
In-packet Bloom filter based data center networking
with distributed OpenFlow controllers

Carlos A. B. Macapuna, Christian Esteve Rothenberg, Maurı́cio F. Magalhães
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Abstract—This paper discusses a novel data center architecture
based on load-balanced forwarding with in-packet Bloom filters
enabled by two support services that distribute the directory and
topology state of OpenFlow controller applications. By deploying
an army of Rack Managers acting as OpenFlow controllers,
the proposed architecture promises scalability, performance and
fault-tolerance. We conjecture that packet forwarding itself may
become a cloud internal service implemented by leveraging
cloud application best practices such as low-latency, highly-
available, key-value storage systems. Moreover, we contribute
to demystifying the argument that the centralized controller
model of OpenFlow networks is prone to a single point of
failure and show that direct network controllers can be physically
distributed, yielding a “sweet spot” between fully distributed and
centralized networking paradigms.

I. INTRODUCTION

Driven by unprecedented scale, cost, and control objectives,
data center networks (DCN) are undergoing an intense trans-
formation [1], [2]. Cloud infrastructure providers are striking
for optimized solutions, a multidisciplinary daunting task that
has spurred creative designs like shipping-container-tailored
designs [3] or re-thinking the flatness of Ethernet MAC
addresses to embody network locations [4]. From a networking
perspective, DCNs have very special requirements compared
to traditional enterprise or inter-domain networks, e.g., agile
VM provisioning, unpredictable traffic patterns, etc. [2]

With the advent of software-defined networks as proposed
by OpenFlow [5], DC networking can be turned into a software
problem, tractable by the same developers of the so-called
warehouse-scale computers [1]. Basically, OpenFlow specifies
a standard way for controlling packet forwarding decisions
in (remote) software while keeping the hardware vendors in
charge of the device implementation. This separation of con-
cerns leads to a promising combination of the programmability
of PCs with line-speed commercial networking hardware.

Motivated by this context and inspired by recent develop-
ments [2], [4], [6], we propose a forwarding service based
on encoding Valiant load-balanced source routes (cf. VL2 [2])
into in-packet Bloom filters (cf. LIPSIN [6]) carried in Eth-
ernet fields re-written at Top-of-Rack (ToR) switches (cf.
Portland [4]). Our previous work [7] introduced the core
principles of data center networking with in-packet Bloom
filters (iBF), focusing on the evaluation of the iBF forwarding
data structure and our claims of being able to circumvent
false positives. In this paper, we present the SiBF (Switching

with in-packet Bloom filters) data center architecture along a
new version of our testbed environment, which moves away
from a centralized controller implementation and introduces
an army of Rack Managers (RM), one per rack and acting
as OpenFlow controllers, promising scalability, performance,
and fault-tolerance by maintaining the globally required state
(topology and VM directory) in a key-value data store — in
spirit of (or even re-using) low-latency distributed storage ser-
vices commonly available in cloud data centers as application
support functions (e.g., Amazon Dynamo).

We believe SiBF makes the following contributions:
1) it proposes a scalable forwarding service that is

amenable to existing (OpenFlow-capable) networking
hardware, does not require endpoint modifications, is
self-configurable, and can be offered as an alternative
forwarding service in parallel to other Ethernet flavours.

2) it shows how an OpenFlow controller application can be
easily implemented in a distributed fashion, yielding a
“sweet spot” between fully distributed and centralized
networking paradigms.

3) it argues that packet forwarding itself may become a data
center internal service tailored to the application needs
and leveraging cloud programming practices.

The balance of the paper is as follows. Section 2 introduces
the principles and building blocks of SiBF. Section 3 describes
the prototype implementation and the testbed environment. We
discuss the key features in Section 4, compare to related work
in Section 5, and conclude with an outlook in Section 6.

II. OVERVIEW OF SIBF
Basically, SiBF uses IP addresses solely for VM identifica-

tion and provides a scalable, load-balanced packet forwarding
service based on encoding (randomly chosen) source routes
into a 96-bit iBF carried in the L2 fields. iBF flow mappings
are dynamically installed at first hop switches (i.e., ToRs) by
each rack’s OpenFlow controller — the Rack Manager.
• Topology: We assume a 3-tier (CORE, AGGR and

ToR) multi-rooted tree topology due to its appealing proper-
ties for DCN, as such, it offers multiple paths between any pair
of servers, facilitates load balancing and is easily implemented
through commoditized switches. However, iBF-based forward-
ing works on arbitrary graphs and other scale-out topologies
could be considered (e.g., DHT rings, Hypercubes), as long
as they offer large path diversity and low diameter.



