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Abstract—Despite having received less attention compared to
the control and application plane aspects of Software-Defined
Networking (SDN), the data plane is a critical piece of the
puzzle. P4 takes SDN datapaths to the next level by unlocking
deep programmability through a target-independent high-level
programming language that can be compiled to run on a variety
of targets (e.g., ASIC, FPGA, GPU). This article presents the
design and evaluation of our sweet spot approach on SDN
datapaths offering three contending characteristics, namely, per-
formance, portability and scalability in multiple realistic scenarios.
The focus is on our Multi-Architecture Compiler System for
Abstract Dataplanes (MACSAD) proposal, which blends the
high-level protocol-independent programmability of P4 with low-
level but cross-platform (HW & SW) APIs brought by OpenDa-
taPlane (ODP), this way supporting many different vendors and
architectures. Besides the performance evaluation for varying
packet sizes and memory lookup tables, we investigate the impact
of increasing pipeline complexity ranging from elemental L2
switching to more complex data center and border network
gateways. We investigate the scalability for increasing number of
cores and evaluate a novel method for run-time core reallocation.
Furthermore, we run experiments on different target platforms
(e.g., x86, ARM, 10G/100G), inducing different ways of packet
mangling through specific drivers (e.g., DPDK, Netmap), and
compare the results to state-of-the-art datapath alternatives.

Index Terms—SDN, ODP, P4, Programmable Networks, IPv6.

I. INTRODUCTION

Software-Defined Networking (SDN) [1] tries to break
the dogma of networking equipments by proposing a clear
and programmatic separation between control and data plane
functions. The OpenFlow protocol [2] has been fundamental to
unlock traditional thinking on control plane split aiming at a de
facto standard for programmable data plane devices. After one
decade since its inception, the current state of affairs points
to a less promising future, mainly attributed to hardware com-
patibility and evolvability issues, fragmented optional features
support among vendor implementations, etc. [3], [4].

The benefits and arguably success of SDN are commonly
attributed to control plane innovations, relegating datapath
components to a deuteragonist role. Lessons learned during
the path towards rich data plane programmability at the
crossroads of new switch architecture designs result in new
promising ways to take a software compiler approach to the
functional definition of datapath pipelines and their APIs to the
control/management plane. The main ongoing trends towards
deep programmable data planes can be synthesized as follows:

· Programmable hardware designs supporting custom protocol
stacks with methods such as relaxed table definitions and
match + action abstractions as pursued by so-called Protocol
Independent Switch Architecture (PISA) designs.
· Top-down approaches in spirit of a Domain Specific Lan-
guage (DSL) to provide high level abstractions to describe
forwarding policies and datapath pipelines with Programming
Protocol-Independent Packet Processors (P4) [5] being the
main example of target-agnostic data plane programmability.
· Bottom-up efforts on platform-agnostic low-level Software
Development Kits (SDKs) for datapath chips to foster porta-
bility. One relevant approach in this field is OpenDataPlane
(ODP) [6], an open source project on vendor-neutral abstract
APIs covering common features across several targets, how-
ever its low-level programming interface cannot keep up with
today’s agile prototyping and programming needs.

Considering the landscape, our work aims at blending P4
with ODP to create a compiler system, called MACSAD,1

to provide a high-level and cross-platform portable data plane
application compiler in response to limited availability of open
source, protocol-independent and programmable data plane
solutions delivering high performance. After our initial proof
of concepts at small scale [7], [8], our main efforts have been
devoted to increasing the feature completeness of MACSAD
regarding different versions of P4 (P414 and P416 support), the
design of more complex use cases, evaluation of portability,
performance and scalability, which are in the main focus and
contributions of this article:
(i) We validate MACSAD design and prototype by com-
piling P4 applications into different target platforms (x86,
x86+DPDK, ARM-SoC), resulting in effective portability of
the auto-generated datapath code.
(ii) We implement several use case pipelines of increased
complexity (Ethernet switching, IPv4/v6 Forwarding, VxLAN-
based Data Center Gateway, and Broadband Network Gate-
way) leveraging P414 and P416 programmability.
(iii) We carry an extensive performance and scalability eval-
uation of all use cases for varying test workloads (packet
traces, table sizes) and target platform configurations (e.g., I/O,
10/100G NICs, CPU type and #cores).
(iv) We investigate a novel technique for run-time scaling
up/down the number of cores allocated to packet processing.

1It is pronounced as ‘Maksad’ which means purpose or motive in Hindi.
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Fig. 1. P4 Abstract Forwarding Model of a Datapath Pipeline.

