s

SDN: situacao do mercado e
proximos movimentos

Prof. Christian Esteve Rothenberg
FEEC/UNICAMP

27 de agosto de 2014



Disclaimer/Warning

 Ack the credits for most of the content

» Wake Up! Lots of content ahead!
(especially for a 35min talk)



Agenda

SDN

* An evolving paradigm
* Understanding Different Models
* Hybrid Deployments

OpenFlow Future
« Challenges: Protocol versions and Model
 Work at ONF, industry and academia



Rethinking the “Division of Labor”
Traditional Computer Networks

Data plane; "
Packet
streaming

Forward, filter, buffer, mark,
rate-limit, and measure packets

Source: Adapted from J. Rexford



Rethinking the “Division of Labor”
Traditional Computer Networks

Control plane:
Distributed algorlthms

—
—
—
—

Track topology changes, compute
routes, install forwarding rules

Source: Adapted from J. Rexford



Rethinking the “Division of Labor”

Management plane:
Human time scale

Collect measurements and
configure the equipment

Source: Adapted from J. Rexford



Software Defined Networking (SDN)

Logically-centralized control




Death to the Control Plane!?

Simpler management

— No need to “invert” control-plane operations

Faster pace of innovation

— Less dependence on vendors and standards

Easier interoperability

— Compatibility only in “wire” protocols?

=

Simpler, cheaper equipment

— Minimal software

Source: Adapted from J. Rexford



(Promised) Implications of SDN

Separation of Control/Data Plane

* Today, routers implement both
— They forward packets
— And run the control plane software

e SDN networks

— Data plane implemented by switches
* Switches act on local forwarding state

— Control plane implemented by controllers
* All forwarding state computed by SDN platform

* This is a technical change, with broad implications
Source: Adapted from S. Shenker



Old Economic Model New Economic Model

Bought HW/SW from single vendor  Can buy HW from anyone (theoretically)

* Closed control SW, proprietary e HW becomes interchangeable,
forwarding HW if it supports OpenFlow

Can buy SW from anyone
HW deployment needs to be all

* Runs on controllers,
from one vendor

so doesn’t need to run on switch
: ?
“endor lock-in” SDN platform sold separately from ctrl apps:

 Would require stable and open platform
interface

* Currently a debate within ONF....
* Much less lock in (we hope)

Role of OpenFlow « Architecturally: boring
— Just a switch specification....zzzzzz

« Economically: hugely important
— Could help break HW vendor lock-in

Source: Adapted from S. Shenker



Changes the Testing Model

* Unit test hardware
— The forwarding abstraction is well specified
— Completely separate from control plane

* Use simulator to analyze large-scale control planes
— External events are input to simulation
— Can do regression testing

 Much wider testing coverage than is possible today

— Today use physical testbeds, limited in size/scope

Source: Adapted from S. Shenker



Which Then Changes Deployment...

 Before SDN, upgrades were scary and rare events
— Code was not well tested (because it was hard to test)
— And could only come from hardware vendor

 With SDN, upgrades can be easy and frequent
— Much better testing
— And the software can come from anyone

e Rate of innovation will be much greater!
— Old: innovation mainly to get customers to buy new HW
— SDN: innovation to make customers happier!

Source: Adapted from S. Shenker



One SDN controller to rule them all, with a
discovery app to find them,

One SDN controller to tell them all, on
which switchport to bind them.

In the Data Center, where the packets fly.

One SDN to rule them all

Actually not, different reasonable models and
approaches to SDN are being pursued

Source Poem: http://dovernetworks.com/?p=83



SDN can be considered in terms of different models:

SDN Models

Yesterday’s SDN: Automation and some level or device/network
programmability using (vendor- and platform-specific) CLI commands and
APIs (for legacy management protocols and systems) on a per-device basis
to indirectly affect the network state

Canonical/Open SDN: A Networking/Operating/System that oversees the
network data plane and hosts a number of “control programs” that implement
networking services (e.g. OpenFlow model). Split / Decoupled control plane!

