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Agenda
Building a hierarchical, multi-controller SDN layer to deliver IP routing 

RouteFlow 
• Architecture
• Design and implementation considerations

• Logic Centralization vs. Physical Distribution• Logic Centralization vs. Physical Distribution
• Scalability, Reliability, OpenFlow version polyglotism

RFProxy port to Ryu
• High-level architecture
• Experiences
• Some benchmarking

Collaboration with University of Campinas
• Ryu OF1.3 use case in a BGP-centric data-center design with TE capabilities. 



R&D activities with OpenFlow 1.3 and Ryu
Software-Defined Optical Transport Software-Defined IP Routing

Cloud & Software-Defined Telecom ServicesSoftware-Defined Wireless Networking



RouteFlow: Introduction
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RouteFlow: High-level Architecture
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Architectural 
Discussions

Centralized Logic
• CP/DP Mapping 
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• Hierarchical 
• Multi-Controller support
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RFProxy app under Ryu with Openflow 1.2 and 1.3

• Ryu v1.8 (Python)
• Simple abstraction through event OpenFlow message handlers
• Uses topology information
• Multipath routing through group tables (OFv1.2 and v1.3)
• QoS through metering tables (OFv1.3)
• Development datapath based on ofsoftswitch 1.x (Ericsson/CPqD)



RFProxy port to Ryu: High-level Architecture

216 LOC



RFProxy port to Ryu: Experience

Easy sintax controller, developer friendly
Support OpenFlow 1.0, 1.2, 1.3
Simple message handlers
• Easy to learn, modify, and build• Easy to learn, modify, and build

Recent improvements
• Inter-apps communication

High specialized, helpfull and active developer team:
• Constant upgrades and patchs

• Collaborative development  and a lot of tests



RFProxy port to Ryu: Experience

100% feature support for OpenFlow 1.2 and 1.3

REST apps for OpenFlow 1.2 and 1.3

Need more work on 1.2/1.3 API to ease the work with match fields

More constructor options for some classes with default parameters, 
avoid the need to initialize all parameters (e.g match fields in flow_mod)



Ryu OF1.3 use case

Collaboration with University of Campinas
• a BGP-centric data-center design with TE capabilities
• Based on IETF Internet Draft 

“Using BGP for routing in large-scale data centers” 
[draft-lapukhov-bgp-routing-large-dc-02][draft-lapukhov-bgp-routing-large-dc-02]

• Agreggation of virtual elements following BGP ASN
• Quagga with BGP multipath



Ryu OF1.3 use case

Control plane, RFServer augmented with:
• Resources: Define virtual and physical topologies
• Policies: paths, bandwidth, isolation, resilience

• Configuration: Turn virtual routes into physical flows following policies

• Allocator: Check topologies consistency and build flowmod messages• Allocator: Check topologies consistency and build flowmod messages

Physical Plane: Data center Clos topology
• Ofsoftswitch1.3 running into Mininet 2.0

• QoS through meter tables: bandwidth mapping

• Multipath through group tables: paths mapping
• Fault-tolerance: NH backup group buckets, master/slave controllers
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Some benchmarks

Latency (ms) Throughput  (events/sec)



Some benchmarks

Latency (ms) Throughput  (events/sec)



Acknowledgments
University of Campinas
• Raphael Vicente Rosa (MSc candidate)
• Prof. Edmundo Madeira @ IC/Unicamp

CPqD
• Allan Vidal, Eder Leao… and colleagues• Allan Vidal, Eder Leao… and colleagues

Ericsson
• ofsoftswitch1x developments

RouteFlow
• Community!



Thank You!Thank You!

www.cpqd.com.br
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RFProxy on Ryu (216 LOC)
import struct
import logging

import pymongo as mongo

from ryu.app.rflib.ipc.IPC import *
from ryu.app.rflib.ipc.MongoIPC import *
from ryu.app.rflib.ipc.RFProtocol import *
from ryu.app.rflib.openflow.rfofmsg_v1_2 import *from ryu.app.rflib.openflow.rfofmsg_v1_2 import *
from ryu.app.rflib.ipc.RFProtocolFactory import RFProtocolFactory
from ryu.app.rflib.defs import *

from ryu.base import app_manager
from ryu.controller import ofp_event
from ryu.controller.handler import *
from ryu.ofproto import ofproto_v1_2
from ryu.lib.mac import *
from ryu.lib.ip import *
from ryu.lib.dpid import *
from ryu.controller import dpset

log = logging.getLogger('ryu.app.rfproxy')



RFProxy on Ryu
# Flow installation methods
def flow_config(dp_id, operation_id):
create_config_msg(datapaths.get(dp_id), operation_id)
log.info("ofp_flow_mod(config) was sent to datapath (dp_id=%s)", dpid_to_str(dp_id))

def flow_add(dp_id, address, netmask, src_hwaddress, dst_hwaddress, dst_port):
netmask_int = ipv4_to_int(netmask)
address_int = ipv4_to_int(address)
src_hwaddress_bin = haddr_to_bin(src_hwaddress)src_hwaddress_bin = haddr_to_bin(src_hwaddress)
dst_hwaddress_bin = haddr_to_bin(dst_hwaddress)
dp = datapaths.get(dp_id)
conf_flow(dp=dp, ip=address_int, mask=netmask_int, src_hw=src_hwaddress_bin,
dst_hw=dst_hwaddress_bin, dstPort=dst_port, instruction=ADD)
log.info("ofp_flow_mod(add) was sent to datapath (dp_id=%s), (addr=%s), (dst_port=%d)", dpid_to_str(dp_id), address, dst_port)

def flow_delete(dp_id, address, netmask, src_hwaddress):
netmask_int = ipv4_to_int(netmask)
address_int = ipv4_to_int(address)
src_hwaddress_bin = haddr_to_bin(src_hwaddress)
conf_flow(datapaths.get(dp_id), ip=address_int, mask=netmask_int,
src_hw=src_hwaddress_bin, instruction=DEL)
log.info("ofp_flow_mod(del) was sent to datapath (dp_id=%s), (addr=%s)", dpid_to_str(dp_id), address)

conf_flow(datapaths.get(dp_id), ip=address, mask=netmask,
src_hw=src_hwaddress, instruction=TMP)



RFProxy on Ryu
# IPC message Processing
class RFProcessor(IPC.IPCMessageProcessor):
def process(self, from_, to, channel, msg):
type_ = msg.get_type()
if type_ == DATAPATH_CONFIG:
flow_config(msg.get_dp_id(), msg.get_operation_id())
elif type_ == FLOW_MOD:
if (msg.get_is_removal()):
flow_delete(msg.get_dp_id(), 
msg.get_address(), msg.get_netmask(), 
msg.get_src_hwaddress())
else:
flow_add(msg.get_dp_id(), 
msg.get_address(), msg.get_netmask(), 
msg.get_src_hwaddress(), msg.get_dst_hwaddress(), 
msg.get_dst_port())
if type_ == DATA_PLANE_MAP:
table.update_dp_port(msg.get_dp_id(), msg.get_dp_port(), msg.get_vs_id(), msg.get_vs_port())
return True


