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Abstract. In this paper we present an algorithm for estimating the rotation index of a closed loop from the
number of singular points on it. On the basis of this index we also devise a procedure that guarantees to have an
arbitrary loop being traced only once. Combining this procedure with a higher-order stepping algorithm, a robust
intersection technique is resulted.

1 Introduction

The surface-surface intersection is a fundamental problem
in computational geometry and geometric modeling of com-
plex shapes. For general parametric surface intersections,
the most commonly used methods include marching and
subdivision. Subdivision-based algorithms [3, 10] charac-
teristically tessellate the surfaces into piecewise linear ap-
proximations and intersect the facets. The accuracy of these
subdivision algorithms depends on how the flatness of the
subpatches is defined. Small intersection loops or isolated
points are very difficult, if not impossible, to find. Marching-
based algorithms [1, 2] begin by finding a starting point
on the intersection curve, and proceed to march along the
curve. Because of the inherent geometric complexity of
high degree algebraic curves that could yield from the in-
tersection of two regular surfaces, marching along a branch
or a closed loop is also a difficult problem. Such a curve
may have singular points where the normal vectors of the
intersecting surfaces are parallel and the numerical solution
scheme may fail. Moreover, when a closed loop is traced,
no sufficient condition is known for stopping the marching.

To our knowledge, a classical solution for handling
closed loops on the parametric domain is to reduce them
into open curves, by detecting them previously [12,13] and
subdividing the surface domain such that they are split into
several branches belonging to distinct subpatches [6–8]. Af-
ter then, these subpatches are dealt with individually. The
loop detection algorithms are generally performed in two
steps: closed loop existence test and splitting point determi-
nation. Normal criterion [13, 14] and distance criterion [6–
9] are two most referenced criteria. The first one is based
on the fact that when two surfaces intersect in closed loops,
there are points in the both surfaces whose normal vectors
are parallel. This way for loop detection is efficient and ro-
bust. Unfortunately, this is not a sufficient condition, since
it is also fulfilled by contact areas. The second criterion ex-
plores the fact that at least one point inside a closed loop
is a critical point of the oriented distance function of the

two intersecting surfaces. Detection on the basis of dis-
tance criterion, however, involves heavy computation and
its robustness depends on how closely the critical points are
located.

Wu and Andrade [17] propose an algorithm for esti-
mating the curvature of the intersection curve. This curva-
ture is applied in the computation of tracing step direction
and size. In their work they show that one can trace along
a curve with insignificant deviations, even when it contains
singular points. The procedure only stops when a border of
the parametric domain is reached or a singular point is met.
To avoid “infinite iterations” as they go along a closed loop,
they fixed in 400 a maximal number of traced points.

Later, Wu et al. [16] present a simple and robust algo-
rithm for estimating the other local geometric properties of
intersection curves, namely the binormal and torsion vec-
tors at any point. In addition, two new marching directions
that make use of these properties are given. When a singu-
lar point is met, they switched to the formulas derived by
Ye and Maekawa [18] for computing them in an exact way.
With regard to parametric domains, any branch or closed
loop may be therefore traced out in one shot. This result
motivates us to pursue a sufficient condition for stopping
marching along a closed loop.

In this paper we present, without a rigorous proof, a
set of conditions for stopping a “cyclic” traverse. Besides
a proximity and a contact-order condition, we introduce ro-
tation index condition to ensure a complete and non-over-
lapping traverse. Several examples are given to illustrate its
efficiency and robustness. Section 2 provides the theoret-
ical foundation. In Section 3 we present our proposal and
in Section 4, an algorithm. Representative experimental re-
sults are included in Section 5 to demonstrate its validity.
Finally, some concluding remarks are drawn in Section 6.

2 Background

Let�: [0; l] ! R2 be a plane closed curve given by�(s) =
(x(s); y(s)) wheres is the arc length. Sinces is the arc



length, the tangent vectort(s) = ( _x(s); _y(s)) has unit length.
The mapt : [0; l] ! R2 is a differentiable curve and is
calledtangent indicatrix. Its trace is contained in a circle of
radius 1 (Figure 1).
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Figure 1: Tangent indicatrix.