Background technologies are introduced in Sec. II followed
by a detailed explanation of the MACSAD architecture in
Sec.’III. Section IV discusses the experimental use cases and
evaluates the obtained results in terms of portability and per-
formance. Related works are summarized in Sec. V. Finally,
conclusions and future work are discussed in Sec. VI.

II. BACKGROUND

Protocol Independent Switch Architecture. The packet
processing paradigm behind PISA designs2 is based on pro-
grammable hardware-based datapaths by means of pipeline
(re-)configuration of a chained set of match+action tables.
Compared to traditional ASIC-based datapath designs, PISA
delivers rich flexibility without compromising performance for
comparable chip area and energy consumption.
Programming Protocol-Independent Packet Processors. P4
is a DSL to describe datapath packet processing pipelines
using an abstract model (see Fig. 1) in spirit of PISA. P4
language constructs include high level networking abstractions
remaining agnostic to the actual targets, which can be either
based on hardware or software implementations. Based on
the abstractions (such as header, table, action, etc.), a P4
pipeline consists of parser, match+action tables, and deparser
functional blocks, in particular packet headers are parsed upon
arrival, processed through a multi-table pipeline, and deparsed
into a packet to be sent out.
OpenDataPlane. ODP [6] is an open source project aiming
at a network data plane Application Programming Interface
(API) specification for developers to design data plane appli-
cations. ODP defines a set of unified APIs covering common
standard features across diverse target platforms including
ARM (e.g., Cavium), Power PC (e.g., Freescale), and x86
(e.g., Linaro) allowing application portability. An application
developed using the “ODP implementation” can leverage
vendor-specific features of the underlying platform (e.g., hard-
ware accelerations features) by means of the “Vendor Specific
Hardware and Software Libraries”. Developers can take
advantage of the joint presence of vendor-optimized ODP and
vendor-specific libraries to write data plane application using
platform-specific features not part of an ODP implementation.
The ODP Helper Library offers commonly used functions
such as those related to hash table, IP lookup (IPv4-only),
thread management, etc. In contrast, DPDK [9] offers multiple
fully optimized table management libraries. Being a higher
abstraction, ODP natively supports high-performance Linux
user-space based packet I/Os such as DPDK and Netmap [10].

III. MACSAD
Our MACSAD proposal [7], [8] aims at hiding data plane

programming complexity using P4 while keeping the flexible

2http://schd.ws/hosted_files/p4workshop2015/c9/NickM-P4-Workshop-
June-04-2015.pdf
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Fig. 2. High-level MACSAD Architecture. Adapted from: [7]

data plane portable and scalable through the performance and
hardware acceleration features of ODP. From an implemen-
tation aspect, it merges protocol-independent P4 abstractions
and primitives with ODP APIs towards data plane applications.

A. Architecture details

The high-level architecture of MACSAD in Fig. 2 is divided
into modules in sought for protocol independence and target
independence.

1) Auxiliary Frontend: The Auxiliary Frontend transforms
a P4 program into an Intermediate Representation (IR) suitable
for the ‘Core Compiler’ module by integrating projects from
P4 consortium. It integrates p4-hlir3 to translate P414 pro-
grams into High Level Intermediate Representation (HLIR)
while, at the same time, it creates JSON IR for P416 programs
using p4c compiler. The top left rectangle in Fig. 2 depicts
the transformation of P4 program into IR and passed to the
Transpiler submodule.

2) Auxiliary Backend: The Auxiliary Backend comprises of
all internal and helper APIs turning MACSAD into a unifying
compiler system addressing through a common SDK based on
ODP APIs. It implements all necessary APIs using ODP APIs
to support P4 abstractions. Adding support to a new target
platform is equivalent to just porting the ODP APIs to the
new platform.

Another aspect shown in Table I is to provide target-
dependent APIs, leveraging hardware acceleration and opti-
mization features, when available. Packet I/O, packet manip-
ulation, resource handling, controller support etc., are some
groups of helper and internal APIs of the Auxiliary Backend.

