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Abstract. The reconstruction of a 3D model from range images can be conveniently split into
two stages. The �rst stage consists basically in the extraction of geometrical information, e.g. the
depth and the orientation of image points, and the second stage concentrates on the transformation
of these data to a 3D model.

In this paper we focus on the second stage. Our approach is based on a deformable model, which
o�ers more exibility to mold a 3D model according to several geometrical constraints. Moreover,
instead of looking for a global functional that carries out the deformation, we opted for establishing
discrete local correspondences between 3D surface point data extracted from images and 3D model
points.
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1 Introduction

The reconstruction of a 3D model from images can
be conveniently split into two stages. The �rst stage
consists basically in the extraction of geometrical 3D
information from image points such as their depth
and intrinsic geometrical properties. And the second
stage concentrates on building a 3D model from the
extracted data, assigning a topology to these data.
Obtained a 3D model, the knowledge of geometri-
cal properties of the object of interest is certainly
enhanced, allowing further complex geometric pro-
cessings.

There is a variety of methods for reconstructing
3D objects from images. Basically two approaches
are distinguishable: patchwork model and deformable
model . In patchwork approach, one reconstructs 3D
objects without making any previous assumption
about its shape [7, 8, 12]. Distinguished faces are
segmented and \sewed". In deformable approach,
3D object shapes are obtained from the dynamic de-
formation of a simple, topologically equivalent one [3,
4, 15, 17].

Due to the data inaccuracy and the numerical
imprecision during segmentation, it is still a hard
problem to integrate separately segmented faces into
a surface without gaps. The deformable approach
has the advantage that it avoids this problem, since
we start with a simple surface without gaps and as-
sume that no \topological surgery" is performed dur-
ing the deformation process.

The deformation process emulates indeed a phys-

ical behavior. An initial simple elastic object is sub-
ject to internal and external forces, estimated from
images [5]. Governed by the continuous mechani-
cal laws the object shape is dynamically deformed,
until it reaches the equilibrium state. There are
two research directions. One direction is to reduce
the problem to a functional global minimization one,
whose objective-function is to �t the image points
with a minimal elastic energy surface [3, 4, 15]. An-
other direction is based on local information to re-
shape dynamically the initial model [13, 17], in which
no minimization technique is explicitly employed.
The last technique has an advantage over the previ-
ous one, in the sense that no preliminary global data
analysis is required to guarantee the correct solution
convergence.

An inating balloon model is an example of lo-
cally deformable models. It was proposed by Chen
and Medioni [17]. On the basis of a set of registered
range image1, a sphere is adaptatively
\inated", until it reaches the shape of the object
to be reconstructed. The inating algorithm im-
poses that the inating direction of each point on the
sphere must be within 90Æ of the viewing direction.
And, according to our experiments, it only works well
within 45Æ. Hance, the border of an object was not
completely reconstructable from just one cartesian

1A range image contains the depth information of each
image point in the viewing direction (direction towards the
sensor). When the viewing direction is (0; 0; 1)T , it is known
as a cartesian range image, or simply a depth map.
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range image, although there exists the depth infor-
mation of the border in the image. Another draw-
back of the balloon model is the possible occurence
of self-intersections in the growing model.

As an attempt to overcome these shortages we
present in this paper an alternative method to recon-
struct 3D objects from range images. Our proposal
is based on the local deformation approach and it
requires that the objects to be modeled are topolog-
ically equivalent to a sphere. Our model can deal
eÆciently with one view of an object, making the
best use of all the range data. The partial recon-
structed model may also be improved gradually with
new incoming view information. Moreover, the grow-
ing dynamics itself avoids self-intersections of the de-
forming model.

This paper is organized as follows. In section 2
we discuss the related previous work. Next, in sec-
tion 3, we present our proposed radial ow model .
Then, in section 4, our implementation is detailed
and in section 5, some experimental results are given.
Finally, in section 6 some concluding remarks are
drawn.

