
Building a hierarchical, multi-controller
SDN layer to deliver IP routing on
OpenFlow 1.x networks with Ryu

Christian Esteve Rothenberg

Agenda
Building a hierarchical, multi-controller SDN layer to deliver IP routing

RouteFlow
• Architecture
• Design and implementation considerations

• Logic Centralization vs. Physical Distribution• Logic Centralization vs. Physical Distribution
• Scalability, Reliability, OpenFlow version polyglotism

RFProxy port to Ryu
• High-level architecture
• Experiences
• Some benchmarking

Collaboration with University of Campinas
• Ryu OF1.3 use case in a BGP-centric data-center design with TE capabilities.

R&D activities with OpenFlow 1.3 and Ryu
Software-Defined Optical Transport Software-Defined IP Routing

Cloud & Software-Defined Telecom ServicesSoftware-Defined Wireless Networking

RouteFlow: Introduction

RouteFlow: Basics

Control Plane

Data Plane

RouteFlow: High-level Architecture

Control Plane

Glue

Linux

Data Plane

Glue

RouteFlow: High-level Architecture

Control Plane

Glue

Data Plane

Glue

Architectural
Discussions

Control-Data Channel
• OpenFlow-based
• OpenFlow-defined

vSwitchvSwitch
vSwitch

RF
Client

Rout.
EnginRF

Client
Rout.
EnginRF

Client
Rout.
Engin

RF
Client

Rout.
EnginRF

Client
Rout.
EnginRF

Client
Rout.
Engin

RFProxy

• OpenFlow-defined

Physical Distribution
• Scalability
• Resiliency

RFProxy
RFProxy

OF-Switch OFSwitch
OF-Switch OF-Switch

OF-Switch

Packet-out

Packet-in

Packet-in

Packet-out

Architectural
Discussions

Control-Data Channel
• OpenFlow-based
• OpenFlow-defined

vSwitchvSwitch
vSwitch

RF
Client

Rout.
EnginRF

Client
Rout.
EnginRF

Client
Rout.
Engin

RF
Client

Rout.
EnginRF

Client
Rout.
EnginRF

Client
Rout.
Engin

RFProxy

• OpenFlow-defined

Physical Distribution
• Scalability
• Resiliency

RFProxy
RFProxy

OF-Switch OFSwitch
OF-Switch OF-Switch

OF-Switch

Architectural
Discussions

Centralized Logic
• CP/DP Mapping

RF
Client

Rout.
EnginRF

Client
Rout.
EnginRF

Client
Rout.
Engin

RF
Client

Rout.
EnginRF

Client
Rout.
EnginRF

Client
Rout.
Engin

New IP route! New ARP entry
...

New next hop

RFProxy

• CP/DP Mapping
• RIB-to-FIB-to-OpenFlow
• IP forwarding “policies”
• Intra-domain SDN fabric RFProxy

RFProxy

OF-Switch OFSwitch
OF-Switch OF-Switch

OF-Switch

RFServer

OpenFlow flow-mod

• Hierarchical
• Multi-Controller support

Architectural
Discussions

RF
Client

Rout.
EnginRF

Client
Rout.
EnginRF

Client
Rout.
Engin

RF
Client

Rout.
EnginRF

Client
Rout.
EnginRF

Client
Rout.
Engin

RouteFlow
IPC/RPC
JSON APIs• Multi-Controller support

• OpenFlow-version independence

OF-Switch OFSwitch
OF-Switch OF-Switch

OF-Switch

RFServer
JSON APIs

RYU
POX

FloodlightOF v1.0
OF v1.2
OF v1.3

RFProxy
RFProxy

RFProxy

RFProxy app under Ryu with Openflow 1.2 and 1.3

• Ryu v1.8 (Python)
• Simple abstraction through event OpenFlow message handlers
• Uses topology information
• Multipath routing through group tables (OFv1.2 and v1.3)
• QoS through metering tables (OFv1.3)
• Development datapath based on ofsoftswitch 1.x (Ericsson/CPqD)

RFProxy port to Ryu: High-level Architecture

216 LOC

RFProxy port to Ryu: Experience

Easy sintax controller, developer friendly
Support OpenFlow 1.0, 1.2, 1.3
Simple message handlers
• Easy to learn, modify, and build• Easy to learn, modify, and build

Recent improvements
• Inter-apps communication

High specialized, helpfull and active developer team:
• Constant upgrades and patchs

• Collaborative development and a lot of tests

RFProxy port to Ryu: Experience

100% feature support for OpenFlow 1.2 and 1.3

REST apps for OpenFlow 1.2 and 1.3

Need more work on 1.2/1.3 API to ease the work with match fields

More constructor options for some classes with default parameters,
avoid the need to initialize all parameters (e.g match fields in flow_mod)

Ryu OF1.3 use case

Collaboration with University of Campinas
• a BGP-centric data-center design with TE capabilities
• Based on IETF Internet Draft

“Using BGP for routing in large-scale data centers”
[draft-lapukhov-bgp-routing-large-dc-02][draft-lapukhov-bgp-routing-large-dc-02]

