
Picking and Snapping for 3D Input Devices

WU, SHIN - TING, MARCEL ABRANTES, DANIEL TOST, AND HARLEN COSTA BATAGELO

ImageComputingGroup(GCI)
Departmentof IndustrialAutomationandComputerEngineering(DCA)

Schoolof ElectricalandComputerEngineering(FEEC)
StateUniversityof Campinas(Unicamp)

P.O.Box6101,13083-970- Campinas,SP, Brazil�
ting,tost,ra003168,harlen � @dca.fee.unicamp.br

Abstract. A picking mechanism(pointingandindicating)with thecursoris essentialfor any direct-manipulation
application.Thewindowingsystems,underwhichcontroladirect-manipulationapplicationruns,providefacilities
that togetherwith specialutility routinesallow identifying which objectwithin the region theuseris pointingat.
Suchpicking algorithmshave beenwidely usedfor selectingobjectsundera 2D mousecursor. In this paper, we
presentasimpleyeteffectiveapplication-independent3D pickingalgorithmfor 3D inputdevices.Wealsodiscuss
a differentialgeometrybasedsurfaceconstraintthatcanbeappliedto the3D cursorpositionfor improving points
matching.In orderto demonstratethetechniques,two sampleapplicationsusinga 3D input deviceareshown.

1 Introduction

In almostall direct-manipulationgraphicssystemsaninter-
actiontask,suchasscalingandrotatinganobject,isbuilt on
top of two basicinteractions:selectinganddraggingwith
a pointingdevice. Moreover, almostuniversallyacceptable
interactionsyntax in a windowing systemis selectingan
objectby clicking on it with a mouseanddraggingtheob-
ject by moving themousein a 2D spacewhile thebuttonis
down. Besidesmouses,thereis avarietyof complementary
interactiondevicessuchas joystick, trackballsandspace-
balls for improving thecontrolon themovementof anob-
ject. For example, the joystick is often usedto move an
objectselectedby amouse.

Thedecreasingcostof inputdevicesandtheincreasing
computerpowerleadto continuingimprovementin interac-
tion devicesbothin precisionandin dimensionin whichthe
deviceworks.Thereareavarietyof 3D interactiondevices
thatprovide 3D positionandorientation.Amongthemwe
may mentionthe spaceball1 that allows accuratefine po-
sitioning in 3D-space. Even though, the usually recom-
mendedprocedurefor manipulatinganobjectwith aspace-
ball is to pick it with amouseandthendragor rotateit with
the spaceball. This motivatesus to look for application-
independent3D positioningandpicking mechanismswith
which we mayperformthe two basicinteractionswith the
sameinput device alsoin 3D spacesoasalreadyit is done
in 2D space.

Differentlyfrom theconceptof 3D cursorgivenby Fo-
ley etal. [4] whichiscontrolledbya2Dcursor, Mesquita[6]
defineda3D cursorasanextensionof a2D cursor. The2D

1http://3dconnexion.com/products/5000/

cursoris thevisible representationon thescreenof the2D
pointing device’s position. Becausethe cursormust fre-
quently have a resolutionof a single pixel, it is of com-
monpracticedesignatingonesinglepixel of acursorasthe
hotspot. In an analogousway, a 3D cursoris the visible
representationonthescreenof the3D pointingdevice’spo-
sition andits unprojectedshapein 3D alwayshasa single
hotspotvoxel (volumeelement).

Furthermore,Mesquita[6] developedanalgorithmfor
emulating3D positioning functionality for 2D input de-
vices. Two movementmodesaredefinedon the basisof
thefunctionsdevelopedby Navarroet al. [3]: oneis on the��� -planeand the other is on the ��� -planein the viewing
volume(Figure1). Theusercanswitch from onemodeto
anotherby simply pressingor releasingthe middle mouse
button. The methodmay appearrestrictive oncethe user
is working in two dimensionsat a time. However, exper-
imentswith differentuserslet usconcludethatmostusers
canquickly adaptto thesyntaxof thecontext switchingand
feel thattheemulatedpointingdevicemovesfreely in 3D.

