NFV/SDN & 5G PROJECTS

- Overview
- (Selected) Projects
- Use cases

OVERVIEW OF SDN/NFV PROJECTS (1/3)

Name	Leader and/or	Main Contribution		F	Open	State					
	Funding		VNFs	VNFM /EMS	VIM	NFVO	OSS/ BSS	NFVI	Source		
OPNFV	Linux Foundation	An integrated and tested open source platform to accelerate the evolution of NFV.			✓			\checkmark	√	•	
OpenMANO	Telefonica	A multi-layer orchestration environment for easy creation of complex network scenarios. Facilitates the SDN and NFV integration with cloud services and implements a graphical user interface (GUI)	√		~	√		√	√		
T-NOVA	European Union	A novel framework for deploy and management of VNFs (NFV Marketplace) and extend SDN aspects for efficient allocation of IT resources, network slicing, traffic redirection and QoS provision.	√						?		
CloudNFV	Dell, CIMI Corp	Implementation of multi-operator federated services to provide open access to services. Creates the required environment to composition, deployment, and management features outside the NFV scope.	~	~	~	~	~	•	✓	?	
CloudBand	Alcatel-Lucent	A platform which facilitates interoperability between different NFV solutions. Besides, it makes use of industry-standard open APIs (e.g. OpenStack and CloudStack) where the software is independent of hardware- and cloud platform.	~	~	√	√		√	✓	?	
Cloud4NFV	Portugal Telecom	Develop an automated infrastructure management platform for NFV and SDN, including the deployment, configuration, and lifecycle management of VNFs with the costumer site domains.	√		✓	~			√	?	
ZOOM	TM Forum	An architecture based on components (physical and virtual) dynamically assembled into personalized services. APIs to enable automation, scalability, and agility in the virtual ecosystem.		√	√	~	✓		√	•	

OVERVIEW OF SDN/NFV PROJECTS (2/3)

Name	Leader and/or	Main Contribution		F	Open	State				
	Funding		VNFs	VNFM/ EMS	VIM	NFVO	OSS/ BSS	NFVI	Source	
CALICO	Metaswitch Networks	Helping drive the migration to NFV through a solution for hyper-scale virtual networking in cloud datacenters by interconnecting VMs, Linux containers and bare-metal systems.	√						√	
MCN	European Union	Extend the concept of cloud computing beyond data centers towards the virtualization of the main components of a mobile network using pure IP layer technology in order to design the next-generation wireless network technologies.	~				✓		√	•
OpenEPC	Core Network Dynamics	Build a complete mobile core network platform, offering advanced IP mobility schemes and deployment in several configurations (including cloud environment).	√					•		•
ClickOS	European Union	A minimalistic, virtualized operating system to run VNFs.	√	√					✓	•
Blue-PLANET	Nuage Networks/Ciena Corporation	A network orchestration suite to automate new services (from creation to delivery) that can be deployed across multi-vendor and multi- domain environments.			~	•	•			•
Planet Orchestrate	Cyan	A multi-domain and multi-technology application for the Blue Planet platform aimed at service orchestration, automation, SDN control, and multi-vendor management capabilities.		√		~				?
ECOMP	AT&T, Linux Foundation	Enhanced Control, Orchestration, Management and Policy software platform to rapidly accelerate network and cloud innovation.		√	✓	\checkmark	√		✓	•
CORD	ON.lab	Central Office Re-architected as a Datacenter			\checkmark	×		√	 Image: A second s	•

OVERVIEW OF SDN/NFV PROJECTS (3/3)

Name	Leader and/or	Main Contribution		F	Open	State				
	Funding		VNFs	VNFM/ EMS	VIM	NFVO	OSS/ BSS	NFVI	Source	
UNIFY	European Union	Develop an automated, dynamic service creation platform which supports networks based on SDN and NFV technologies.	√						V	
Catalyst	TM Forum	The orchestration of VNFs is done in accordance with technical parameters and policies dynamically defined.	√				√			•
ESO	Overture, acquired by <u>ADVA</u> (<u>JAN-16</u>)?	Providing a management and orchestration solution for the entire life cycle of any VNF both for centralized or distributed NFV infrastructures.	~	√*	✓	~				?
ExperiaSphere	CIMI Corporation	An open-source model implementation for universal management and orchestration, founded on the concept of service models.	√	✓	√	√	•	√	1	?
OPN	Cisco	Includes a services orchestrator, a VNF Manager, and a SDN controller. It aims to guide networks to become more open, programmable and automated infrastructures.		1	1	1				?
OpenNFV	НР	Open-source architecture to provide an open end-to-end NFV and SDN infrastructure, has solutions to each of the functional blocks defined in the ETSI standards.		√	~	√	√	√	√	•
5GEx	European Union	Cross-domain orchestration of services over multiple administrations or over multi-domain single administrations allowing end-to-end network and service elements to mix in multi-vendor, heterogeneous technology and resource environments.			√	√	✓	✓		•

ACM SIGCOMM Tutorial | 2016-08-22 | Page 4

✓* Only VNFM

OVERVIEW OF SDN/NFV PROJECT APPROACHES

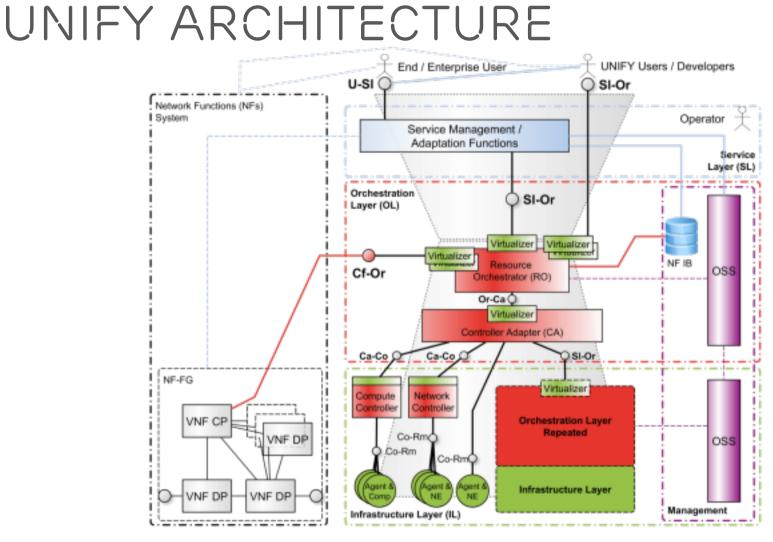
		Cloud- Band	Cloud- NFV	ESO	Experia- Sphere	OpenMA- NO	OPN	Open- NFV	OPNFV	Planet Orchestrate	ZOOM
	Centralized	\checkmark	\checkmark	~	~	~	✓	~	~	\checkmark	~
Management approach	Distributed										
opproduct	Policy-based	\checkmark	\checkmark	\checkmark	✓	\checkmark	\checkmark	~		\checkmark	\checkmark
	Self-managed	\checkmark		\checkmark	✓		\checkmark	~		\checkmark	\checkmark
	Fault			\checkmark			\checkmark		\checkmark	\checkmark	\checkmark
Management func-	Accounting					\checkmark			\checkmark		
Management func- tion (FCAPS)	Performance	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	~		\checkmark	\checkmark
	Security	\checkmark								\checkmark	~
	Functions			\checkmark		\checkmark	\checkmark		\checkmark		\checkmark
Management scope	Services	\checkmark	\checkmark	\checkmark	~	\checkmark	\checkmark			\checkmark	\checkmark
	Network			\checkmark						\checkmark	\checkmark
Managing related	SDN	\checkmark				\checkmark	\checkmark		\checkmark		
areas	Cloud	\checkmark	\checkmark		~			✓	~	\checkmark	~

Source: Rashid Mijumbi, Joan Serrat, Juan Luis Gorricho, Steven Latre, Marinos Charalambides, Diego Lopez. Management and Orchestration Challenges in Network Function Virtualization, IEEE Communications Magazine, Jan., 2016