3) Core Compiler: The Core Compiler is the heart of
MACSAD and encompasses the Transpiler and Compiler
components. The IR received from the the Auxiliary Frontend
is compiled with the ODP APIs provided by the Auxiliary
Backend into MACSAD Switch (MACS) (hereafter, the MAC-
SAD compiled binary code is referred to as MACS throughout
the text) for the desired target platform.

a) Transpiler. In MACSAD the data plane code consists
of two pieces of code where the first one is auto-generated and
the second one is written as a part of the Auxiliary Backend
submodule through helper and internal APIs. The Transpiler

3https://github.com/p4lang/p4-hlir
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TABLE I
PACKET PROCESSING FUNCTIONS

Target-Independent Target-Dependent
add_header, remove_header, copy_header,

generate_digest, modify_field,
Table Configuration,

Protocol Independent Header Parsing

push, pop, count, meter,
Pkt Rx/Tx, Checksum,
Modify Header Field,

Table Creation, Table Lookup

is our template based source-to-source compiler solution to
output the auto-generated code written in ‘C’ consisting of
the Packet Parsing Logic which includes data structures for
’header fields, their offset & bitmasks’ and handles packet
header parsing, and the Control Logic for the packet flow
across the tables defined in the P4 program. The Control Logic
implements the target-independent functions (see Table I). The
main activities of the Transpiler during the source-to-source
compilation consists of (i) defining table constructs (e.g., size,
lookup); (ii) creating Packet Parsing Logic based on the IR
from III-A1; (iii) mapping the loosely-typed DSL (i.e., P4)
to strongly-typed (i.e., ‘C’) declarations4 in auto-generated
code by selecting appropriate data types considering the target
platform; (iv) taking performance optimization decisions (e.g.,
RX burst size) based on predefined platform specificities.

b) Compiler. The Compiler submodule sits at the final
stage of MACSAD and is responsible for the binary code
generation of MACS using III-A2 and output of III-A3 with
the underlying GNU Compiler Collection (GCC) / Low Level
Virtual Machine (LLVM) compilers.

B. Advantages of the Architecture

1) Protocol Independence: Protocol independence is a forte
that is achieved by being able to (re-)configure data plane
using DSL (P4). The Packet Parsing Logic and the Control
Logic auto-generated by the Transpiler are responsible to
bring Protocol Independence (PI) to MACSAD by means of
a Protocol Independent Parser and a Protocol Independent
Dataplane, respectively.

P4 abstract model (see Fig. 1) can be interpreted as post-
pipeline editing where the “Parsed Representation” of packet
headers are updated and pushed back to the packet by deparser
module. In contrast, MACSAD Protocol Independent Parser
parses each packet and stores the pointers to the headers and
header fields, and follows inline editing of headers circum-
venting the deparser module to improve performance.

Moreover, these auto-generated header structures are used
by the Control Logic functions while avoiding any standard
protocol header structure to achieve Protocol Independent
Dataplane. These Control Logic functions include all target in-
dependent functions for table configuration, the match+action
logic and header update functions as per Table I.

2) Portability: A datapath implementation in software typ-
ically consists of two functional realms: (1) Packet handling
consisting of the Parser, Table (Match+Action) lookup, and
Packet header updater; and (2) Switch resource management
functions including CPU, Queue, Memory, Thread, Table,

4Due to providing high-level abstractions and fundamentally one type of
variable, we considered P4 as a loosely-typed language

among others. The first set of functions are mostly auto-
generated by the Transpiler in a protocol-independent manner.
Though the second set is target-dependent, MACSAD target-
independent implementation of it built upon libraries/APIs on
top of ODP APIs, turn the resulting code seamlessly (or at
highly-reduced effort) portable across network platforms.

IV. PERFORMANCE AND SCALABILITY EVALUATION

We now turn the attention to the practical aspects of
the MACSAD prototype implementation and evaluate the
portability and performance for five different use cases with
increasing complexity,5 namely, Layer-2 forwarding (L2-
FWD), Layer-3 forwarding with IPv4 (L3-IPv4) and IPv6 (L3-
IPv6), Data Center Gateway (DCG), and Broadband Network
Gateway (BNG) using three different target platforms (x86,
x86+DPDK, ARM-SoC) and three different packet I/O en-
gines (DPDK, Netmap, Socket_mmap).

The main aim of our experimental evaluation is to identify
how our proposed MACSAD performs under the same circum-
stances compared to its pure P4- and ODP-based counterparts.
We execute MACS along with an in-house simple controller
to populate the tables for each use case. We present and
analyze the results and discuss the observed trade-offs and
scalability patterns for different workloads (packet traces, table
entries) and configuration options (e.g., CPU cores). Finally,
we evaluate a novel technique on dynamic CPU core allocation
towards adaptive and scalable data planes.