• Separating names from locations: With IP addresses
used as VM identifiers (potentially along a VLAN tag to
enable multi-tenancy and overlapping IP address spaces), pure
layer 2 connectivity is granted by a revisited iBF-based source-
routing capable Ethernet layer at intermediate switches. This
approach aims to minimize the forwarding table of switches
and disaggregate the semantics present in the IP protocol.
• Source explicit routing: Taking advantage of the small

diameter of the DCN topologies, source routing iBFs are
generated at RMs and contain the Bloomed MAC IDs of
CORE, AGGR and ToR switches. Intermediate switches
remain stateless and only need to “query” for iBF presence
of the neighboring switches. Knowing the topology, false-
positive-freeness can be achieved by RMs having iBFs tested
prior to their use; maintaining a ToR reachability matrix filled
only with false-positive-free iBFs (one per available path).1

• Logically centralized direct network control with
distributed application state: Rack Managers (RM) imple-
ment the routing logic by installing flow states at ToRs to
rewrite the Ethernet fields with iBFs (at the source) and
legacy MACs (at the destination). In addition, RMs maintain
a distributed NoSQL (Not only SQL) database holding (1) the
topology information (link tuples), and (2) the VM directory
(VMid → ToRdst). RMs independently write their discovered
events (e.g., VM x active behind ToR y, switch join/leave, link
up/down) and continuously read (and cache) the network link
map and the VM locations.
• Load balancing via path randomization: Path multi-

plicity is exploited by virtue of oblivious routing (i.e., traffic
independent randomized routing) as RMs randomly pick iBF
to reach the destination. By not relying on flow-hashing, iBF-
based Valiant Load Balancing (VLB) avoids ECMP inefficien-
cies like hash collisions or the 16-way limitation.
• Unmodified end-points and plug & play: Legacy

servers and applications are supported off-the-shelf and auto-
configuration of hosts and switches. The latter provided by a
Role Discovery Protocol based on extending the LLDP. [7]
• Design to cope with failures: At cloud scale, component

failures are common. SiBF is resilient to server and network
failures as it does not rely on any single node. Furthermore, it
provides data flow protection similar to MPLS fast re-routing.

A. False-positive-free forwarding

The major differential factors of iBF-based forwarding is
not requiring any per end-host (or per VM) state in the inter-
mediate switching layer (AGGR and CORE) and avoiding
encapsulation by re-using the Ethernet MAC fields. However,
the well-known caveat of Bloom filters is the possibility of
false positives (i.e., claiming an element to be present when
it was not inserted). In its original, data-oriented multicast
application [6], iBF-based forwarding meant opening a new
vector in the design space of multicast routing, namely poten-
tial efficiency penalties due to unnecessary packet duplications.

1NS-3 simulations on large scale topologies show that the price in reduced
path multiplicity is less than 1%, as expected by the false positive rate of a
n = 96 BF with only n = 3 elements. See [7] for details and alternatives.

The problem of such packet duplications in the dense con-
nected data center switching fabric is the risk of consecutive
falsely forwarded packets not being discarded (due to lacking
of a matching entry at next hops) and ending up in a loop.
Though the chances are very low, we need to guarantee
forwarding completeness, i.e., loop-free delivery of packets to
the intended destination. Our strategy is to exploit the notion
of the power of choices in multiple iBF representations, i.e.,
one iBF for each available network path. With knowledge of
the topology, RMs can maintain a ToR destination matrix
filled only with false-positive-free iBF paths. For instance,
in a 3-tier 5-stage Clos topology with 48-port CORE and
AGGR switches, false-positive-free means that, on average,
instead of enabling all 96 multiple paths for load balancing,
“only” 94 can be made available (cf. [7]). A second strategy
to circumvent false positives is to use d different sets of hash
functions (similar to the d-candidate LITs in [6]).

B. Topology and directory services with an army of RM

Our architecture proposes two services (topology and direc-
tory) to provide scalability and fault-tolerance in the logically
centralized direct network control approach of an OpenFlow
network. Both services provide the network-wide information
necessary for the routing and control functions performed
by the RM behind each rack. This army of RMs is re-
quired to keep manageable both the amount of flow initiation
requests and the total switch-to-controller traffic in a data
center network of potentially tens of thousands of devices. In
addition, current OpenFlow-based neighbour discovery relies
on controller-generated LLDP messages that constitute a con-
siderable burden for a reduced number of controllers. Sharing
the control of AGGR and CORE switches among a subset of
independently working RMs addresses this issue.