OVERVIEW

The 5G Infrastructure Public Private Partnership

	Name	M1=July	2015																																	
		M1 M2	M3	M4	M5	M6	M7	M8	M9	M10	M11	M12	M13	M14	M15	M16	M17	M18	M19	M20	M21	M22	M23	M24	M25	M26	M27	M2.8	8 M29	M30	M31	M3 2	M33	M34	M35	M36
CSA	EURO 5G	Euro-5G																																		
R&I	5G-NORMA	5GNOve	Radio	Mult	tiserv	ice ad	laptiv	e neti	vork /	Archit	ectur	e																								
R&I	5G-Xhaul	Dynamica	lly Re	confi	gurab	le Op	tical-	Wirele	ss Ba	ckhau	ul/Fro	nthai	ul wit	h Cog	nitive	Cont	rol Pl	ane fo	or Sm	all Ce	llsan	d Clo	ud-RA	Ns												
R&I	5G-CrossHaul	Developing an integrated 5G backhaul and fronthaul transport network																																		
R&I	5G-Ensure				5G E	nable	rs foi	r Netw	ork a	nd Sy	stem	Secu	rity ar	nd Re:	silien	e																				
R&I	CHARISMA	Converge	d Hete	eroge	neou	s Adva	anced	1 5G C	loud-l	RAN A	Archit	ectur	e for	Intell	igent a	and S	ecure	Medi	a Acc	ess																
R&I	COGNET	Building a	n Inte	lligen	it Syst	em of	f Insig	ghts ar	nd Act	tion fo	or 5G	Netw	ork N	Mana	gemer	nt																				
R&I	COHERENT	Coordinat	Coordinated control and spectrum management for 5G heterogeneous radio access networks																																	
R&I	FANTASTIC 5G	Flexible A	Flexible Air iNTerfAce for Scalable service delivery wiThin wIreless Communication networks of the 5th Generation																																	
R&I	Flex5Gware	Flexible a	nd eff	icient	t hard	ware/	/softv	vare p	latfo	rms fo	or 5G	netw	ork e	lemer	nts an	d dev	ices																			
R&I	METIS II	Mobile ar	nd wire	eless	comn	nunica	ation	s Enat	lers f	or Tw	enty-	twen	ty (20)20) Ir	nform	ation	Socie	ety-II																		
R&I	mmMAGIC	Millimetre	e-Wav	e Bas	sed M	obile	Radio	o Acce	ss Ne	twor	k for	Fifth (Gener	ration	Integ	rated	d Com	muni	cation	ns																
R&I	SELFNET	SELFNET	FRAM	/IEW(ORK F	OR SE	LF-O	RGAN	ZED	NETW	/ORK	MAN	AGEN	IENT	IN VI	RTUA	LIZED	AND	SOFT	WAR	E DEF	INED	NET	VORK	S											
R&I	SESAME	Small cEll	S cooi	rdinAt	tion fo	or Mu	lti-te	nancy	and E	idge s	ervio	es																								
R&I	SPEED-5G	quality of	Servio	ce Pro	ovisio	n and	capa	city E	pans	ion th	roug	h Exte	ended	-DSA	for 50	3																				
R&I	SUPERFLUIDITY	Superfluid	lity: a	super	r-fluid	l, clou	id-nat	tive, c	onver	ged e	dge s	ystem	า																							
I	5GEx			5G E	xchar	nge																														
I	SONATA	Service Pr	ogran	ning a	and O	rchest	tratio	n for	/irtua	lize d	Softw	are N	letwo	orks																						
1	VirtuWind	Virtual an	d prog	gram	mable	indus	strial	netwo	rk pr	ototy	pe de	ploye	d in d	pera	tional	Wind	1 park																			


> Source: <u>https://5g-ppp.eu/5g-ppp-phase-1-projects/</u>

UNIFY

> Architecture to unify carrier and cloud services

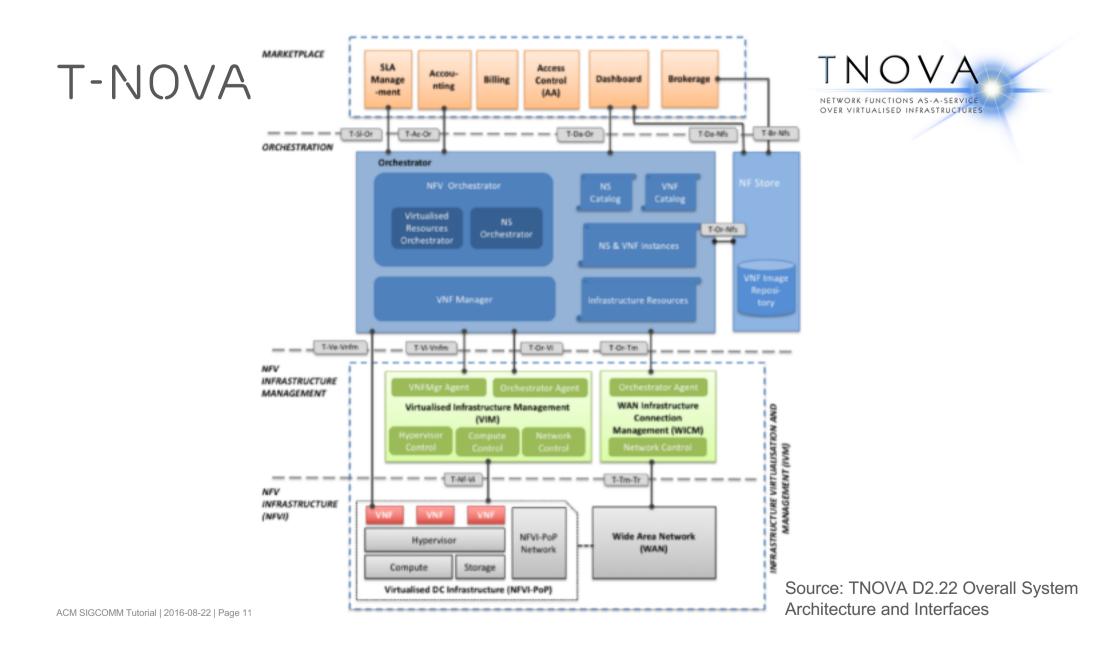
- Service abstraction model and an associated domain-specific service creation language and programming interfaces to automate and optimize the deployment of service chains
- Advanced management and operation schemes to cope with increased network/service agility and to handle network services end-to-end
- Design and performance of a universal node architecture based on standard x86 components and accelerators for network functions virtualization

ACM SIGCOMM Tutorial | 2016-08-22 | Page 8

Source: UNIFY Deliverable 2.2 Final Architecture.pdf

UNIFY

- > Approach
 - Service Programming, Orchestration and Optimization: NFs abstractions, description languages, algorithms for automated creation of service chains
 - Service Provider DevOps: agile operations and development aids for dynamic service chains
 - Unified Node Architecture (as an abstracted domain): based on commodity hardware
- > Impact
 - Evolve impact of European community in standard organizations (e.g., IETF, ETSI, ONF)
 - Unified service operator resources abstractions


T-NOVA

> Network Functions as-a-Service over Virtualized Infrastructures

> New enabling NFV framework for operators

- Deployment of NFV concepts
- Offer to customer value-added services
- -Virtual network appliances on-demand as-a-Service
- Marketplace for VNFs and services
 - > Third party NF development and trading
- -NF resource optimization and elasticity

T-NOVA

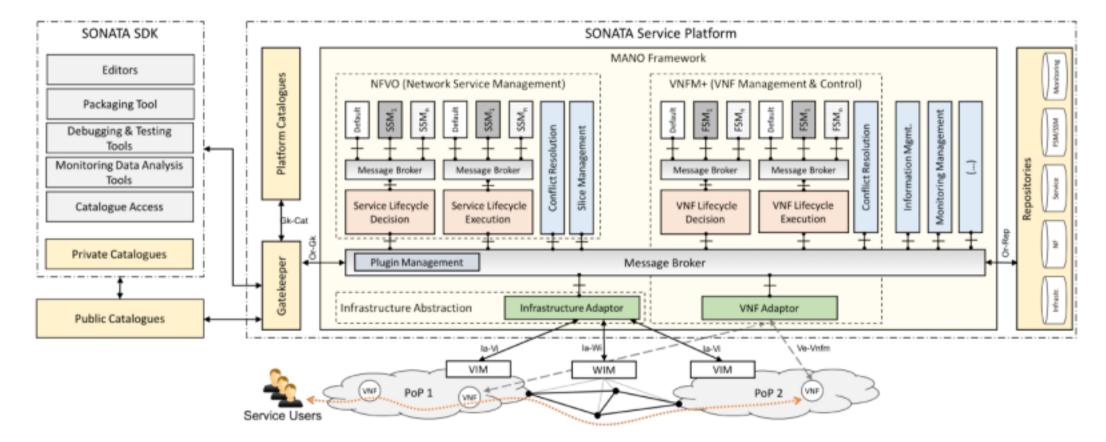
> Approach:

- -Address most of NFV design challenges
- -NFV marketplace (plug-and-play NFs)
- -Brokerage platform for best service bundles selection

> Impact:

- -Boosting competitiveness (NFs in Function Store)
- -Lower operator costs (CAPEX-to-OPEX transformation for more efficient planning)
- Promote EU standardization (e.g., ETSI)

SONATA



> NFV framework that provides a programming model and development tool chain for virtualized services

