
Towards Consistency in a Heterogeneous Collaborative Geometric
Modeling Environment

Luiz Gonzaga da Silveira Jr
Electrical and Computer Engineering Faculty

State University of Campinas
P.O.Box 6101 13083-970

Campinas, SP - Brazil
gonzaga@dca.fee.unicamp.br

Wu, Shin-Ting
Electrical and Computer Engineering Faculty

State University of Campinas
P.O.Box 6101 13083-970

Campinas, SP - Brazil
ting@dca.fee.unicamp.br

Abstract
This paper presents a hybrid system architecture for collaborative geometric modeling applications, as a tradeoff
solution between replicated and centralized approaches. It addresses the geometric inconsistency that may be
presented by a replicated-based architecture and the tight visualization coupling in the centralized one. The
proposed approach provides a infrastructure to ensure the same geometric processing for a highly heterogeneous
computing environment. Moreover, it allows a decoupled visualization and interaction on each user’s workspace. A
prototype has been implemented and evaluated concerning with geometric consistency and responsiveness.

Keywords
geometric modeling, cross-platform consistency, CSCW, distributed heterogeneous system, interactive 3D graphics
interface, design pattern.

1. Introduction

The typical scenario for collaborative modeling is a
shared workspace, where a dispersed group of users
(end-users) work together for creating and modifying an
application-dependent 3D-model over the Internet. Con-
cerning with the underlying architecture one may distin-
guish three approaches: centralized, replicated and hybrid
one [Greenberg95].

In the centralized architecture only one instance of the
shared application runs in a central server. On the end-
users workspaces the local processes are restricted to dis-
playing the output from the central server and managing
the input events. It makes the concurrency control simple
to be implemented, but the interactivity might be compro-
mised. Any end-user interaction generates a sequence of
events, which must be collected and routed to the central
server where they are handled. And the same output of the
shared application must be broadcasted to all participat-
ing machines for visualization (Figure 1). This may gener-
ate substantial overload both in the central server and net-
work due to the continuous traffic and processing. Exam-
ples of applications based on the centralized architecture
are NetMeeting [Microsoft99], SharedX[Garfinkel94], and
XTV [Chung94].

In the replicated architecture, one instance of the shared
application runs locally on each end-user’s workspace.
Both the input events and the graphics output are handled

Sharing Sharing

Server Client 2Client 1

Raster Image Raster ImageRaster Image

Rendering Pipeline

3D−Graphical Scene

Operations

Camera

Light

Geometric and

Topological Model

Figure 1. Centralized architecture

locally. This approach favors the design of a user inter-
face more specialized to the local computing environment,
since the application and the interface are part of the same
front-end process. Additionally, UI researchers point out
that a tighter integration between an application and its in-
terface lets the application provide more naturally semantic
feedback while the user is interacting [Zeleznik93]. More-
over, the system response-time may be enhanced, once the
network traffic from the events is relatively lighter. Group-
Kit [Roseman96] and DistEdit [Knister90] are examples of
applications that have replicated architecture.

By presenting favorable network communication fea-
tures, the replicated architecture has been adopted by
most collaborative 3D geometric modeling systems,
such as Repo-3D [MacIntyre98], Distributed Open
Inventor (DIV) [Hesina99], IntelligentBox[Okada98],
TOBACO [von Lukas00], and CoCreate OneS-
pace [Mackrell99]. The benefits of a replicated
architecture must, however, be balanced against the
homogeneous numerical computation offered by the
centralized one, when we migrate from a homogeneous to
a heterogeneous computing environment. Under heteroge-
neous computing environment we understand a network
of computers with different CPU speed, computing power,
computing precision, memory, graphics processing, and
display capabilities. And our focus is on the consistency
across such machines, without completely disregarding its
performance.