3D Cursor

xz
-plane

xy-plane

Center of Projection

Projection Plane

Figure1: Emulationof 3D pointingdevices.

In thispaperourfocusis onthe3Dpickingmechanism
for input devicescapableof providing an absoluteor rela-
tive positionin 3D space.In otherwords,givena position
in 3D wewouldliketo determinewhichobjectis at thatpo-
sition without resortingto application-dependentfunction-
alities.A 3D snappingalgorithmonthebasisof differential
geometryof the manipulatedsurfaceis alsodevisedfor a
userto positiona pointing device moreaccuratelyin 3D.
An implementationwith OpenGLselectionandpick com-
mandsis presentedand the experimentswere carriedout
with useof theemulated3D pointingdeviceandthespace-
ball 3003.

In thenext sectionourapplication-independent3Dpick-
ing algorithmsarepresented.Next, wediscusshow we can
control its movementconstrainedto a surfaceof interest
in 3D. Then in Section4, we show how they can be ef-
ficiently implementedwith useof OpenGL.In Section5,
resultsof applicationof thesealgorithmsto a 3D pointing
device, morepreciselythe spaceball3003,aregiven. We
could successfullydeterminewhich object it points at in
3D andprogramanimaginarygravity field aroundeachex-
isting surfacefor constrainingits movement.Finally, some
concludingremarksaredrawn.

2 3D picking

A 3D pickingproblemcanbereducedto aproblemof deter-
miningtheobjectthatintersectsatagivenpoint theeye-ray
fired from thecenterof projectionthroughthepixel’s cen-
ter into the unprojectedscene. In principle, this problem
canbe solved by determiningall the objectsthat intersect
therayandperformingpoint-in-solidinclusionteststo find
outwhichobjectcontainsthespecified3D point (Figure2).
Thisapproachis application-dependent,onceit requiresthe
application-dependentpoint inclusiontestalgorithms.

Hotspot of 3D Cursor

Projection PlaneCenter of Projection

Figure2: Point-in-solidtestapproach.

As an alternative, one may reducethe problemto a
one-dimensionalproblemby determiningthe intersection
intervalsalongtheeye-rayfor eachobject.Then,theobject
that is pointedat canbe obtainedwith a point-in-segment
inclusiontest(Figure3). This approachis computationally
attractive when � -buffer algorithm is applied for visible-

surfacedetermination.In this case,thedepthvalueof each
point in theviewing volumeis alwayspassedto thegraph-
icshardware.Therefore,gatheringandsorting� -coordinate
valuesalongan eye-rayfor definingthe intersectioninter-
valscanbecarriedoutwithout resortingto theapplication.

Center of Projection

Projection Plane

PSfragreplacements ��� �	�
��
 ��

Figure3: Point-in-segmenttestapproach.

If a sceneonly containsconvex objects,the point-in-
segmenttestcanbe performedmoreefficiently by graph-
ics hardwarethat is capableof returningtheminimumand
maximum � valuesof all verticesthat intersectedthe eye-
ray. In this case,we can determinewhetheran object is
pickedby drawing it andcomparingthe returned� values
with thedepthvalueof the3D cursor. Figure4 picturesthe
front andbackfacesof theconeandthespherethatintersect
theeye-rayonwhichthe3D cursorlies. Thedepthvalueof
the 3D cursorneitherlies in the � -interval of the conenor
in the � -interval of thesphere.Therefore,the3D cursoris
outsideof bothobjects.

Projection Plane

Figure4: Improvedpoint-in-segmenttestapproach.