- Network Service SDK
- Service platform
- NFV DevOps Workflow

http://www.sonata-nfv.eu/

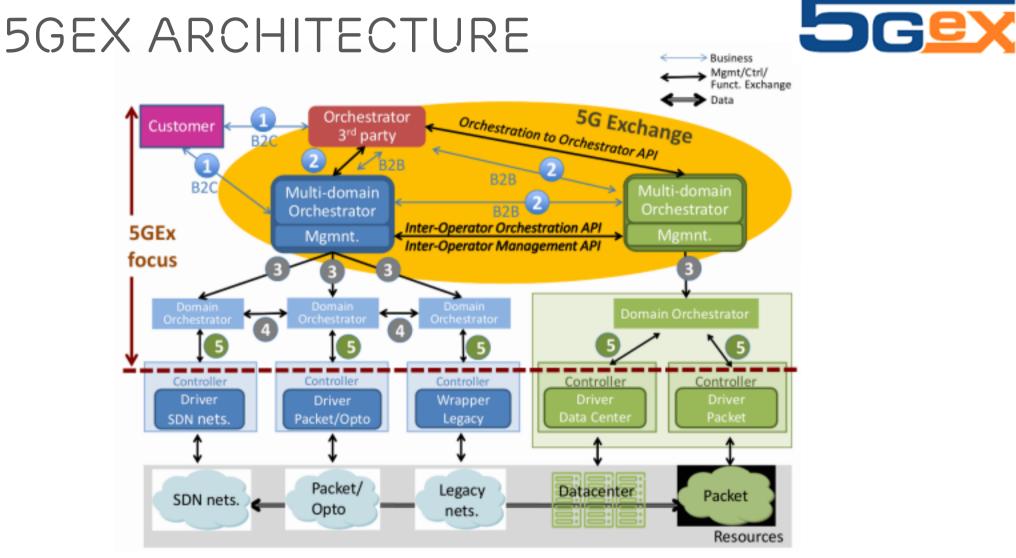
SONATA ARCHITECTURE SONATA ARCHITECTURE

Source: SONATA D2.2 Architecture and Design

SONATA

> Approach

- Modular and Customizable MANO Plug-in Architecture
- Interoperable and Vendor Agnostic Framework
- Efficient Network Service Development and NFV DevOps
- -5G Slicing and Recursion Support
- > Impact
 - -Reduce time-to-market of networked services
 - Optimize resources and reduce costs of service deployment and operation
 - -Accelerate industry adoption of software networks


5GEX

 > 5GEx pursues Abstractions and Programmability in Multi-Provider Environments, which are key components for 5G to achieve Service Agility and Service Diversity

> Three dimensions:

- -Intra-operator multi-domain scenarios
- -Multi-operator scenarios
- -Business efficiency

ACM SIGCOMM Tutorial | 2016-08-22 | Page 17 Source: http://www.5gex.eu/wp/wp-content/uploads/2015/11/5GEx eucnc2015.pdf

5GEX

> Approach

- Achieve a 90-minute services setup
- Integrate monitoring instances in the developed multi-operator architecture
- Optimally solve the embedding problem of service requests into multiple operators domains matching SLA requirements

Impact

- Proof of innovation multi-domain platform enabling 5G use cases
- Open source software tools and extensions
- Standardization and contributions based on concepts and experiments
- Telecom and IT market to extend 5GEx open solutions

5GEX

ACM SIGCOMM Tutorial | 2016-08-22 | Page 19

> 5GEx: Multi-domain orchestration of software defined infrastructures

- > 5GEx main mission and plans
- Enable business and technical cross-domain service orchestration over multiple administrations,
- Realize composite services by combining cross-domain network, computing and storage resources
- Develop suitable business models for operators to optimally buy, sell, and integrate 5GEx services
- > Build and deploy a proof-of-concept system prototype, implementing the "Sandbox Exchange"
- > Contribute to relevant standard forums and Open Source communities.

Source: http://www.etsi.org/news-events/events/1025-2016-04-5g-from-myth-to-reality

CORD

Central Office Re-architected as a Datacenter http://opencord.org

Source Material (extracted from): CORD Summit 2016 - https://wiki.opencord.org/display/CORD/CORD+Summit+--+July+29%2C+2016

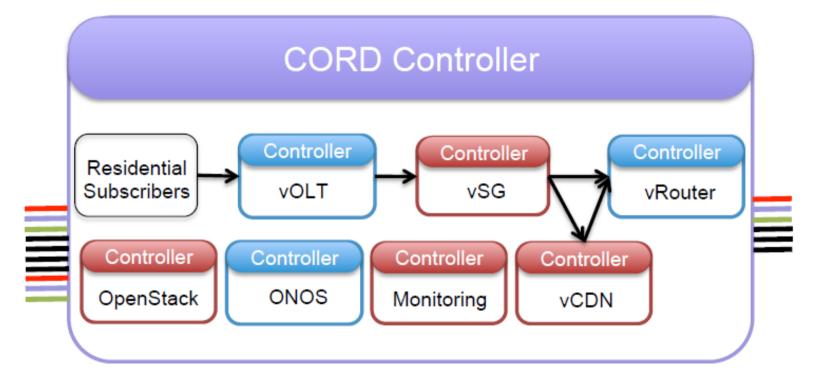
CORD

> CORD is a Vision

- A common goal the community is working towards
- Start with Business Case -> Reduce to Design Requirements

> CORD is an Architecture

- A collection of abstractions and interfaces
- Start with an Organizing Principle -> Iterate-and-Refine


> CORD is a Reference Implementation

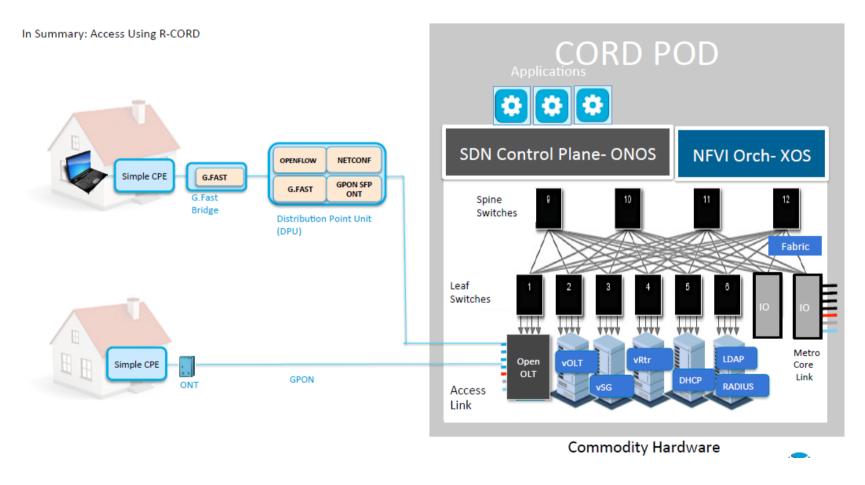
- An integrated system built from concrete components
- Make Technology Choices -> Be More Inclusive with Time

CORD ARCHITECTURE - SOFTWAR

Cloud + SDN + NFV = XaaS

ACM SIGCOMM Tutorial | 2016-08-22 | Page 22 Source (extracted from): CORD Summit 2016 - https://wiki.opencord.org/display/CORD/CORD+Summit+--+July+29%2C+2016

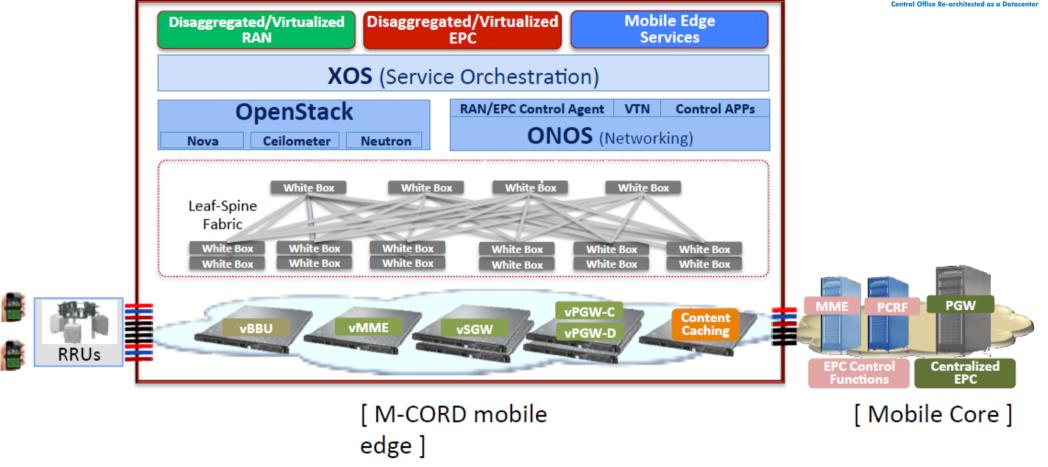
HIGHLIGHTS


- > CORD Provides Cloud Economies and Agility
 - Fully Exploits Micro-Services (Access-as-a-Service)
 - Fully Exploits Disaggregation (vOLT -> vSG ->vRouter)
 - Fully Exploits SDN (overlay, underlay, services)

> CORD Controller

- Assembles services from building block components
- Exports a unified interface to a collection of services
 - > Operators specify service graph (configuration-time interface)
 - > Operators and customers control services (runtime interface)