Operations

Topological Model
Geometric and

Topological Model

Operations

Light

Camera

Rendering Pipeline

Raster Image

User 1 (Copy)

Raster Image

Rendering Pipeline

Camera

Light

Geometric and

Camera

User 2 (Copy)

Geometric and

Topological Model

Operations

Light

Rendering Pipeline

User n (Copy)

Raster Image

3D-Graphical Scene3D-Graphical Scene 3D-Graphical Scene

MessagesMessages

Figure 2. Replicated architecture

We propose a hybrid architecture for collaborative ap-
plications, as a tradeoff solution for keeping the con-
sistency of 3D-model and for preserving the system us-
ability. The hybrid architecture results from the com-
bination of the both centralized and replicated architec-
tures. The basic idea consists in separating application-
dependent model from graphics functionalities. More pre-
cisely, it consists in separating geometric modeling and in-
teraction (rendering and manipulation) activities. All ge-
ometric/topological operations are performed in ageomet-
ric/topological modellocated in a centralmodeling server,
as response to networked requests from the participating
machines (clients). Graphics interactions and visualiza-
tion, on their turn, are carried out on the replicated graph-
ical model residing in each client’s machine. In this ap-
proach, we may take advantages of the well-known robust
geometric algorithms [Michelucci99] designed for mono-
lithic modeling applications to enhance the robustness of
the entire heterogeneous platform.

For validating our proposal, we have implemented a multi-
platform collaborative geometric modeler calledCoMo
(acronym for Collaborative Geometric Modeler). We an-
alyzed its responsiveness on the basis of the metrics pre-
sented in [Nielsen94] and its robustness from the stand-
point of heterogeneity of numerical computing environ-
ment [Hoffman89]. The preliminary tests indicate that the

data consistency is ensured and, when suitably optimized,
each local workspace has a response-time above the limit
of the user’s acceptance.

In the next section, we give a brief explanation of the de-
sign issues that we addressed. In section 3 our proposed
architecture is given. A prototype,CoMo, that we used for
evaluating our proposal is succinctly described in section 4.
Four experiments are presented in section 5. In the first ex-
periment, we tested the cross-platform consistency of the
entire computing platform by installing the model server
in different machines. In the remaining experiments, we
tested the responsiveness of the system in two distinct sit-
uations: tight and loose application–graphics coupling.

2. Design Issues

To our best knowledge, a few collaborative geometric mod-
eling systems are designed specifically with cross-platform
consistency and heterogeneity in focus. There are various
reasons. First, due to its very specialized nature, most of
collaborative geometric modeling systems were designed
for a homogeneous computing environment (one machine)
with increased processor load and cost of application li-
censes. Second, because of highest bandwidth required
between the application and the interface, an appropriate
3D interaction architecture for a single user system is still
questionable. Third, a broad range of issues must be taken
into consideration in the design of a CSCW (acronym for
Computer Suported Cooperative Work) system. It depends
on the tasks involved, the users, and the environment. The
focus of most researchers has been on the distributed infra-
structure and group facilitors.

As already stated, in our work we are centering on the two
design issues: cross-platform consistency and responsive-
ness in a heterogeneous computing environment.

2.1. Cross-Platform Consistency

Two main sources of inconsistencies may affect collabo-
rative geometric modeling applications: concurrent ma-
nipulations and inaccuracy of floating point arithmetic.
While concurrency problems have been tackled in the
development of general-purpose collaborative applica-
tions [Koch94, Strom98], geometric inconsistency prob-
lems have only been addressed for monolithic geometric
modeling applications [Michelucci99].

The problems caused by floating-point arithmetic in ge-
ometric computation is serious. Due to its approxima-
tion nature, there may be imprecision that lead to contra-
dictory information about modeled objects. For example,
note in Figure 3 thata =� b, b =� c, but a 6=� c. In
this case, the classical transitivity property for Euclidean
geometry is violated. Such a violation leads to inconsis-
tent decisions. In order to improve the robustness, sev-
eral approaches were proposed for consistent interpreta-
tion of imprecise numerical results in a single-user sys-
tem [Bruderlin90a] [Hoffman89] [Segal90]. It expects that
for all legitimate inputs, consistent results are delivered.

