found many appli-
cations in measurement of network traffic. One particular
application is the detection of heavy flows in a router. Heavy
flows can be detected with a relatively small amount of
space and small number of operations per packet by hashing
incoming packets into a variant of the counting Bloom filter
and incrementing the counter at each set bit with the size of the
packet. Then if the minimum counter exceeds some threshold
value, the flow is marked as a heavy flow [100].

2) Iceberg Queries: Iceberg queries[101] have been an
active area of research development. An Iceberg query is such
that identifies all items with frequency above some given
threshold. Bloom filter variants that are able to count elements
are good candidate structures for supporting Iceberg queries.
In networking, low-memory approximate histogram structures
are needed for collecting network statistics at runtime. For
example, in some applications it is necessary to track flows
across domains and perform, to name a few examples, con-
gestion and security monitoring. Iceberg queries can be used
to detect Denial-of-Service attacks.

Packet and payload attribution is another application areain
measurement for Bloom filters. The problem in payload attri-
bution is as follows. Given a payload, the system reduces the
uncertainty that we have about the actual source and destina-
tion(s) of the payload, within a given target time interval.The
goodness of the system is directly related with how much this
uncertainty can be reduced. The implementation of a payload
attribution system has two key components, namely a payload
processing component and a query-processing component.

3) Packet Attribution: The current Internet architecture
allows a malicious node to disguise its origin during denial-
of-service attacks with IP spoofing. A well-known solution
to identify these nodes is IP traceback. The main types of
traceback techniques are (1) to mark each packet with partial
path information probabilistically, and (2) to store packet
digests in the form of Bloom filters at routers and reconstruct
attack paths by checking neighboring routers iteratively.

The Source Path Isolation Engine (SPIE)[102] implements
a packet attribution system, in which the system keeps trackof
incoming and outgoing packets at a router. Simply storing all
the resulting information is not feasible. Therefore, Snoeren
et al. proposed to use Bloom filters to reduce the state
requirements. A Bloom filter stores a summary of packet
information in a probabilistic way. One key observation is that
each router maintains its own Bloom filters and thus their hash
functions are independent.

A SPIE-capable router creates a packet digest for every
packet it processes. The digest is based on the packet’s non-
mutable header fields and a prefix of first 8 bytes of the
payload. These digests are then maintained by a network
component for a predefined time.

When a security component, such as an intrusion detection
system, detects that the network is under attack, it can use
SPIE to trace the packet’s route through the network to the
sender. A single packet can be traced to its source given that
the routers on the route still have the packet digest available. A
false positive in this setting means that a packet is incorrectly
reported as having been seen by a router. When the source of
a packet is traced, false positives mean that the reverse path
becomes a tree (essentially branches to multiple points dueto
false positives).

The packet attribution was extended to payload attribution
by Shanmugasundaram et al. [31] with the Hierarchical Bloom
filter. As discussed in this survey, this structure allows the
query of a part of a string. SPIE uses the non-mutable headers
and a prefix of the payload, whereas with Hierarchical Bloom
filters it is sufficient to have only the payload to perform a
traceback.

The key idea of the IP traceback in [103] is to sample only
a small percentage (e.g., 3%) of the digests of the sampled
packets. Relying on a low sampling rate is critical to relax the
storage and computational requirements and allow link speeds
to scale to OC-192 or higher rates.

The Generalized Bloom filter (GBF) [51], introduced in
Sec. III-R, was conceived to address single-packet IP traceback
in a stateless fashion by probabilistically encoding a packet’s
route into the packets themselves. The key feature of the GBF
is the double set of hash functions to set and reset bits hop-
by-hop, which provides built-in protection against Bloom filter
tampering at the cost of some false negatives.

Counter braids [104] revisits the problem of accurate per-
flow measurement. The authors present a counter architecture,
called Counter Braids, inspired by sparse random graph codes.
In a nutshell, Counter Braids ”compresses while counting”.
It solves the central problems (counter space and flow-to-
counter association) of per-flow measurement by ”braiding”a
hierarchy of counters with random graphs. Braiding resultsin
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drastic space reduction by sharing counters among flows; and
using random graphs generated on-the-fly with hash functions
avoids the storage of flow-to-counter association.