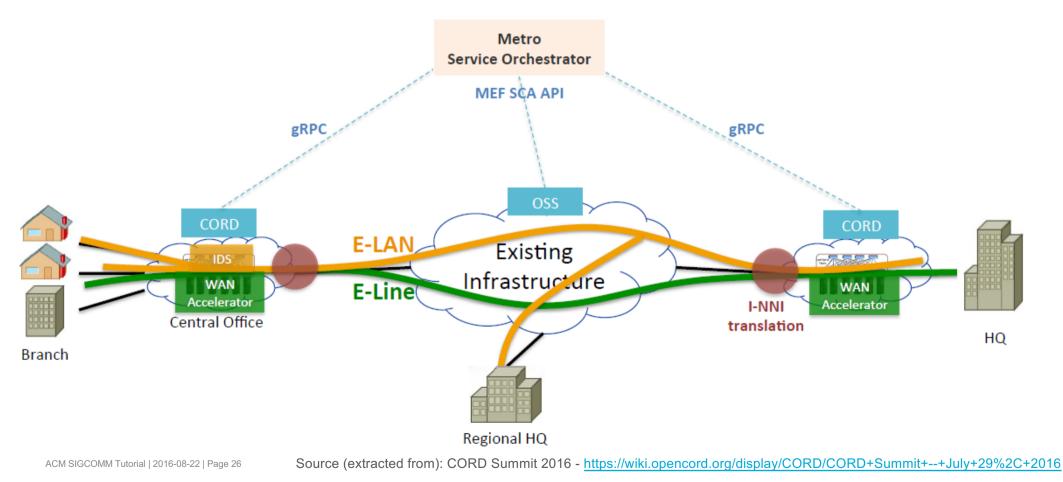
RESIDENTIAL-CORD - OVERVIEW

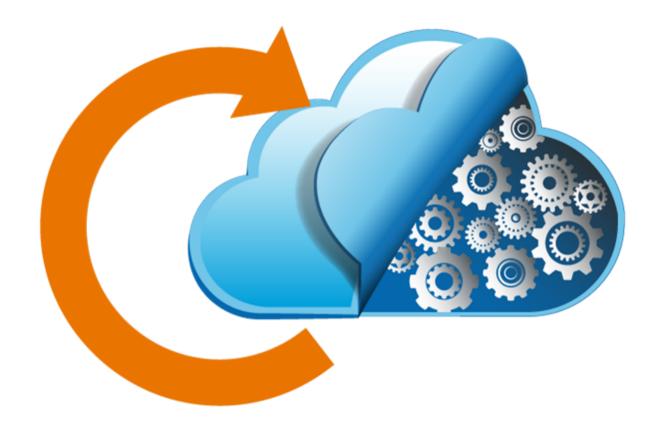


ACM SIGCOMM Tutorial | 2016-08-22 | Page 24

Source (extracted from): CORD Summit 2016 - <u>https://wiki.opencord.org/display/CORD/CORD+Summit+--+July+29%2C+2016</u>

MOBILE-CORD - OVERVIEW




ACM SIGCOMM Tutorial | 2016-08-22 | Page 25

Source (extracted from): CORD Summit 2016 - https://wiki.opencord.org/display/CORD/CORD+Summit+--+July+29%2C+2016

ENTRERPRISE-CORD - OVERVIEW

ECOMP

Enhanced Control, Orchestration, Management and Policy [AT&T]

virtualize 75% of our network by 2020.

ECOMP INTRO

> AT&T Domain 2.0 Strategy (SND + NFV + cloud)

- AT&T Integrated Cloud (AIC)
- > Contribute and leveraging open source
 - Cloud Standards (OpenStack, TOSCA, etc...)
- > Platform uses micro-services to perform roles
- > Does not directly support legacy physical elements

PLATFORM PRINCIPLES

- The architecture will be metadata-driven and policy-driven to ensure flexible ways in which capabilities are used and delivered
- > The architecture shall enable sourcing best-in-class components
- > Common capabilities are 'developed' once and 'used' many times
- > Core capabilities shall support many AT&T Services
- > The architecture shall support elastic scaling as needs grow or shrink

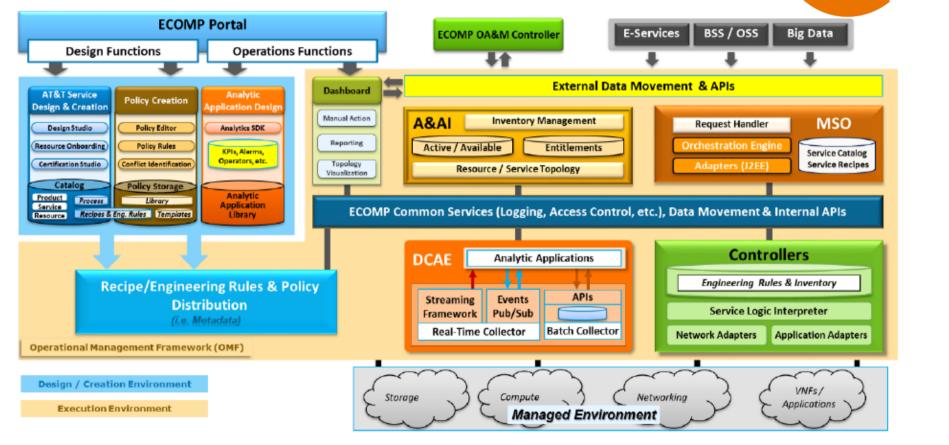
ECOMP PLATFORM

Design Time Framework

- Collaborative, catalog-driven "self-service" design studio
 - Define resources, services and products
 - Create and manage models, processes, policies and analytics for creation and lifecycle management
- Systematic evaluation, certification and onboarding of technology supply chain
- Institutionalize content & models for consistent implementation & technology insertion
- Single platform to define and deploy instantiation, management and control definitions and behaviors

Runtime Execution Framework

- Autonomic framework that manages the full lifecycle of D2 infrastructure, networks and services
 - Uses definitions/models provided by design modules
 - Orchestrate delivery & augmentation
 - Monitor & manage via analytics guided by SLAs & policies
- Control capabilities to execute configuration, realtime policies and control the state of distributed network components and services
- Instantiate, configure and manage the lifecycle of resources, topology and service implementations

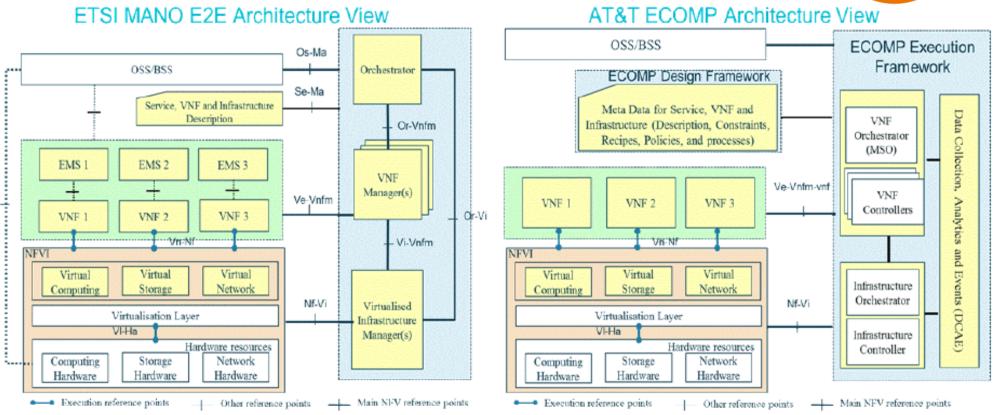

Learn

Deploy

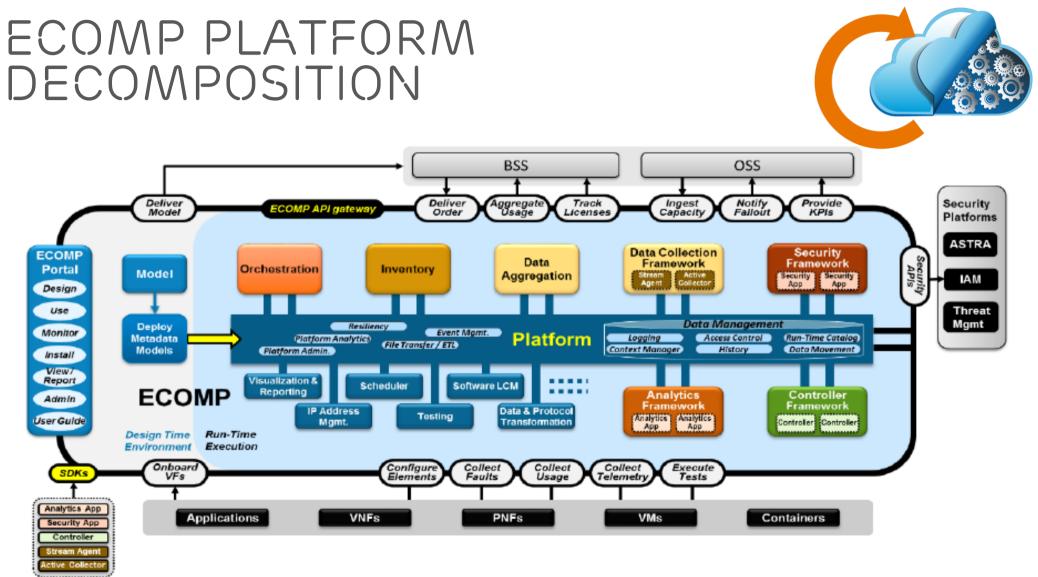
ACM SIGCOMM Tutorial | 2016-08-22 | Page 30

Source (extracted from): <u>http://about.att.com/content/dam/snrdocs/ecomp.pdf</u>

ECOMP PLATFORM COMPONENT



ACM SIGCOMM Tutorial | 2016-08-22 | Page 31


Source (extracted from): http://about.att.com/content/dam/snrdocs/ecomp.pdf

ETSI MANO AND AT&T ECOMP ARCHITECTURES COMPARISON

Source (extracted from): http://about.att.com/content/dam/snrdocs/ecomp.pdf


ACM SIGCOMM Tutorial | 2016-08-22 | Page 33

Source (extracted from): <u>http://about.att.com/content/dam/snrdocs/ecomp.pdf</u>