Broker SDN: An API-driven (software-driven / SDN-augmented) hybrid
approach where a broker interacts which applications to affect the network
so that apps are more effective, efficient and/or offer better user experience

Proactive / Declarative SDN: Compiler that translates a high-level
language in which an operator defines what they want from the network and
compiles it into data plane instructions and configuration

Overlay SDN: An approach where the network edge is programmed by an
SDN controller to manage tunnels between hypervisors and/or ToR
switches. Underlay network control plane untouched.



Yesterday's “SDN”

Ordering | Billing Svst |4 Customer gﬁsinsits
Systems HINg Systems Portals rpp ,
Systems
A F I3 J J

- otwo emer Operations
0 .n p— anageme anageme SUPPOIT
f - | ‘ Systems
Network
oute O Devices

Source: Chris Grundemann



Canonical / Open SDN with Network OS
e.g. the OpenFlow model

Ordering | Customer

Billing Systems |

Systems Portals

Application
Layer

Provisioning Networked

Systems . Applications I

* OpenFlow Northbound APl

Network
Control Layer

" OpenFlow —
D - Network
OpenFlow OpenFlow OpenFlow Device/Data
| Switch | Switch | Switch (e

Source: Chris Grundemann




OpenFlow : Not the Only SDN Tool

OpenFlow (ONF) FIB/TCAM manipulation
NETCONF (IETF) Configuration management
OF-Config OpenFlow switch configuration management (YANG schema)

Internet Routing System  Routing table interaction/manipulation
(IRS, IETF non-WG)

Vendor APIs

Cisco: Open Networking Environment (ONE), EEM (Tcl), Python scripts)
Juniper: Junos XML APl and SLAX (human-readable XSLT)

Arista EOS: XMPP, Linux scripting (including Python and Perl)

Dell Force10: Open Automation Framework (Perl, Python, NetBSD shell)
F5: iRules (Tcl-based scripts)

Source: I. Pepelnjak



Broker / APl-based SDN:
A SW-driven /| SDN-augmented / Hybrid approach

appl app2 app3 N app-n

Broker

Protocols

Source: K. Kompella, slides-85-sdnrg-2.pdf




Applications n¢

With knowledg

Broker / APl-based SDN
Example: I2RS (Interface to the Routing System)

Additional SDN Function

Augment ro
Policy
Flow and aj
Time and e;

Topology (a
Network ev
Traffic meas
Etc.

Network
Application

Feedback Loop:
Control & Information

Advanced SDN Use Cases

Programming the Routing Information Base
For example, adding static routes

Setting routing policy

Control how the FIB is built

Other router policies

Modify BGP import/export policies

| Topology extraction

Pull routing informatio
from network

Topology management

Create virtual links by
lower layers

Service management

n (including SRLGs)

making connections ir

Request LSPs, connections, pseudowires

Bandwidth scheduling
“Set up a VPN”

Source: Adrian Farrel



Broker / APl-based SDN
Software-driven Networks

More than play on words :

— some in the industry refer to SDN as software-driven networks,
as opposed to software-defined networks.

Rather than viewing the network as being comprised of

logically centralized control planes with brainless

network devices,

— one views the world as more of a hybrid of the old and the new

Hybrid approach ! ----- >’
— some portion of networks operated .
by a logically centralized controller, -»: “““““ " "

— other parts would be run by the $ o "
more traditional distributed control plane ’

- Control-plane component(s) Data-plane component(s)



Proactive / Declarative SDN
Model : Compiler

Declarative specification

] \ of network requirements
y

Parsing and initial
processing of specification

| | Compile,
translate to
. back end

Data Data ‘ Data Data | Data | Data ‘
Plane | Plane Plane | Plane | Plane | Plane |

Source: K. Kompella, slides-85-sdnrg-2.pdf



Compiler Model: Example
Juniper Centralized Configuration Management

North Bound Interface (REST)