2 Previous work

Deformable models have been originally proposed
by Terzopoulos et al. [3] to accommodate the shape
and motion reconstruction of free-form, approximate
axial symmetric, exible objects from a temporal se-
quence of binocular image pairs (pro�le data). In
their work, objects were modeled as elastically de-
formable bodies subject to continuum mechanical
laws. Pro�le information from multiple views were
incorporated as constraint forces. The reconstructed
model were the one that has minimal elastic energy.
Later, Shen and Hogg [15] applied the same idea to
reconstruct objects, which are rigid and symmetric
about a plane parallel to the direction of motion con-
strained on a plane.

In order to simultaneously satisfy the reconstruc-
tion and recognition requirements, Terzopoulos and
Metaxas [4] used deformable superquadrics, which
incorporate the global shape parameters of a conven-
tional superellipsoid with the local degrees of free-
dom of a spline. Also, they �tted models to image
data by transforming the data into forces and sim-
ulating the model deformation through time with
the goal that the �nal shape should have minimal
elastic energy. They have experimented their tech-
nique with range data.

Liao and Medioni [13] claimed that the gradient
descent minimization algorithm, employed by most
of the global deformation oriented methods, is less
stable, robust and accurate than the Powell mini-

mization algorithm. They also broke the 3D sur-
face reconstruction problem into a set of 2D (linear)
B-snake problems to overcome the time and space
complexities.

The objects that the abovementioned techniques
can reconstruct must have shape similar to the one
of the initial guess. In [10], a robust initialization
for global deformable methods is presented. An al-
gorithmic methodology, that automatically produces
a simplicial surface from a set of points in 3D about
which we have no topological knowledge, is proposed.
It is based on a spatial decomposition and surface
tracking algorithm.

Another solution for avoiding a tight initial guess
was presented by Chen and Medioni [17]. Their sys-
tem is not based on global minimization methods,
but on the inating force that drives, on the basis
of local measurements, an initial triangular mesh to
the image points. During the growth process of the
triangular mesh, the triangles will be subdivided dy-
namically to mold gradually to the object surface.
One problem that the authors stated is that the mesh
surface may self-intersect during its growth.

This paper presents an improved inating bal-
loon model. It is called radial ow model . A new
inating algorithm is proposed to exploit better the
range data and to improve the inating dynamics. In
this way, we expect to achieve a more eÆcient and
robust reconstruction procedure.

3 The Radial Flow Model

An icosahedron is placed conveniently at the ori-
gin of the reference system of the range data R.
Under the radial inating force and the surface ten-
sion (modeled as spring tension between adjacent
vertices), the vertices of the model move towards its
potential corresponding point in R. The velocity of
a vertex is estimated on the basis of spring tension.
During the ination process, the triangles may be
subdivided adaptively, creating new vertices with a
potential correspondent in R. However, if the grow-
ing direction is parallel to a triangle, no subdivision
is performed.

Once a vertex reaches its corresponding point, it
is considered anchored and thus can no longer move
freely. Since the velocity of a vertex depends on
the spring tension, when a vertex is anchored, the
velocity of its neighborhood is also reduced. The
more neighboring vertices are anchored, the velocity
of a vertex tends to zero. But, the growing model
may be still far away from the shape represented by
the image data. To remedy it, a new front with new
radial growing direction is created. This process is
recursive, until the most of the image points in R are
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almost touched by the triangles of the radial model.
In summary, our reconstruction method com-

prises the following steps:

1. Initialization

2. Adaptative growing

(a) Subdivision

(b) Correspondence

(c) Growing

(d) Anchoring

(e) Error determination

3. New growing front determination

In this section each of these steps is explained in
details.

3.1 Initialization

Since the initial model changes dynamically accord-
ing to the corresponding image points, any initial 3D
model may be used. However, to conform to our ra-
dial growing strategy, it is convenient to choose as
an initial model the one with uniformly distributed
vertices on its surface. We opted for the icosahe-
dron structure. The size of the icosahedron should
be such one that the initial model is \covered" by
the image data to ensure the \positive" growing, and
its edge is shorter than the maximal allowed length
(section 3.2.1).