In replicated-based systems, inconsistency problems may
be worsen, once the replicated data may be processed by

a

b

c

�

Figure 3. Violation of transitivity property.

machines with different computing power and representa-
tion precision. Slight differences in the processing may de-
liver contradictory numerical data and yield distinct logical
decisions. Yet, it is difficult to conceive a way to guaran-
tee that the output from one machine will be the same as
the output from another, even when each instance of an ap-
plication is individually robust and when the same floating
point computation standard is adopted.

Figure 4 exemplifies the results of robust intersections be-
tween two polygons (F1 andF2) and a straight line (E1).
In the first replicated application (Figure 4.a) the intersec-
tion is a point on the boundary of the two polygons, and,
in the second one (Figure 4.b), the result are two points,Vr
andVs, in the interior ofF1 andF2.

Network

rV

r

F
F

E

1

2

1

F
F

E

1

2

V s

1

V

(a)

(b)

Figure 4. Inconsistencies in the replicated ar-
chitecture

2.2. Responsiveness

To have wide acceptance, any interactive system must be
designed with usability in mind. Usability concerns mak-
ing systems easy to learn and easy to use. There are several
usability metrics to assess system’s performance, such as
time to complete a task, time spent on errors, and ratio of
successes to failures, and so on [Preece94].

For 3D graphics interactive systems, some of usability

metrics are functions of system’slatency. Latency is re-
lated with the update speed of an image in response to a
user action. It plays an important role in the fluidity of end-
users interactions with their applications. The latency must
be the lowest as possible. As computer cannot provide
fairly immediate response, three important latency limits
have been identified regarding the reaction and behavior of
end-users [Nielsen94]:

� 0.1 sec. the limit for having the user feels that the
system is reacting instantaneously. Hence, no special
feedback is necessary.

� 1.0 sec.the limit for the user’s flow of thought to keep
uninterrupted, despite the noticeable delay. Normally,
no special feedback is necessary during delays in the
range between 0.1 and 1.0 second, although the user
does lose the feeling of operating directly on the data.

� 10 sec. the limit for keeping the user’s attention fo-
cused on the dialogue. From the usability point-of-
view, a visual feedback is required when a system will
take significant amounts of time to perform a task.

On the basis of these limits we will evaluate the accept-
ability of our proposed hybrid architecture. We will show
that in our architecture we adopt a very conventional way
for updating the screen images in response to the user’s ac-
tions. Callbacks are used to alter a graphical model in each
participating machine.

3. A Hybrid Architecture

Figure 5 presents an overview of our proposal for a col-
laborative geometric modeling architecture. It comprises
three distinct classes of application on the top of a high-
level distribution platform: geometric modeling server,
user workspace application, and group manager server.

Network

Modelling Server

User Workspace

Model
Geometric Graphics Facilities

Graphical Model

Graphics Facilities

Graphical Model

Model
Graphical

Floor Control

User Workspace

User Workspace

Server
Group Manager

Session

Interface

Group Interfaces

3D-Model Interfaces

Config Interface

Graphics Facilities

Graphical Model

Group Manager

Figure 5. The conceptual model of our pro-
posal

In this approach, thegeometric modeling kernelresides
in a central server and end-users interact with a simpli-
fied model, renderable on any machine, through either a

3D-cursor or 3D-graphics metaphors. This separation al-
lows an end-user to set her/his rendering and manipula-
tion parameters in accordance with local hardware capa-
bilities, without compromising the geometric processing
(Figure 6).