For further implementation details and reproducibility pur-
poses, MACSAD6, all P4 use case programs,7 and the packet
and trace generator tool BB-Gen [11] are publicly available.8

A. Testbed and Methodology

Our testbed includes two servers with Intel Xeon E5-2620v2
processors (6 cores, HT-disabled), dual-port 10 G Intel X540-
AT2 NIC and 64GB of memory running Ubuntu Linux 16.04
LTS (kernel 4.4). One server (Tester) runs Network Function
Performance Analyzer (NFPA) [12] with a recent stable
version of DPDK (v17.08) and PktGen (v3.4.5) connected
back-to-back with the Device Under Test (DUT) [13]. The
DUT supports multiple packet I/Os, namely DPDK (v17.08),
ODP (v1.16.0.0.), Netmap (v11.2), and Linux Socket_mmap.

With the testbed configuration, packet loss only occurs when
the DUT becomes a physical bottleneck and therefore the
packet rate received by NFPA is representative of the raw
performance. Traffic traces have different number (from 100
to 1M) of unique flows, randomly generated per use case
experiment run but consistent across different packet sizes,
limiting the impact of the lookup process and underlying
caching system which would depend on the traffic pattern.
In all cases, we evaluated different packet I/O drivers for
which, when it is not stated otherwise, we used blue circle

5It means increasing table count (from a couple to 10s) and header fields
to match on (from 100 to 1M), i.e., increasing per packet processing time

6https://github.com/intrig-unicamp/macsad
7https://github.com/intrig-unicamp/macsad-usecases
8https://github.com/intrig-unicamp/BB-Gen
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Fig. 3. IPv4 and IPv6 forwarding performance of different I/O drivers for different packet sizes and table entries (4 CPU cores).

patters for DPDK, green solid bars for Netmap, and orange
dotted pattern for the kernel provided Socket_mmap. All
measurements were conducted for 60 sec [13], and every data
point in our performance measurements is an average value.
Confidence intervals are unnecessary as results are stable and
reproducible for all frameworks.

B. Layer-2 forwarding use case (Ethernet)

L2-FWD implements two separated lookup tables, the first
matching on incoming port and source MAC and the second
on destination MAC addresses. MACS generates controller
digests for new MAC addresses and port binding to update the
lookup tables. P4 "Exact Lookup" methods are implemented
using ODP based Cuckoo Hash algorithm. For the L2-FWD,
using DPDK with a packet size of 64 bytes and 4 CPU cores,
we reached line rate (i.e., 14.9 Mpps) with flow table sizes
of 100 and 1K entries and observed a performance decrease
to about 7.2 Mpps for 10k entries. A similar behaviour was
observed with Netmap and Socket-mmap.

C. Layer-3 forwarding use cases (IPv4/v6)

The IP routing use cases are implemented with ODP’s built-
in Helper library for Longest Prefix Match (LPM) based
lookup mechanism with 32-bit and 128-bit keys support-
ing IPv4 (L3-IPv4) and IPv6 (L3-IPv6) forwarding. The P4
pipeline consists of two tables; IP lookup is performed in the
first table along with corresponding actions of standard L3
packet processing (e.g., MACdest re-writing, TTL/Hop Limit
decrement, Output Port selection) followed by a matching on
the output port in the second table with the MACsource re-
writing action. For brevity, we focus on the results for 4 cores
and leave the multi-core scalability discussion for Sec. IV-G.

1) L3-IPv4: The IPv4 LPM implementation in MACSAD
uses a binary tree lookup process with three levels (16-8-8)
to achieve balance between memory consumption and lookup
speed (bounded at 3 memory accesses per lookup).

Fig. 3 shows the observed performance for different For-
warding Information Base (FIB) sizes and packet I/O drivers.
On the two y axes, the achieved throughput is shown in Mpps
(left) and Gbps (right). It can be observed that MACS with
DPDK saturates the 10G interface even with the smallest
packets (64 bytes) irrespective of the FIB table size. Lower
yield for Netmap with 64B and 128B packets confirms to
previous literature [14]. Notable, the measured results for 1K

Fig. 4. Data Center Gateway (DCG) use case using VXLAN tunnels.

FIB entries are better than for 100. This can be caused by the
suboptimal use of the CPU queues with small packet sizes (64
Bytes) and by the number of packets as observed in Fig. 3.
As expected, the Linux Socket_mmap driver stands last and
never saturates the 10G interfaces.