While the problem of high-performance packet classification
has received a great deal of attention in recent years, the
research community has yet to develop algorithmic methods
that can overcome the drawbacks of TCAM-based solutions.
A hybrid approach, which partitions the filter set into subsets
that are easy to search efficiently, is introduced in [105]. The
partitioning strategy groups filters that are close to one another
in tuple space, which makes it possible to use information from
single-field lookups to limit the number of subsets that must
be searched. Running time can be traded off against space
consumption by adjusting the coarseness of the tuple space
partition. The authors find that for two-dimensional filter sets,
the method finds the best-matching filter with just four hash
probes while limiting the memory space expansion factor to
about 2. They also introduce a novel method for Longest Prefix
Matching (LPM), which is used as a component of the overall
packet classification algorithm. The LPM method uses a small
amount of on-chip memory to speed up the search of an off-
chip data structure, but uses significantly less on-chip memory
than earlier methods based on Bloom filters.

4) Approximate State Machines:Efficient and compact
state representation is needed in routers and other network
devices, in which the number and behaviour of flows needs
to be tracked. TheApproximate Concurrent State Machine
(ACSM) approach was motivated by the observation that
network devices, such as NATs, firewalls, and application
level gateways, keep more and more state regarding TCP
connections [106]. The ACSM construction was proposed to
track the simultaneous state of a large number of entities
within a state machine. ACSMs can return false positives,
false negatives, and ’do not know’ answers. Their construction
follows the Bloom filter principle and proposes a space-
efficient fingerprint compressed d-left hash table design.

E. Security

The hashing nature of the Bloom filter makes it a natural
fit for security applications. Spafford (1992) was perhaps the
first person to use Bloom filters to support computer security.
The OPUS system [107] uses a Bloom filter which efficiently
encodes a wordlist containing poor password choices to help
users choose strong passwords. Two years later, Manber and
Wu [108] presented two extensions to enhance the Bloom-
filter-based check for weak passwords.

The privacy-preserving secure Bloom filters by Bellovin
and Cheswick [59], described in Sec. III-W, allows parties to
perform searches against each other’s document sets without
revealing the specific details of the queries. The system
supports query restrictions to limit the set of allowed queries.

Bloom filters have been used by Aguilera et al. [109] to
detect hash tampering in a network-attached disks (NADs)
infrastructure. Also in the field of forensic filesystem prac-
tices, themd5bloommanipulation tool [110] employs Bloom
filters to efficiently aggregate and search hashing information,
demonstrating its practicality of identifying object versioning
in Linux libraries.

Moving over to the field of network security, Attig, Dharma-
purikar and Lockwood [111] describe an FPGA implemen-
tation of an array of Bloom filters and a hash table used
for string matching to scan malicious Internet packets. The
system searches25 Bloom filters with string signature lengths
from 2 to 26 bytes in parallel. False positives are resolved
by exact match search using the hash table. Matches generate
UDP packets that notify the user, a monitoring process, or a
network administrator.

Antichi et al. [112] used Counting Bloom Filters to detect
TCP and IP fragmentation evasion attacks. Attack signatures
were split to 3-byte substrings which were inserted into a
CBF. One CBF per attack signature string per flow was used.
Incoming fragmented packet data was then matched against the
CBF’s and attack substrings detected. Each substring detected
was removed from the corresponding CBF. Corresponding
full string matchers were also enabled when a substring was
detected. When the CBF was empty to the degreeα, the attack
string was considered detected, and the full string matcherwas
used to check for false positives. In case the full string matcher
detected the attack, the flow was blocked. The authors report
a greater than99% detection rate and false positive ratios of
1% or less.