Let �(s), 0 � �(s) � 2�, be the angle thatt(s) makes
with thex axis; that is,_x(s) = cos �(s) and _y(s) = sin �(s).
�(l) measures the total angle described by the pointt(s) on
the tangent indicatrix, as we run the curve� from 0 to l
(Figure 2). Since� is closed, this angle is an integer multi-
ple of2�, that is�(l)� �(0) = 2�I:

s=0
I=1

s=0
I=2

s=0 I=0

Figure 2: The rotation index.

The integerI is called therotation indexor turning
numberof the curve�. Intuitively, this number tells how
many times the (oriented) tangent vector to a curve turns
around as we follow it along the curve [4,5,15].

It is also proved that an arbitrary closed curve inR2 is
homotopic to one of the following:

1. a simple curve, ifI = �1 (Fig 3.a),

2. an eight-shaped curve, ifI = 0 (Fig 3.b), and

3. am-self-looped curve, ifj I j= m (Fig 3.c).

m-loops

(a) Curve simple (b) “eight-shaped” (c)Cm

Figure 3: Three classes of curves.

Observe that the “eight-shaped” and the
“m-self-looped” curves containbranch points. To distin-
guish them, we classify these branch points intoeight-
shaped (topological branch) pointsandself-looped (topo-
logical branch) pointsto refer, respectively, the ones on
the eight-shaped curves and the ones on the “self-looped”
curves. The eight-shaped points separate “loops” with op-
posite orientation (Figure 4a); while the self-looped points
connect “loops” with the same orientation [4] (Figure 4b).
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(a) eight-shaped (b) self-looped

Figure 4: Orientation of loops.

Sederberg et al. [12] presented four equations that must
be satisfied by a singular point on the intersection of two
regular surfacesF (u; v) eG(s; w):

Fu � Fv �Gs = 0

Fu � Fv �Gw = 0

(F �G) � Fu = 0

(F �G) � Fv = 0 (1)

Numerical Newton methods [11] may be applied for
solving this equation system to obtain a singular point.

Ye and Maekawa [18] proposed an algorithm for com-
puting the local properties of the intersection curve at non-
transversal intersection points. Given two regular surfaces,
F (u; v) andG(s; w), and their second fundamental form
coefficients(LF ;MF ; NF ) and (LG;MG; NG), respec-
tively. They showed that the tangent vector of an intersec-
tion point may be a function ofw = u0

v0
, if b11 6= 0, or

w = v0

u0
, whenb11 = 0 andb22 6= 0. The unknownsu0 and

v0 must satisfy the expression

b11(u0)
2 + 2b12(u0)(v0) + b22(v0)

2 = 0; (2)



where

b11 = a211L
G + 2a11a21M

G + a221N
G � LF ;

b12 = a11a12L
G + 2(a11a22 + a21a12)M

G +

a21a22N
G �MF ;

b22 = a212L
G + 2a21a22M

G + a222N
G �NF :

a11 =
(Fu �Gw):N

(Gs �Gw):N

a12 =
(Fv �Gw):N

(Gs �Gw):N

a21 =
(Gs � Fu):N

(Gs �Gw):N

a22 =
(Gs � Fv):N

(Gs �Gw):N
(3)

Moreover, they noted that there are four distinct cases
to the solution of Eq. (2) depending on the discriminant
b212 � b11b22:

1. b212 � b11b22 < 0: the point is an isolated tangential
contact point ofF andG.

2. b212 � b11b22 = 0: the point is a tangential point, in
the sense thatF andG intersect at the point and at its
neighborhood.

3. b212 � b11b22 > 0: the point is a branch point of the
intersection curve – the curve crosses on this pont.

4. b11 = b12 = b22 = 0: the point is a higher-order contact
point.

3 Our Proposal

By inspection, we set the following three conditions for en-
suring that any closed curve is traced once as we run from
the pointP0 to the pointPn:

Proximity condition: P0 and Pn must be “sufficiently”
close.

