
Interactive 3D Geometric Modelers with 2D UI

Wu, Shin - Ting Marcelo de Gomensoro Malheiros

Electrical and Computer Engineering Faculty
State University of Campinas

P.O.Box 6101 13083-970 Campinas, S˜ao Paulo, Brazil
ting@dca.fee.unicamp.br

ABSTRACT

This paper presents an object-oriented framework which enhances the collaboration of three categories of
experts that play fundamental role in the development of a software for interactive 3D geometric modelers.
First, it supports application developers to build a graphics interface for manipulating with 2D devices
their own 3D data representations, without intimate knowledge of its internal structure. Second, it provides
facilities for interface researchers to create and experiment 3D widgets from reusable draggers and 2D–3D
mapping strategies. Finally, it permits graphics experts to implement sophisticated draggers and complex
2D-3D mapping strategies by overriding operations of the predefined abstract classes.

Keywords: Tools and toolkits, user interface design, interactive geometric modeling, interactive 3D graph-
ics, 2D input/output devices

1 INTRODUCTION

Despite the availability of a large number of
3D graphics libraries, such as implementations
of the GKS-3D and PHIGS standards, and the
cross-platform hardware supported graphics library
OpenGL[Neid93], writing interactive 3D graphics ap-
plications is still a tedious, time-consuming, and dif-
ficult task. According to Strauss and Carey[Strau92],
the main problem of those libraries is that they pro-
vide little help for direct 3D interaction support, be-
cause they fall short of exact 3D shape representation.

To remedy this deficiency, Strauss and Carey pro-
posed an integrated architecture that has matured
into the Open Inventor toolkit[Werne94]. Also de-
fending the integration of application and the user
interface into the same development environment,
Celes and Corson-Rickert implemented the ACT
library[Celes97], and Conner et al. constructed three-
dimensional widgets in the Unified Graphics Archi-
tecture (UGA)[Zelez91]. In their system each 3D
shape can render itself and make geometric compu-
tation when necessary. Hence, the reaction to user in-
put may benefit from techniques such as intersection,
deformation, and simulation methods associated with
sophisticated geometric shapes. More natural and
precise semantic feedback can be provided while the

user is interacting. This approach, on the other hand,
may compromise the simplicity and the modularity
of the resulting design, as observed by Schroeder et
al.[Schro91], because the application developers must
know the specific details of the framework’s internal
structure.

As developers of geometric modeling techniques, we
would like to concentrate our effort on solving ge-
ometric problems. To evaluate visually a geomet-
ric modeling method or to manipulate its results, we
would like to be free from implementing individual
rendering and common direct 3D interaction tasks
within the rendered scene. As there are tools for ren-
dering 3D objects no matter how their particular rep-
resentation is, we have striven for an interactive 3D
environment where application-specific 3D models
may be easily integrated without programming new
subclasses or subsystems. This paradigm seems to be
in contradiction with the semantically supported in-
teraction concerns, which are intimately related with
the underlying 3D model.

In this paper we present our solution for this contra-
diction. Due to the complexity of the problem, we
solved it by considering three classes of experts that
are essential for developing a 3D interactive geomet-
ric modeler: (1) the researchers in geometric model-



ing who look for a highly tailorable framework to ac-
commodate their 3D modeling solutions, (2) the inter-
face developers who require an environment for rapid
prototyping, experimenting and integrating new in-
teraction metaphors, and (3) the 3D graphics experts
who are concerned with the 2D–3D mapping strate-
gies and graphics presentation.

In the next section we present a framework, called
ManipulationToolK it, that enhances modularity by
encapsulating 3D graphics facilities offered by a vari-
ety of graphics libraries, and extensibility by provid-
ing hook methods for new graphics objects and 2D–
3D mapping algorithms. Then, we explain a frame-
work for building interaction metaphors on top of
MTK – Framework forManipulator. Next, we show
a design of a black-box framework on top of MTK
and FaMa that allows us to integrate any 3D modeler
by aggregation. Finally, some concluding remarks are
drawn.