After then, each vertex of the icosahedron is as-
sociated to a point in the range data, in order to
determine its radial growing direction. Because of
the discrete nature of the range data, a tolerance
should be given for this seeking process. Small dis-
placements of vertices are allowed to align them ra-
dially with their potential corresponding points (sec-
tion 3.2.2). If, even though, no corresponding point
is found, the vertex is removed from the model to
avoid spurious faces and the model structure is re-
triangulated. This is the �rst growing front.

3.2 Adaptative Growing

The growth dynamics emulates surface tension e�ect.
The velocity of a vertex decreases proportionally to
the number of anchored vertices in its neighborhood
and the subdivision of its adjacent faces may be �ner
to facilitate its molding to the range data. In this
way, we may not only diminish the undesirable re-
sults caused by spurious corresponding points, e.g.
image noises p and incorrect associations q, but also
capture abrupt concavity variations in image as well
(Fig. 2).
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Figure 1: Correspondence in the balloon model.
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Figure 2: A growing front in the radial model.

Concerning the growth directions, we introduced
a new strategy that attempts to improve the eÆ-
ciency of the balloon model. This strategy requires
a new growing procedure, as explained in the subse-
quent sections.

Chen and Medioni proposed that the vertices of
triangulated model move along its surface normal.
So long the surface normal is not changed, its grow-
ing direction is maintained. The way that they seek
for a potential corresponding point in this direction is
based on the Newton-Raphson iteration method [6],
which uses the projection of the vertex in the direc-
tion of the sensor as an initial guess (Fig. 1). To
guarantee the convergence of the process, the inat-
ing direction of each point on the sphere must be
within 45Æ of the viewing direction.

In our method, for each front the growing direc-
tion of its vertex is radial, from the origin of the front
reference system to its potential corresponding point
(Fig. 2). It is computed at the moment that the
vertex is created and maintained until the vertex is
anchored or a new grwoing front is determined. This
strategy simpli�es the vertex anchoring algorithm,
since it is reduced to the trivial comparison of the
coordinates of the vertex with the coordinates of its
corresponding point. Another advantage is that the
action of our algorithm is not restricted to the solid
angle within 45Æ around the viewing direction.

Anais do XI SIBGRAPI, outubro de 1998



4 da Silva, R.M. and Wu, S.T.

3.2.1 Subdivision

In our approach, a good subdivision scheme would
be the one that produces an almost uniformly dis-
tributed triangular mesh. It is worth mentioning
that, di�ering from the work of Chen and Medioni,
degenerated (thin and long) triangles are allowed in
our model to avoid inserting �ctitious vertices and
to produce undesired side-e�ects.

From imaginary physical system point-of-view,
the purpose of subdividing triangles is to keep
constant the sti�ness of the spring tension between
adjacent vertices. During the growth process, the
triangles become naturally bigger in size, and the
spring force between adjacent vertices increases, act-
ing
against the inating force. Also, when the vertices
are anchored, the spring tension in their neighbor-
hood increases. Finer subdivision may aliviate these
reactions.

From geometrical point-of-view, subdividing tri-
angles allows the model to adapt the local geometry
of image data without a�ecting other parts. We can
translate the physical subdivision conditions into a
geometrical tolerance parameter: the allowed maxi-
mal edge length for each triangle, denoted as
max length. The value of this parameter is adap-
tatively calculated for each front concerning its error
to the image data, and for each its triangle regarding
the sti�ness of the neighborhood of its vertex (num-
ber of anchored adjacent vertices).

We subdivide a triangle by bisecting its longest
edge. The subdivision is performed when satis�es
simultaneously one of the following conditions:

1a. larger than max(max length, min error) in each
front, where min error is the minimal distance
between the front and its corresponding image
data (section 3.2.5), or

1b. larger than max(max length, min error) *
sti� factor , sti� factor � 1, for each triangle,
wheremin error and sti� factor are, respectively,
the minimal distance to input data and the sti�-
ness factor (section 3.2.3).

and the condition that

2. there is a corresponding point in the image data
for the edge to be bisected (section 3.2.2).

