
Departamento de Engenharia de Computac�~ao e Automac�~ao Industrial

Faculdade de Engenharia El�etrica e de Computac�~ao

Universidade Estadual de Campinas

Relat�orio T�ecnico
Technical Report
DCA-005/00

Print Facilities for Report Editor in the

CoLab Environment

Bostjan Kolar
Paulo Henrique Fisch de Brito

Wu Shin-Ting

State University of Campinas)
FEEC (School of Electrical and Computer Engineering)

DCA (Dept. of Computer Engineering and Industrial Automation)
fbostjan,fisch,tingg@dca.fee.unicamp.br

December 2000

1

Abstract

This work aims at providing print facilities to the Colab system, a
collaborative learning environment under development by the Group
of Image Computing in the Laboratory of Computer Engineering and
Industrial Automation. It is performed during the trainee program
supported by IAESTE at the Department of Computer Engineering
and Industrial Automation of The State University of Campinas -
Unicamp, Brazil. CoLab is implemented in Java for taking advantages
of reusing the available Java scripts, such as Java Notepad and Java
Plotter. In the Colab environment, geographically dispersed students
and teachers can synchronously solve a problem through textual (chat)
and graphics communication (plotter) and the solution is editable as
a report via a Java Notepad, which is desirable to be printable from
the CoLab environment if necessary. Our proposal is to convert the
report �le into a HTML �le an print it through a HTML browser.

1 INTRODUCTION 2

1 Introduction

Colab is an environment that is intended to be useful to teachers
and students in the Calculus Courses. To make the learning process
more eÆcient, di�erent ways of distribution and exchange of informa-
tion are provided in its conception:

� internet navigator for search and presentation of the matter re-
lated to the course and the usage of the CoLab environment,

� a window with the information about the users connected at the
moment,

� forum, where students can exchange their problems (and doubts)
and solutions of those problems in an asynchronous mode,

� e-mail tool, as the other form of asynchronous communication
(besides the forum),

� a chat tool, synchronous way of communication between the stu-
dents,

� a plotter of functions, as either a synchronous tool for visualizing
the functions of two variables and manipulating its parameters
or an independent tool for a student to test or explore some
features of functions,

� a report editor, with possibility of including text and images, to
annotate ideas or remarks or the edit a report to be hand-out to
the teachers (if necessary).

The problem that we had to solve was to print the report edited
by a student or edited collaboratively by a group of geographically
dispersed students with the use of the report editor. The task was not
so easy as it seems initially, since, to be runable in any platform, Colab
is implemented in a multiplatform language, the Java. This means
that the compiler compiles the source code to a code that is interpreted
by the virtual machine. The virtual machine then interprets this code
to a machine code of the platform on which it is running. Therefore,
the access to the hardware, such as a printer, is not direct.

2 Report Editor in CoLab

The report editor is adapted from the Notpad [2], which is a module
of the Java development Kit JDK 1.2.2 freely distributed by the Sun
Microsystem [1]. It provides several commonly used editing facilities,
such as undo, redo, cut, copy, paste, new and load.

2 REPORT EDITOR IN COLAB 3

Class/Interface Description

Notepad
(class)

Main class that is responsible for the management
of the report editor, such as the actions of a menu.

JTextPane
(class)

Class responsible for the direct interface to a user,
including the presentation of a text.

StyledDocument
(interface)

Interface that de�nes the methods for editing text
with a speci�ed style.

Document
(interface)

Interface responsible for the storage of a text.

Table 1: Classes and interfaces for the report editor.

The Notepad is implemented on the top of the classes belonging
to Swing GUI Components. Swing is the package of Java classes that
provides a rich, extensible GUI component library with a pluggable
look and feel. In the original version, the JTextArea class was used
for editing text. A JTextArea is a multi-line area that displays plain
text. It can display and edit multiple lines of text, allowing the user to
enter unformatted text of any length or to display unformatted help
information. Although a text area can display text in any font, all of
the text is in the same font [3].

In the CoLab environment, we consider that the students task
may concern in analyzing and/or synthesizing the graphs of functions.
Hence, we also provide facilities for including these graphs into a report
as images. These images are indeed objects in the CoLab environment.
They can be generated either by the plotter or imported from an image
�le. Hence, we replaced the JTextArea class by the JTextPane one that
can display and edit styled text with embedded images. JTextPane can
be marked up with attributes that are represented graphically. This
component models paragraphs that are composed of runs of character
level attributes. Each paragraph may have a logical style attached to
it which contains the default attributes to use if not overridden by
attributes set on the paragraph or character run. Components and
images may be embedded in the ow of text [4].

Figure 1 shows the relationship of the principal classes that im-
plement our report editor. Observe that the Notepad employs the
class JTextPane for editing a document containing styled text with
embedded images. This class requires the object StyledDocument for
building a speci�ed document model for a report. StyledDocument is,
in its turn, derived from the class Document. Table 1 summarizes the
role of each mentioned class/interface.