For concave polyhedra,the point-in-segmenttestcan
alsobeperformedby graphicshardware.In special,ahard-
warestencilbuffer maybeusedto storetheparitycounting
of objects’facesandthusdeterminingwhetheragivenpoint
is insidetheobjecton thebasisof thefact that if aneye is
outsideof an object of interestand an eye-ray intersects
theobject,thiseye-rayalwaysintersectsanevennumberof
points. In this case,we canissuedrawing commandsto a
graphicshardwarefor drawing only thefacesof theobject
of interestthat appearat the pixel underthe cursorbefore

(or after) the position of the 3D cursorand inverting the
stencil buffer at this pixel. The cursoris outsidethe ob-
ject if andonly if thenumberof inversionsis even,i.e., the
stencil buffer at the pixel underthe cursorshouldremain
unchanged.Oncethealgorithmis appliedoneachobjectat
time,for thesakeof clarity, only thestateof stencilrefering
a torusis shown in Figure5. It inducesfive discreteinter-
vals for stencilbuffer: 1 (� �), 2 (� �), 3 (�
), 4 (� �), and5
(�	�) alongthepickingray. As only thefacesbeforethecur-
sor aredrawn in the stencilbuffer, the stencilbuffer value
of the pixel in considerationis even, the 3D cursoris out-
sidetheobject.Again, theprocedureexploresthegraphics
hardwarecapabilities.

Actually, stencilingis not a essentialpart of this al-
gorithm. Sincethis methodperformsonly parity checking
usingoperationsof inversionanddoesnot usestencilcom-
parisonfunctions,this featuremay be emulatedwith any
buffer thatcanbeusedto countpixel overdraw, suchasan
accumulationbuffer (by accumulatingtheoverlappingfrag-
ments)or colorbuffer via alpha-blending(by usingadditive
blendingof fragments).

Back

Pixel of Stencil Buffer

Hotspot of 3D cursor

Front

Projection Plane

PSfragreplacements

���
��� ��� ��� ���

Figure5: Point-in-segmenttestfor concaveobjects.

3 3D snapping

In mostcases,to placea 3D cursorexactly on the object
of interestor to constraintits movementpreciselyon the
surfaceof an objectareessentialfor accurateinteractions
with shapes.For example, if we want to trim a surface,
thenwe want the3D cursorto beon thesurfaceaswe are
moving it for defininga trimming curve. A techniquethat
canhelpthesetasksis snapping,whichcanroundtheactual
position of the pointing device to somemore appropriate
position.

Thesimplestsnappingtechniqueisgrid-snapping,also
known as vertical or horizontalalignments. In this case,
the snappingproblemis reducedto a simple roundingof
thedevice positionto a point of a specifiedgrid. Thereis,
however, a numberof snappingto anarbitraryshapeprob-
lemsthatcannotbereducedto verticalor horizontalalign-
ments.To our knowledge,for handlinganarbitraryshape,

the problemis reducedto the computationof the nearest
point on theshape,mostof which requirepotentiallytime-
consumingpoint-and-shapeor the ray-and-shapeintersec-
tion algorithms.

In this sectionwe presenta novel procedurefor snap-
ping to a smoothconvex closedsurface � on the basisof
two local geometrypropertiesat eachpoint � : thenormal
vector �� anda vector �� on thetangentplaneof thesurface
at � . Theexistenceof a “tangentplane”at all pointsof �
is guaranteedbecauseof the smoothnesscondition. With�� and �� , we definea snappingreferencecoordinate(SRC)
systemat eachpoint � , � �"!$#%�'& , using �� and �� andcon-
siderthatthe3D cursorlocally “snaps”to this planecalled
snapplane. That is, its motionis restrictedto this planein
theneighborhoodof � (Figure6)

snap planePSfragreplacements (

)

*+ *,
*-

Figure6: Snappingreferencecoordinatesystem.

The next point on � to be reachedby the 3D cursor
from �/. in theworld coordinate(WC) systemis computed
asfollows(Figure7):

snap plane

snap plane

snap plane

Motion constrained
to arbitrary surface

PSfragreplacements

� .

�/.

� .� .