2 MTK: A GRAPHICS TOOLKIT

MTK was implemented as a C++ programming li-
brary and aimed at providing a simple, direct interface
to the fundamental operations of 3D graphics render-
ing and interaction.

Despite their limited graphics primitives, the success-
ful use of OpenGL in Geomview[Geomview] for in-
specting and evaluating a wide range of geometric
representations has driven us to include a subset of
the OpenGL functionalities in MTK, namely the set
of basic geometric objects, display list (wrapped by
theGeometric Models class), viewing (wrapped
by the Cameras class), lighting (wrapped by the
Lights class), and picking/selection (wrapped by
the Selection class). In this way, for visualiza-
tion purposes, the coupling of an application-specific
3D model and MTK may be reduced to a data format
conversion problem.

OpenGL, as a variety of graphics libraries, provides
very little support for interaction beyond simple pick-
ing and/or selection mechanism. Therefore, in our
design we focused on 3D interaction support. Bear-
ing reusability and orthogonality in mind, we added in
MTK interaction facilities: (1) a 3D-cursor for indi-
cating visually a virtual 3D-mouse position, (2) a set
of pictorial representations to improve the 3D depth
perception, (3) a set of basic 3D interaction tasks, (4)
a set of pictorial representations that are relevant to re-
alize 3D interaction metaphors, and (5) a way to cus-
tomize the relationship between a geometric element
and a 3D interaction metaphor.

According to Foley et al.[Foley90], there are four

basic interaction tasks: positioning, selecting, enter-
ing text, and entering numeric quantities. Moreover,
they also stated that, with 2D interaction devices, 2D
and 3D applications only differ strongly in the po-
sitioning and selecting tasks. It is because of per-
ceiving 3D depth and ambiguous 2D into 3D map-
ping. With good rendering techniques, not only the
picking/selection mechanisms can be efficiently im-
plemented, but also the 3D depth perception problem
can almost be solved as well. Even though, we de-
vised theGuides class for providing additional vi-
sual aids when necessary. The remaining challenging
issue is to perform 3D positioning with 2D devices,
which is reduceable to a 2D–3D mapping problem.

The projection mapping is surjective, where a 2D de-
vice point (pixel) correspond to a infinite number of
3D points. This ambiguity may be solved by spec-
ifying the surface of interest and only considering
the visible side of this surface. This surface is an
additional constraint that we need to determine un-
ambiguously the “unprojected” 3D point. Therefore,
we defined theConstraints class in MTK. As
the constraints are highly dependent on the geomet-
ric power of the underlying graphics package, explicit
hook methods are provided to support variability. In
the current implementation of MTK there are four
types of constraining geometry: line, plane, sphere,
and application-dependent geometry.

The application-dependent geometry is useful in
moving controllably a virtual 3D mouse on the sur-
face of any object in 3D scenes with a 2D-mouse.
The position of the 2D-mouse is “unprojected” in 3D
space through an implicit function that defines the sur-
face. A 3D-mouse can also move freely in a 3D scene.
In this case, we constrained the 2D-mouse movements
on either xy or yz planes inR3 according with the
predefined operation mode. In our implementation,
the position of the 3D-mouse is visually represented
on the screen by the conventional 2D-cursor in cross-
hair shape. All these methods for managing a virtual
3D-mouse are encapsulated in a3D Cursor object.
Figure 1 shows a 3D-cursor on the (a) outside and (b)
inside of an object in a 3D scene.

(a) (b)

Figure 1: 3D Cursor



Using pictorial representations to convey more com-
plex manipulations, such as translation and rotation,
is a common practice in 2D interfaces. These repre-
sentations are, in general, designed such that actions
on them are equivalent to the ones that a user per-
forms in her/his concrete world. We call these pic-
torial representationsdraggers. Because of the suc-
cessful use of these elements in making user inter-
faces more attractive and accessible, it is convenient
to include theDraggers class in MTK. To enhance
extensibility, new subclasses may be derived by the
inheritance mechanism.