Observe that the adjacent triangles of the bi-
secting triangle may also be bisected or trisected to
maintain the model triangulated, as shows Fig. 3.

3.2.2 Correspondence

Because the state of each vertex plays a vital role
in the growth process (as explained in section 3.2.3
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Figure 3: Propagation of subdivisions.

it a�ects the value of sti� factor), spurious vertices
without corresponding points in image data should
be avoided. Therefore, the longest edge criterion is
not suÆcient for deciding whether a face should be
subdivided or not. We just subdivide in cases where
we can �nd a corresponding point in input data for
the edge to be subdivided.

The search algorithm of a corresponding poten-
tial point for an edge has as input the set of points
belonging to the topological disk that has the middle
point of the edge, P , as center. The radius of this
disk is determined concerning the extend of the edge
and its adjacent faces. This disk together with the
center of the front's radial growing direction builds a
solid angle. The subdividing point P 0 is the closest
point to P , with a corresponding image point located
in the solid angle (Fig. 4). In this way, we can also
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Figure 4: Determination of a subdividing point.

guarantee the topological consistency of the deform-
ing radial ow model in relation to the image data.

3.2.3 Growing

The movement of any element j on our radial ow
model is governed by the motion equation

mj�vj + rj _vj + ~gj = ~fj ; j = 1; � � � ; n; (1)

where mj and rj are the mass and damping coeÆ-
cient of the element j, respectively. vj , _vj and �vj
denote, respectively, its position, velocity and accel-
eration. ~fi and ~gi represent the sum of internal forces
(e.g. spring tension between adjacent vertices) and
the sum of external forces (e.g. inating force), re-
spectively.
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Once our goal is just that our model stops grow-
ing (from physical point-of-view, in an equilibrium
state) when it achieves the image data, we can sim-
plify the equation (1) by making mj=0 and rj = 1,
for all j, and reduce it to

_vj = ~fj � ~gj ; j = 1; � � � ; n: (2)

Discretizing equation (2), we obtain for each
growing iteration i+ 1

vi+1j = (~f ij �
~gij) + vij = kij ~nj + vij ; (3)

where ~nj corresponds to the radial growing direction
of the element j, and kij , the growing vector mag-

nitude, which is dependent on the inating ~f ij and

spring ~gij forces. A rough, but working, approxima-

tion for kij is to make

kij =
max length

rj
; (4)

where max length is the allowed maximal length for
each triangle and rj , the number of neighboring an-
chored vertices. Since 1

rj
acts as a factor that reduces

the velocity magnitude of a vertex when its adjacent
spring tension increases (number of anchored vertices
increases), we denote this factor as sti�ness factor,
sti� factor . This concept may aid in reducing the ef-
fect of spurious correspondences and spurious image
data.

Our radial growing strategy may yield degener-
ated growing directions, when the image data are not
from star-shaped objects. Under degenerated grow-
ing direction, we understand that the vector ~nj of
a vertex becomes parallel to its adjacent triangles
(Fig. 5). In this case, no inating e�ect is produced.

O X

model

x’

o’

Z

nj

origin  new frontz’

image

origin  anchored front

Figure 5: A degenerated direction and a new front.

To avoid these unproductive movements, we make
rj = 0.

3.2.4 Anchoring

As already stated, a vertex vj is called anchored
when

jjvi+1j � vij jj > jjvij � pj jj;

where pj is its potential corresponding point.
Otherwise, further iterations are necessary to move
vj to pj . However, there are two situations where a
vertex tends to stop without reaching its potential
corresponding point.

First, in section 3.2.3 we showed that the move-
ment of a vertex in our radial ow model may tend
to zero, when the most of its neighboring vertices
are anchored. In order to improve the eÆciency, we
introduced the minimal sti�ness concept, min sti� ,
under which we consider that the vertex can no longer
move, even if the corresponding point is not reached.