Client

Master Copy

Client

Topolgoical Model

Geometric and

Sharing Sharing

Operations

Graphical Model

Shared Light

Shared Camera

Interaction Interaction

Light

Graphical Model

Rendering Pipeline

Raster Image

3D-Graphical Scene 3D-Graphical Scene 3D-Graphical Scene

Rendering Pipeline

Raster Image

Camera

Light

Graphical Model

Camera

Figure 6. Hybrid architecture

Since the geometric decisions are under central control, it
suffices to integrate in thegeometric modeling kernelthe
well-known strategies to cope with robustness problems
such as perturbation schemes [Edelsbrunner88], symbolic
computation [Yap90], and interval arithmetic [Comba93].
A graphical representationof the underlying 3D geometric
model is replicated and sent to the participating machines
on demand. In this way, the geometric data consistency is
ensured across the network, independent of local numeri-
cal computation power, and the graphics hardware features
may be better explored at each workspace.

In our environment, several users may interact with the
shared 3D model at once. Some control strategies are,
therefore, necessary to avoid concurrency problems. In
order to allow end-users to take turns in interacting with
a shared 3D model, it is devised in our architecturefloor
control mechanisms, residing in agroup manager server.
The floor control mechanism is responsible for avoid-
ing/solving resource contention of potential conflicts that
may arise from simultaneous access of a shared application
by various end-users. The most common strategy works on
first-come-first-served basis.

3.1. Geometric Modeling Server

Figure 7 presents the conceptual model of the architecture
of our geometric modeling server.

The geometric modeler is application-dependent and tai-
lorable to the rendering and manipulation functionalities
provided by the user workspace. One of the key elements
that bridge the geometric modeler and the user workspaces
is thegraphical model. The graphical model is a hierarchi-
cal structure consisting of graphics elements necessary for
rendering an image, such as geometric data, texture, and
color. These elements are supported by the most low-level
3D graphics library.

The geometric server not only holdsApplication-

*

< convert

*

*

Graphical Model

Geometric Model

*

*

**

*

Modeling Server

*
Material

DigGraphics

TextureColor

DBAdapter

3D-graphical
Scene

3D-Model

Appl-Dependent

Manager Proxy

Manager Interface
3D-Model

Interface

Line DigComposite

Proxy
3D-Model

3D-Graphical

Floor Control
Proxy

3D-Model

Model Container

Container

Polygon
Point

3D-Model

Replicator
(Producer)

R
ep

lic
at

or
(C

on
su

m
er

)

Manager

Model

Figure 7. A geometric modeling server

Dependent Model , but also the operations on them.
A representative of the geometric server is created in
each participating machine whenever interactions on the
geometrical model are required, in accordance with the
Proxy design pattern [Gamma95]. The concurrency con-
trol is accomplished by intercepting the user’s requests be-
tween the model manager and the user workspace applica-
tion. These requests are granted in a sequence imposed by
the floor control mechanism.

Whenever a change is occurred in theApplication-
Dependent Model , its corresponding graphics data,
DigGraphics , are also updated. While the geometric
data and methods reside in a server, the graphics data are
replicated for each end-user workspace where they are ren-
dered. In this way, the speed with which each client re-
renders the graphics objects after any view change depends
only on the local graphics hardware power. Nothing needs
to be transmitted over the network. If the geometric data
are updated in a server, the changed part must be converted
into graphics data format and multicasted from the server
to the clients. In this case, instead of the whole graphics
scene or complex native 3D geometric data, only the mod-
ified graphics data are transmitted.

To be flexible enough for accommodating distinguishing
features of a variety of geometric representation schemes,
the geometric data and geometric methods are customiz-
able by the application developers [Pree95]. Heuristics that
can ameliorate the robustness problems may be included in
the geometric operations.

3.2. User Workspace

Our emphasis on the design of user workspace applications
is the tailorability to each local computing power and the

accessibility to all geometric functions provided by a geo-
metric modeling server. Its conceptual model is sketched
in Figure 8.