�/.
�

�

��

�

��

��

��

�0

�0

�0

��

��

��

#21 �43 1 053 1 � &

�6.87 �

Figure7: Snappedmotion.

1. changethe referencesystemof � . to the � �"!$#%� . &

system;

2. the displacement#91 �43 1 053 1 � & of the 3D cursor is
roundedto #91 �:3 1 0�3<;>= ; & andaddedto thecoordinates
of �6.:?@# ;A3B;>3<; & in � �"!$#%�/.2& ;

3. projectthis point parallelonto � in thedirectionof ��
to obtain � .87 � ; and

4. changethereferencesystemof � .87 � backto WC.

We mayperformthe � -buffer visible-surfacedetermi-
nationfor gettingthe “ � -values”of all theobjectsthatare
mappedto the pixel underthe snapped3D cursorposition# �:3B0 & in SRC(P),includingthedepthvalue � of thesurface
of interest.

The procedure is repeated after computing the�C�D!$#E�6.87 � & referencesystemwith thetwo differentialge-
ometrypropertiesof � at �6.87 � : thenormalvectorandone
directionvectoron thetangentplane.

4 OpenGL Implementation

To be self-contained,the commandsrelatedwith the se-
lection and picking mechanismprovided by OpenGLare
briefly describedbeforewe show how they canbeusedto
implementthe third paradigmgiven in Section2 andpar-
tially thesnappingalgorithmdescribedin Section3. A de-
tailed 2D picking and selectionalgorithm using selection
modeis presentedelsewhere[5].

4.1 OpenGL

OpenGLis designedto support2D and3D interactive ap-
plicationswithout knowing the windowing specificfunc-
tionsandtheinputevents[5]. It providesaselectionmech-
anismthat automaticallyreportswhich objectsare drawn
insidea specifiedviewing volume; anda picking mecha-
nismthatallows to restrictdrawing to a smallviewing vol-
ume,typically nearthecursorin two modes:GL RENDER
andGL SELECT. In the GL RENDER mode,the drawing
commandsareusedto alterthecontentsof theframebuffer.
In theGL SELECT mode,thedrawing commandsareused
to constructa stackof namesof primitivesof interest.The
contentsof theframebuffer do not changeuntil exiting this
mode.

A viewing volumeis definedby the matricesstacked
in boththemodelview stackandtheprojectionstack.Those
matricescan be built by issuingthe transformationcom-
mandsprovidedby OpenGL.Particularly, a projectionma-
trix thatrestrictsdrawing to a small region of theviewport
is createdby callinggluPickMatrix().

To usethe selectionmechanismof OpenGL,a selec-
tion context mustbepreparedasfollows:

1. Specify the array with glSelectBuffer() to be
usedfor storingtheobjectsthatarein thenamestack
andthatappearat thesamepixel underthecursor;

2. Enterinto selectionmodeby specifyingGL SELECT
with glRenderMode();

3. Initialize the namestackof objectsof interestusing
glInitNames();

4. Define the viewing volume to be usedfor selection
with gluPickMatrix() and/orotherprojectioncom-
mands.It is importantthattheseprojectioncommands
areissuedin theprojectionmodebyspecifyingGL PRO-
JECTION with glMatrixMode(); and

5. Issuedrawing commandsandcommandsto manipu-
latethenamestack,suchasglLoadName() or gl-
PushName(), so that eachprimitive of interesthas
anappropriatenameassigned.

When the selectionmode is exited, suchas switch-
ing to rendermodeby specifyingGL RENDER with gl-
RenderMode(), OpenGLreturnsa list of primitivesthat
would have intersectedthegivenviewing volume. Theel-
ementsof the list arealsoknown ashit records. Eachhit
recordconsistsof thefollowing items:

1. the numberof nameson the namestackwhenthe hit
occurred;

2. both the minimum and maximumof � valuesof all
verticesof theprimitivesthatintersectedthespecified
viewing volumesincethelastrecordedhit. Thesetwo
valuesareeachmultiplied by F
 �HGJI

androundedto
thenearestunsignedinteger. This meansthat thecor-
respondingfloating-pointvaluescanberestoredby di-
viding theunsignedvalueby 0xffffffff; and

3. the contentsof the namestackat the time of the hit,
with thebottommostelementfirst.