Second, the simpli�cation of equation (1) into
equation (2), on the one hand, facilitates the grow-
ing and anchoring process. On the other hand, we
should establish smarter (non-physically-based) con-
vergence tests for the triangles, whether they should
be further subdivided or not. This is achieved by in-
troducing the error concept { tol (section 3.2.5). We
consider that a triangle is anchored, when the max-
imal distance between its inner points and the cor-
responding image data is smaller than tol . When a
triangle is considered anchored and its adjacent ver-
tices not, our algorithm \pulls" these vertices to their
corresponding points and sets them as anchored, in
order to guarantee the consistency between image
data and our model.

3.2.5 Error Determination

The error determination is important for ending our
reconstruction process. As presented in section 3.2.4,
the error determination is useful for anchoring same
faces (and also, their adjacent vertices). This error,
called radial error corresponds to the average vector
magnitude from every image point that lies in a solid
angle to the supported plane of the triangle in the
radial growing direction. To determine a solid an-
gle, the vertices of the triangle and the origin of the
reference system of its front are utilized [1], as de-
picted in (Fig. 6).

O
X

radial
error

Z

normal  error

model

image

Figure 6: Radial and normal errors.

Fig. 5 illustrates a situation for which we can-
not use the zero-velocity criterion to stop the process,
since there may be a set of image data that are only
reachable if we change the radial growing direction.
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To detect the existence of new growing fronts, the
distance from the image data to each face, called nor-
mal error , is computed and compared with the error
tol =

maxlength
2

(Fig. 6). A new front is always cre-
ated, whenever at least 20% of the compared points
have distance greater than tol. This guarantees that
our algorithm generates, at the worst case, a radial
model whose distance to 80% of the range image data
points is less than 0.5� initial max length.

3.3 New growing front determination

When the existence of a new growing front is de-
tected, our system can automatically determine the
contours of the new fronts from the faces with nor-
mal error greater than the error tolerance tol. The
reference system of each new front is determined,
such that every vertex of contour lies on the plane
z=0 or above it. This simpli�es the growth process,
reducing it to a hemisphere.

The reference system of each new front (Fig. 5)
is obtained from the baricenter P of its contour and
the normal vector ~n of the closest polygon to this
contour[2]. A vector from baricenter to any contour
vertex lies on the plane z=0 de�nes the x-axis ~x of
the new reference; while the cross product ~n�~x cor-
responds to the direction of y-axis.

It is worth mentioning that before growing re-
currently each new front, geometrical transforma-
tions should be applied to the image data, to en-
sure that both the image data and radial model have
the same reference system. After this transforma-
tion, the initial correspondence between the existing
model vertices in the new front and the image data
should be re-established. In this process, we can-
not often �nd a new potential corresponding point
to each model vertex. To solve this problem, we
may remove these vertices and re-triangulate the new
front or we may set these vertices as don't care ones,
whose behavior is de�ned by its neighboring vertices
and which do not inuence the growing process any-
more. Due to eÆciency reason, we opted for the
second solution.

Furthermore, as already observed by Chen and
Medioni, this front growing strategy is parallelizable,
since the computations of each front are independent
from each other.

4 Implementation

We have implemented our algorithm in C on a UNIX
platform. It is runnable on SUN-SPARC, IBM-AIX,
and PC (Linux). In this section we present some
design decisions to either improve the algorithm ef-
�ciency or the numerical stability.

TDM [14], Topological Data Model, library is
used to manage our radial ow model. TDM pro-
vides its user a variety of functionalities to create, to
manipulate, and to inquire the topology of an object,
without knowing the underlying data structure. In
our case, it not only ensures the topological consis-
tency (new topological rearrangements) in each sub-
division, but also helps in obtaining topological in-
formation, such as the oriented contours of a set of
triangles and the neighboring data.