Bloom filters are used in the Trickles stateless network
stack and transport protocol for preventing replay attacks
against servers. Two Bloom filters of identical size and using
the same family of hash functions are used to simplify the
periodic purge operation [113]. The counting variant (CBF)
is used in [114] to provide a lightweight route verification
mechanism that enables a router to discover route failures
and inconsistencies between advertised Internet routes and the
actual paths taken by the data.

Focusing on the distributed denial-of-service (DDoS) issues,
Ballani et al. [115] were among the first to use in-network
Bloom filters to pro-actively filter out attacks, allowing each
host to explicitly declare to the network routing infrastructure
what traffic it wants routed to it. In addition to performing
the standard longest-prefix match before forwarding packets, a
router performs a reachability check using Bloom filters. Sim-
ilar in their reliance on Bloom filters, Phalanx [116] combines
the notion of capabilities with a multi-path-aware overlay,
implementing Bloom filters to reduce state requirements while
still providing probabilistic guarantees for in-network security.
Wang et al. [117] proposecongestion puzzlesto mitigate
bandwidth-exhaustion attacks. Congested routers challenge
clients to generate hashes that match certain criteria in order
to obtain bandwidth. Basic Bloom filters are maintained at
routers to detect duplicate solutions.

In [118], Wolf presents a mechanism where packet forward-
ing is dependent on credentials represented as a packet header
size Bloom filter. Credentials are issued by en-route routers on
flow initiation and later verified on a packet-basis. Also based
on in-packet Bloom filters (iBF), the self-routing capabilities
in [119] enhance the security properties of LIPSIN [85] by
using iBFs as forwarding identifiers that act simultaneously as
path designators, i.e. define which path the packet should take,
and as capabilities, i.e. effectively allowing the forwarding
nodes along the path to enforce a security policy where
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Fig. 14. Overview of device wakeup using a Bloom filter

only explicitly authorized packets are forwarded. Link IDs
are dynamically computed at packet forwarding time using a
loosely synchronized time-based shared secret and additional
in-packet flow information (e.g., invariant packet contents).
The capabilities are thus expirable and flow-dependent, but
do not require any per-flow network state or memory look-
ups, which are traded-off for additional, though amenable,per-
packet computation.

In wireless sensor networks (WSNs), a typical attack by
compromised sensor nodes consists of injecting large quan-
tities of bogus sensing reports, which, if undetected, are
forwarded to the data collector(s). The statistical en-route
filtering approach [120] proposes a detection method based
on a Bloom filter representation of the report generation
(collection of keyed message authentications), that is verified
probabilistically and dropped en-route in case of incorrectness.
In order to address the problem of multiuser broadcast authen-
tication in WSNs, Ren et al. [121] propose a neat integration
of several cryptographic techniques, including Bloom filters,
the partial message recovery signature scheme and the Merkle
hash tree.

F. Other Applications

This section summarizes use of Bloom filters in several
other interesting applications.

In web services, Counting Bloom Filters have been used for
accelerated service discovery [122]. To manage a large number
of services based on quantified service features, the features
were stored in text form and mapped into the Bloom filter.

A Bloom filter-based wakeup mechanism has recently been
proposed [123]. This work proposes an identifier-matching
mechanism that uses a Bloom filter for wake-up wireless
communication. The devices and services agree on wake-on
wireless identifiers beforehand. The simulation results suggest
that this approach can be used to reduce mobile device
energy consumption. The identifier-matching mechanism can
be implemented with a simple circuit using a Bloom filter, in
which a query only uses an AND circuit. Figure 14 shows an
overview of device wakeup using a Bloom filter.

The authors of [124] introduce a novel approximate method
for XML data filtering, in which a group of Bloom filters
represented a routing table entry and filtered packets according

to XPath queries encoded to it. In this method, millions of path
queries can be stored efficiently. At the same time, it is easy
to deal with the change of these path queries. Performance
is improved by using Prefix Filters to decrease the number
of candidate paths. This Bloom filter-based method takes less
time to build a routing table than an automaton-based method.
The method has a good performance with acceptablefpr when
filtering XML packets of relatively small depth with millions
of path queries.