High Level (Service) Data Model

Em———
. Configuration State Operational State
e N
o~ ol =y

_&Ls-ﬁv [ion Engine

Low LeVel [Technology) Data Madel

= Configuration State Operational State

Jajjo.nuo) Ngs [leLuO)

South Bound Protocols

South Bound South Bound South Bound South Bound
Protocol 1 Protocol 2 Protocol 3 Protocol N

Source: http://opencontrail.org/the-importance-of-abstraction-the-concept-of-sdn-as-a-compiler/



Compiler Model: Example
Cisco OpFlex

*| want [hungs.
to look like x"
m
P
e ]
e -
—

[: : ) Applicable

- changes made

With Scale

Model remains intact

Systemn scales linearly with
object-based model

Ohiects are reznonzihle for

5
I
@
=
=
O
o

Faults

Elements

VLAMNS,
I 1 Policy inatartisied or
wirdiigd in binmd of
Rardware configuration




Overlay SDN
Controller-Defined Edge Tunnels

. Underlay IP
Network

Controller

. Overlay Virtual
Network

gl

Hypervisor

i s

Hypervisor Hypervisor



Overlay SDN
Example Integration with OpenStack

API Clients Quantum Server

Internal plugin

Uniform API Quantum Lo
CoMmmunication.

forall clients API
Tenant _ Create-net
_ Scripts
Horizon 1
: eseaor Nova Compute j
MNova

Interfaces from a service

API -~ like Nova plug into a
Extensions J6 switch manages by the
| Quantum plugin.

APl 4 Plugin = Quantum Service



Evolving SDN Ecosystem

Networked Ordering & Customer L
Applications | Prc-visiongin Portals Appllcatlon
| - — , Layer

|

Orchestration
Layer

]‘f'

R — \J S ‘
Controllers — m

OF IRS " Ctrl AP SNMP/TR69

Policy API

Network
Control Layer

OpenFlow : Network
ST ’ IRS Router | Other Devices | Device Layer

Source: Chris Grundemann



OpenDaylight Controller Platform

Applications

Javanativefunction calls orRPC APl — REST/HTTF

Presentation Layer

Metwark

Topology
ME {L__h_“

Tunnels

Modes Links |

Network Elements ‘

Source: opendaylight.org



Hybrid Networking in SDN

VN

7 // : - “ P
(b) Service-based.

SDN

v
CN

7. |
F\‘ Lo

(c¢) Class-based. (d) Integrated.

Source: S. Vissicchio et al. Opportunities and Research Challenges of Hybrid Software Defined
Networks. In ACM Computer Communication Review, 44(2), April 2014.




Trade-offs of Hybrid Networking in SDN

CN | TB hSDN | SB hSDN | CB hSDN | Integrated | SDN
non IP-based hard, complex | programmable programmable programmable very hard (e.g., | programmable
forwarding configuration in SDN zones for SDN services | for SDN traffic BGP FlowSpec)
traffic steering, | hard (e.g., box | programmable programmable programmable programmable programmable
middleboxing replication) in SDN zones for SDN services | for SDN traffic by the controller

scalability and

by CN protocols

by CN protocols

by CN protocols

by CN protocols

possibly, by CN

SDN

controller

robustness in CN zones for CN services for CN traffic protocols concern
required custom| none controllers of | controllers for | controllers for | SDN controller SDN controller
software SDN zones SDN services SDN flows

upgrade costs none partial, progres- | partial, progres- | partial, progres- | none global

(hw, sw, expert) sive renovation sive renovation sive renovation renovation
paradigm none control-plane data-plane control-plane control-plane none
interaction collaboration visibility coordination integration

« Tradeoff analysis suggests that the combination of centralized and
distributed paradigms can provide mutual benefits.

« Future work is needed to devise techniques and interaction mechanisms
that maximize such benefits while limiting the added complexity of the
paradigm coexistence.

« Combination of hybrid models: A wider range of tradeoffs can be
obtained by combining hybrid models together.