It is importantto notethatpicking is usuallytriggered
by aninputpointingdeviceandtheviewing volumeshould
be dynamicallyupdatedaccordingto the mouseposition
returnedby the mouseevent handlerfor ensuringthe cor-
rectnessof thelist of pickedobjects.

OpenGLUtility Library (GLU) includesseveral rou-
tinesthatencapsulateOpenGLcommands.Besidesglu-
PickMatrix(), therearetwo routinesthathelpsimplify
theconversionbetweenthebasisof referencesystems:glu-
Project() andgluUnproject(). Respectively, they
transformworld coordinatesinto window coordinatesand
vice-versa.

4.2 Picking

Thepickingalgorithmwe implementedis thethird alterna-
tive presentedin Section2. It exploits OpenGL’s selection
modebothfor reducingthenumberof objectsof thescene
which we useto testagainstthecursorhotspotandfor ob-
tainingtheminimumandthemaximum � valuesof eachof
theseobjectsthatintersectedtheviewing volume.

Ouralgorithmwasimplementedasfollows:

1. Setastheparallelviewingvolumeonly theregionnear
thecursorlocation.

2. Computethe hit list underthe projectedhotspotus-
ing thestandardOpenGL2D picking algorithmasde-
scribedin Section4.1.

3. Projectthe3D hotspotontothescreenwith gluPro-
ject() to obtainits depthvaluein theparallelview-
ing volume.

4. For eachobjectin the hit list: Comparethe hotspot’s� -positionwith the object’s minimum andmaximum
depthreturnedby thehit record.The3D cursoris out-
sidetheobjectif thehotspot’s � coordinateis outside
the object’s depthrange.Otherwise,the 3D cursoris
insidetheobject.

4.3 Snapping

Becauseof limited graphicspower available in our labo-
ratory, our implementationof the 3D snappingalgorithm
is mostly application-dependentin the sensethat only the
steps1 and2 of thesnappingalgorithmgivenin Section3
areperformedby OpenGL(a potentialsolutionusingpro-
grammablegraphicshardwareis outlinedin theconcluding
remarks). This, however, doesnot compromiseour main
objectivewhich is to validatethefeasibilityof theideapre-
sented:conciseandsimpleinterfacebetweenthe graphics
hardwareandtheapplication-dependentgeometricmodel-
ing functionalities.

The algorithm consistsof mappingthe displacement
provided by the input device to the surfacetangentplane
underthecursorpoint. Thecursorpoint andtwo orthogo-
nal directionvectors(tangentandnormal) areprovidedby
theapplication.A new pointonthesurfacetangentplaneis
calculatedusingthe displacementasa linear combination
of thedirectionvectors.This point is returnedto theappli-
cation,which shallprojectit on thesurface.Theprocessis
repeatedat eachcursormovement.

Thechoicefor two directionalvectorsoverthenormal
plus onedirectionalvectorwasmadebecausewith the di-
rectionalvectorswe cancalculatethenew point in thetan-
gentplaneusinga linear combinationinsteadof applying
affine transformations.This choicerequireslesscalcula-
tion, thusraisingtheefficiency of thesnapping.

Thesnappingimplementationusescallbackfunctions,
i.e., user-registeredfunctionswhicharetriggeredby system
events. We definethreecallback functions: two of then
areresponsiblefor providing thedirectionalvectorsandthe
otheronefor theprojectionof tangentplanepoint ontothe
surface.