Contact-order condition: The differential geometric prop-
erties of the intersecting surfaces must be “almost” co-
incident atP0 andPn.

Rotation index condition: The rotation index of a (plane)
closed loop is an integern, that is, the sum of its tan-
gent vector changes must be “almost”2n�.

The first condition is a trivial necessary condition for
arbitrary closed curve. However, there is a variety of closed
curves containing points that satisfy this condition but are
not the extreme points of the sequence (Figure 5). To put
aside these points, we introduced the contact-order condi-
tion, which intuitively tells us that no abrupt change in the

differential geometric properties may occur when we run
along an intersection curve. Even so, there are curves, such
as self-intersecting curves, which possess points that fulfill
both conditions but should not be considered the extreme
points of the tracing trajectory (Figure 5b).

P0 Pn

t(P0)

t(Pn)

P0

Pn

t(P0) = t(Pn)

n(P0) = n(Pn)

(a) (b)

Figure 5: Curves for which (a) the proximity condition and
(b)the proximity and contact conditions are fulfilled.

The three conditions are, unfortunately, interlocked.
The rotation indexn is important for evaluating whether the
curve is a candidate for having closed loops – the exact sum
of its tangent vector changes must be2n�. However,n is a
global topological property, in the sense that one can only
deriven when the curve is completely traversed. Theoreti-
cally, if we do not know when we return to the first point of
a closed curve during traversing, it is hard to estimate the
numbern. And consequently, we do not have enough infor-
mation for evaluating whether the marching process should
be stopped or not.

Fortunately, we know that any curve is homotopic to
one of the curves in Figure 3 and the rotation index of each
one is directly related with the number ofbranch point[4].
Hence, if we know the homotopic curve of an arbitrary
curve, we may easily estimate its rotation index by counting
the number of eight-shaped and self-looped points.

In the practice, homotopic curves may differ widely
each other from the geometric point-of-view. Figure 6 illus-
trates three homotopic curves with the rotation index equal
to 3. It is worth remarking that only two of the six branch
points in the curve shown in Figure 6b are topological branch
points. The others may disappear after deforming “smooth-
” and conveniently the curve.

x
xxx

(a) (b) (c)

Figure 6: Homotopic curves.



In addition, Figure 7a shows how we may deform
“smoothly” a curve with one singular point and one branch
point into a curve with only one (topological) branch point.
Figure 7b shows how we may deform “smoothly” a curve
with one singular point into a simple curve. A solution we
adopted is to “classify” the singular points with the use of
the discriminantb212 � b11b22 of Eq. (2) to discard trivially
the tangential points.

(a) (b)

Figure 7: Singular and branch points.

To make the problem harder, we may have curves that
are visually similar, but not homotopic each to other (Fig-
ure 8). Among the branch points we must, besides distin-
guishing the topological branch points from the non-topolo-
gical ones, tell two kinds of topological branch points: the
ones in whose neighborhood the tangent vectors of the in-
tersection curve changes their sign (Figure 8a) and the ones
in whose neighborhood the sign of the tangent vectors is
preserved.

+ -
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(a) (b)

Figure 8: Curves homotopic to (a) a 1-eight-shaped curve
and (b) a 2-self-looped curve.

In the next section we present an algorithm that may
deliver the correct rotation index for any closed curve to
be traced and decide correctly the instant for stopping the
tracing.

4 Algorithm

With the marching algorithm presented by Wu et al. [16]
one may traverse an arbitrary intersection curve in one shot
until the border of the parametric domain of intersecting
surfaces is reached. On the one hand, the procedure does
not suffer from the “singularity” restrictions; on the other
hand, when it runs along a closed loop, it will fall in infinite

iterations. Our goal is to devise a procedure that may avoid
it.