Both Draggers andGraphics Models objects
are selectable when a user picks on their elements –
Handles /(Sensitive)Parts andMtkElement ob-
jects, respectively – and respond by delegating the
request to application-dependent objects for handling
them properly. They have also capabilities for redraw-
ing by themselves when their attributes are changed.
At this point, one may argue what is the difference
between them. The difference lies in the way that
they handle the subsequent input events. Predefined
subsequent 2D positioning events are captured by a
dragger and transformed into 3D points. Then, the
point is passed to the client for further processing.
Whereas a geometric model is passive, in the sense
that it just passes the event to the client for special-
ized dealing. The unambiguous 2D–3D mapping in
a dragger is achieved by using aConstraints ob-
ject to which each sensitive part must refer. Currently,
three subclasses ofDraggers are implemented:

� box: with a box geometrical representation. It
comprises twenty-six sensitive parts: eight ver-
tices, twelve edges, and six faces (Figure 2a).

� sphere: with a spherical geometrical represen-
tation. It comprises six sensitive parts: the
sphere surface, three orthogonal rings, a han-
dle, and the handle vertex (Figure 2b).

� reference frame: with a three-orthogonal-axis
geometrical representation. It comprises thir-
teen sensitive parts: six edges and seven ver-
tices (Figure 2c).

(a) (b) (c)

Figure 2: Draggers

Summarizing, MTK is comprised of theMtk-
Core class and eight “independent” abstract classes:

Graphics Models , Cameras , Lights , Se-
lection , Guides , Constraints , Draggers ,
and3D Cursor (Figure 3). TheMtkCore coordi-
nates the interaction between these classes by delegat-
ing requests in order to realize a semantic action. For
example, theSelection passes to theMtkCore
the identifier of selected elements and the method
cameraPointer() in MtkCore is responsible for
deciding whether a part of a dragger or a mtkElement
should be notified to handle the subsequent events.
Another important role ofMtkCore is in 2D–3D
mapping, which, besides the 2D position and geomet-
rical constraint, requires the viewing parameters en-
capsulated in theCameras object.

SelectionGeometric Models Lights

mtkElement

mtkCore

cameraPointer()

Client

3D CursorGuides Draggers

Line Plane Sphere

Sphere Reference FrameBox

Reference Triad Grid

Cameras

Parts

Constraints

Object-Const. Non-Obj.-Constr.

2D Cursor

Model-depend.

Figure 3: MTK framework

In comparison with the existing graphics libraries,
four new classes,Guides , Constraints , 3D
Cursor , andDraggers , are included in MTK to
enhance 3D interaction support. Moreover, instead
of being self-triggered in response to the user actions,
the visual feedback of geometric models and draggers
is triggered in response to the attribute change deter-
mined by the client. In the next section, we will show
that conceptually this approach improves its reusabil-
ity and flexibility in building new 3D metaphors.

In principle, MTK may be developed on top of any
3D graphics libraries and windowing system. In our
case, it is realized on the top of OpenGL and GTK.
But for enhancing its portability, we may define the
CoreFactory object which abstracts the process of
manufacturing graphics elements on the screen space.

3 FaMa: A Framework for Manipulators

In this section we present a framework on top of
MTK that simplifies the construction of a 3D graphics
metaphor.



Metaphors play an important role in helping users to
understand the actions that they should perform in or-
der to correctly interact with computer systems. A
metaphor may be implemented as a widget, which
encapsulates geometry and behavior used to control
or display information about application-dependent
data. In our project we are particularly interested in
graphics 3D widgets, which permits a virtual 3D cur-
sor acting on the shape or the position of a 3D graph-
ics object exactly as the user finger would operate a
concrete one. Hence, a nice visual feedback may be
provided while a user is interacting with the system.
We call these 3D widgetsmanipulators.

Popular 3D manipulators,
such as virtual sphere[Chen88], triad[Niels86], skitter
and jack[Bier90], and tri-axes[Emmer90], were con-
structed on the basis of this principle. The virtual
sphere restricts the cursor movements on an imagi-
nary sphere and two subsequent input points are used
to specify a rotation angle that is applied both in the
virtual sphere and in the object of interest. Con-
sequently, the user has very clear interpretation of
the performed action. Triad imposes that the cursor
moves in the directions of the local coordinate system
of the selected object and two subsequent input points
define a 3D displacement vector. Both the triad and
the 3D object of interest are transformed and updated
to convey the operation. Skitter/jack and tri-axis are
variations of triads.