**

*

*

*

End-User Workspace

Graphical Model

Graphics Facilities

*

3D-cursor

2D-cursor

**

*

Container
3D-Graphical

Polygon
Point

DigCompositeLine

DigGraphics

Light

Texture

Camera

3D-graphical
Scene

GUI Widgets

User

(proxy)

3D-Viewing

3D Graphics API

Metaphors

Color Material

3D-manipulation

Session

Floor Control
(proxy)

3D-Model
(proxy)

(Producer)
Replicator Replicator

(Consumer)

Figure 8. A user workspace

As already mentioned, to provide a more versatile way to
refer to an object residing in the geometric server, a rep-
resentative of the 3D geometric server is instantiated on
demand at each user’s workspace. For rendering and inter-
action purposes, we reused the functionalities available in
the manipulation toolkitMTK[Wu99].

Besides the Gouraud rendering pipeline, MTK provides fa-
cilities to implementmetaphors, which convey operations
on a 3D object through a 2D cursor in a more familiar and
accessible pictorial representation, calleddragger. MTK
also permits the users to interact with 3D objects via a 3D
cursor. A main differential concept introduced in MTK is
the model-graphics decoupling.

The model-dragger decoupling may enhance the perfor-
mance of the system concerning with usability. An imme-
diate semantic feedback may be provided while the user
is interacting with the system, even though a geometric
server needs longer time to accomplish a task, as illus-
trated in the sequence diagram of Figure 9. Observe in
this diagram that, when an event is captured by a manip-
ulator, it generates a semantic value, such as displacement
and rotation angle. This value is, then, used for updating a
3D geometric object in the geometric server and its corre-
sponding dragger. As draggers reside in the local machine,
their latency is less than the latency of any 3D model.

The latency of a dragger is given by

tdragger latency = tlp + tr; (1)

wheretr andtlp are, respectively the local processing and
rendering time. Whereas the visual feedback of a geomet-

control

changed()

:3D-manipulation
metaphor

:activate()

hasToken()

:transformation(matrix)

:activate()

:manip(matrix)

:update(:object)

container

changed()

container (producer)
:dragger :floor:3D-graphical :model :replicator

picking()

:interaction()

Figure 9. Interaction sequence

ric object requires remote processing

tmodel latency = tlp + tt1 + tm + tt2 + tr; (2)

wherett1, tm, andtt2 are, respectively, the transmission
time of a user’s request, the processing time in the central
server, and the transmission time of the server’s response.

The equation (2) suggests us that when an application is
separated from the user interface, we have several ways to
improve its latency: (1) we may locally adjust the render-
ing parameters (tr) in order to counterbalance the delays in
a network (tt1 andtt2); (2) we may invest in the processing
power of the central server (tm); or (3) we may invest in
a higher bandwidth network. Whatever is the solution, it
is possible in our architecture to support different levels of
rendering, tailoring to the local computing power, without
sacrificing the geometric model processing capabilities of
the central server.

The implementation of a 3D cursor in the context of a
model-graphics decoupled architecture is not trivial at the
first glance. Usually, the set of primitives provided by a
geometric modeler is much more specialized than the one
supported by our graphical model. This difference may
yield discrepancies between what you see and what you
get, if the updates of the application and graphics data are
not appropriately coordinated. In the design of MTK, the
paradigm “what you see is a simplified form of what you
get” is adopted. The positions of the 3D cursor on a sur-
face of a 3D object is computed by the application and not
by MTK. The 3D cursor’s movements are constrained on
the tangent plane of a surface or on the tangent direction of
a curve at each current point. Thus, its latency is governed
by

tcursor latency = tt1 + tm + tt2 + tr: (3)

Different from a single-user interface, a interface for a
collaborative environment must also consider assisting
human-human interaction and the cultural and social back-
ground of the participants. Providing some convenient
ways of identifying “contextually” the participants and
what they are doing is an important issue [Ellis94]. Audio,
video, or even images have mostly been used for enhanc-
ing this group awareness and improving the attention and

mood of the participants. Despite its importance, group
awareness is not the main concern of this paper.