• Agreggation of virtual elements following BGP ASN
• Quagga with BGP multipath

Ryu OF1.3 use case

Control plane, RFServer augmented with:
• Resources: Define virtual and physical topologies
• Policies: paths, bandwidth, isolation, resilience

• Configuration: Turn virtual routes into physical flows following policies

• Allocator: Check topologies consistency and build flowmod messages• Allocator: Check topologies consistency and build flowmod messages

Physical Plane: Data center Clos topology
• Ofsoftswitch1.3 running into Mininet 2.0

• QoS through meter tables: bandwidth mapping

• Multipath through group tables: paths mapping
• Fault-tolerance: NH backup group buckets, master/slave controllers

rfserver

Quagga

rfclient

Quagga

rfclient

Quagga

rfclient

ofsoftswitch13

Traffic Engineering:

Bandwitdth…

Ryu OF1.3 use case

Physical Network

(ofsoftswitch13)

rfserver

Ryu

rfproxy

Dynamic Mapping:

Virtual Network : Physical Network

VMs : Datapaths

Virtual Links : Physical Links

Routes : Flows

Some benchmarks

Latency (ms) Throughput (events/sec)

Some benchmarks

Latency (ms) Throughput (events/sec)

Acknowledgments
University of Campinas
• Raphael Vicente Rosa (MSc candidate)
• Prof. Edmundo Madeira @ IC/Unicamp

CPqD
• Allan Vidal, Eder Leao… and colleagues• Allan Vidal, Eder Leao… and colleagues

Ericsson
• ofsoftswitch1x developments

RouteFlow
• Community!

Thank You!Thank You!

www.cpqd.com.br

Visit our ONS 2013 booth!

RFProxy on Ryu (216 LOC)
import struct
import logging

import pymongo as mongo

from ryu.app.rflib.ipc.IPC import *
from ryu.app.rflib.ipc.MongoIPC import *
from ryu.app.rflib.ipc.RFProtocol import *
from ryu.app.rflib.openflow.rfofmsg_v1_2 import *from ryu.app.rflib.openflow.rfofmsg_v1_2 import *
from ryu.app.rflib.ipc.RFProtocolFactory import RFProtocolFactory
from ryu.app.rflib.defs import *

from ryu.base import app_manager
from ryu.controller import ofp_event
from ryu.controller.handler import *
from ryu.ofproto import ofproto_v1_2
from ryu.lib.mac import *
from ryu.lib.ip import *
from ryu.lib.dpid import *
from ryu.controller import dpset

log = logging.getLogger('ryu.app.rfproxy')

RFProxy on Ryu
Flow installation methods
def flow_config(dp_id, operation_id):
create_config_msg(datapaths.get(dp_id), operation_id)
log.info("ofp_flow_mod(config) was sent to datapath (dp_id=%s)", dpid_to_str(dp_id))

def flow_add(dp_id, address, netmask, src_hwaddress, dst_hwaddress, dst_port):
netmask_int = ipv4_to_int(netmask)
address_int = ipv4_to_int(address)
src_hwaddress_bin = haddr_to_bin(src_hwaddress)src_hwaddress_bin = haddr_to_bin(src_hwaddress)
dst_hwaddress_bin = haddr_to_bin(dst_hwaddress)
dp = datapaths.get(dp_id)
conf_flow(dp=dp, ip=address_int, mask=netmask_int, src_hw=src_hwaddress_bin,
dst_hw=dst_hwaddress_bin, dstPort=dst_port, instruction=ADD)
log.info("ofp_flow_mod(add) was sent to datapath (dp_id=%s), (addr=%s), (dst_port=%d)", dpid_to_str(dp_id), address, dst_port)

def flow_delete(dp_id, address, netmask, src_hwaddress):
netmask_int = ipv4_to_int(netmask)
address_int = ipv4_to_int(address)
src_hwaddress_bin = haddr_to_bin(src_hwaddress)
conf_flow(datapaths.get(dp_id), ip=address_int, mask=netmask_int,
src_hw=src_hwaddress_bin, instruction=DEL)
log.info("ofp_flow_mod(del) was sent to datapath (dp_id=%s), (addr=%s)", dpid_to_str(dp_id), address)

conf_flow(datapaths.get(dp_id), ip=address, mask=netmask,
src_hw=src_hwaddress, instruction=TMP)

RFProxy on Ryu
IPC message Processing
class RFProcessor(IPC.IPCMessageProcessor):
def process(self, from_, to, channel, msg):
type_ = msg.get_type()
if type_ == DATAPATH_CONFIG:
flow_config(msg.get_dp_id(), msg.get_operation_id())
elif type_ == FLOW_MOD:
if (msg.get_is_removal()):
flow_delete(msg.get_dp_id(),
msg.get_address(), msg.get_netmask(),
msg.get_src_hwaddress())
else:
flow_add(msg.get_dp_id(),
msg.get_address(), msg.get_netmask(),
msg.get_src_hwaddress(), msg.get_dst_hwaddress(),
msg.get_dst_port())
if type_ == DATA_PLANE_MAP:
table.update_dp_port(msg.get_dp_id(), msg.get_dp_port(), msg.get_vs_id(), msg.get_vs_port())
return True