The common feature of the operations that these
metaphors represent is that they are decomposable
into a sequence of points in 3D space. They differ
from each other in (1) the way that a virtual 3D-mouse
should move in 3D space to track the concrete move-
ment of a 2D-mouse, (2) the way that a sequence of
positions of the virtual 3D-mouse is mapped onto a
domain-specific concept, and (3) the visual feedback
that they should provide.

To ensure that a virtual 3D mouse follows appropri-
ately the movement of a concrete 2D cursor on the
screen we must solve a 2D–3D mapping problem. Its
solution is already supported by MTK, by instantiat-
ing conveniently a constraint method in each sensitive
part of a dragger. With this support the researchers of
3D metaphors are free from the low-level 2D input
problem and may consider 3D positions as atomic in-
puts.

The extraction of a magnitude of the action that a ma-
nipulator represents, such as angle and displacement
value, from a sequence of 3D positions is a geometric
problem. For example, two distinct points on a line
define a vector which may convey displacement and
two distinct points on an sphere determine an angle.
With the use of MTK, a manipulator should simply
containa set of draggers for receiving 3D positions

and transform them into meaningful values by a set of
mapping algorithms. What distinguishes one manip-
ulator from others is the supplied mapping methods.

Normally, the collection of primitives provided by a
geometric modeler is much more specialized than the
ones provided by conventional graphics toolkits. This
difference may yield discrepancies between what you
see and what you get, if the updates of the application
and graphics data are not appropriately coordinated.
In our work we adopted the paradigm “what you see is
a simplified form of what you get” to solve the almost
paradoxal problem – tightly application dependent
visual feedback with an application-graphics decou-
pled system. Our manipulator indeed encapsulates
the interaction between an application and graphics
libraries and provides a harmonious and meaningful
visual feedback. The manipulators only supply mean-
ingful values and delegate the visual changing to “ex-
perts” by providing them values to be changed. In our
case, a client is the expert responsible for application
data and, hence, for their conversion to the format re-
quired by MTK. And the visual appearance of drag-
gers is managed by MTK itself.

We defined theMtkManipulator class, which
keeps reference to the two loosely coupling objects
and mediates the communication between them when
an input event occurs (Figure 4). In our implemen-
tation, new subclasses may be created by overriding
semantic mapping actions (behavior).

mtkDefaultTrackballManipulator

DraggerIdList()
registerId()
action()

mtkDefaultJackManipulator

registerId()

DraggerIdList()

action()

action()

mtkManipulator

DraggerIdList()

registerId()

Client

DraggerIdList()
registerId()
action()

mtkDefaultBoxManipulator

mtkCore

ConstraintsGeometric Models Draggers

Figure 4: FaMa Framework

When an event is captured by a dragger, a manipulator
is notified with a 3D position. It, in its turn, not only
transforms the captured sequences of points into se-
mantic values but also passes them to both MTK and
the client. For consistent visual feedback, the client
should further forward a redrawing request to MTK
after updating and converting its internal data. To en-
hance flexibility, it is up to the client to choose the
manipulator to be used for interacting with each ob-
ject. Figure 5 shows the interaction diagram between
these objects.



ManipulatorGraphics ModelDragger Client

cameraPointer()

draw()

interaction()

mtkCore

endPicking()

Selection

MTK

3DPoint()

Change()

draw()

applyMatrix()

SemanticAction()

Input()

User

sendGraphicsElements()

Figure 5: Sequence diagram for a metaphor

It is worth noting that theMtkManipulator object
communicates with theGraphics Models object
only indirectly, through its client. One may criticize
the efficiency of this “duplicate database” approach.
But, with most of graphics libraries designed to pro-
vide maximum access to hardware graphics capabili-
ties and the trend towards groupware technology, this
approach may favor the migration of a single-user 3D
modeling system to a multi-user platform without 3D
model inconsistency problems due to the differential
round-off error propagation in each participating ma-
chine. Besides, it is one of the main results that we
achieved towards the black-box reuse of the frame-
work for building 3D interactive graphics modeling
systems, as detailed in the next section.