3.3. Group Manager Server

Thegroup manager servercomprises the session and floor
control services (Figure 10). It holds information about
work session, membership policies, and the role of each
member in the group in order to coordinate the teamwork.
We distinguished three classes of end-users: members –
have only viewing access right and may manipulate their
own viewing and lighting parameters, collaborators – are
specialized members that have the viewing and manipulat-
ing access right, and chairwoman/chairman – coordinates
the session and its internal activities.

Group Server

Proxy
Session Floor Control

ProxyProxy
GroupConfig

*

User

CollaboratorChairman

Member

*

Floor ControlSession

Token

*

Config Group

Interface
Session

Interface
Config Floor Control

Interface

DBAdapter

Figure 10. A group server

A work session is built by a group of end-users (mem-
bers) working together on a specific problem, according
with integrity criteria (minimum and maximum number of
members in a session) and a membership policy (estab-
lishes how an end-user joins to a session) established by
the system administrator viaConfigInterface . The
administrator application may run remotely and access all
of server services through their proxies.

3.4. Distributed Platform

In our proposal the heterogeneous computing systems are
networked and the information are routed among them.
For example, the updated graphical model is sent to each
participating machine, and the user’s requests are sent ei-
ther to geometric modeling serveror to group manager
server. Hence, it is necessary to provide an infrastructure
for distributing the information to every user’s workspace.
CORBA is an object-oriented infrastructure that allows ob-
jects communications, independent of platforms and tech-
niques used to implement these objects. This is achieved

by transparently invoking remote methods via the IDL (In-
terface Definition Language) [Group95]. In a CORBA
specification several services, such as Naming, Transac-
tions, Concurrency Control, and Event, that facilitate the
development of distributed object applications are also in-
cluded.

4. CoMo: A Prototype

For validating some usability aspects of our proposed ar-
chitecture, we implemented the CoMo – Collaborative Ge-
ometric Modeler. Aware of the complexity of such an
architecture, several public-domain softwares have been
used and we simplified the geometric functionalities and
user interface at great deal.

In thegeometric modeling server, an instantiation mecha-
nism is used to create a new object and a boundary repre-
sentation [Mortenson85, M¨antylä88] is chosen to describe
internally the object data.

Only three classes of polyhedral objects may be instan-
tiated: wedge, cube, and faceted cylinder. Geometric
transformations (translation, rotation, and scaling) are sup-
ported via a transparent sphere dragger by interacting with
a 2D cursor. Moreover, the boolean operations, namely
intersection, union, and difference, are also supported.

The group manager serverholds a repository containing
information about users connected to session, policies for
group joins, and a floor control mechanism. For simplicity
and without loss of the objective of our work, we consider
that the floor control strategy is imposed by the system.
It works on the basis of token-passing. Each manipulable
geometric object has its own token. When a token is asso-
ciated to a member, she/he becomes the owner of the cor-
responding object and nobody can access that object until
its release.

The user workspaceinterface is very simple. It consists
of one scene hierarchy tree window and one 3D scene
window, runnable under the control of a X window sys-
tem. We used the built-in set of widgets provided by
GTK+ [Mattis93] to implement these two windows, be-
cause GTK+ provides a uniform handling of local and net-
worked events. A participant directly interacts with ob-
jects in the 3D scene window by clicking and dragging the
sphere draggers or the 3D cursor. MTK, on its turn, ac-
cesses the functionalities of OpenGL [Neider93] for effi-
cient rendering.

For implementing adistributed object environmentwe
used a freeware MICO [Puder00] – an implementation
of a CORBA specification. Naming Service is used to
name and categorize the geometric, graphics, and group
information. Event Service decouples the event produc-
ers and consumers and provides facilities for reliable one-
to-many communication through one (or more) event-
channel(s) [Group93]. It was useful in implementing
graphical model replication. We adopted the push-model
configuration with three event-channels. One channel is
for the communication between theDigGraphics (mas-
ter) residing in the geometric modeling server and their

replications (slaves) at user’s workspaces. Whenever a
change occurs in the geometric data, the masterDig-
Graphics posts the event-data (updated graphics data)
into the channel and the slaves consumes the event-data
from this channel (Figure 11). Only changed objects are
replicated.