HIGHLIGHTS

- > ECOMP Platform assists 74 deployed AT&T Integrated Cloud nodes
- > Agile development and holistic architecture
- > Designed and built for real-time workloads at carrier scale
- > Portal for user's role configuration
- Active and Available Inventory keeps resources updated
- Service Catalog supporting multiple types of data input (e.g., Yang, TOSCA, Heat, Yaml, etc)

(incomplete list of) Related Work https://5g-ppp.eu/5g-ppp-phase-1-projects/

FURTHER PROJECTS

- > SUPERFLUIDITY : achieving superfluidity in the Internet: the ability to instantiate services on-the-fly, run them anywhere in the network (core, aggregation, edge) and shift them transparently to different locations <u>http://superfluidity.eu</u>
- Data plane processing architecture: A flexible, open and programmable 5G data plane processing architecture and relevant APIs for network functions' convergence
- > Converged 5G platform
- > New Algorithms and functions
- > Ultra-fast and efficient virtualization
- > Hardware adaptation and abstraction

ACM SIGCOMM Tutorial | 2016-08-22 | Page 36

Source: <u>http://superfluidity.eu</u>

- > Control and provisioning framework
- > Security framework
- > Contribution to standardization

* CogNet

FURTHER PROJECTS

- CogNet : An NFV/SDN based architecture for Autonomic 5G Network Managment using Machine Learning <u>http://www.cognet.5g-ppp.eu/</u>
- Machine learning Smart Engine for traffic patterns analysis and computation of network situational context
- > Infrastructure virtualization based on NFV framework
- infrastructure network resource optimization Prediction of failure and selfhealing of network services
- > dynamic SLA enforcement in a NFV-SDN based architecture

Source: <u>http://www.etsi.org/news-events/events/1025-2016-04-5g-from-myth-to-reality</u>

- SELFNET: Self-organized Network Management for 5G through Virtualized andSoftware Defined Networks <u>https://5g-ppp.eu/selfnet/</u>
- A framework for automated network service provisioning and monitoring, capable of automated deployment of network management tools, which maximises advantages of SDN, NFV, Cloud computing, Self-organizing networks, and Artificial intelligence
- Three key network management problem areas to tackle: Self-protection against distributed cyber-attacks; Self-Healing for increased resiliency of 5G networks to network failures; Self-optimization to dynamically improve the performance of the 5G network and the QoE for users.
- Market potential and societal benefits through improved users' quality of experience, more secured and resilient mobile services and applications

ACM SIGCOMM Tutorial | 2016-08-22 | Page 38 Source: <u>http://www.etsi.org/news-events/events/1025-2016-04-5g-from-myth-to-reality</u>

- > 5G-Crosshaul: Next generation of fronthaul/backhaul integrated transport network <u>http://5g-crosshaul.eu/</u>
- Integration of fronthaul and backhaul traffic in a unified packet based network supporting multiple functional splits.Service-oriented unified data plane for backhaul and fronthaul traffic based on a common transport frame.
- > Unified SDN-NFV based control plane.
- > Flexible, adaptive, cost-efficient and recursive sharing of 5G-Crosshaul infrastructure over multiple operators and service providers.
- > System wide optimization of multiple policies, from QoS to energy efficiency.
- > Network-aware innovative application development of mobility, multi-tenancy, energy and resource management.
- > Build and deploy a proof-of-concept prototype implementing the integrated fronthaul/backhaul transport network in a real life testbed located in 5TONIC at Madrid and Berlin

ACM SIGCOMM Tutorial | 2016-08-22 | Page 39 Source: <u>http://www.etsi.org/news-events/events/1025-2016-04-5g-from-myth-to-reality</u>

> VirtiWind: Virtual and programmable industrial network prototype deployed in operational wind park http://www.virtuwind.eu/

- > VirtuWind mission and studied use cases
- > Requirements of different industry use cases
- > Realization of industry-grade QoS through SDN & NFV solutions
- > Inter-domain QoS and multi operator ecosystem
- > Time and Cost savings in network maintenance and service provisioning
- > Ensuring security by design in SDN/NFV- based industrial networks
- > Field trial and prototyping in the wind park

Source: http://www.etsi.org/news-events/events/1025-2016-04-5g-from-myth-to-reality

- > INSTINCT: Scenarios for integration of satellite components in future networks Satellite-terrestrial integration opportunities in the 5G environment <u>https://artes.esa.int/projects/instinct</u>
- Some of the key findings of the ESA ARTES study INSTINCT aiming to find the most appropriate solutions for satellite and cloud networks integration.
- The study focused on how Network Functions Virtualization (NFV) and Software Defined Networks (SDN), cornerstone technologies for the 5G networks, are providing the immediate next step for a larger adoption of satellite as backhaul technology.
- Through the practical demonstrator and the evaluation results obtained we believe that the INSTINCT results are highly relevant to the 5G use case definition and architecture discussions.

ACM SIGCOMM Tutorial | 2016-08-22 | Page 41 Source: http://www.etsi.org/news-events/events/1025-2016-04-5g-from-myth-to-reality

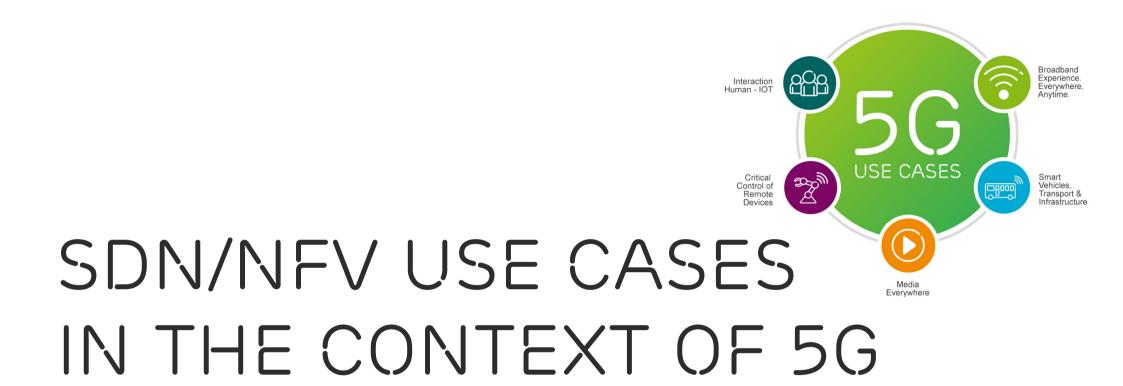


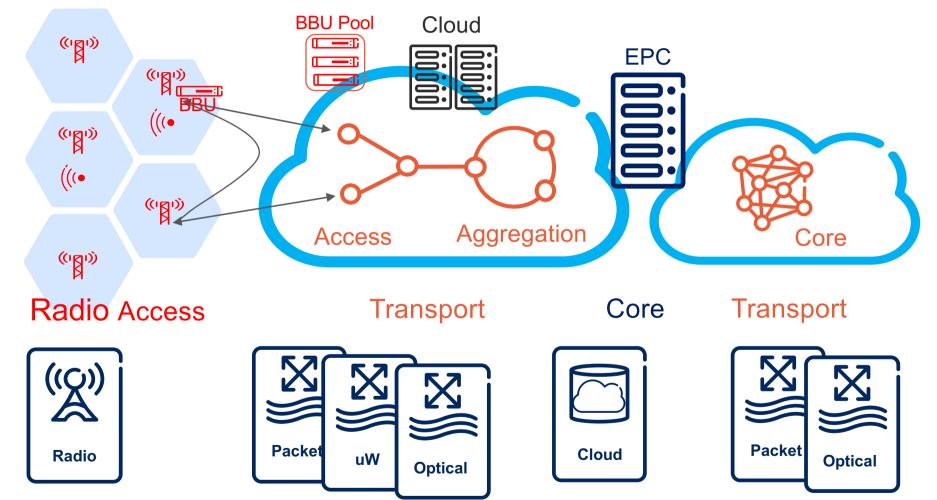
Image Source: Ericsson

PROGRAMMABILITY FOR 5G

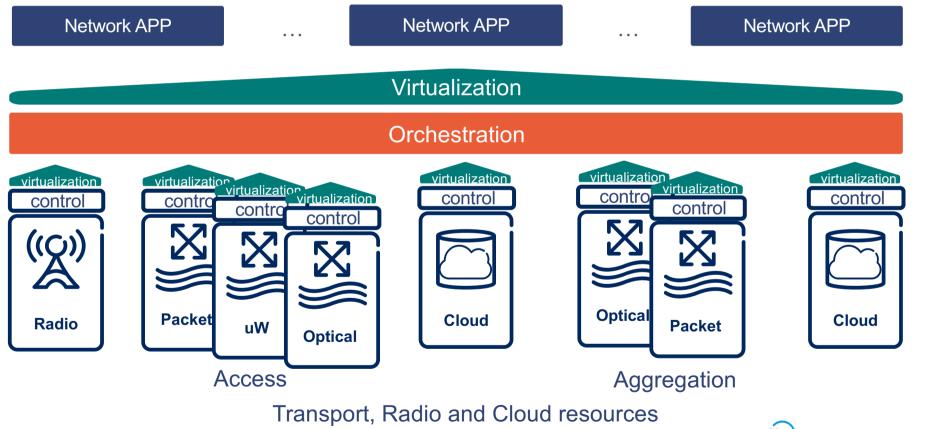
High level of flexibility and programmability in individual domains (mobile core, radio access & transport network). Cross-domain programmability and orchestration.

Modularity

- Well-defined control modules & interfaces
- Recursive stacking

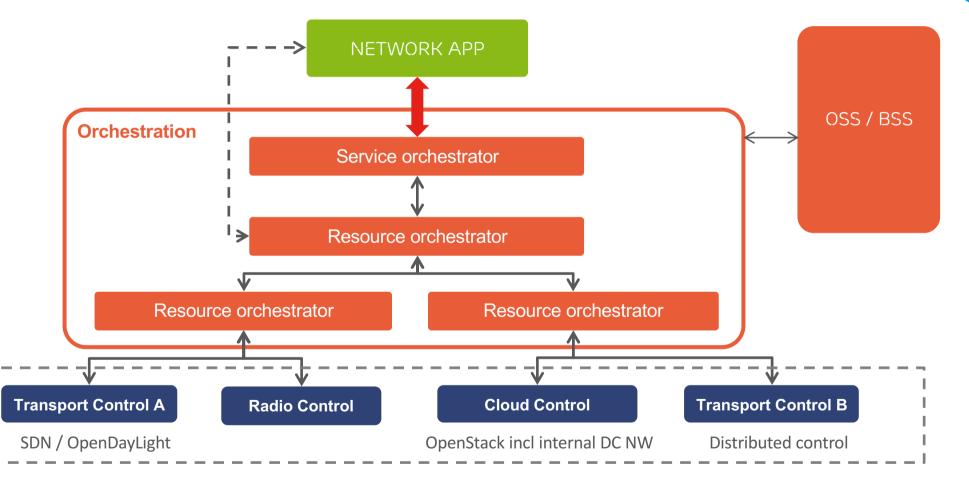

Virtualization

- Grouping resources into slices
- Performance & security isolation


Scalability

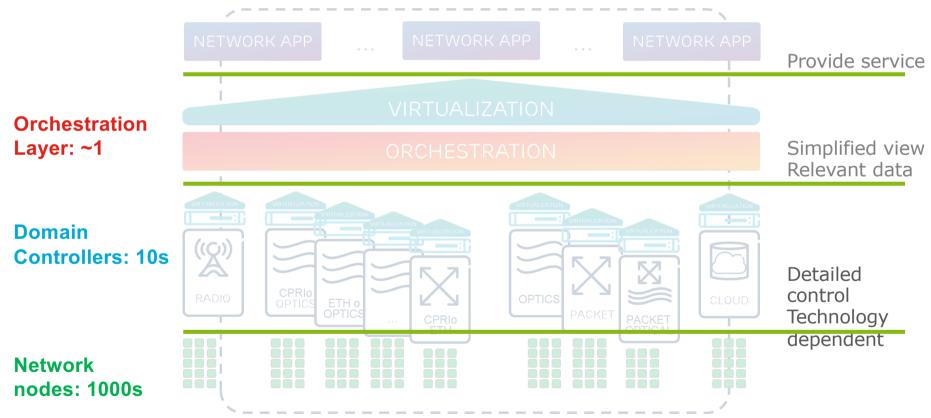
- Hiding domain internal details
- Choosing right abstraction

NETWORK ARCHITECTURE


END-TO-END ORCHESTRATION

5

ORCHESTRATION ARCHITECTURE

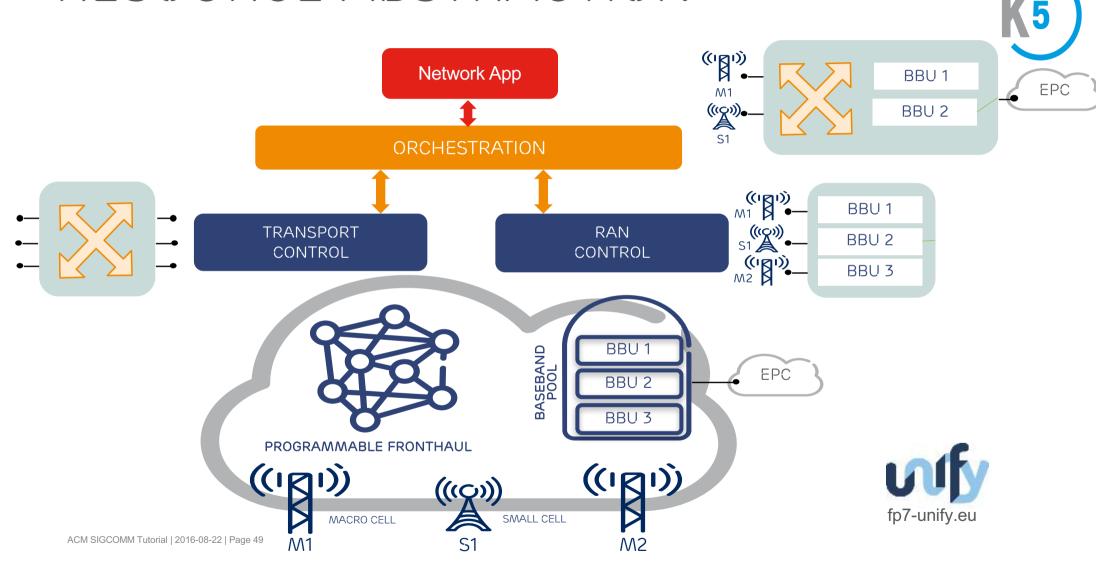


5

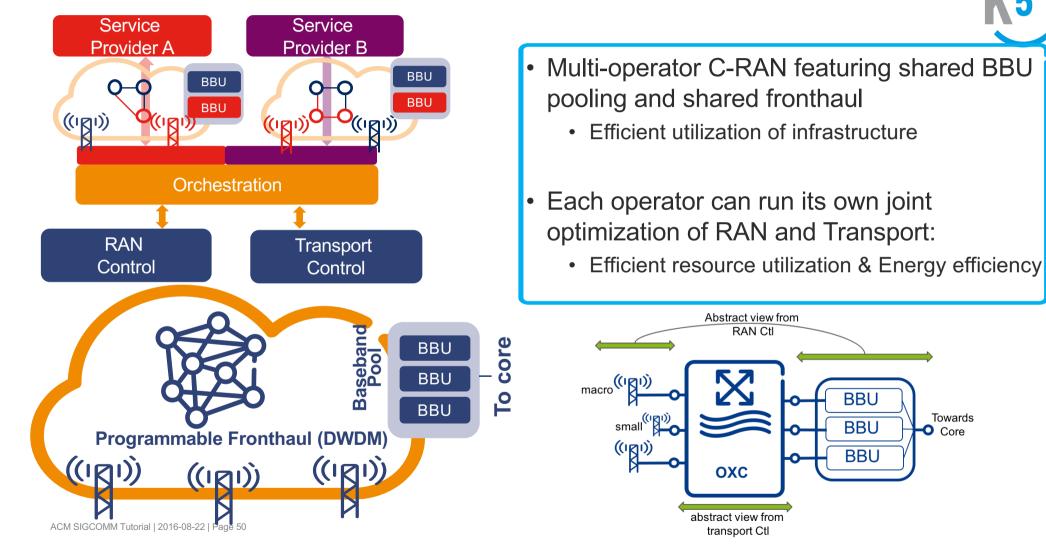

MANAGING COMPLEXITY

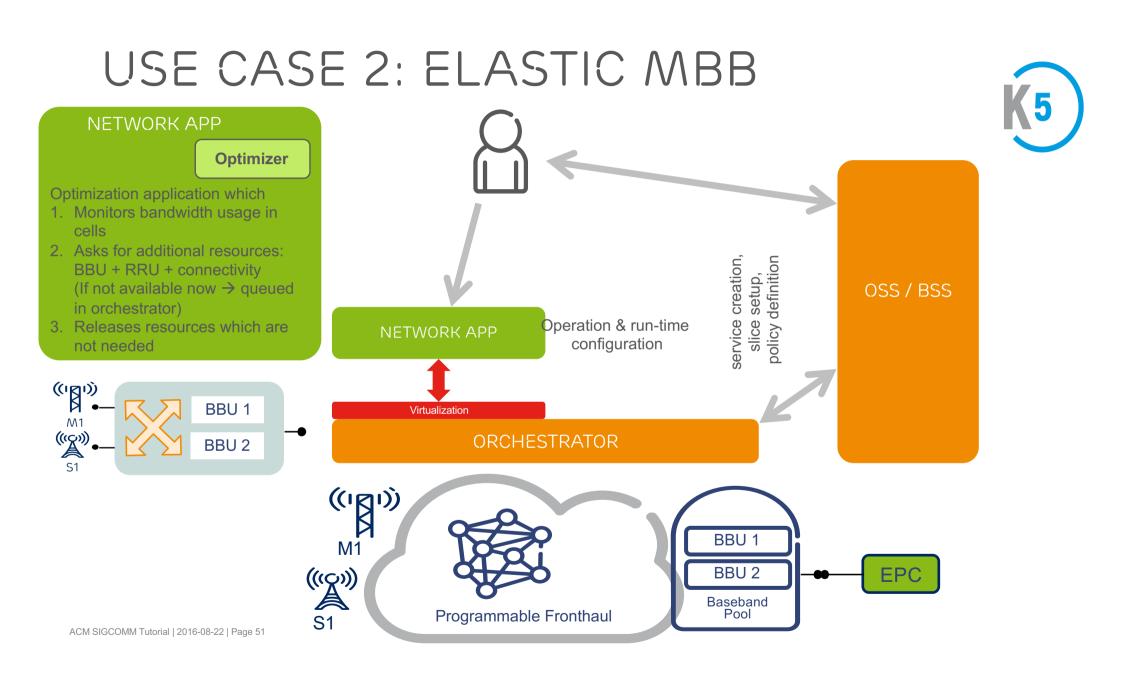
Expose just enough information to make optimal resource orchestration.