A non-trivial point is the correct inference of the topology of
a multi-rooted switching tree and the role (layer) each switch
plays in the network (i.e., CORE, AGGR or ToR). This task
is performed by our Role Discovery Protocol (TreeDiscovery
RM application) and handled to the Topology Service (TS),
recalling that timely knowledge of topology is a prerequisite
for any source route approach (e.g., Portland [4]). The TS is
responsible for storing the network topology and its consis-
tent distribution to the RMs. CORE and ToR switches get
“Bloom” flow entries installed consisting of only k bits set in
the Ethernet src and dst fields as determined by k independent
hashes of the neighbouring switch MAC. 2

Finally, RMs need to know the location of destination
servers, i.e., the destination ToR to reach the VM with a
given IP address. This mapping is performed by the distributed
Directory Service (DS) and updated by RMs according to the
discovery of VM based on host-initiated ARP requests. An
ARP replier module in the RM eliminates the network flooding
caused by the propagation of ARP packets.

The overall state of the information collected by the TS
and DS is stored in a highly-available NoSQL database of

2In practice, it suffices to generate the k values from a pseudo random
combination of the lower 24-bit MAC address



the type key-value. This approach extends the concept of
direct network control of OpenFlow and addresses the single
point of failure problem of centralized control. We keep a
logically centralized control, where the state of the topology
and directory is maintained globally, and physically distributed
controllers directly act on a subset of switches.

III. TESTBED IMPLEMENTATION

The Rack Manager (RM) and its modules Directory Service
(DS), Topology Service (DS), ARP replier, and Topology
Discovery, are implemented as applications on top of the NOX
controller [8] (see Fig. 1). NOX’s programmatic interface is
built upon events, triggered by NOX core components, thrown
by user-defined applications, and generated directly from
OpenFlow protocol messages. Enabling iBF-based forwarding
in OpenFlow switches requires flow matching on arbitrary
wildcarded L2 bitmasks (i.e., match if k bits are set to 1 in
Eth SA/DA). Official support is expected in upcoming versions
and required trivial changes in only two lines of code3 of the
reference implementation.
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Fig. 1. SiBF system architecture

The testbed consists of a series of physical nodes hosting the
VM instances of RMs, key/value store nodes (DB), OpenFlow
switches, and end servers. Fig. 2(a) shows the prototype
implementation within a physical server and depicts how the
testbed scales by interconnecting additional servers. Topolo-
gies are configured with OpenFlowVMS [5], which default
scripts we have extended to distribute networked VMs (using
QEMU and VDE+SSH) across different physical machines,
enabling a quick deployment of target topologies, automated
bootstrapping of virtual nodes and switches, IP configuration,
data-path creation, modules start-up, and the connectivity to
the controllers. We use KeySpace [9] as the NoSQL database,
and integrate it with the RM via a Python API.

In addition, we have a second testbed environment based
on Mininet [10]. Mininet is a simple and scalable platform
for virtual networking, which works in the operating system
kernel, creating processes and not complete virtual machines
to host the OpenFlow switches, offering a far superior perfor-
mance compared to full virtualization itself. This way, Mininet

3function flow_fields_match in udatapath/switchflow.c

allows to easily perform tests for various network topologies,
with a more significant number of switches and end-servers
per physical server. Fig. 2(b) shows a our Mininet testbed
environment hosted in a single machine a total of 8 CORE, 16
AGGR, 32 ToR, and 192 end nodes. The practical limitation
on the total number of switches (56) is due to the current alpha
version of Mininet not supporting multiple controllers, which
makes impossible to keep scaling out following a distributed
control of OpenFlow as in our testbed of Fig. 2(a). All in all,
both testbeds use the same code and allow to quickly boot
and assess different topologies by simply modifying a few
parameters such as number of switches, servers and connected
interfaces.

IV. DISCUSSION

In this section, we discuss the key features of the data center
forwarding service provided by SiBF.

A. State requirements

Consider a three-tier network topology, with ToRs con-
nected to 20 servers and 2 AGGRs with links of 1 and 10 Gbps,
respectively. The AGGR switch ports (p1) are used to connect
to p1/2 ToRs and p1/2 COREs with p2 links. Depending on
the exact values of p1 and p2, the interconnection matrix can
be scaled from e.g., 3,000 (pi = 24) to 100,000 (pi = 144)
physical nodes. Due to the strict source routing approach, flow
table requirements in SiBF are minimal and constant in the
COREs and AGGRs switches, i.e., only one entry per interface
as shown in Table I. Further scaling the network does not affect
the number of entries flow in the switches that is constant and
equal to the number of neighboring switches. At ToRs, the
amount of flow entries grows with the number of simultaneous
outbound flows (assumed 5 per VM) plus a constant amount of
entries (1 per VM) in order to perform the MAC re-writing and
correct delivery of inbound packets. Moreover, we can move
the flow state from the ToRs to the end servers by relying on
OpenFlow-enabled virtual switches (cf. [11]).