The Document object has a serialized hierarchical tree structure,

3 REPORT PRINT FACILITIES 4

Figure 1: Relationships of the classes/interfaces implementing the report
editor.

where each node is called element . The �rst node is always the Root
Element to which are subordinated every node referring the lines and
paragraphs of a document. The lines and paragraphs have, in their
turn, as sons the elements of the third level of the tree { the content
elements. These content elements contain, actually, the references
to the part of text (string of characters) in the document that they
represent, as shown in Figure 2.

Figure 2: Data structure of a Document object.

Observe that there is no special element for distinguishing between
text and images. Indeed, the images are considered attributes of an
element, in addition to the attributes like underline, italic, and bold-
face.

3 Report Print Facilities

On the demand by the teachers of the Calculus Course, that are
used to the paper media, print facilities must be provided in the CoLab
environment.

As already remarked, the fact that the CoLab is implemented in
Java less support can be found for print facilities, once it runs on a

4 CONVERSION FROM DOCUMENT TO HTML 5

virtual machine isolated from the hardware features of a speci�c real
machine. For overcoming this problem, two approaches were investi-
gated:

� implementing a Java class for printing directly the documents in
postscript �le, or

� converting the document in HTML and using an adequate HTML
browser for printing (e.g. Internet Explorer and Netscape).

After a brief review of the existing work and Java scripts, the �rst
approach does not seem realizable in a period of three months. There
are not freely distributed Java scripts for converting and printing doc-
uments in Postscript �les. This leads us to decide for the second
approach.

4 Conversion from Document to HTML

In this section we describe the algorithm we implemented to con-
vert the Document object in the StyledDocument style described briey
in Section 2 to the HTML format. To be self-contained, the most im-
portant features of the HTML language for our work are given in the
Section 4.1.

4.1 HTML

HTML (HyperText Markup Language) is a document-layout and
hyperlink-speci�cation language. It de�nes the syntax and placement
of special, embedded directions or tags that are not displayed by the
browser, but tell it how to display the contents of the document, in-
cluding text, images, and other support media [5].

The �rst word in a tag is its formal name, which usually describes
its function. Any additional words in a tag are special attributes,
sometimes with an associated value after an equal sign (=), which
further de�ne or modify the tag's actions.

With the tags one may structure the document content without
regard to the �nal appearance yielded by a speci�c browser, such as
section headers, paragraphs, titles, and embedded images. Figure 3
exempli�es a way to structure the report in the report editor with use
of HTML.

<!doctype html public "-//w3c//dtdhtml 4.0 transitional//en">

<html>

4 CONVERSION FROM DOCUMENT TO HTML 6

<head>

<title>Report of Colab</title>

</head>

<body bgcolor="#FFFFFF">

Este e' apenas um relatorio de teste com um grafico da

funcao y = sin (x) * x.

<center>

</center>

Fim do Relatorio.

</body>

</html>

Figure 3: Example of a short report.

The content element can be inserted between the <body> and
</body> tags and the �gures, after converting into jpeg format, are
included via the tag with the special attribute SRC for indicat-
ing the link to the image �le.

4.2 Conversion Algorithm

For converting a Document object into a HTML �le, its tree struc-
ture is scanned and the attributes of the content elements are ana-
lyzed. Whenever an image is found, it is converted into a jpeg �le

4 CONVERSION FROM DOCUMENT TO HTML 7

and included in the HTML �le with the tag. The text in the
content element is extracted and linked sequentially, as presented in
the following Java code (the runElementTree method).

public String runElementTree (Element el) f

String strH = "";

1 AttributeSet as = el.getAttributes().copyAttributes(); /* 1 */

if(as != null) f

2 Enumeration names = as.getAttributeNames(); /* 2 */

while(names.hasMoreElements()) f

Object nextName = names.nextElement();

if(nextName != StyleConstants.ResolveAttribute) f

Object o = as.getAttribute(nextName);

3 if (o instanceof ImageIcon) f /* 3 */

String asString = "Imagem";

BufferedImage bImage;

if (((ImageIcon)o).getImage() instanceof BufferedImage) f

bImage = (BufferedImage) ((ImageIcon)o).getImage();

g else f

// need conversion to BufferedImage

bImage = Image2BufferedImage

4 (((ImageIcon)o).getImage()); /* 4 */

g

try f

5 //Saving image as JPEG /* 5 */

FileOutputStream fos = new FileOutputStream

(new File (imageDirectory, asString +

imageNumber+".jpg"));

BufferedOutputStream bos = new

BufferedOutputStream(fos);

JPEGImageEncoder encoder =

JPEGCodec.createJPEGEncoder(bos);

4 CONVERSION FROM DOCUMENT TO HTML 8

encoder.encode(bImage);

bos.close();