DigGraphicsDigGraphics

Object

DigGraphics

Object
Geometric

CORBA

Flattened Graphics Objects

Graphical

��
��
��
��

��
��
��
��

User Workspace

���
���
���
���

���
���
���
���

User Workspace

��
��
��
��

��
��
��
��

User Workspace

��
��
��
��

��
��
��
��M

od
el

in
g

Se
rv

er

Figure 11. Graphics objects replication

5. Performance Evaluation

For evaluating the performance of our proposed archi-
tecture, we installed CoMo in the following sub-network
of our laboratory with machines of different numerical
precision: 1 UltraSPARC/10 with Creator/3D, 1 Ultra-
SPARC/10 without graphics accelerator (Mesa3D 2.4),
1 UltraSPARC/1 with Creator/3D, 1 UltraEnterprise 450
without graphics accelerator, and 1 PC Pentium II 300MHz
with Linux 2.4.3 and Mesa3D 2.4 over two network buses
in normal use condition. The UltraSPARC/1 and PC are
connected on a 10Mb/sec bus, while the UltraSPARC/10
are connected on a 100Mb/sec bus.

Two groups of experiment were carried out. The objec-
tive of the first is to evaluate the cross-platform consistency
of CoMo. The second group of experiments attempted to
measure the latency of our system and we compared the
preliminary results with the user tolerance limits given in
Section 2.2.

5.1. Cross-Platform Consistency

We performed two distinct tests: we have installed the ge-
ometric modeling server in two machines of distinct archi-
tectures and carried out separately a (boolean) difference
operation between two cubes that ared = 10�24 apart.
The strategy that we used for enhance the robustness of the
boolean operations is based on the two-"-tolerance tech-
nique [Bruderlin90b].

Because of the precision of machines, the Ultra/SUN
machines consistently delivered as a result two non-
intersecting cubes. While in the PC Pentium II, a vertex
was generated as an intersection of the two cubes. It was
expected, once the geometric operations are dependent on
the architecture of a machine where the geometric model-
ing server resides. However, the central control of the geo-
metric computation guarantees that the same consistent re-
sult is propagated to all participating machines. This leads
that the same 3D geometric model is consistently perceived
by the end-users at any kind of machine in our hybrid ar-
chitecture.

5.2. Responsiveness

One important variable in the evaluation of the responsive-
ness of an interactive system is the latency. For analyz-
ing performance concerning with the latency, we chose the
UltraEnterprise to be the host of the geometric modeling
server and carried out several tests by varying the complex-
ity in geometric functionalities and the rendering mode.

5.2.1. Latency of a Dragger

The equation (1) expresses the latency of a dragger. Since a
dragger is processed in the local machine and its geometry
is designed as simple as possible, its latency depends only
on the graphics hardware support in each user workspace.

Figure 13 summarizes the average latency in the partic-
ipating machines in relation to the number of facets in
the scene. For machines with graphics accelerator (Ul-
traSPARC/1 and UltraSPARC/10, on the bottom of Fig-
ure 12), Gouraud shading was applied, and for machines
without graphics accelerator (PC and UltraSPARC/10, at
the top right corner of Figure 12), wireframe visualization
was used. Note that the latency lies in the range 0.1–1.0s
for machines with graphics accelerator and 1.0–2.0s for
machines without graphics accelerator. Despite 1.0–2.0s
is not an ideal, it is an acceptable range. Surprisingly, we
also noted that the latency tends to be constant when the
number of facets is greater than 50.

We may conclude, as expected, that the responsiveness
may be improved by sacrificing the image quality. The
decreasing in this quality does not, however, affect the ge-
ometric power of the environment as a whole.