According to the three conditions established in Sec-
tion 3, the proximity condition for any closed loop� is eas-
ily expressed by

k P0Pn k< �

and the contact order conditions may be translated into a set
of equations, such as

cos � = t(P0) � t(Pn) < 1� � (4)

cos� = n(P0) � n(Pn) < 1� � (5)

cos  = b(P0) � b(Pn) < 1� �;

wheret, n, andb denote, respectively, the normalized tan-
gent, normal, and binormal vector of the intersection curve
at a point. From our exhaustive tests, we realize that, ex-
cept at some tangential points (Figure 9), only the condi-
tions expressed by Eqs. ( 4) and ( 5) are sufficient. More-
over, knowing that the tangent vectors atPn must be almost
collinear to the tangent vector atP0, we simplified the com-
putation by taking the vectorPi � P0 at each traced pointi
and compared it witht(P0).

P0

Pn

Figure 9: A tangential point where higher contact-order
conditions must be verified.

The main problem that we faced was to estimate cor-
rectly for an arbitrary curve its rotation index.

As already mentioned, we may easily estimate the ro-
tation index by counting the number of eight-shaped and
self-looped points of its homotopic curve – one of the curves
depicted in Figure 3. We also know that each branch point
corresponds necessarily to a singular point, but a singular
point does not imply a topological branch point.

Considering that the clockwise orientation of a closed
curve is positive, we implemented the following procedure
for tracing and registering the crossed singular points, from
which we believe that one may easily estimate the rotation
index of the intersection closed loop.

� Set the rotation indexm = 0.

� Initialize three stacks: one stack for piling the branch
points that the tracing algorithm meets along its tra-
jectory for the first time; the second for piling the “un-
paired” branch points that were popped out from the



first pile; and the third for piling the “pairwise” branch
points that were popped out from the first one.

� For each traced point, we test whether the normal vec-
tors of the two intersecting surfaces are almost paral-
lel. If it is the case, we apply the condition expressed
by Eq. (1) to obtain the singular point. We used the
last traced pointPi+1 in the region where those nor-
mal vectors are almost parallel or where the vector
NF (Pi) � NG(Pi) is not in the same direction
NF (Pi+1)�NG(Pi+1) (Figure 10).

�

Pi�2

Pi�1
Pi

Pi+1

Pi+2

NF

NF

NG

NG

~t

~tPi

Pi+1

Figure 10: The guess point for obtaining a singular point.

� For each singular point, we applied the technique pro-
posed by Ye and Maekawa [18] for identifying this
point as a tangential or a branch one.

� Whenever a branch point is met, we check whether it
is

1. in the first stack: we move it to the third stack and
every branch point piled over it are transferred to
the second stack. We also compute the orienta-
tion of the closing loop and incrementm by 1, if
it is positive; otherwise, we decrementm by 1.

2. in the second stack: the point is ignored.

3. in the third stack: we verify whether the sign
of the tangent vector changes. If it changes, we
compute the orientation of the closing loop and
incrementm by 1, if it is positive; otherwise, we
decrement it by 1. If it does not change, we only
incrementm by 1 when the point is crossed more
than twice.

4. is not found in the three stacks: we push it into
the first stack.

� Whenever the proximity and tangent vector (~PiP0) con-
ditions are fulfilled by a pointPi, we distinguish two
situations:
1) P0 is not a tangential point: we compute the orien-
tation of the closing loop and incrementm by 1, if the
orientation is positive; otherwise, we decrementm by
1.
2) P0 is a tangential point: we must check whether
higher contact-order conditions are also satisfied. If
it is the case, the same procedure for non-tangential
point is applied. Otherwise, we keep on tracing.

Knowing how to estimate the rotation index of a closed
loop from the branch points that we met as we run along a
curve, we can decide for stopping our marching at a point
P as follows. Consider that we register the tangent vector
changes at each traced point, we only need to compare the
sum of tangent vector angle changes with2�m, wherem
is the estimated rotation index. We consider that the closed
curve is completely traced, when these values are approxi-
mately equal.

5 Experiments

We test exhaustively our algorithm on a variety of pairs of
parametric surfaces in order to validate it experimentally. In
this section we present some of them. To show numerically
the behavior of our algorithm we also include for each ex-
ample a table containing the first and the last traced points
and all the singular points that were met with their geomet-
ric properties, namely distance, vector to the first pointP0,
and the total variation on the tangent vector angles.