2) L3-IPv6: Since the original ODP Helper library did
not support IPv6, we implemented the required LPM module
similar to that of DPDK9 with 15 levels of tables (16-bit 1st
level followed by 14 levels of 8-bit each). As shown in Fig. 3
(right), performance results are on par with the findings of
L3-IPv4. While DPDK reaches line rate with 64B packets for
any FIB size, Netmap performance drops with increasing FIB
size (i.e. more table entries) due to higher TLB misses (DPDK
keeps TLB misses under control by using Hugepages). Also
noteworthy, the anomaly for 100 and 1K FIB entries observed
for L3-IPv4 does not apply for L3-IPv6.

D. Data Center Gateway (DCG) with VXLAN

The DCG use case VXLAN tunnels are used to connect
Internet hosts with (virtualized) Web services in redundant
servers sharing a common IP address (8.8.8.1 in our example).
The VXLAN protocol provides an encapsulation mechanism
between Virtual Tunnel End Points (VTEPs) to transport L2
frames inside UDP packets. The experimental scenario shown
in Fig. 4 can be divided into two sub-cases:

1) Inbound (IB): An Internet Host (213.1.1.1) sends traffic
to a web service (8.8.8.1). When the originating packet reaches
the data center gateway (MACS A VTEP), a load balancing
next hop VTEP decision is taken (e.g., MACS B) and the
actions carried to set the outer L2 (MACdest of B), L3 headers
(IPdest set to 10.0.0.11), UDP and VXLAN headers. In turn,
as the last leg of the VXLAN tunnel, MACS B decapsulates
the packet and sends it to Server 1.

9http://dpdk.org/doc/guides-16.04/prog_guide/lpm6_lib.html
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Fig. 5. Performance comparison of the DCG implementation for different
I/O drivers (4 cores, 100 table entries).

2) Outbound (OB): As a response, Server 1 sends a re-
sponse packet that MACS B VTEP encapsulates in the reverse
direction towards MACS A VTEP, which removes the VXLAN
header, rewrites addresses and forwards the packet.

Towards a sophisticated, scalable processing and to avoid
the cross-product problem [15], the pipeline consists of mul-
tiple matching tables (8 for IB and 7 for OB). The learning
switch table is pre-populated and the load balancing feature is
implemented by a checksum function using source IP address.
The VXLAN encapsulation adds the right headers and port
numbers prior to MAC address re-writing. Altogether, IB and
OB matches 7 and 6 tables respectively while remaining tables
use the default action _nop to move to the next table.

The used traffic trace includes packets with random host IPs
and a fixed server destination IP (set to 8.8.8.1). For brevity,
we show results of IB and OB sub-cases in Fig. 5 as a function
of increasing packet sizes, 100 FIB entries and with 4 cores.
One can observe that for packet sizes greater than 1024B, the
throughput attains the line rate (10G). Similar measurements
are presented in Fig. 9 for 128B packets, 2, 4 and 6 cores.
VXLAN encapsulation in the middle of the pipeline for IB
sub-case refreshes cache which is leveraged by tables further
down in the pipeline, where as decapsulation happens at the
end of the pipeline for OB resulting in higher cache miss. This
results in poorer DPDK performance compared to NETMAP
as DPDK has a higher cache footprint [14].

E. Broadband Network Gateway (BNG)

BNG, also known as Broadband Remote Access Server
(BRAS), is a quintessential part of today’s Internet as it
handles the majority of access network traffic implementing
network policies and services that an Internet Service Provider
(ISP) defines per subscriber. Functions of a BNG include:
Authentication, Authorization and Accounting (AAA) and
session management; Packet en/de-capsulation; ARP proxy;
NAT; QoS enforcement. Fig. 7 illustrates a BNG use case
handling traffic between a Private and an External (public)
network, with the main data plane functions divided into an
Upload (UL) and a Download (DL) pipeline.

This MACSAD use case is implemented with P416, which
offers a more stable (future-proof) and simpler data plane
definition compared to previous P414. Figure 8 illustrates the
implemented pipeline using multiple sets of tables as follows:
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Fig. 6. Performance comparison of the BNG implementation for different
I/O drivers (4 cores, 100 table entries).
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Fig. 7. BNG use case illustrating a subscriber and an external public service.

Fig. 8. P4-defined BNG pipeline featuring the main UL and DL tables.