4.4 Integration with MTK

The ManipulationToolkit (MTK) is a 3D graphicslibrary
developedon top of OpenGL,aimingatproviding asimple
and direct interfaceto the fundamentaloperationsof 3D
graphicsrenderingandinteraction[3, 7]. Our 3D picking
andsnappingalgorithmsareintegratedinto MTK.

MTK is comprisedof themtkCore classandeight“in-
dependent”abstractclasses(Figure8):

K GraphicsModels(mtkDisplayList).

K Cameras(mtkCamera).

K Lights (mtkLights).

K Selection(mtkSelection).

K Guides(mtkGuide).

K Constraints(mtkConstraint).

K Draggers(mtkDragger).

K 3D Cursors(mtkCursor).

ThemtkCore coordinatestheinteractionbetweenthese
classesby delegatingrequestsin orderto realizeasemantic
action. For example,the Selectionpassesto the mtkCore
the identifierof selectedelementsandthemethodcamer-
aPointer() in mtkCore is responsiblefor decidingwhether
a dragger(a pictorial representationto convey visual feed-
backto user’s actions)or a 3D modelshouldbenotifiedto
handlethesubsequentevents.Insteadof beingself-triggered
in responseto the useractions,the visual feedbackof 3D
modelsanddraggersis triggeredin responseto theattribute
changedeterminedby applications.

Guidesprovidesadditionaldepthcueswhennecessary
andConstraintscompriseof a setof constrainingfunctions
for moving morepreciselythe cursorsanddraggersin the
scene.

In comparisonwith theexistinggraphicslibraries,one
new class,the mtkCursor, was included in MTK to en-
hance3D interactionsupport. An instanceof Cursorsis
controllablethrougha 2D or 3D input device via theclass
mtkxWindow. The 3D picking and snappingalgorithms
areyet additionalfeaturesthat improve the 3D interaction
facilitiesprovidedby MTK.

mtkGuide mtkDraggermtkConstraint

mtkDisplayList mtkSelection mtkLights

mtkCore

cameraPointer3D()

mtkCursor

Client
mtkxGlutWindow

mtkxGtkWindow

mtkx3dDevicemtkx2dDevice

mtkxMouse2D

mtkxMouse3D

mtkxSpaceball3003

mtkDisplayListGL mtkCamera

mtkxWindow mtkxDevices

Figure8: MTK framework

5 Sample applications

Theimplementedalgorithmsusethespaceballasthe3D in-
put device. The spaceballpermitsrotationandtranslation
movementsin 3D spaceaccordingto thepressuretheuser
appliesonthecontroller’sball. Theball sensespressureone
appliesto it - pushes,pulls, twists - andusesthat informa-
tion to correspondinglymove the objectof intereston the
screen.Pulling up or pushingdown the ball displacesthe
objectin � -direction;pushingto theleft or right will move
it in � -direction;andpushingtheball away or towardsthe
userwill moveit in � -direction.By simply twisting theball
in any directionwe canrotatetheobjectaboutthex, y, or
z-axis.Combiningall thesemovements,onehave6 degrees
of freedomoverany objecton thescreen.

To illustratetheapplicationof theproposedalgorithms
for controlling a spaceball,we developedtwo sampleex-
ampleson top of MTK andGLUT. GLUT is the OpenGL
Utility Toolkit which implementsa simplewindowing ap-
plication programminginterface(API) for OpenGLfunc-
tions. For communicationwith spaceballwe developeda
set of functionson the basisof the LibSBall library2 as
a idle-event callbackfunctions. Then,whenever the win-
dowing systemis in theidle state,this functionis activated,
thecommunicationis initiatedandtheinputeventsarepro-
cessedconveniently.