Source: S. Vissicchio et al., CCR 14




Traditional

Comparing Models

- Control-plane component(s) - Data-plane component(s)

-

/CanonicallOpen SD[\N




Comparing different SDN Models

 ManagementApps | ([EEEPEE

Network Controller / OS

Southbound Southbound
Protocol (e.g. OF)
e D [ A
/ Legacy \

| “i"ii 'ili i Legacy
IP

network

Managemt
Software Data Plane
N\ V- =N v




Yet another model emerging:
Bare Metal SDN

WHAT’S INSIDE A SWITCH? '; 4a
Application ;‘wwf.}c&
Network OS !g !

Hardware Driver

Box

Silicon

Source: Rob Sherwood, Big Switch Networks



COMPONENT ECOSYSTEM &
BARE METAL SDN

Application

Network OS

Driver

Box

Silicon

Single
Vendor
Closed
Product

Traditional
Networking

(past)

Single
Vendor
Closed
Product

ODM Box

ODM Chip

Traditional
Networking
(today)

SDN
Controller
Vendor

OpenFlow

SDN
Hardware
Vendor

OpenFlow
Model

Traditional
Network
Stack/0S

Vendor

ODM Box

ODM Chip

Bare Metal
Vision



Bare Metal Switches:
Choice of Switch OS

‘‘‘‘‘

‘‘‘‘‘‘

Factory Default
+
Hardware Diagnostics

BIG SWITCH
SDN CONTROLLERS

Centralized | Control Plane

SWITCH LIGHT OS
ONIEBOOTLOADER  SSNZTN

i : OTHER
: i SWITCH 0S
: TRADITIONAL '
(PSWITCHOS || ‘oo
: ' BROADCOM
o OF-DPA
- “'_‘ ...............................................................
. _a’

ﬁﬁﬁﬁﬁ

BROADCOM ASIC

Choice of Switch OS

Alternatives

Big Switch SDN Fabric Deployment Mode

Source: Rob Sherwood, Big Switch Networks



Bare Metal Switching and Programming

e Hybrid N
-. .- 4—‘_ Out-of-the-box

Programmable Control App

.’*.,.#— In-the-box
operating system

hardware

E ] operating system

.
Multi Vendor

Single Vendor

Blob Ecosystem

Source: Adapted from Shrijeet Mukherjee, Cumulus Networks



"OpenFlow” Future

From a protocol to a model perspective



A view on ONF evolving attitude’

Early attitude in the ONF: Me! Me! Revolution!
— “My feature, my feature!”, and “More flex! Optical! Wireless! ...!”
— Fully Programmable Dataplane!
— Protocol independent generic commands! (Byte offset, bit mask, etc)
— “New chips will come and it will all be good!” — But...

Growing attitude: We need this stuff to work
* Now, lots of OF1.3 capable boxes (Nov’'13 plugfest)

— don’t work together that well... Reality strikes!
— how do | code (or test) using optional features?

 Then the CAB formed (responsibility: nudge chipmakers!)

— Chip Advisory Board explained how to get chipmakers to make new

chips (== biz case) Business case (still) dominates!
1 Adapted from: Curt Beckmann, Brocade, CURT'S ONF UPDATE, NFD7



AEEEEEEENEN,

Hybrid WG,
Config WG,
Mkt Ed WG & ’ EPMODS

Test WG Py )
all get set u

ONF Google shares ideas Future DG submits ONF approves ArchDT/WG, “base+ext” FAWG ends draft
founded, with ONF TAG; ONF charter for FPMODS FAWG, re-instates: specs, End Hybrid WG doc fgr review
Ext WG responds with the WG “working code Config WG adds OAM NevaWMDG,
“OpenFlow Future” DG as ONF slows 1.4 before spec” poli Add MigWG, OTWGs

1

2 plugfest 3 plug{ [4™ plug
1.0 onl 10&12 Adds 1.3 A1.3

OF1.1 released OF1.2 released OF1.3 released First test lab approved, | |OF1.4 working code
no working code no working code no working code pilot certification starts | funder development| ™

Slide courtesy: Curt Beckmann, Brocade



In the Beginning...  Over the Past Five Years...