5.2.2. Latency of a Geometric Object

The equation (2) tells us that the latency of a geometric
model involves more variables. We performed an exper-
iment consisting basically in rotating randomly an object
via the sphere dragger. We measured the latency of geo-
metric models in each participating machine and the repre-
sentative average experimental data are given in Figure 14.
Comparing with the graphics in Figure 13, we note that the
overhead comprising the network transmission and the ge-
ometric processing is minimal, once the 3D-models are of
reduced size (5 facets).

5.2.3. Latency of the 3D Cursor

From equation (3), the latency of the 3D cursor is the most
critical one, since the user interacts continually with it and
its position in 3D may depend strongly on the geometric
modeling server. It may overload network by constantly
transmitting cursors positions.

We measured the average latency of the 3D cursor in each
user workspace, by moving it randomly in the scene win-
dow depicted at the top left corner of Figure 12. The se-
mantics of the movement is defined by pressing one of the
2D mouse button: when the middle button is pressed, the
movement of the cursor is constrained on yz-plane; when
the left button is pressed, the movement of the cursor is
constrained on the geometry of a 3D model; and when

Network

Linux/PC

UltraSparc/10

UltraSparc/1

Figure 12. A snapshot of CoMo.

no button is pressed, the movement is constrained on xy-
plane. From our experiments, on the machines with graph-
ics accelerator no visual discontinuity on the cursor move-
ments was perceived in a scene with up 200 facets.

6. Concluding Remarks

Aiming at cross-platform consistency and responsiveness,
we proposed a hybrid architecture for collaborative geo-
metric modeling environments. The main feature of our
propose is decoupling the 3D model from its visualization,
which permits us to locally configure the graphics resolu-
tion and still maintains the geometric precision across the
network.

With the rapid advance in the network technology, we be-
lieve that the latency due to network transmission tends to
be negligible. This supposition is somehow confirmed by
our preliminary experiments. We noted that the decisive
factor is still the graphics rendering capabilities in each
participating machine. As further work we plan to include
objects with more complex geometry and to evaluate the
performance of the environment over Internet.

References

[Bruderlin90a] Bruderlin, B.Detecting Ambiguities: An
Optimistic Approach to Robustness Problems in Com-
putation Geometry. Technical Report UUCS-90-003,
Computer Science Department, University of Utah, Salt
Lake City. (1990a).

[Bruderlin90b] Bruderlin, B. Robust Regularized Set
Operations on Polyhedra. Technical Report UUCS-
90-004, Computer Science Department, University of
Utah, Salt Lake City. (1990b).

[Chung94] Chung, G., Jeffay, K., & Abdel-Wahab, H.
Dynamic participation in computer-based conferencing
system. Journal of Computer Communications, 17(1),
7–16. (1994).

[Comba93] Comba, J. & Stolfi, J. Affine arithmetic and its
applications to computer graphics. InBrazilian Sympo-
sium on Computer Graphics and Image Processing (VI
SIBGRAPI)(pp. 9–18). (1993).

[Edelsbrunner88] Edelsbrunner, H. & Mucke, E. P. Sim-
ulation of simplicity: A technique to cope with degen-
erate cases in geometric algorithms. InSymposium on
Computational Geometry(pp. 118–133). (1988).

[Ellis94] Ellis, C. & Wainer, J. A conceptual model of
groupware. In A. Press (Ed.),CSCW’94(pp. 79–88).
(1994).

[Gamma95] Gamma, E., Helm, R., Johnson, R., & Vlis-
sides, J.Desin Patterns – Elements of Reusable Object-
Oriented Software. Addisson Wesley. (1995).

[Garfinkel94] Garfinkel, D., Wleti, B., & Yip, T. Hp
sharedx: A tool for real-time collaboration.HP Jour-
nal, 45(2), 23–36. (1994).

[Greenberg95] