
SDN: situação do mercado e
próximos movimentos

Prof. Christian Esteve Rothenberg
FEEC/UNICAMP

27 de agosto de 2014

Disclaimer/Warning

• Ack the credits for most of the content

• Wake Up! Lots of content ahead!
(especially for a 35min talk)

Agenda

SDN

• An evolving paradigm

• Understanding Different Models

• Hybrid Deployments

OpenFlow Future

• Challenges: Protocol versions and Model

• Work at ONF, industry and academia

Rethinking the “Division of Labor”
Traditional Computer Networks

Data plane:
Packet

streaming

Forward, filter, buffer, mark,
rate-limit, and measure packets

Source: Adapted from J. Rexford

Track topology changes, compute
routes, install forwarding rules

Control plane:
Distributed algorithms

Rethinking the “Division of Labor”
Traditional Computer Networks

Source: Adapted from J. Rexford

Collect measurements and
configure the equipment

Management plane:
Human time scale

Rethinking the “Division of Labor”
Traditional Computer Networks

Source: Adapted from J. Rexford

Software Defined Networking (SDN)

API to the data plane
(e.g., OpenFlow)

Logically-centralized control

Switches

Smart,
slow

Dumb,
fast

Death to the Control Plane!?

• Simpler management

– No need to “invert” control-plane operations

• Faster pace of innovation

– Less dependence on vendors and standards

• Easier interoperability

– Compatibility only in “wire” protocols?

• Simpler, cheaper equipment

– Minimal software

Source: Adapted from J. Rexford

(Promised) Implications of SDN

Separation of Control/Data Plane

• Today, routers implement both

– They forward packets

– And run the control plane software

• SDN networks

– Data plane implemented by switches
• Switches act on local forwarding state

– Control plane implemented by controllers
• All forwarding state computed by SDN platform

• This is a technical change, with broad implications
Source: Adapted from S. Shenker

Old Economic Model

Can buy HW from anyone (theoretically)

• HW becomes interchangeable,
if it supports OpenFlow

Can buy SW from anyone

• Runs on controllers,
so doesn’t need to run on switch

SDN platform sold separately from ctrl apps?

• Would require stable and open platform
interface

• Currently a debate within ONF….

• Much less lock in (we hope)

New Economic Model

Bought HW/SW from single vendor

• Closed control SW, proprietary
forwarding HW

HW deployment needs to be all
from one vendor

“Vendor lock-in”

Role of OpenFlow • Architecturally: boring

– Just a switch specification….zzzzzz

• Economically: hugely important

– Could help break HW vendor lock-in

Source: Adapted from S. Shenker

Changes the Testing Model

• Unit test hardware

– The forwarding abstraction is well specified

– Completely separate from control plane

• Use simulator to analyze large-scale control planes

– External events are input to simulation

– Can do regression testing

• Much wider testing coverage than is possible today

– Today use physical testbeds, limited in size/scope

Source: Adapted from S. Shenker

Which Then Changes Deployment…

• Before SDN, upgrades were scary and rare events

– Code was not well tested (because it was hard to test)

– And could only come from hardware vendor

• With SDN, upgrades can be easy and frequent

– Much better testing

– And the software can come from anyone

• Rate of innovation will be much greater!

– Old: innovation mainly to get customers to buy new HW

– SDN: innovation to make customers happier!

Source: Adapted from S. Shenker

One SDN to rule them all
Actually not, different reasonable models and
approaches to SDN are being pursued

One SDN controller to rule them all, with a
discovery app to find them,
One SDN controller to tell them all, on
which switchport to bind them.
In the Data Center, where the packets fly.

Source Poem: http://dovernetworks.com/?p=83

SDN Models
SDN can be considered in terms of different models:
• Yesterday’s SDN: Automation and some level or device/network

programmability using (vendor- and platform-specific) CLI commands and
APIs (for legacy management protocols and systems) on a per-device basis
to indirectly affect the network state

• Canonical/Open SDN: A Networking/Operating/System that oversees the
network data plane and hosts a number of “control programs” that implement
networking services (e.g. OpenFlow model). Split / Decoupled control plane!

• Broker SDN: An API-driven (software-driven / SDN-augmented) hybrid
approach where a broker interacts which applications to affect the network
so that apps are more effective, efficient and/or offer better user experience

• Proactive / Declarative SDN: Compiler that translates a high-level
language in which an operator defines what they want from the network and
compiles it into data plane instructions and configuration

• Overlay SDN: An approach where the network edge is programmed by an
SDN controller to manage tunnels between hypervisors and/or ToR
switches. Underlay network control plane untouched.

Yesterday´s “SDN”

Source: Chris Grundemann

Canonical / Open SDN with Network OS
e.g. the OpenFlow model

Source: Chris Grundemann

OpenFlow : Not the Only SDN Tool

Vendor APIs
• Cisco: Open Networking Environment (ONE), EEM (Tcl), Python scripts)

• Juniper: Junos XML API and SLAX (human-readable XSLT)

• Arista EOS: XMPP, Linux scripting (including Python and Perl)

• Dell Force10: Open Automation Framework (Perl, Python, NetBSD shell)

• F5: iRules (Tcl-based scripts)

Source: I. Pepelnjak

Broker / API-based SDN:
A SW-driven / SDN-augmented / Hybrid approach

Source: K. Kompella, slides-85-sdnrg-2.pdf

Broker / API-based SDN
Example: I2RS (Interface to the Routing System)

Additional SDN Function

Applications need to dynamically:

• Augment routing, based on:

• Policy

• Flow and application awareness

• Time and external changes

With knowledge of:

• Topology (active & potential)

• Network events

• Traffic measurement

• Etc.

Advanced SDN Use Cases
Programming the Routing Information Base

For example, adding static routes

Setting routing policy

Control how the FIB is built

Other router policies

Modify BGP import/export policies

Topology extraction

Pull routing information (including SRLGs)
from network

Topology management

Create virtual links by making connections in
lower layers

Service management

Request LSPs, connections, pseudowires

Bandwidth scheduling

“Set up a VPN” Source: Adrian Farrel

Broker / API-based SDN
Software-driven Networks

• More than play on words :
– some in the industry refer to SDN as software-driven networks,

as opposed to software-defined networks.

• Rather than viewing the network as being comprised of
logically centralized control planes with brainless
network devices,
– one views the world as more of a hybrid of the old and the new

• Hybrid approach
– some portion of networks operated

by a logically centralized controller,

– other parts would be run by the
more traditional distributed control plane

Control-plane component(s) Data-plane component(s)

Proactive / Declarative SDN
Model : Compiler

Source: K. Kompella, slides-85-sdnrg-2.pdf

Compiler Model: Example
Juniper Centralized Configuration Management

Source: http://opencontrail.org/the-importance-of-abstraction-the-concept-of-sdn-as-a-compiler/

Compiler Model: Example
Cisco OpFlex

Overlay SDN
Controller-Defined Edge Tunnels

Controller

Overlay SDN
Example Integration with OpenStack

Evolving SDN Ecosystem

Source: Chris Grundemann

OpenDaylight Controller Platform

Source: opendaylight.org

Hybrid Networking in SDN

Source: S. Vissicchio et al. Opportunities and Research Challenges of Hybrid Software Defined
Networks. In ACM Computer Communication Review, 44(2), April 2014.

Trade-offs of Hybrid Networking in SDN

• Tradeoff analysis suggests that the combination of centralized and
distributed paradigms can provide mutual benefits.

• Future work is needed to devise techniques and interaction mechanisms
that maximize such benefits while limiting the added complexity of the
paradigm coexistence.

• Combination of hybrid models: A wider range of tradeoffs can be
obtained by combining hybrid models together.

Source: S. Vissicchio et al., CCR 14

Comparing Models
Control-plane component(s) Data-plane component(s)

Canonical/Open SDN

Traditional

Hybrid Overlay

Compiler

Legacy

Comparing different SDN Models

Data Plane

Mgm.APIs
Distributed L2/L3

Control Plane
Southbound

Agent (e.g. OF)

Managemt
Software

Network Controller / OS

Contrl/Mgm.APIs

Southbound
Protocol (e.g. OF)

Southbound
APIs/Plugins

Management Apps Control Apps

Legacy
IP

network

Northbound APIs

Mgm.

Switch OS

Yet another model emerging:
Bare Metal SDN

Source: Rob Sherwood, Big Switch Networks

WHAT’S INSIDE A SWITCH?

COMPONENT ECOSYSTEM &
BARE METAL SDN

Bare Metal Switches:
Choice of Switch OS

Source: Rob Sherwood, Big Switch Networks

Bare Metal Switching and Programming
Blows Up the SDN Blob!

Source: Adapted from Shrijeet Mukherjee, Cumulus Networks

Programmable Control App

In-the-box

Out-of-the-box

“OpenFlow” Future
From a protocol to a model perspective

A view on ONF evolving attitude1

Early attitude in the ONF: Me! Me!
– “My feature, my feature!”, and “More flex! Optical! Wireless! …! ”

– Fully Programmable Dataplane!

– Protocol independent generic commands! (Byte offset, bit mask, etc)

– “New chips will come and it will all be good!” – But…

Growing attitude: We need this stuff to work

• Now, lots of OF1.3 capable boxes (Nov’13 plugfest)
– don’t work together that well…

– how do I code (or test) using optional features?

• Then the CAB formed (responsibility: nudge chipmakers!)
– Chip Advisory Board explained how to get chipmakers to make new

chips (== biz case)

Revolution!

Reality strikes!

Business case (still) dominates!
1 Adapted from: Curt Beckmann, Brocade, CURT’S ONF UPDATE, NFD7

Slide courtesy: Curt Beckmann, Brocade

In the Beginning…

• OpenFlow was simple

• A single rule table
• Priority, pattern, actions,

counters, timeouts

• Matching on any of 12
fields, e.g.,

• MAC addresses

• IP addresses

• Transport protocol

• Transport port numbers

Version Date # Headers

OF 1.0 Dec 2009 12

OF 1.1 Feb 2011 15

OF 1.2 Dec 2011 36

OF 1.3 Jun 2012 40

OF 1.4 Oct 2013 41

• Proliferation of header fields

• Multiple stages of heterogeneous tables

• Still not enough
(e.g., VXLAN, NVGRE, STT, …)

Over the Past Five Years…

Source: P4, http://arxiv.org/abs/1312.1719

Device / OF Option Alignment

Source: Curt Beckmann, Brocade

Mapping low level instructions when
pipelines differ

00 Count  16
01 Prod  0
02 Bit  1

00 Prod  RegX * RegY

05 Bit <<= 1
06 RegY <<= 1
07 Count -= 1

A smart compiler can see it’s a “multiply”03 If (RegX & Bit == 0) goto 05
04 Prod += RegY

08 If (Count != 0) goto 03
[Or: If (Bit != 0) or (RegY != 0)]

As long as it can see the complete set of code

But if the code is in scattered in time?

If we ask the compiler to do the translation
piecemeal, it becomes impossible

Table0

Table1

Table2

Table3

Similarly, mapping multi-table OF to legacy ASICs
is tricky or worse… if we must do it all at run-time

But we actually don’t have to do it ALL at run-time

41Source: Curt Beckmann, Interoperable OpenFlow with NDMs and TTPs

Future SDN Switches

• Where does it stop?!?
• Simplicity would be nice, but it just isn’t practical

• Configurable packet parser
• Not tied to a specific header format

• Flexible match+action tables
• Multiple tables (in series and/or parallel)
• Able to match on all defined fields

• General packet-processing primitives
• Copy, add, remove, and modify
• For both header fields and meta-data

42
Source: P4, http://arxiv.org/abs/1312.1719

“Classic” OpenFlow (1.x)

43

Target Switch

SDN Control Plane

Installing and
querying rules

Source: P4, http://arxiv.org/abs/1312.1719

“OpenFlow 2.0”

44

Target Switch

SDN Control Plane

Populating:
Installing and
querying rules

Compiler

Configuring:
Parser, tables,

and control flow

Parser & Table
Configuration

Rule
Translator

Source: P4, http://arxiv.org/abs/1312.1719

Three Goals

1. Protocol independence
• Configure a packet parser
• Define a set of typed match+action tables

2. Target independence
• Program without knowledge of switch details
• Rely on compiler to configure the target switch

3. Reconfigurability
• Change parsing and processing in the field

45

Source: P4, http://arxiv.org/abs/1312.1719

P4 Language
Programming Protocol-Independent Packet Processing

P4 Compiler

• Parser
• Programmable parser: translate to state machine
• Fixed parser: verify the description is consistent

• Control program
• Target-independent: table graph of dependencies
• Target-dependent: mapping to switch resources

• Rule translation
• Verify that rules agree with the (logical) table types
• Translate the rules to the physical tables

46

Source: Programming Protocol-Independent Packet Processors,
http://arxiv.org/abs/1312.1719

Ongoing efforts towards an alternate OF+

• OpenFlow 1.x
• Vendor-agnostic API. But, only for fixed-function switches

• An alternate future?
• Protocol independence
• Target independence
• Reconfigurability in the field

• P4 language: a straw-man proposal
• To trigger discussion and debate. Much, much more work to do!

• Related Work
• Abstract forwarding model for OpenFlow
• Kangaroo programmable parser
• NOSIX portability layer for OpenFlow
• Protocol-oblivious forwarding (POF) by Huawei
• OpFlex by Cisco ?
• Table Type Patterns in ONF FAWG

47

ONF FAWG work on Table Type Patterns (TTP)
Defining Datapath Models in advance

• “Datapath Model” must be detailed, unambiguous
• Must spell out matches and actions allowed in each table

• So no “pipeline surprises” at run time

• Apps will have different needs…no single DP model will work

• So, a range of Datapath Models
• Powerful platforms might support more than one model

• Some apps may work on more than one model

• Models need not be specified by ONF, others can do it too

• App and switch must agree on same model
• A multi-vendor ecosystem means sharing  common language

• “Agree” means synching up… “negotiation”

• “Negotiable Datapath Model”  NDM

• Must evolve over time as OF evolves Source: ONF FAWG

How TTPs Can Help

• TTPs are “Table Type Patterns” that market participants can define
• TTPs are 1st gen of “Negotiable Datapath Models” (NDMs)

• TTPs = “pre-baked pipelines” specific switch funcs in OF1.x terms
• With TTPs, pipelines can be mapped before run-time

• Switches, controllers become deterministic (as they need to be)
• Once TTP is agreed, Controller uses only TTP messages, Switch supports all TTP messages,

All messages are valid OF1.x messages

• TTP Examples:
• “VID Mapping L2 Switch”, “VXLAN Gateway”, “NVGRE Gateway”, “v4 Router

w Ingress ACL”, “v6 Router w Egress ACL”, “MPLS Edge & Core Router”

• TTPs help sort out interoperability
• Product sheets list supported TTPs, clarifies what works with what

Source: ONF FAWG

TTP “Lifecycle”`

Source: ONF FAWG

TTP Benefits

• Ease of development within a context of diversity

• Done such that interoperability is deterministic

• Interoperability visible to market participants

• No logjams required by “standardized profiles”

• Framework is for products that are “TTP aware”
• Key for determinism when multiple flow tables needed
• But TTPs also turned out quite useful for single tables!

• TTPs can serve as precise test profiles

• Can resolve the “optional feature” challenge

• Visible to market participants

Source: ONF FAWG

SDN asks (at least) three major
questions

Where the control plane resides
“Distributed vs Centralized” ?

How does the Control Plane talk
to the Data Plane ?

How are Control and
Data Planes programmed ?

Source: T. Nadeu, slides-85-sdnrg-5.pptx

SDN asks (at least) three major questions

Where the control plane resides
“Distributed vs Centralized” ?

• What state belongs in distributed protocols?
• What state must stay local to switches?
• What state should be centralized?

•What are the effects of each on:
- state synchronization overhead
- total control plane overhead
- system stability and resiliency
- efficiency in resource use
- control loop tightness

Source: E. Crabbe, slides-85-sdnrg-7.pdf

1

SDN asks (at least) three major questions

• Prop. IPC
• OpenFlow (with or w/extensions)
• Open Source south-bound protocols
• Via SDN controller broker and south-bound plug-ins
• Other standardized protocols

•What are the effects of each on:
- Interoperability, Evolvability, Performance
- Vendor Lock-in

How does the Control Plane talk
to the Data Plane ? 2

SDN asks (at least) three major questions

• Levels of Abstraction
• Open APIs
• Standardized Protocols

•What are the effects of each on:
- Data plane flexibility
- Integration with legacy
- Interoperability (CP / DP)
- Vendor lock-in

Source: E. Crabbe, slides-85-sdnrg-7.pdf

How are Control and
Data Planes programmed ? 3

Concluding thoughts on SDN

• Remember: SDN is not a protocol (OpenFlow yes);
– SDN is an operational and programming architecture.

• SDN starts a new dialogue about network programmability,
control models, the modernization of application interfaces
to the network, and true openness around these things.

• From device-centric HW-constrained networking to
network-wide service-oriented SW-defined networking
– SDN is a new approach to the current world of networking,

but it is still networking.

• Vendor Lock-in : It is about features, be it SW or HW

• Cost discussion : May be shifted from HW to SW / services

Further reading: “Software-Defined Networking: A Comprehensive Survey”
http://arxiv.org/abs/1406.0440

Contributions welcome:
https://github.com/SDN-Survey/latex/wiki

Obrigado!
(mais)

Perguntas?

BACKUP

SDN: a Fundamental Step Forward

• or just a new whip to beat vendors with?

What makes SDN attractive?

• The idea that a network is more than the sum of its parts
– I.e., take a network-wide view rather than a box-centric view

• The idea that creating network services can be a science
rather than a set of hacks on hacks on hacks
– Especially hacks that vary by box, by vendor and by OS version

• The idea that there should be a discipline and
methodology to service correctness
– Rather than testing (and more testing), declaring victory, only to

fail in the real world because of some unanticipated interaction

Source: K. Kompella, slides-85-sdnrg-2.pdf

SDN is a real step

1. if SDN gives us an abstraction of the network

2. if, through this abstraction, we have a means of reasoning
about the network and network services

3. if SDN offers a means of verifying correct operation of the
network or of a service

4. if SDN offers a means of predicting service interaction

5. Finally, if SDN offers a means of setting (conceptual)
asserts by which we can get early warning that something
is wrong

Source: K. Kompella, slides-85-sdnrg-2.pdf

The IRS Architecture

Data Plane
FIB

RIBs and RIB ManagerPolicy DB

Routing and
Signaling
Protocols

Topology DBOAM, Events
and

Measurement

IRS Agent

IRS Client IRS Client

Router

Server

ApplicationApplication

Application

IRS Protocol &
Data Encoding

Source: Adrian Farrel

OpenFLow
Data

Center

SDN
Controller4-ALTO 3-SDN orchestrator

Applications (Internet, CDN, cloud…)

5-OAM Handler

1- TED 6-VNTM 2-PCE

7-Provisioning Manager

OpenFlow
MAN

Domain

IP/MP
LS

core

OpenFlow
Optical
Domain

OPENFLOW
OPENFLOW

GMPLS
Optical

Domains

NETCONF

MPLS
MAN

PCEP OPENFLOW CLI

Most of these building
blocks are still on

definition and
standardization process

SDN controller based on standard building blocks

E2E networks might be pure OpenFlow based one day,
but the migration process will take some time

Application-Based Network Operation

• SDN tools provide high-function, but low granularity
• There is a need to coordinate SDN operation to

provide service-level features
• Some components already exist or are proposed

– Orchestrators
– OpenFlow Controllers
– Routing protocols
– Config daemons
– IRS Client
– Virtual Network Topology Manager

• Need a wider architecture to pull the tools together
– A framework in which the SDN components operate

Source: Adrian Farrel