Comparing with the concepts implemented in Open
Inventor, our manipulator actually explores combined
features of the manipulator and engine classes of
Open Inventor to ensure the separability between an
application and MTK data. It is similar with Open
Inventor, in the sense that a manipulatorcontains
at least one dragger which supplies geometry and
user interface to perform a composite interaction task.
However, instead of being subordinated to specific
classes (e.g. transformation and light), our manipula-
tor acts as an engine by connecting the values received
from a dragger with the values needed by a client.

In the UGA development environment[Conne92] the
manipulators are also tightly integrated with an appli-
cation. According to the authors, this strategy “lets
the application provide semantic feedback while the
user is interacting”. In fact, the metaphors are handled
indistinguishable from the application objects, so they
may benefit from “the application’s power for speci-
fying behavior and geometry”. Instead, the behav-
ior of our dragger and application data may be visu-
ally different, due to the limited geometric operations
provided by MTK. But, the set of racks developed
by Snibbe et al.[Snibb92] induces us to believe that,
when carefully designed, simple geometric transfor-
mations on a dragger may indicate complex actions
to be performed on the application-dependent data.

Let us give an example that illustrates graphically a
sequence of actions that is performed internally while
a user is interacting with an application-dependent 3D
object. We consider that there is a sphere manipulable
by a bounding box manipulator (Figure 6):

1. The modeler creates a sphere by instantiating a
mtkElement. An instance of the bounding box
manipulator is created and associated with it.

2. When the user clicks on the sphere, the manip-
ulator is invoked and it inserts a box dragger
around the sphere as a visual feedback.

3. When the user clicks on a vertex and drags the
2D cursor, MTK will send two subsequent cap-
tured points to the manipulator.

4. The manipulator computes the scaling factor
and sends it to its box dragger for updating.

5. The manipulator sends the scaling factor to the
application for updating.

Step 1 Step 2

Step 3 Step 4

Step 5

Figure 6: Manipulation with a Manipulator.

It is worth noting that the visual feedback of drag-
gers and geometric models is totally decoupled.
To evaluate our framework, three well-known 3D



manipulation metaphors –MtkDefaultBoxMa-
nipulator , MtkDefaultTrackballManip-
ulator , and MtkDefaultJackManipulator
– were implemented by subclassing theMtkManip-
ulator class.

4 A FRAMEWORK FOR INTERACTIVE 3D
MODELERS

In this section we present, on top of MTK and FaMa, a
framework that is easily tailorable to the requirements
of a particular interactive 3D modeler without know-
ing their internal details. In this layer, MTK and FaMa
are mere toolkits providing rendering facilities and
3D interaction metaphors, respectively. A 3D mod-
eler drives their behavior, since only it knows the ap-
plication context, the required graphics language pre-
cision, and the semantically supported units of infor-
mation in the decoupled system.

The application decides which visible data are manip-
ulable with which operations. Hence, it is responsible
for, besides conventional viewing and lighting param-
eters, instantiating mtkElements and customizing the
metaphors that a mtkElement is associated with. Af-
ter then, MTK and FaMa take over all managing ac-
tions relative to input events and visual feedback of
the metaphors. The application only affects the visual
appearance when it receives a request from a manip-
ulator to modify its data and update the correspond-
ing graphics representation in MTK. An application
should, basically, create three kinds of instances at
the beginning of a work session: scene parameters,
mtkElements and the metaphors that they need. Dur-
ing the work session it should ensure that mtkEle-
ments track user actions.

We designed theApplication3DGraphics
class to interface a 3D modeler with the framework
comprising ofMtkCore and theMtkManipula-
tor classes (Figure 7).

mtkManipulator

mtkCore

CamerasGraphics Models

3D Modeler

Graphics ElementsMetaphors Viewing

Application3DGraphics

Figure 7: A Framework for 3D Modeler

The collaboration of a 3D modeler with MTK through
manipulators is sketched in Figure 8.