« OpenFlow was simple  Proliferation of header fields

+ Asingle rule table | Version | __Date | #Headers _

« Priority, pattern, actions, OF 1.0 Dec 2009 12
counters, timeouts OF1.1 Feb 2011 15

* Matching on any of 12 OF 1.2 Dec 2011 36
fields, e.g., OF 1.3 Jun 2012 40

* MAC addresses
e |P addresses

* Transport protocol _
. Transport port numbers * Multiple stages of heterogeneous tables

OF 1.4 Oct 2013 41

« Still not enough
(e.g., VXLAN, NVGRE, STT, ...)

Source: P4, http://arxiv.org/abs/1312.1719




Device / OF Option Alignment

OFS1.0

OFS1.0+ext “Depends” on
the extension!
Some products

Single Not too hard,
Table better func,
OFS1.3 some prods in

development
Multi-Table  Very hard?
OFS1.3

Should work, but

still depends.
Some products

Not too hard,

better func, some

prods in dev

Very hard?

Doable, better
functionality,
products?

(See below)

Doable, offers
very flexible
DP forwarding

Source: Curt Beckmann, Brocade

Doable, better
functionality,
OpenVSwitch

(See below)

Doable, offers
very flexible
DP forwarding



Table0 00
01
02
03
04
Table1 05
06
07

Table?2 08

Count € 16 » 00 Prod ¢ RegX * RegY
Prod < 0O

Bit < 1

If (RegX & Bit == 0) goto 05 A smart compiler can see it's a “multiply”
Prod += RegY As long as it can see the complete set of code
Bit <<= 1

RegY <<=1 But if the code is in scattered in time?

Count -= 1 If we ask the compiler to do the translation

If (Count != 0) goto 03 piecemeal, it becomes impossible

[Or: If (Bit!=0) or (RegY !=0) ]

Table3

Similarly, mapping multi-table OF to legacy ASICs
is tricky or worse... if we must do it all at run-time

But we actually don’t have to do it ALL at run-time

Source: Curt Beckmann, Interoperable OpenFlow with NDMs and TTPs 41



Future SDN Switches

* Where does it stop?!?
 Simplicity would be nice, but it just isn’t practical

* Configurable packet parser
* Not tied to a specific header format

* Flexible match+action tables
e Multiple tables (in series and/or parallel)
* Able to match on all defined fields

* General packet-processing primitives
* Copy, add, remove, and modify
* For both header fields and meta-data

Source: P4, http://arxiv.org/abs/1312.1719




“Classic” OpenFlow (1.x)

SDN Control Plane

Installing and
guerying rules

Target Switch

Source: P4, http://arxiv.org/abs/1312.1719

43



“OpenfFlow 2.0”

SDN Control Plane

Configuring: Populating:
Parser, tables, Installing and
and control flow querying rules
. Parser & Table Rule
COmpIIer Configuration - Translator

|

Target Switch

Source: P4, http://arxiv.org/abs/1312.1719

44



Three Goals

1. Protocol independence
* Configure a packet parser
* Define a set of typed match+action tables

2. Target independence
* Program without knowledge of switch details
* Rely on compiler to configure the target switch

3. Reconfigurability
* Change parsing and processing in the field

Source: P4, http://arxiv.org/abs/1312.1719




P4 Language

Programming Protocol-Independent Packet Processing

P4 Compiler

* Parser
* Programmable parser: translate to state machine
* Fixed parser: verify the description is consistent

* Control program
* Target-independent: table graph of dependencies
* Target-dependent: mapping to switch resources

* Rule translation

* \Verify that rules agree with the (logical) table types
* Translate the rules to the physical tables

Source: Programming Protocol-Independent Packet Processors,
http://arxiv.org/abs/1312.1719




Ongoing efforts towards an alternate OF+

* OpenFlow 1.x
* Vendor-agnostic API. But, only for fixed-function switches

* An alternate future?
* Protocol independence
e Target independence
* Reconfigurability in the field

* P4 [anguage: a straw-man proposal
* To trigger discussion and debate. Much, much more work to do!

e Related Work

* Abstract forwarding model for OpenFlow

* Kangaroo programmable parser

* NOSIX portability layer for OpenFlow

* Protocol-oblivious forwarding (POF) by Huawei
* OpFlex by Cisco ?