For the proposed algorithm we use spherical co-
ordinates (�; �; �) to simplify the computation of the
new position of each vertex towards its potential cor-
responding image point. Recalling that the growing
direction for each front, � and �, is constant, then
equation (3) is reduceable to �i+1j = kij + �ij :

For deciding whether a new subdivision of a face
should be carried out, we impose that a new vertex
can only be inserted in a face if ~op:~n

~op
� 0:15; where

~op and ~n are, respectively, the vector de�ned by the
new potential vertex in the radial direction and the
face normal. In this case, we also considered that its
adjacent vertices are moving in the direction parallel
to it.

Finally, due to the performance reason, we in-
troduced a maximal growing step number, max step,
to control the number of recurrences for �nding new
growing fronts.

Figure 7: Cone.

5 Experimental Results

To evaluate the applicability of our algorithm, we
carried out experiments on both synthetic and real
range data. To demonstrate the performance of our
algorithm in handling eÆciently all the information
contained in a range image, just one cartesian image
was used for each reconstruction.

For illustration, we include in this section the
radial ow models reconstructed from two synthetic
images and three real images, by attributing initial
max length=0.2 and max step = 6. For each of them
we present two data formats: input (range) data and
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Figure 8: Esfcub.

the corresponding radial ow model rendered by Ge-
omview [9].

We �rst tested the algorithm on the synthetic
image of a cone (Fig. 7). In this case, we observe
that our algorithm works well for adaptative com-
putation of sti� factor and the error determination.
Surface tension acts against the growing force, re-
ducing the velocity of the vertices towards the cone
apex to zero. But, through the error determination,
two new growing fronts were recursively detected un-
til the neighborhood of the cone apex was actually
achieved (Table 1).

Then, we tested the performance of our algo-
rithm in handling discontinuities in the range data
(Fig. 8). Again, the surface tension was important
for controlling the movement of a vertex towards a
non-valid corresponding range image point and al-
lowed the \valley" in the object to be reconstructed
even though the range image does not contain the in-
formation about the lateral faces. Note that our ra-
dial model could not only reconstruct approximately
the borderline of the discontinuities, but also \�lled"
the \missed" faces that should exist between these
borders.

In order to test our algorithm for complex ob-
jects, we reconstructed the real image data of Chopin
bust (Fig. 9) and the Bigwye (Fig. 10) taken from
MSU/WSU range database [11]. In the both cases,

Figure 9: Chopin's bust.

Figure 10: Bigwye.

we experimented the capability of our algorithm for
reconstructing a non-star shaped object and for avoid-
ing self-intersections in the regions with closely spaced
features.

Finally, we experimented our algorithm for a
part of the Chopin image data, restricted to its head
(Fig. 11). The objective of this experiment was to
compare the performance of our algorithm for star
and non-star shaped objects. In this case, less grow-
ing steps were used to reconstruct much more details
(Table 1).

6 Conclusions

We presented a new reconstruction algorithm for the
class of objects topologically equivalent a sphere. It
is based on a local deformation approach, using a
radial ow model . Our algorithm can automatically
adapt the maximal allowed edge length and growing
velocity from one unique variable de�ned by the user,
max length.

From our experiments, we can state that our re-
construction algorithm behave well for local surface
properties, even when we deal with non-star shaped
objects. In comparison with the work of Chen and
Medioni, two qualitative improvements were achieved
in our work: better use of the range (input) data and
avoidance of self-intersections during the reconstruc-
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image size (# points) # vertices # faces # growing fronts # growing steps # growing iterations

Cone 128 � 128 (12303) 197 390 3 2 15

esfcub 128 � 128 (12449) 849 1694 43 4 86

Bust 356 � 232 (45191) *1860 3716 151 6 172

Head 131 � 142 (13026) 1116 2228 11 2 25

Bigwye 185 � 225 (21345) 1804 3604 149 5 185

Table 1: Computation results

Figure 11: Chopin's head.

tion of closely spaced features..
As further work, we intend to extend our algo-

rithm in order to support the reconstruction of other
topological classes of objects.
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