The first pair of surfaces

S11(u; v)=(u; v; 0:2 � u4 + 0:1 � v4)

S12(s; w)=(s; w; 0:3 � s2 � w � 0:1 � w2 + 0:2 � w3)

results in two singular points, although the intersection
curve is homotopic to a 1-self-looped curve (Figure 11).

Figure 11: IntersectionS11 with S12.

It starts at the point(�0:01; 0:00), which is very close
to a singular point(0:0; 0:0). The branch point(0:0; 1:0)
and the singular point were passed twice while the curve
is traced. Note in Table 1 that at the singular point, the
proximity and contact-order conditions are satisfied, but the
rotation index condition is not. Hence, the tracing is kept on
until the point(�0:01; 0:00) is reached, at which the three
conditions are satisfied.

The second pair of surfaces



Start Point domain (-0.01,0.00)_p=(1.00,-0.02)
Point Distance ~PnP0 Total angle index

(-0.01,0.00) 0.0000 (1.00,-0.02 ) 0.0000 0
... ... ... ... 0

(0.00,0.00) 0.0992 (1.00,-0.01 ) — 0
... ... ... ... 0

(0.00,1.00) 0.9973 (0.01,1.00 ) 4.2079 0
... ... ... ... 0

(0.00,0.00) 0.0047 (1.00,-0.01 ) 6.2841 0
... ... ... ... 0

(0.00,1.00) 0.9985 (0.01,1.00) 8.3949 1
... ... ... ... 1

(-0.01,0.00) 0.0001 (1.00,-0.02 ) 12.5665 2

Table 1: Representative Points ofS11 � S12 = 0.

S21(u; v)=(u; v; (u2 + v2)2 + 3 � u2 � v � v3)

S22(s; w)=(s; w; 0)

results in a 1-self-looped curve (Figure 12).

Figure 12: IntersectionS21 andS22.

Start Point domain (0.14,0.88)_p=(-0.30,0.95)
Point Distance ~PnP0 Total angle index

(0.14,0.88) 0.0000 (-0.30,0.95 ) 0.2096 0
... ... ... ... 0

(0.00,0.00) 0.7991 (-0.22,-0.98 ) 3.4514 0
... ... ... ... 0

(0.00,0.00) 0.8031 (-0.21,-0.98 ) 7.6432 1
... ... ... ... 1

(0.00,0.00) 0.8002 (-0.21,-0.98 ) 11.8350 1
... ... ... ... 1

(0.15,0.86) 0.0731 (-0.28,0.96 ) 12.7120 2

Table 2: Representative Points ofS21 � S22 = 0.

It starts at the point(0:17; 0:79). Although the branch

point (0:0; 0:0) is passed three times while the curve is tra-
ced, the estimated rotation index is 2 (Table 2). It is because
that the sign of the tangent vectors does not change in the
neighborhood of this point. Hence, the tracing is kept on
until the point(0:15; 0:86) is reached, at which the three
conditions are satisfied.

The third pair of surfaces

S31(u; v)=(u; v; (u2 + v2)=3� 9)

S32(s; w)=(s; w; sin(w) � 3)

results in one intersecting curve, which is homotopic to a
simple curve (Figure 13).

Figure 13: IntersectionS31 andS32.

As we ran along the curve from the point(4:42; 0:82),
we stopped at(4:42; 0:87), when the three conditions are
satisfied. Table 3 shows that no singular point was crossed.

Start Point domain (4.42,0.82)_p=(0.05,1.00 ))
Point Distance ~PnP0 Total angle index

(4.42,0.82) 0.0000 (0.05,1.00) 0.0000 0
... ... ... ... 0
... ... ... ... 0

(4.42,0.87) 0.0570 (0.03,1.00) 6.3102 1

Table 3: Representative Points ofS31 � S32 = 0.