TABLE I
STATE REQUIREMENTS IN TERMS OF ENTRIES AT SWITCHES. ASSUMING

10 FLOWS/VM AND 20 VM/SERVER: 5 INBOUND AND 5 OUTBOUND.

Physical hosts 23.040 103.608
Racks 1152 5184

Aggr. Switches 96 (p1 = 48) 144 (p1 = 144)
Core Switches 24 (p2 = 96) 72 (p2 = 144)

VL2 Portland SiBF VL2 Portland SiBF
Entries at ToR 1672 2400 2400 5800 2400 2400

Entries at AGGR 1272 48 48 5400 144 144
Entries at CORE 1272 96 96 5400 144 144

B. Timeliness

Each RMs is a standalone application running in one of the
rack servers directly connected to the OpenFlow ToR switch
they control. Hence, flow requests are handled locally (at rack-
level), with expected flow setup times in the order of 10s of
ms. Candidate routing iBF for each destination ToR are pre-
computed and can be used without further delays, while VM
directory mappings are continuously re-freshed.
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Fig. 2. SiBF testbed environment.

C. Fault tolerance

OpenFlow controller: In the failure event of the RM
controller, new flow requests cannot be handled unless a
slave RM takes over. Distributing the centralized control of
OpenFlow among an army of autonomous RMs reduces the
scope of a controller failure to a rack only. Once the necessary
mechanism to allow back-up OpenFlow controllers to take
over is fully worked out, flow requests can be handled by any
other stand-by RM (e.g., from a neighbouring rack). Ongoing
data traffic is not affected by the failure of the controller,
which can be put back to normal operation after rebooting
and recovering all relevant state from the TS and DS.

OpenFlow switches: When a switch fails, the current traffic
through that switch is interrupted until the iBF mappings
at source ToRs are changed (see below). New flows are
routed through alternative paths once the discovery protocol
updates the network topology by removing the link tuples
of the unavailable switch. With iBF-based forwarding we
can implement a very effective protection strategy similar
to MPLS-based IP fast re-route. The approach consists of
installing back-up flow entries at ToRs for each new active
flow. This back-up flow entry is set with a lower priority and
maps to a link disjoint iBF path. In the event of a switch
failure on the path of the primary iBF flow entry (or upon a
congestion event), the RM simply increases the priority value
of the back-up flow entry and outbound packets hitting the
source ToR will be re-written with the new iBF and carried
over a new (parallel) path to the destination.

NoSQL database: If the database service fails, the RM
can still work based on the replicated information stored in
cache, but changes in the network will not be updated globally.
The Keyspace database [9] implementation (similar to any
cloud NoSQL appliance) is resistant to failures of any database
nodes as long as a minimum of two are keep alive to ensure
consistency of the underlying Paxos algorithm.

D. Load Balance

We have implemented the Valiant Load Balacing (VLB)
scheme (cf. VL2 [2]) by randomly picking the iBF for each

new flow request. Note that this load balancing strategy is
more powerful — as it has more waypoints — than per-
flow static hashing approaches like ECMP. Recent work [12]
discusses how this can be specially critical in long lived data-
intense flows within the data center. Additionally, switches
today only support up to 16-way ECMP. 4

We have compared the link usage of SiBF with the imple-
mentation of a vanilla Spanning Tree Protocol (STP) over the
same topology. We have conducted 100 runs of the experiment
consisting of generating traffic from all-to-all parties in our
testbed. As expected, with STP some network links are heavily
used and others underutilized, reaching up to 350% in the
maximum normalized link utilization compared to an ideal
traffic distribution. In contrast, VLB in SiBF showed a varia-
tion of only 20% (max and min values) around the average link
utilization. An open question is how to deal with problematic
(underperforming) elephants flows. While we have not worked
out any scheduling system that adaptively re-routes this traffic
to keep the observed performance high (cf. Hedera [12]), any
central scheduler algorithm with global knowledge of active
flows can be implemented by accordingly changing the iBF
mapping at originating edge ToRs.

E. Enabling differentiated forwarding services

Given the zero state requirements at intermediate switches,
we can easily offer iBF forwarding in the data center with-
out consuming precious switch resources. We envision that
packet forwarding in data centers may have multiple flavours
depending on the specific application requirements and po-
tentially on the associated SLA. For instance, map-reduce
type of applications may be offered a highly randomized
path-diversified forwarding layer based on iBFs while traffic
from other services/VMs may be delivered using traditional
Ethernet forwarding. Software-defined networking as proposed
by OpenFlow enables this type of multi-tenant environments,
where heterogeneous applications can operate under differen-
tiated control planes over a shared physical infrastructure.

4According to [2], 256-way ECMP is on the production line.



V. RELATED WORK

Traditional Ethernet switching is unsuitable for the large-
scale and high-performance computing needs of cloud data
centers. Industry efforts have been undertaken towards Data
Center Ethernet extensions to provide QoS, enhanced bridg-
ing (IEEE 802.1 DCB), multi-pathing (IETF TRILL), Fibre
Channel support, and additional Converged Enhanced Ethernet
(CEE) amendments (IEEE 802.1Qaz/Qbb).

VL2 [2] offers a scalable virtual layer 2 based on Valiant
load-balanced source routing with up to three IP-in-IP encap-
sulations. A Directory System (DS) provides node lookups,
updates and network maps. The DS achieves high performance
(low latency and high availability) via two layers of replicated
servers, one optimized for reading and mapping (Directory
Servers) and one optimized for writing (Replicated State
Machine), which uses the Paxos consensus algorithm to ensure
consistency. In addition to Paxos, our TS/DS implementation
based on Keyspace [9] uses similar optimization methods for
dirty reading and safe writing.

Forwarding in Portland [4] is based on position-based
pseudo MAC (PMAC) addresses assigned to end nodes to
provide scalability without changing the Ethernet address
format. It defines a location discovery protocol (LDP) to infer
the exact position of switches in the multi-rooted tree topology
and store this information in a logically centralized network in-
frastructure management service called Fabric Manager (FM).
The FM maintains a state of network topology and a mapping
between the real MAC address of the node and its PMAC.
Both the LDP and the FM have similar characteristics to our
architecture, for example, prior knowledge of the positions of
switches for routing and maintaining a global state of the net-
work. iBF forwarding differs in that it natively supports load
balancing over arbitrary topologies and depends on a fairly
simpler switch role discovery mechanism. Hedera [12] handles
the problem of traffic randomization and flow scheduling in
the Portland. Similar flow monitoring and scheduling methods
could be beneficial and applicable in SiBF.

There are other remarkable proposals that have influenced
the course of our work. Rack Managers follow the rationale
behind the 4D [13] architecture on refactoring the control
and data planes. Ripcord [10] is a platform for experimenting
data center networking approaches, motivated the development
of Mininet for theses purposes and advocates for multiple
forwarding services being delivered on a cloud application
basis over the same infrastructure.

Finally, Hyperflow [14] is, to our best knowledge, the only
work so far also tackling the issue of distributing the Open-
Flow control plane for the sake of scalability. In contrast to our
approach based on sharing the application state in a globally
available data store — well suited for our routing purposes,
HyperFlow proposes to push (and passively synchronize) all
state (controller relevant events) to all controllers. This way,
each controller thinks to be the only controller at the cost of
requiring minor modifications to applications.

VI. CONCLUSIONS AND FUTURE WORK

This paper adds to the body of work towards scale-out
strategies (i.e., commodity hardware, cost-effective switching
topologies) extending the next frontier in DCN from “com-
moditization” to “customization.”

SiBF forwarding service requires minimal in-network state,
useful to offer unfettered, application-specific communication
services. Making a “Bloom” use of the 96 bits of MAC fields,
we avoid FIB table explosion and encapsulation overhead,
while conserving the nice PnP properties of Ethernet and
excellent path-multiplicity. Due to the army-like deployment
of RMs, all necessary flow setup computations are contained
within each rack, requiring only globally available and timely
directory and topology information, which greatly contributes
to scalability and fault-performance.

In future work, we intend to investigate anycast controller
communications, iBF-based VM mobility, and contribute to
the fundamental tensions of OpenFlow, e.g., what functionality
is kept on the switch and what can be moved to the controllers.
Regarding “traffic engineering,” the iBF-based fine control
over network paths opens the door to enhanced load balan-
cing beyond VLB (e.g., flow re-routing based on congestion
events and network probing/monitoring) and novel middlebox
transversal mechanisms. Another avenue for future work re-
lates to extending iBF forwarding across geo-distributed data
centers.
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