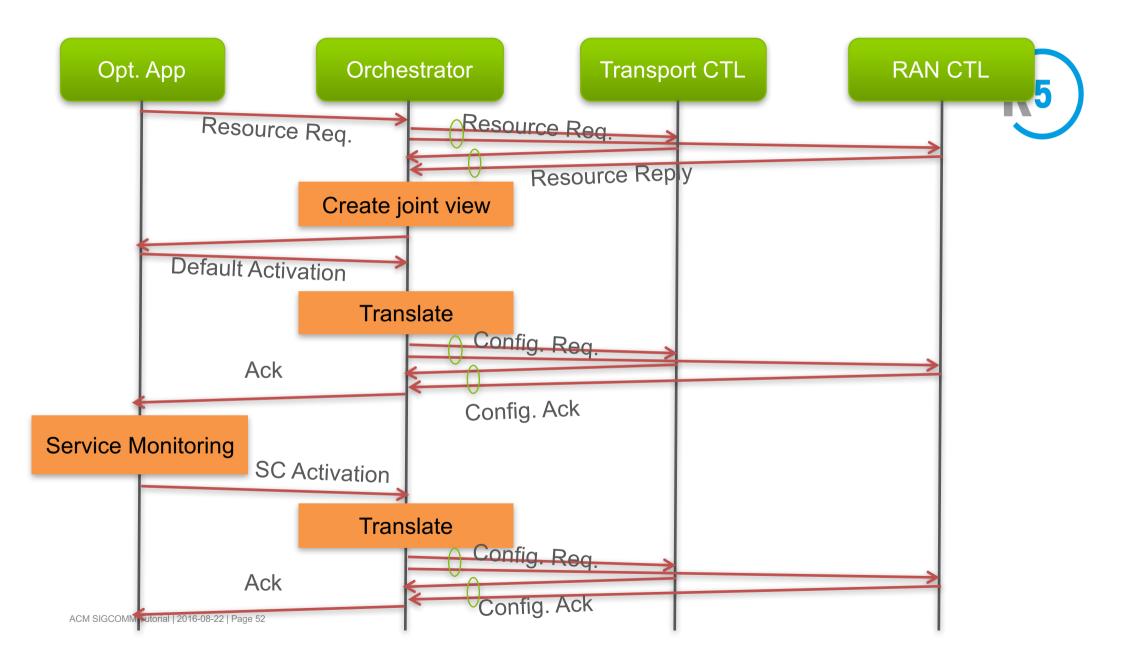
RAN-TRANSPORT ORCHESTRATION



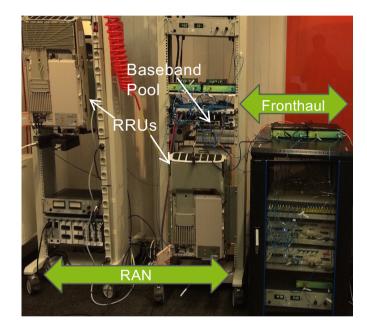
ACM SIGCOMM Tutorial | 2016-08-22 | Page 48


	Joint Optimization of RAN and Transport										
•	Elastic Mobile Broadband Service										
•	Joint RAN-Transport Slicing (Multi-operator)										
 Joint Load-balancing 											
 Energy saving 											
 Dynamic clustering 											
•	Pooling										
•	Shared fronthaul										
•	Resilience										


5


RESOURCE ABSTRACTION

USE-CASE 1:RAN-TRANSPORT SLICING



PROOF OF CONCEPT

Software Components

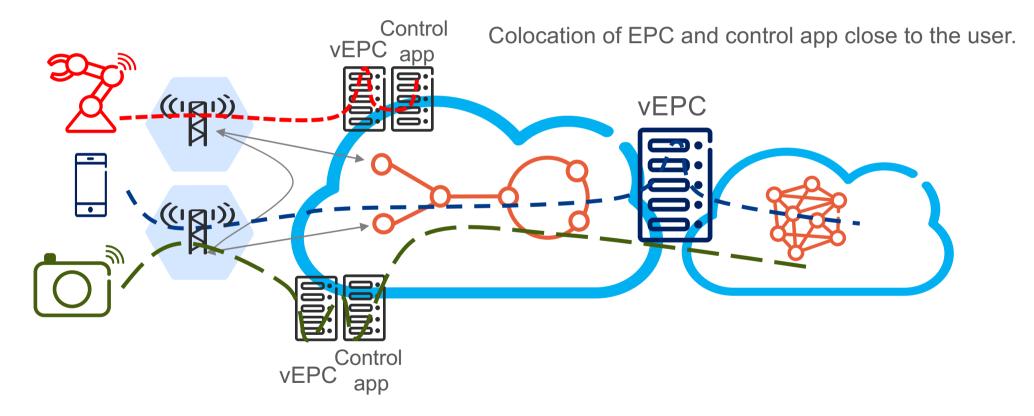
Python-based Orchestrator

- Creates unified view of RAN and Fronthaul
- Maps high-level service requests to RAN and Fronthaul resources

CLI-based RAN controller Activation & configuration of RAN Assignment of BBU resources

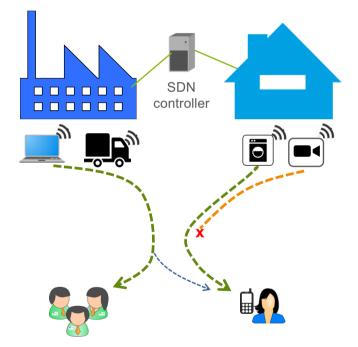
Live monitoring of RAN demand

Customized OpenDaylight


- Support for circuit switching
- Optical layer abstraction
- Optical PCE

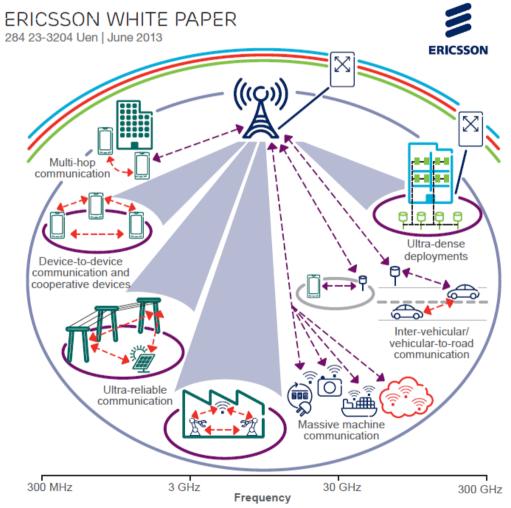
Elastic MBB in a realistic-size scenario leads to more than 30% pooling gain in terms of both radio (baseband processors) and fronthaul (optical wavelengths and transceivers) resources.

ACM SIGCOMM Tutorial | 2016-08-22 | Page 53

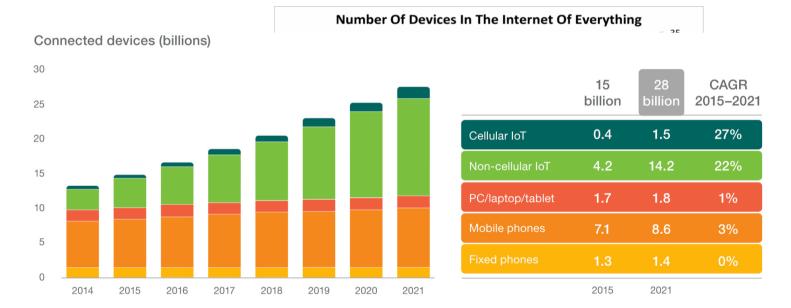

source: Multi-domain orchestration across RAN and Transport for 5G, Sigcomm 2016

FLEXIBLE PLACEMENT OF VNFS + FLEXIBLE TRAFFIC STEERING

SDN FOR WIRELESS NETWORKING


- Bringing programmability to wireless networks
 - User-centric networking: personalization of services
 - Agility
 - Privacy
 - Efficient resource utilization

LIMITATIONS OF SDN FOR WIRELESS


> Current SDN architectures

- Logically centralized control plane may be a bottleneck
 - > Scalability
 - > Administrative autonomy
 - > Network heterogeneity
 - Connectivity disruptions