5.1 3D Picking

We developeda simplecubematchinggamethat allowed
us to observe and evaluatethe picking process.A set of
3 pairsconsistingof wireframedandsolid cubesare ran-

2http://jedi.ks.uiuc.edu/ johns/projects/libsball

domly placedin thescene(Figure9.a).Theusercanmove
the3D cursorin thespacebypulling andpushingthespace-
ball andselecta 3D modelof interestby pressingtheright
button (Figure 9.b). Whenever an object is selected,the
objectand its correspondingwireframearehighlightedin
thesamecolor (red,blueor green)andthesubsequentac-
tions on the spaceballareonly appliedon it (Figure9.c).
Thegoalof thegameis moving spatiallytheselectedcube
throughthespaceballin orderto putit insideits correspond-
ing wireframe(Figure9.d).

(a) (b)

(c) (d)

Figure9: Matchingcubesgame.

5.2 3D Snapping

Two applicationsweredesignedto evaluatethe 3D snap-
ping algorithm. Onethat snapsthe 3D cursoron a sphere
andthe otheron a cube. In eachonethe applicationpro-
grammustcorrectlydeliver the � - and � -directionson the
tangentplaneat eachpoint � reachedby thecursor3D.

For a sphere,we usedthefollowing procedurefor ob-
tainingthe � G and � -directions[8] at � : we determinethe
two vectorsfrom thecenterL of thesphere,LD� and LNM"O ,
whereM O is thenorthpoleof thesphere.The � directionis
the crossproductbetweenLPM O and L"� . The � direction
is thecrossproductof thenormalvectorat � and � .

PSfragreplacements

�
���
�

Figure10: � - and � -directionsona tangentplane.

Figure 11 picturestwo snapshotsof the application
programwith themovementof a 3D cursorconstrainedon
thesphere.

Figure11: Snappingon asphere.

Sincetheobjectiveof oursampleprogramsis todemon-
stratethefeasibilityof ourpurpose,theheuristicweadopted
for handlingtheedgesof thecubeis verysimple:weprede-
finedthe � - and � - directionsfor eachof six faces.Hence,
theorientationof displacementsonly changewhenthecur-
sor crossesthe edge. Additionally, we choseits adjacent
facefor constrainingthefurthermovementof thecursoras
depictedin Figure12.

Figure12: Snappingona cube.

6 Concluding Remarks

We presentedtwo direct manipulationtools for three-di-
mensionalgeometryusing3D input devices: a picking al-
gorithmfor pointingandindicatingpolyhedralobjectsand
a snappingtechniquefor smoothconvex surfaces.Typical
applicationsof suchalgorithmsincludevirtual reality, ge-
ometrymodelingapplicationsandgames.

Our3D pickingis totally application-independent;it is
basedsolelyonsimplefunctionalitiesavailableongraphics
hardware. The algorithmis also robust, sinceit doesnot
dependon readingz-buffer valuesto determinewhich ob-
ject containsthe3D cursor. Thus,it maybewidely usedin
applicationsthat representscomplex polyhedralstructures,
makingthework all easierbecauseit will not benecessary
to evaluatesuchstructures.Despiteour implementationis
for convex objects,we plan to exploit a user-definedclip-
ping planeanda stencil buffer – thoughany buffer capa-
ble of storinginformationaboutpixel overdraw, including
theaccumulationbuffer or evenacolorbuffer with additive
alpha-blending,maybeused– to efficiently checkthepar-
ity countingof intersectionsbetweenthe picking ray and
the sceneobjectsin order to correctlyhandlethe concave
objects.

The 3D snappingtechniqueis intendedfor interac-
tively moving a 3D mousecursoron smoothconvex sur-
faces. A differentialgeometrybasedsurfaceconstraintis
usedto decreasethe cost of performingintersectiontests
betweenthe surfaceandthe eye-cursorray, yet improving
pointsmatching. Although the presentedimplementation
still reliesmostlyontheapplicationfor providing pointson
thesurfacewhile the3D cursormoveson it, we weresuc-
cessfulin defining a simple interfacebetweenthe graph-
ics hardwareandtheapplication.We showedthat for each
pointonly two typesof dataarerequired:thenormalvector
andits orthogonalprojectionon thesurface.