L2/Ethernet. This set of tables allows BNG to act as a L2
learning switch and to processes ARP packets coming from the
CPE. Additionally, it helps to set the network interface either
to external or internal to separate the UL and DL traffic.
NAT UL/DL. Since the CPE and its users are residing within
a private IP network, NAT is required to translate IPv4 address
and TCP ports. Packets without corresponding entries in the
NAT table are dropped.
GRE Encap/Decap. For DL traffic, the Generic Routing
Encapsulation (GRE) Encap table encapsulates packets des-
tined to the external network with a GRE packet header [16]
identifying the user to establish an user session. In the reverse
direction (UL), CPE-originating packets are decapsulated. The
header add and remove methods are examples of functions
implemented in the Auxiliary Backend using ODP APIs.
IPv4 UL/DL. Implemented as in the L3-IPv4 use case.

Two types of traffic traces were used: UL path coming
from the Customer Premise Equipment (CPE) (IP address
10.1.1.10) to an Internet server (IP: 192.169.0.10), and DL
path from the server back to the CPE.

1) UL: A home gateway encapsulates the CPE traffic with
GRE towards the access network to MACS BNG. MACS per-
forms L2 address learning, verifies user ID, and decapsulates
the GRE packet. The NAT table rewrites inner headers with
the appropriate source IP address and TCP ports towards an
external destination server (192.169.0.10).

2) DL: The server (192.169.0.10) sends TCP traffic back
to the user client (10.1.1.10) via MACS through the external
interface. The MACS BNG performs NAT, adds the point-
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to-point GRE tunnel header, writes the IPv4 outer header,
verifies the user ID10 and completes the IP packet forwarding
selecting the next hop and output port towards the home
gateway performing GRE decapsulation.

The traffic traces include unique addresses for source Eth-
ernet, inner source and outer destination IPv4, as well as TCP
ports. All flow tables are pre-populated by the controller based
on the test traces. Results with 100 packet flows and 4 cores
are shown in Fig. 6 (left for UL and right for DL)11. Similarly
measurements for 128B packets, 2, 4 and 6 cores are presented
in Fig. 9. As expected, DPDK yields the best performance [14]
for each packet size but due to the pipeline complexity (i.e.,
GRE, number of tables), MACSAD was only able to saturate
the 10G link for packets larger than 1024B.

F. Scalability and Portability: From x86 to many-core ARM

Scalability. Fig. 9 shows a throughput comparison among the
use cases with increasing complexity in terms of number of
table lookups and packet actions. DCG and BNG throughput
results confirm that with increasing number of table lookups
and tunneling support, the performance takes a hit, i.e., table
lookups are not free in terms of processor cycles and memory
accesses. An interesting observation is that for the more
complex use cases (DCG and BNG) the performance does
not scale in par with the number of CPU cores as for the L2-
FWD and L3-IPv4/v6 use cases. We observe that as the CPU
takes more cycles to process packets, the system overload has
a negative impact resulting in a throughput drop when the
number of cores increases from 4 to 6.

For the simpler use cases, we examined the scalability on a
different NUMA architecture as well while comparing against
T4P4S [17], a DPDK-enabled software switch written in P4,
and OpenvSwitch (OVS) [18], a DPDK-capable production
quality open source software switch. For brevity, we only
include the results for L2-FWD in Table II, where one can
observe that MACS outperforms the other two switches in case
of each core setting, and what is more, MACS scales better
than T4P4S and OvS in terms of throughput while increasing
the number of cores from 4 to 8. On the other hand, in case
of ODP (i.e., MACS), special attention is needed for the CPU
core affinity setting when exploiting the NUMA architecture
(e.g., using more cores than 12 in our testbed) as automatic

10and applies QoS policies: feature not currently implemented.
11Again, due to the GRE headers, the smallest packet size in UL is 82B.

TABLE II
THROUGHPUT (MPPS) FOR L2-FWD (100 ENTRIES, 64B) ON (INTEL

XEON E5-2680 V4 @ 2.40GHZ, 100G NIC, 192GB RAM)

Datapath
Switch

No. of Cores
1 2 4 8

MacS 9.42 18.36 30.75 36.72
T4P4S 8.20 16.30 28.10 29.70
OvS 6.20 12.20 21.30 22.90

CPU core pinning (w/o explicitly defined) ends up assigning
cores from other NUMA nodes, resulting in remote memory
accesses and the consequent performance hits.
Portability. Achieving high performance from commodity-of-
the-shelf (COTS) servers – a tenet of NFV – is challenging
despite advances in I/O acceleration (e.g., DPDK) as the pres-
ence of multiple abstraction layers (e.g., hypervisor, libraries)
prevent to access all hardware capabilities (e.g., CPU, NIC).
Therefore in order to assess portability, we expand the eval-
uation to multiple platforms, in particular to the AARCH64-
based Cavium R150-T62 (48 cores at 2.0 GHz, shared L2, no
L3 cache, and 40G interfaces) while comparing performance
of MACSAD against T4P4S and OVS.