SCALABILITY AND HETEROGENEITY

- > Dense deployments
- > Mobile devices
- Heterogeneity

Integrating massive devices (and data) to the network and providing new services is crucial

EMERGING APPLICATIONS (E.G., IOT) ARE "FRAGMENTED"

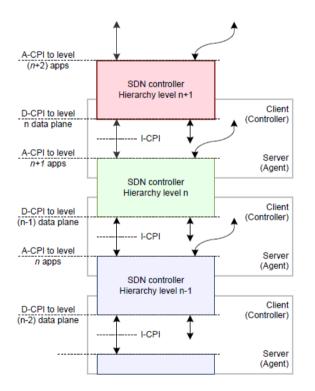
Home Automation

Personal Health Care

Fragmentation does not match SDN unified control

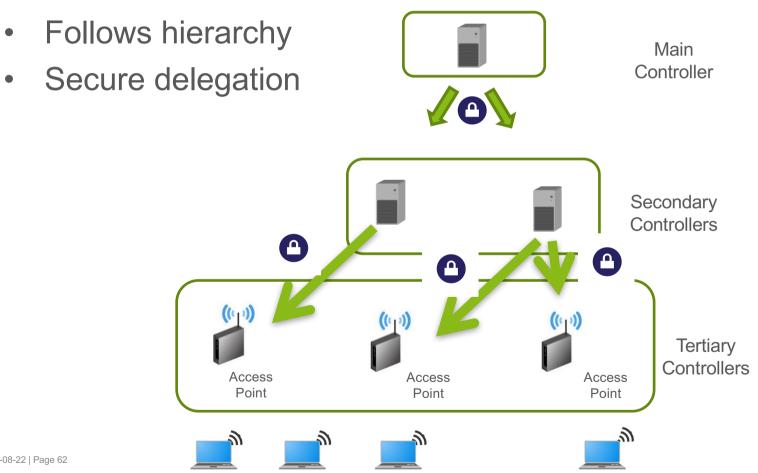
DECENTRALIZING SDN'S CONTROL PLANE

DECENTRALIZING SDN'S CONTROL PLANE

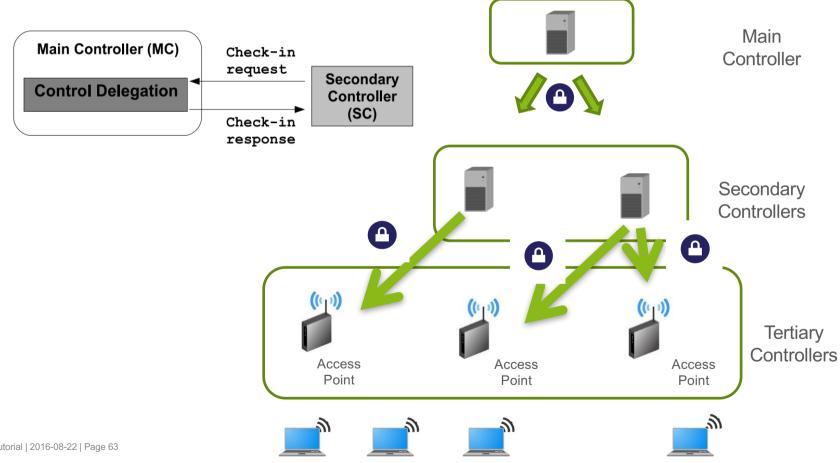

> Control hierarchy

> Control delegation

BENEFITS OF CONTROL HIERARCHY

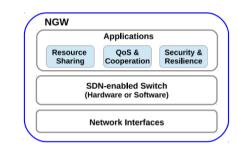

Scalability and modularity

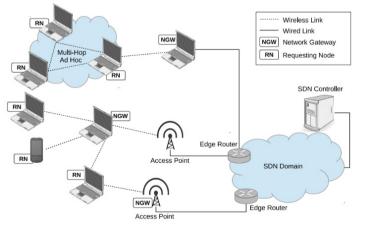
- Higher levels have greater abstraction and broader scope
- Lower levels can adjust quickly: agility (e.g., connectivity disruptions)
- >Administration autonomy
- > Security and privacy
 - Each level in a different trusted domain



Source: ONF SDN Architecture, June 2014

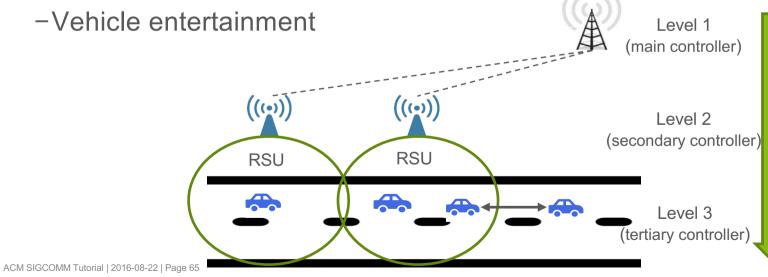
CONTROL DELEGATION




CONTROL DELEGATION

USE CASE: CAPACITY SHARING

- User provides Internet connectivity
 - Shares capacity
 - Incentives
- Becomes a Network Gateway (NGW)
 - NGW is SDN-enabled
 - Resource sharing
 - Service personalization

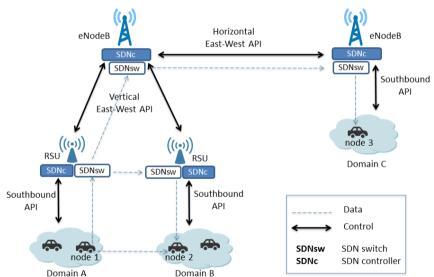


Mobile NGW can break switch-controller communication

- <u>Solution</u>:
 - Delegation of control
 - NGW also a local controller

USE CASE: SOFWARE-DEFINED ITS

- > "Vertical" east-west interfaces
- >Applications
 - -Autonomous driving
 - -Message dissemination (e.g., traffic conditions)

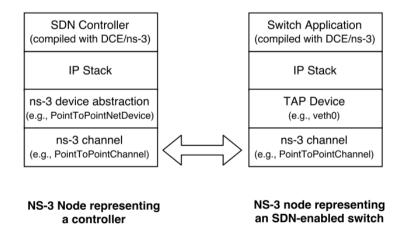

SOFWARE-DEFINED ITS ARCHITECTURE

> Communication

-Vehicle-to-vehicle

-Vehicle-to-infrastructure

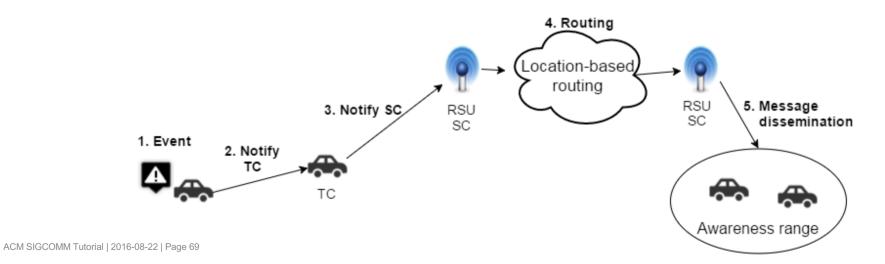
- > Resilient control plane
 - -Fault tolerance
 - -Connectivity disruption tolerance



SIMULATION PLATFORM

> NS-3 augmented with SDNs

- Execution of controllers and switches within ns-3


- Multiple instances of the same protocol implementation running within ns-3

BACKUP SLIDES

SOFTWARE-DEFINED MEASUREMENTS FOR ITS

- SD-measurements for message dissemination
 - > SDN-enabled cars send messages upon event detection
 - > OpenFlow extended via experimenter messages
- Events become flows
 - > dynamic configuration of events (agility)
 - > avoid polling

	NFV architectural layers		NFV MANO framework				Traditional management systems	
	NFVI	VNFs	VIM	VNFM	NFVO	Data repositories	OSS/BSS	EM
CloudBand	Nuage, RedHat, CloudBand	VNF Modelling (TOSCA)	CloudBand node	CloudBand Management System	CloudBand Management System	~		
CloudNFV	Active eesource	Active Contract	Infrastructure manager	OSS/BSS	~	Active Contract	~	OSS/BSS
ESO		✓	Ensemble network controller (ENC)	ESO	ESO	Database		
Experia- Sphere	Resource somain	TOSCA, USDL	Infrastructure manager	State-action service life cycle management	State-action service life cycle management	Derived operations	State-action service life cycle management	Derived operations
OpenMANO	✓	✓	Openvim		OpenMANO			
OPN			SDN Overly Controller	*	Services orchestrator			
OpenNFV	✓		HP Helion Open- Stack Carrier Grade	*	HP NFV director	HP NFV director	~	
OPNFV	✓		✓					
Planet Orchestrate				~	*			
ZOOM			✓	~	✓	Shared catalog	Order, SLA, and billing management systems	

Source: Rashid Mijumbi, Joan Serrat, Juan Luis Gorricho, Steven Latre, Marinos Charalambides, Diego Lopez. Management and Orchestration Challenges in Network Function Virtualization, IEEE Communications Magazine, Jan., 2016