We discussedan implementationof the proposedal-
gorithms. Both the picking andsnappingalgorithmswere
integratedin theManipulationToolkit (MTK), a high-level
direct manipulationlibrary usingOpenGLandC++. The
3D pickingalgorithmusestheOpenGL’sselectionmodeto
decreasethenumberof objectsfor testingthedepthrange,
while stayingapplication-independent.However, oursnap-

ping algorithmis application-dependent,sincetheapplica-
tion is responsiblefor calculatingthedirectionvectorsand
intersectionpoints.

As future work, we intend to exploit programmable
real-timegraphicsprocessingunitsasanalternative imple-
mentationof thepicking algorithmandto extendthesnap-
ping algorithm for using graphicshardware, thus achiev-
ing applicationindependence.The3D picking maybeim-
plementedasa singlevertex andfragmentprogram[2] in
which theuser-definedclippingplaneis emulatedusingthe
texkill shaderinstruction[1], e.g., on cardsthatdo not
provide supportfor glClipPlanes(). In addition,the
snappingalgorithmmayusegraphicshardwareto helpde-
terminingthesurface’snormalsof thepointsprojectedfrom
the tangentplanesonto the surface. Insteadof calculating
an exact intersectionof the projectedpoint with the sur-
faceand then computingthe normal vector, the graphics
hardwaremay only “snap” the projectedpoint to discrete
surfacepointswith pre-computednormals.Suchtechnique
is intendedto work with surfacemeshesthat are capable
of providing predefinedtangentbasisat the meshes’ver-
ticesto the vertex program. For eachdisplacementevent,
thesnappedobjectmayberenderedin anoff-screenbuffer
with the tangentbasiscomponentsstoredascolor compo-
nents,thenreadingbackthe(linearly)interpolateddirection
vectorsfor thepixel thatcorrespondsto thedisplacedpoint
in tangentplaneconvertedto window coordinates.This is
somewhat different from the currentsnappingalgorithm,
sincethe 3D cursorwill snaponly to visible partsof the
geometry. However, aswell asthe 3D picking algorithm,
this new algorithmwill betotally application-independent.

7 Acknowledgments

We would like to acknowledgeCNPqfor financialsupport
underthegrantnumber141685/2002-6andFAPESPunder
thegrantnumbers02/01161-3and02/01162-0.

References

[1] NVIDIA Corp. Clip-planes with texkill, 2001.
(http://developer.nvidia.com/view.
asp?IO=clipplanes_texkill)

[2] Fosner, R. Real-Time ShaderProgramming, Morgan
Kaufmann,2002.

[3] Fernandes,F.N. An architecture for constructing
interfaces with 3D direct manipulations, (in Por-
tuguese).StateUniversityof Campinas,M.Sc.Thesis,
1998. (http://www.dca.fee.unicamp.br/
projects/prosim/publications/thesis/
navarro-1998-mtk.pdf)

[4] Foley, J.D., van Dam, A., Feiner, S.K., and Hughes,
J.F. ComputerGraphics: Principles and Practice.
Addison-Wesley, 1990.

[5] Neider, J.,Davis, T., andWoo, M. OpenGLProgram-
mingGuide: TheOfficial Guideto LearningOpenGL,
release1. Addison-Wesley, 1993.

[6] Mesquita, L.A.G. Final Technical Report
about the Design of 3D Cursors for 2D In-
put Devices, (in Portuguese). State Univer-
sity of Campinas, Technical Report, March
2001. (http://www.dca.fee.unicamp.
br/projects/prosim/publications/
reports/lmesq-2001-cursor3d.pdf)

[7] Malheiros,M.G.,Fernandes,F.N.,andWu,S.-T. MTK:
A direct3D manipulationtoolkit. Proc. of SCCG’98,
81–88,April 1998.

[8] Shaffer, C. A. Gettingaroundon a Sphere Graphics
GemsII , ed.by JamesArvo,172–173,AP Profissional,
1991.