The radar chart in Fig. 10a shows the measured throughput
(Mpps) attained on the Cavium platform for the L2-FWD and
the L3-IPv4 use-cases implemented via MACS (top), OVS
and the base line ODP port forward application (middle), and
T4P4S (bottom) when using 1 (blue), 2 (green), 4 (red) and 8
cores (cyan), respectively.

In our results for the AARCH64 architecture, DPDK-based
switches perform better than their ODP-based counterparts
because the Cavium switch only supports the first and already
outdated version of ODP. To assess the raw performance
capabilities, we measure the baseline ODP performance with
the port-fwd application, which does nothing but forward
packets from one port to the other without any table lookup
(right hand side of Fig. 10a). The maximum throughput with
one core is about 8.6 Mpps, around 20% less than the DPDK
reference throughput (11.2 Mpps, not shown in the figure).
In fact, ODP is only nearly equal to OVS-L2, which does
one table lookup too. Due to the raw performance differences
between ODP and DPDK in Cavium, the comparison cannot
be considered fair but nevertheless serves to illustrate how the
performance scales with increasing number of cores.

Both T4P4S and MACS show performance drop of about
33% against their baseline results of ODP and DPDK. We
believe that with optimized new ODP support, MACS per-
formance shall be on par with T4P4S. Current numbers
shows that for the L2-FWD and L3-IPv4 use cases, T4P4S
outperforms MACSAD in each case around 40% on average.
But during the core scalability evaluation, T4P4S failed to run
with 8 cores, whereas the MACS prototype easily exploited
the available resources, e.g.,MacS-l2fwd throughput increased
from 2.4 Mpps (1 core) to 16.3 Mpps (8 cores).

When comparing MACS with OVS and T4P4S in the same
testbed (see Section IV) with 100 FIB table size, as shown in
Fig. 10b, we observe that, for 1 core, T4P4S performs better
reaching around 8 Mpps for L2-Fwd and L3-Fwd. With 2
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Fig. 10. Performance evaluation and comparison of different platforms and switches for selected use cases (100 entries per table) and varying CPU cores.

cores, T4P4S reaches line rate for the L2-Fwd whereas OVS
L2 managed little less than 8 Mpps, whereas MACS behaves
better (12 Mpps) for L3-Fwd with 2 cores. We note that all
the platforms saturate the link when using 4 cores.

G. Adaptive Scalability by Dynamic CPU Core Allocation

While more cores improve performance, in case of over
dimensioning, CPU core pinning and fixed allocation to packet
processing can be considered as a waste of resources. We now
investigate the feasibility of a proof of concept technique to
provide dynamic CPU scaling through run-time (de)allocation
of CPU cores to the packet processing tasks, i.e., ODP worker
threads in case of MACSAD. Out of scope remains the
decision of scaling up/down, which could be adaptive based on
system load and/or performance measurements depending on
traffic workload or other factors (e.g., energy consumption).
Such an adaptive behaviour would make the system more
efficient, especially in a multi-tenant environment, where de-
allocated CPU cores could be used for other tasks.

The adaptive CPU scaling technique under evaluation con-
sists of dynamically setting the number of RX queues and
accordingly scaling up or down the number of cores. To scale
down, MACS removes core-queue associations, releasing the
core for kernel usage and leaving the RX queue without a
descriptor.12 Similarly, to scale up, MACS seamlessly acquires
more cores and assigns them to the RX queues. For the proof
of concept experiment, we use 4 cores (A, B, C, D) and 4 RX
queues, and run with L3-IPv4 use case and different FIB sizes
(100, 1K, 10K, 100K). We set MACS to start with 1 core (A)
and after every 30 secs a new core is allocated (B, C, and D,
respectively). After reaching the maximum core configuration
(i.e., 4), MACS starts releasing cores, again in 30 secs interval.

Fig. 11 shows how the obtained throughput increases and
decreases in line with the number of active cores. While only
one experiment snapshot for each FIB size is presented, the
observations were consistent over different runs.

The obtained results found evidence for an unexpected
outcome regarding the performance behaviour of Receive Side

12Note, a descriptor can exist even if the corresponding queue does not.
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Fig. 11. Performance (Mpps) when dynamically (30s intervals) changing the
sets of CPU cores allocated to packet processing for different FIB sizes.