Selection activateDragger()

Manipulator 3D MOdelerMTK

Instance()

SetReferenceToManipulator()

sendGraphicsElements()

InstanceLight()
InstanceGuides()

InstanceCamera()

User

activateManip()

3DPoint()

applyMatrix()

SemanticAction()

Change()

sendGraphicsElements()

pickDragger()

Interaction

pickObject()

Figure 8: Sequence diagram for a modeler

To validate the reusability of this framework, three
custom geometric modelers with completely distinct
underlying data representation and geometric algo-
rithms were derived.

4.1 Triangle modeler

This geometric modeler has been used as the testbed
for exploring the potential of the available drag-
gers and constraints in implementing various 3D
metaphors already proposed. It provides three basic
transformations – translation, rotation, and scaling –
and can handle an arbitrary number of triangles (Fig-
ure 9).

Figure 9: Triangle modeler

We used the proposed framework to implement a sim-
ple user interface which allows the user to visualize
and to apply any of the three available transformations
on a triangle. Our programming effort was restricted
to define triangles as selectable mtkElements and its



association with one of the currently available manip-
ulators. In addition, we needed to register in each ma-
nipulator a reference to the application’s handlers for
delivering correctly updating requests.

4.2 Boundary based modeler

A simple and intuitive geometric modeler was
also implemented. An instantiation mechanism
is used to create a new object and a boundary
representation[Morte85] is chosen to describe inter-
nally the object data. Geometric transformations
(translation, rotation, and scaling) and local vertex
manipulations (repositioning) are supported. These
transformations are applicable on an application ob-
ject or on a group of them.

For this modeler we decided to let the user choose
the preferable metaphor – bounding box, trackball,
or jack – for specifying interactively the transforma-
tion parameters. One can configure the preferences
through a menu. For repositioning the selectable ver-
tex, the jack manipulator is used. To implement this
decision, we define each instantiated primitive (a set
of polygons) and their vertices as selectable mtkEle-
ments and set in the manipulators references to the
modeler’s handlers for passing to them requested se-
mantic values. Figure 10 exemplifies the reshape of a
Bézier surface through its control point.

Figure 10: Manipulation through a control point

Figure 11 depicts the use of a shaded, transparent
bounding box manipulator to rotate a group consti-
tuted by two objects – a torus and a cube. It is in-
teresting to observe that, to avoid a dragger obscuring
the application objects or unnecessarily burdening the
scene, transparency was used.

4.3 Implicit modeler

The most interesting experiment was to develop with
our framework a user interface to an implicit geomet-

Figure 11: Boundary-based modeler

ric modeler developed by our group[Malhe97, Wu99].
In the current version, an object is implicitly de-
scribed as a combination of a set of spheres. By
applying different geometric transformations (rota-
tion, translation, and non-uniform scaling) on these
spheres, a variety of objects can be produced.

The requirement was to provide a metaphor for in-
teractively combining and modifying the shape of the
spheres in order to design complex models. From pre-
vious experiences, we opted for the bounding box ma-
nipulator. We should also decide how to visualize the
modeler object with MTK, once they have completely
different data structures. Two attempts were carried
out. Firstly, we sampled a set of points on the object
and defined it as a selectable mtkElement. We missed,
however, the object’s topology. The second try was
to convert the implicit representation into a polygo-
nal mesh and to pass it as a selectable mtkElement
to MTK. In both cases we could then easily associate
with each sphere a bounding box manipulator, either
for repositioning or for reshaping.

Figure 12 elucidates the use of a “wire-framed”
bounding box manipulator to manipulate a sphere
primitive in order to reshape an implicit object result-
ing from the blending of two spheres.

5 CONCLUDING REMARKS

In this paper we presented a layered framework for
graphics interactive 3D modelers. The clean separa-
tion between the three layers – MTK, FaMa and 3D
modelers – gives a good support to different classes of
researchers involved in the development of a graphics
interactive 3D modeling system, namely the applica-
tion, interface and graphics developers.