Achieving expressive and efficient content-based routing in
publish/subscribe systems is a difficult problem. Traditional
approaches prove to be either inefficient or severely limited
in their expressiveness and flexibility. The authors of [93]
present a novel routing method, based on Bloom filters, which
shows high efficiency while simultaneously preserving the
flexibility of content-based schemes. The resulting implemen-
tation is a fast, flexible and fully decoupled content-based
publish/subscribe system.

As pervasive computing environments become popular,
RFID tags are introduced into our daily life. However, there
exists a privacy problem that an adversary can trace users’
behavior by linking the tag’s ID. Although a hash-chain
scheme can solve this privacy problem, the scheme needs a
long identification time or a large amount of memory. The au-
thors of [125] propose an efficient identification scheme using
Bloom filters. Their Bloom pre-calculation scheme provides
high-speed identification with a small amount of memory by
storing pre-calculated outputs of the tags in Bloom filters.

The authors of [126] propose a simple but elegant modifi-
cation to the Bloom filter algorithm for hardware implementa-
tions that uses banking combined with special hash functions
that guarantee all hash indexes fall into non-conflicting banks.
They evaluate several applications of this Banked Bloom filter
(BBF) in prediction in processors: BBF branch prediction,
BBF load hit/miss prediction, and BBF last-tag prediction.
The BBF predictors can provide accurate predictions with
substantially less cost than previous techniques.

A power management proxy for P2P applications usedN
sets of hash functions and picked the Bloom filter with the
least 1 bits to improve the false positive rate [127]. The hash
functions were generated from a seed hash using a RNG. The
system was used to allow a smart NIC to answer peer queries,
and the computer was only woken up for download and upload
tasks to conserve energy.

Bloom filters have been used for differential file access in
a DBMS [128]. The differential file, with updated records,
would be accessed only when the record to fetch was contained
in the Bloom filter, indicating that the record in the database
is not up-to-date. Otherwise the system would know that the
record has not been changed, and it is sufficient to read the
record from the database.

Bloom filters were used in probabilistic finite state transi-
tion system verification in [129]. The authors optimize hash
calculation by shortening the state name using hashing, and
then re-hashing the resulting value to obtain thek Bloom filter
indices. A Bloom filter allows all states to be kept in memory
in a compact manner so that verification can proceed without
swapping.
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Fig. 15. Summary of Bloom filter variants

In [130], Bloom filters are used to represent and query
ranges of multi-dimensional data. Range queries are handled
by segmenting the attribute range into separate Bloom filters
that represent membership in that segment.

V. SUMMARY

Bloom filters are a general aid for network processing
and improving the performance and scalability of distributed
systems. In Figure 15, The Bloom filter variants introduced in
this paper are categorized by application domain and supported
features. The Figure aims to help domain experts select an
appropriate Bloom filter based on their application. An expert
need only find their domain on the left side and pick a Bloom
filter on its right. Each rectangular bubble represents a Bloom
filter variant. Variants that support a certain feature are found
inside a highlighted area labeled with the name of that feature.
Approximate count and deletion supportrefers to the ability
to support approximate multiplicity and deletion of elements.
The variants that support this are derived from the Counting
Bloom Filter and include an array of fixed or variable size
counters.Memory efficiencymeans that the variant optimizes
the memory use of a Bloom filter in some fashion. These
are recommended for applications in which memory is scarce.
Partial matching means the ability to answer the question
if x is near an element contained in the filter. These allow
for example in-word matches for text search.High variability
variants allow rapid changes in the set of items stored in the

filter, such as those required by per-flow traffic monitoring.
Finally, Unbounded duplicate detectionis a class of Bloom
filter that aims to represent a continuous stream of incoming
elements and detect duplicate elements in the stream. The
Figure also includes five variants that have been grouped
into General add-ons. These Bloom filter techniques can be
employed alone, or combined with another variant in the
Figure. For example, many Bloom filters can be combined
with Scalable Bloom Filterby increasing their length with
a new block of space after the false positive ratio reaches a
certain value.
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