Scaling (RSS) when only 100 different flows are balanced
through the cores. Fig. 11 shows that the CPU core set
(AB) achieves lower throughput compared to (CD). Since the
sending rate was fixed throughout the experiment, the only
explanation is the RX queue receiving less traffic over (AB)
compared to (CD) core set and not a limitation of MACS TX
queues. Under an ideal traffic distribution with both of the two-
queue/two-core sets, we should observe the same throughput
as in case of the (ABC) compared to (BCD) allocation, or when
only cores A and D are used. The unequal flow distribution
observed could be explained by specificities of the RSS
hashing function implementation and the statistical nature of
such a load-balancing mechanism and hence the challenge of
always deciding on the optimal number of CPU cores for a
certain throughput requirement for the target platform.

As a second unexpected outcome, we detected an issue
with some NICs (e.g., Intel 82599, X540) and the RX queues.
In particular, when an RX queue is not fully flushed before
removing its RX descriptors, the NIC stops processing packets
altogether from all RX queues, whereas other NICs (e.g., Intel
XL710 Fortville) did not have this limitation. We have reported
this issue to the ODP community.13

13https://bugs.linaro.org/show_bug.cgi?id=3618
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V. RELATED WORK

We now review some recent software switches and empha-
size the relation to our proposed MACSAD framework. OVS
provides relatively flexible processing but inherits performance
limitations of the operating system’s data plane and pro-
grammability cannot go beyond OpenFlow. The former can be
addressed by recent “kernel-bypass” frameworks, e.g., DPDK,
while the latter can be addressed by work like PISCES [19]
to add P4-based flexible packet parsing support but limited
data plane reconfigurability due to OVS pipeline construction.
OpenSwitch (OPENSWITCH)14, and Netronome Network Flow
Processor (NFP)15 offer platform-limited P4 support.

Most closely related work is the T4P4S [17] software switch
based on a Hardware Abstraction Layer (HAL) incorporating
P4 to DPDK mapping. MACSAD “Transpiler” module is
based on the T4P4S code. T4P4S, however, is not multi-
platform and DPDK’s LPM for IPv6 is not implemented, in
addition to the lack of validation of complex pipelines due to
limited P4 primitives support.

The project DC [20] provides P4 based VXLAN implemen-
tation designed for data centers facing similar challenges as
MACSAD. Dietz et al. [21] present a BNG implementation
using an alternate modular framework called Click. It uses
tiny Virtual Machines (VMs) with fast boot and small memory
footprint, and an excellent candidate for NFV adoption. The
results reported are also very similar to MACSAD for larger
packets sizes. However, MACSAD differs in multi-platform
support and P4 based data plane definition.

VI. CONCLUSIONS AND FUTURE WORK

As an amalgam of the protocol-independent P4 program-
ming language and the ODP platform-independent SDK [6],
MACSAD offers an SDN data plane design approach capable
of supporting complex pipelines such as DCG, BNG with
portability and performance. While we showed the length of
programmability with P416 support and the implemented use
cases released to the public domain, the breadth of portability
is demonstrated by running MacS over different platforms
(x86_64, AARCH64) and packet I/O drivers (Netmap and
DPDK). The performance results match the state of the art
efforts on the leading OVS and P4-based software switches
like T4P4S. To investigate scalability, we obtained results for
platforms with multiple CPU cores and interface speed (10G,
40G, 100G) suggesting that MACSAD fares well against OVS
and T4P4S. The adaptive CPU scaling featured technique
offers a novel approach applicable to many-core software
switch designs and opens promising research opportunities.

The public code release of MACSAD is one of our open
source contributions. We also released BB-Gen to easily create
test traffic and the required trace files for more than 1M
entries and different header definitions required by the P4 use
case. Various PCAP and trace files have been contributed to
the NFPA repository. Our IPv6 lookup mechanism will be
proposed for adoption in ODP.

14https://www.openswitch.net
15http://open-nfp.org

We will continue to improve P414 and P416 support by
implementing variable width header field support, stateful
datatype support and ternary table lookup support, and, in
turn, support more complex pipelines. The idea on adaptive
CPU scaling will be further explored potentially in combi-
nation with SDN controller feedback loops and core utiliza-
tion measurements to develop new run-time core allocation
algorithms. We are also planning to add support for multiple
MACSAD instances serving different pipelines and to inves-
tigate deeper about latency, packet loss and cache utilization.
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