6 //Generating HTML code /* 6 */

strH = strH.concat("<center>\n<img SRC=�");

strH = strH.concat("images/" + (asString+imageNumber)

+ ".jpg");

strH = strH.concat("�>\n</center>\n
\n");

imageNumber++;

g catch (Exception e) f

System.out.println ("Colocar um dialogo");

e.printStackTrace();

g
g

g
g

g

7 //extracting text to html code /* 7 */

if (el.isLeaf()) f

strH = strH.concat("</p> \n <p>");

try f

strH = strH.concat (el.getDocument().getText(el.getStartOffset(),

el.getEndOffset()-el.getStartOffset()));

g catch (Exception e) fg

g

8 //Recursive traverse of the element tree /* 8 */

int n = el.getElementCount();

if (n > 0)

for (int i = 0; i<n; i++)

9 strH = strH.concat(runElementTree (el.getElement(i))); /* 9 */

// return htmlCode

return strH;

g

In the step 1 the attribute list of the content element is checked.
If it is not empty, we search in the step 2 the reference for an image
in the list. If there is a reference to an image (step 3), we need to

5 EXPERIMENTS AND RESULTS 9

encode it in a Bu�eredImage (step 4) before converting it into the
jpeg format using the class JPEGImageEncoder and storing it in the
\.images" directory (step 5). Then, in the step 6 the tag is
included in the HTML �le with the correct image hyperlink. In the
step 7 the text in the content element is extracted and tagged with
the <body> tag. The procedure is repeated recursively until all the
content elements are traversed (step 8) and their text and images put
together (step 9).

Structurally, the runElementTree method only convert the text and
images in a Document object to the content of the body of a HTML
�le. The outer <html> tag enclosing the HTML document header and
body, and the <head>, <title>, and <body> tags must be generated
additionally, such as in the following code:

String htmlString = "<!doctype html public �-//w3c//dtd"+

"html 4.0 transitional//en�>\n<html>\n"+

"<head>\n<title>Report of Colab</title>\n"+

"</head>\n<body bgcolor=�#FFFFFF�>\n";

Element[] roots = getEditor().getDocument().getRootElements();
htmlString = htmlString.concat(runElementTree (roots[0]));
htmlString = htmlString.concat("
 </body>\n</html>");

try f
FileOutputStream outFile = new

FileOutputStream(chooser.getSelectedFile());

outFile.write(htmlString.getBytes());

outFile.close();

g catch (IOException ioe) fg

Observe that at the end of the task, the resulting HTML code is
written in a �le.

5 Experiments and Results

To exemplify how our report editor works, particularly how it
prints a document, we present the conversion of a report of a task
performed by a student of the Institute of Mathematics at Unicamp.

The task consists in drawing a mask with the use of 2-variable
functions and the student should make a brief comment, as depicted
in Figure 4.

The report was successfully converted into the following HTML
�le:

5 EXPERIMENTS AND RESULTS 10

Figure 4: A Report.

<!doctype html public "-//w3c//dtdhtml 4.0 transitional//en">

<html>

<head>

<title>Report of Colab</title>

</head>

<body bgcolor="#FFFFFF">

</p> <p>

Atividade III

</p> <p>

</p> <p>

Fa?a uma careta:

</p> <p>

</p> <p>

Grafico com todas as funcoes:

<center>

</center>

</p> <p>

</p> <p>

</p> <p> RELATORIO NA FITA

</p>

<p> Foi usado certo na fita uns par de funcao certo. O programa e auto

explicativo certo.

6 CONCLUSIONS 11

</p>

<p> Ate que maneiro certo, e ainda e auto explicativo certo.O lance e que

e auto explicativo

</p>

<p> certo. E e Deus no ceu e nois na fita certo.Grafico com todas as funcoes:

</p>

</p> <p>

<p>Here comes the Authors Name and Date!!!!!

</body>

</html>

The appearance of the document rendered by the Netscape browser
is given in Figure 5.

Figure 5: Report rendered by the Netscape browser.

6 Conclusions

The conversion algorithm has worked as expected, although it was
not the best solution for providing print facilities in the CoLab envi-
ronment. Our solution demands more on the cognitive process, since
more steps are necessary to carry out a task.

REFERENCES 12

It is foreseen that in the JDK Release 1.4 the API for printing will
be improved, when we will test the feasibility of printing directly a
report in the CoLab environment.

References

[1] -, http://java.sun.com/products/jdk/1.2/

[2] -, http://www-uxsup.csx.cam.ac.uk/java/jdk-1.2.2/

demo/jfc/Notepad/

[3] -, http://java.sun.com/j2se/1.4.1/docs/api/javax/

swing/JTextArea.html

[4] -, http://java.sun.com/j2se/1.4.1/docs/api/javax/

swing/JTextPane.html

[5] Chuck Musciano and Bill Kennedy, HTML: The De�nitive
Guide, O'Reilly & Associates, Inc., 1996 (ISBN:1-56592-175-5)