* Table Type Patterns in ONF FAWG

47



ONF FAWG work on Table Type Patterns (TTP)
Defining Datapath Models in advance

* “Datapath Model” must be detailed, unambiguous

* Must spell out matches and actions allowed in each table
* So no “pipeline surprises” at run time

* Apps will have different needs...no single DP model will work

* So, a range of Datapath Models
* Powerful platforms might support more than one model
* Some apps may work on more than one model
* Models need not be specified by ONF, others can do it too

* App and switch must agree on same model
* A multi-vendor ecosystem means sharing 2 common language
* “Agree” means synching up... “negotiation”
* “Negotiable Datapath Model” > NDM
* Must evolve over time as OF evolves Source: ONF FAWG



How TTPs Can Help

* TTPs are “Table Type Patterns” that market participants can define
* TTPs are 1st gen of “Negotiable Datapath Models” (NDMs)

* TTPs = “pre-baked pipelines” specific switch funcs in OF1.x terms
* With TTPs, pipelines can be mapped before run-time

» Switches, controllers become deterministic (as they need to be)

* Once TTP is agreed, Controller uses only TTP messages, Switch supports all TTP messages,
All messages are valid OF1.x messages

* TTP Examples:

* “VID Mapping L2 Switch”, “VXLAN Gateway”, “NVGRE Gateway”, “v4 Router
w Ingress ACL”, “v6 Router w Egress ACL”, “MPLS Edge & Core Router”

* TTPs help sort out interoperability
* Product sheets list supported TTPs, clarifies what works with what

Source: ONF FAWG



TTP “Lifecycle”

@Something promptsa new TTP @Describe TTP @Assign an|D @Share the TTP
é . a : F New
FAWG sees
A common case %
I:> E [ :) TTP

App provider has full i s @ E

)'_—‘\‘I

S specific element =5 ) ) . ) ) Share the ID and TTP
solution idea e Switch vendor shows Describe switch behavior as Assign a unique ID (URL or description with both sides
key capabilities subset of OF1.3 model

IANA value) to TTP (publicly, or under NDA)

@Add support for TTP @Go to Market @Con nect & Pick TTP Same run-time msgs @'I'I'P-based testing
= =

New?
New 1

53 onoo

¥ ugon
ﬁ\‘ L 77 117 ll!ll///
\7_,@;(: _ﬂ
App provider and switch
vendor independently add Buyer considers product App/ctrlr and switch check if TTPs
support for TTP in their options (TTPs!), buys a supported, and if so they negotiate App/ctrir and switch go Test labs will certify
products solution and installs ID and parameters live! (flowmods, etc) popular open TTPs

Source;: ONF FAWG



TTP Benefits

 Ease of development within a context of diversity
* Done such that interoperability is deterministic

* Interoperability visible to market participants

* No logjams required by “standardized profiles”

* Framework is for products that are “TTP aware”
 Key for determinism when multiple flow tables needed

e But TTPs also turned out quite useful for single tables!
* TTPs can serve as precise test profiles
* Can resolve the “optional feature” challenge
* Visible to market participants

Source: ONF FAWG



SDN asks (at least) three major
questions

Where the control plane resides
“Distributed vs Centralized” ?

How does the Control Plane talk
to the Data Plane ?

How are Control and
Data Planes programmed ?

Source: T. Nadeu, slides-85-sdnrg-5.pptx



SDN asks (at least) three major questions

Where the control plane resides 1

“Distributed vs Centralized” ?

 What state belongs in distributed protocols?
 What state must stay local to switches?
 What state should be centralized?

*\What are the effects of each on:
- state synchronization overhead
- total control plane overhead

- system stability and resiliency

- efficiency in resource use

- control loop tightness
Source: E. Crabbe, slides-85-sdnrg-7.pdf



SDN asks (at least) three major questions

How does the Control Plane talk 2

to the Data Plane ?

