Excuse me, Sir, but can we deliver packets without addresses?

Petri Jokela, Ericsson Research, NomadicLab

With: András Zahemszky, Somaya Arianfar, Pekka Nikander (Ericsson Research, NomadicLab)
and Christian Esteve (University of Campinas)
Outline

LIPSIN: Line Speed Publish/Subscribe Inter-Networking

- Context: background and targets for the project
- How to forward without IP addresses?
 - Our solution for forwarding without globally routable addresses
- Optimizations for better performance
- Implementation
- Summary
Context - Clean Slate Approach

- **DATA as the first class citizen**
 - Users interested in data, not in the hosts
 - Topic based publish/subscribe

- **DDoS problems**
 - Unwanted traffic can be sent against the receiver’s will
 - Target: Data delivery ONLY when explicitly requested

- **Data published once, received multiple times BUT from different locations and at different times**
 - Multicast - also for *timely* separated events
 - Data caching in the network
Context - RTFM architecture

- Rendezvous - matching publish and subscribe events
- Topology - network topology knowledge, path creation
- Forwarding - fast delivery
Topic based pub/sub: How to deliver data?

- **Routing based on Topic ID**
 - 10^{11} topics => enormous amount of state in forwarders
 - State need to be changed based on subscriptions
 - => Not scalable

- **How about storing the state in the packet?**
 - Define the path from the source to the destination
 - IP: include all visited IP addresses in a list
 - A long list of IP addresses, and we do not solve the DDoS
 - Without IP: Include all visited nodes in the packet
 - Long list of Node IDs!
 - Compress the list into a Bloom filter!
 - Path not visible
Link IDs and forwarding Bloom filters (zFilters)

- **No names for nodes**
 - Each *link* is identified with a unidirectional Link ID

- **Link IDs**
 - Statistically unique
 - Periodically changing
 - Size e.g. 256 bits
 - Local or centrally controlled

- **Source routing**
 - Include all Link IDs into a Bloom filter
 - Multicasting supported

- **“Stateless”**

\[A \rightarrow B \]

\[B \rightarrow C \]

\[zF: A \rightarrow B \rightarrow C \]
Forwarding Decision

- Forwarding decision based on binary AND and CMP
 - zFilter in the packet matched with all outgoing Link IDs
 - Multicasting: zFilter contains more than one outgoing links
Using Link Identity Tags (LIT)

- Make results better with a simple trick
 - Define d different LITs instead of a single LID
 - LIT has the same size as LID, and also k bits set to 1
 - [Power of choices]

- Route creation and packet forwarding
 - Calculate d different candidate zFilters
 - Select the best performing zFilter, based on some policy

```
<table>
<thead>
<tr>
<th>Host 1: Iface out</th>
<th>Host 2: Iface out</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link ID</td>
<td>Link ID</td>
</tr>
<tr>
<td>LIT 1</td>
<td>LIT 1</td>
</tr>
<tr>
<td>LIT 2</td>
<td>LIT 2</td>
</tr>
<tr>
<td>LIT d</td>
<td>LIT d</td>
</tr>
</tbody>
</table>
```

Candidate zFilter
- zFilter 1
- zFilter 2
- zFilter d
Using Link Identity Tags (LIT)

- LIT1
- LIT2
- LITd

BF

Yes/No

n? & =

n BF
Forwarding efficiency

- Simulations with
 - Rocketfuel
 - SNDlib
- Forwarding efficiency with 20 subscribers
 - ~80%
Forwarding efficiency

- Simulations with
 - Rocketfuel
 - SNDlib
- Forwarding efficiency with 20 subscribers
 - ~80%
 - LIT Optimized: 88 %
Virtual Trees

- Popular paths can be merged into virtual trees
 - A single Link ID for the tree
 - Additional state in the forwarding nodes
 - Increase scalability

Virtual B→C→D→E 0 0 1 0 1 0 0 0 1
Implementation

- NS3 simulator
- FreeBSD 7.x : end-host + forwarding
- NetFPGA : Forwarding
- BSD & NetFPGA Implementations available at http://www.psirp.org
Summary

- Link-identity-based source routing
- Stateless small-group multicast and unicast
- Small forwarding table
- Very simple forwarding decision
- Preventing unwanted traffic
 - No possibility to send data by guessing the destination
- Forwarding implemented: both software and hardware