The framework is implemented in C++. To vali-
date our concept, some constraints and draggers were
implemented in the first layer – MTK. They were



Figure 12: Implicit modeler

used in the second layer – FaMa – for construct-
ing three subclasses of manipulators without demand-
ing the knowledge of internal organization of MTK.
Only references to constraints and draggers were nec-
essary. Finally, three custom interactive modelers
were developed in the third layer without requiring
the knowledge of the underlying architecture of MTK
and FaMa.

Our experimentation and evaluation let us conclude
that our framework may be considered as a solution
towards one of the challenging problems in the inter-
face design – conciliation of modularity (of systems)
and diversity (in geometric representations). Cur-
rently, we are moving the triangle modeler from a
single-user to a multi-user platform to test the respon-
siveness of the system over a network.

6 Acknowledgments

We would like to acknowledge FAPESP for financial
support under the grant number 96/0962-0.

REFERENCES

[Bier90] E.A. Bier. Snap-dragging in three dimen-
sions. Proc. of 1990 Symposium on Interactive
3D Graphics, 193–204, March 1990.

[Celes97] W. Celes and J. Corson-Rikert. Act: an
easy-to-use dynamically extensible 3D graphics
library. Proc. of SIBGRAPI ’97, 26–33, October
1997.

[Chen88] M. Chen and J. Mountford. A study in in-
teractive 3D rotation using 2D control devices.
Computer Graphics, 22:121–129, August 1988.

[Conne92] D.B. Conner, S.S. Snibbe, K.P. Herndon,
D.C. Robbins, R.C. Zeleznik, and A. van Dam.

Three-Dimensional Widgets.Computer Graph-
ics, 25(2):183–188, March 1992.

[Emmer90] M. van Emmerik. A direct manipulation
technique for specifying 3D object transforma-
tions with a 2D input device.Computer Graphics
Forum, 9:355–361, 1990.

[Foley90] J.D. Foley, A. van Dam, S.K. Feiner, and
J.F. Hughes.Computer Graphics: Principles and
Practice.Addison-Wesley, 1990.

[Geomview] Geomview: 3D Visualization Software.
The Geometry Center,
http://www.geom.umn.edu/ .

[Malhe97] M. de G. Malheiros, and S.-T. Wu. Hier-
archical skeleton-based implicit modeling.Proc.
of SIBGRAPI ’97, 65–70, October 1997.

[Morte85] M.E. Mortenson. Geometric Modeling.
John Wiley & Sons, 1985.

[Neid93] J. Neider, T. Davis, and M. Woo.OpenGL
Programming Guide: The Official Guide to
Learning OpenGL, release 1.Addison-Wesley,
1993.

[Niels86] G.M. Nielson and D.R. Olsen Jr. Direct
manipulation techniques of 3D objects using 2D
locator devices.Proc. of 1986 Workshop on In-
teractive 3D Graphics, 175–182, October 1986.

[Schro91] W.J. Schroeder, K.M. Martin, and
W.E. Lorensen. The design and implementation
of an object-oriented toolkit for 3d graphics and
visualization.Proc. of Visualization ’96, 93–100,
November 1991.

[Snibb92] S.S. Snibbe, K.P. Herndon, D.C. Robbins,
D.B. Conner, and A. van Dam. Using deforma-
tions to explore 3D widget design.Computer
Graphics, 26(2):351–352, July 1992.

[Strau92] P.S. Strauss and R. Carey. An Object-
Oriented 3D Graphics Toolkit.Computer Graph-
ics, 26(2):341–347, July 1992.

[Werne94] J. Wernecke.The Inventor Mentor: Pro-
gramming Object-Oriented 3D Graphics with
Open Inventor.Addison-Wesley, 1994.

[Wu99] S.-T. Wu, and M. de G. Malheiros. On Im-
proving the Search for Critical Points of Implicit
Functions.IS99: The Fourth International Work-
shop in Implicit Surface, September 1999.

[Zelez91] R.C. Zeleznik, D.B. Conner, M.M. Wloka,
D.G. Aliaga, N.T. Huang, P.M. Hubbard,
B. Knep, H. Kaufman, J.F. Hughes, and A. van
Dam. An object-oriented framework for the inte-
gration of interactive animation techniques.Com-
puter Graphics, 25(4):105–111, July 1991.