* Prop. IPC
* OpenFlow (with or w/extensions)
* Open Source south-bound protocols

* Via SDN controller broker and south-bound plug-ins
* Other standardized protocols

\What are the effects of each on:

- Interoperability, Evolvability, Performance
- Vendor Lock-in



SDN asks (at least) three major questions

How are Control and
Data Planes programmed ?

* Levels of Abstraction
* Open APIs
e Standardized Protocols

\What are the effects of each on:

- Data plane flexibility

- Integration with legacy

- Interoperability (CP / DP)
- Vendor lock-in

3

Source: E. Crabbe, slides-85-sdnrg-7.pdf



Concluding thoughts on SDN

Remember: SDN is not a protocol (OpenFlow yes);
— SDN is an operational and programming architecture.
SDN starts a new dialogue about network programmability,

control models, the modernization of application interfaces
to the network, and true openness around these things.

From device-centric HW-constrained networking to
network-wide service-oriented SW-defined networking

— SDN is a new approach to the current world of networking,
but it is still networking.

Vendor Lock-in : It is about features, be it SW or HW
Cost discussion : May be shifted from HW to SW / services



Obrigado!
(mais)
Perguntas?

Further reading: “Software-Defined Networking: A Comprehensive Survey”
http://arxiv.org/abs/1406.0440

Contributions welcome:
https://github.com/SDN-Survey/latex/wiki




BACKUP



SDN: a Fundamental Step Forward
« orjust a new whip to beat vendors with?

What makes SDN attractive?

* The idea that a network is more than the sum of its parts
— l.e., take a network-wide view rather than a box-centric view

* The idea that creating network services can be a science
rather than a set of hacks on hacks on hacks
— Especially hacks that vary by box, by vendor and by OS version
* The idea that there should be a discipline and
methodology to service correctness

— Rather than testing (and more testing), declaring victory, only to
fail in the real world because of some unanticipated interaction

Source: K. Kompella, slides-85-sdnrg-2.pdf



SDN Is a real step

1. if SDN gives us an abstraction of the network

2. If, through this abstraction, we have a means of reasoning
about the network and network services

3. If SDN offers a means of verifying correct operation of the
network or of a service
4. if SDN offers a means of predicting service interaction

5. Finally, if SDN offers a means of setting (conceptual)
asserts by which we can get early warning that something

IS wrong

Source: K. Kompella, slides-85-sdnrg-2.pdf



The IRS Architecture

[ Application% [ Application }
Server [ Application ]
[ IRS Client ] [ IRS Client ] IRS Protocol &
Data Encoding
Router x W
s
OAM, Events Topology DB
and IRS Agent
Measurement/ \ I

[ Routing andJ

Signaling

| pficy DB = _RIBs and RIB Manager =={ Protocols

Data Plane [

Source: Adrian Farrel



SDN controller based on standard building blocks

Most of these building
blocks are still on
definition and
'\ standardization process

Applications (Internet, CDN, cloud...)

N

SDN
4-ALTO 3-SDN orchestrator 5-OAM Handler ¢, ntroller
1- TED 6-VNTM 2-PCE
7-Provisioning Manager
N 4 4 3 v\\ ¥
OPENELO’W NETCI(I)INF PéEP OPéNFuqu oLl

OPENFLOVLI"I

OpenLow
Data
Center

GMPLS
Optical
Domain

OpenFlow
Optical
Domai

E2E networks might be pure OpenFlow based one day,
but the migration process will take some time




Application-Based Network Operation

« SDN tools provide high-function, but low granularity

 There is a need to coordinate SDN operation to
provide service-level features
« Some components already exist or are proposed
— Orchestrators
— OpenFlow Controllers
— Routing protocols
— Config daemons
— IRS Client
— Virtual Network Topology Manager

* Need a wider architecture to pull the tools together
— A framework in which the SDN components operate

Source: Adrian Farrel