The fourth pair of surfaces

S41(u; v)=(u; v;�u4 + v2 � v4)

S42(s; w)=(s; w; 0)

results in two intersecting curves, each one is homotopic to
a simple curve (Figure 14).



Figure 14: IntersectionS41 andS42.

Table 4 shows the extreme and singular points that we
passed while a curve is traced. Note that the tangential point
does not affect the marching behavior.

Start Point domain (0.71,0.74)_p=((0.11,-0.99)
Point Distance ~PnP0 Total angle index

(0.71,0.74) 0.0000 (0.11,-0.99 ) 0.0000 0
... ... ... ... 0

(0.00,0.00) 1.0232 (-0.69 -0.73 ) 1.6758 0
... ... ... ... 0

(0.71,0.69) 0.0530 (0.03,-1.00) 6.4389 1

Table 4: Representative Points ofS41 � S42 = 0.

The fifth pair of surfaces

S51(u; v)=(u; v; (1=6) � u6 � (5=4) � u4 + 2 � u2 + v2)

S52(s; w)=(s; w; 0:917)

results in a 2-eight-shaped curve (Figure 15).

Figure 15: IntersectionS51 andS52.

Start Point domain (-1.65,1.18)_p=((-0.54,0.84))
Point Distance ~PnP0 Total angle index

(-1.65,1.18) 0.0000 (-0.54,0.84) 0.0000 0
... ... ... ... 0

(-1.00,0.00) 1.3478 (0.49,-0.87) 5.0999 0
... ... ... ... 0

(1.00,0.00) 2.9040 (0.91,-0.41 ) 3.0849 0
... ... ... ... 0

(1.00,0.00) 2.9040 (0.91,-0.41 ) 8.1669 1
... ... ... ... 1

(-1.00,0.00) 1.3478 (0.49,-0,87 ) 6.1569 0
... ... ... ... 0

(-1.71,1.26) 0.0991 (-0.56,0.83) 6.1774 1

Table 5: Representative Points ofS51 � S52 = 0.

Observe in Table 5 that the estimated rotation index is
1, as expected.

Finally, we present the intersection of

S61(u; v)=(u; v; u4 � u2 + v4 � v2)

S62(s; w)=(s; w;�0:25)

Figure 16: IntersectionS61 andS62.

Start Point domain (0.85,0.98)_p=(-0.92,0.38)
Point Distance ~PnP0 Total angle index

(0.85,0.98) 0.0000 (-0.92,0.38) 0.0000 0
... ... ... ... 0

(0.00,0.71) 0.8863 (-0.95,-0.30) 1.0059 0
... ... ... ... 0

(-0.71,0.00) 1.8335 (-0.85,-0.53) 1.3215 0
... ... ... ... 0

(0.00,-0.71) 1.8830 (-0.45,-0.89) 4.1164 0
... ... ... ... 0

(0.71,0.00) 0.9852 (-0.14,-0.99) 4.4638 0
... ... ... ... 0

(0.82,0.99) 0.0312 (-0.94,0.33) 6.3909 1

Table 6: Representative Points ofS61 � S62 = 0.



which results in two intersecting curves, each one is homo-
topic to a simple curve (Figure 16). As we ran along one
of them starting from the point(0:85; 0:98), we stopped at
(0:82; 0:99), when the three conditions are satisfied. Ta-
ble 6 shows that during tracing four branching points were
crossed. They, however, did not affect the rotation index,
because the last point was reached before we over-traced
them.

6 Concluding Remarks

We presented an algorithm for estimating the rotation in-
dex of a closed curve on a parametric domain on the basis
of the singular points along the two intersecting surfaces.
We applied it for validating the last point to be traced in a
closed loop. Differently from the differential geometrical
properties, the rotation index is a global geometrical prop-
erty which “holds” the behavior of the traced curve. In this
way, unnecessary point duplications are prevented.

Although we do not have rigorous proof that the pro-
cedure works for any case, we tested it for several situations
and it could handle all of them correctly.

As further work we intend to demonstrate its validity
or to establish precisely the scope where it is valid.
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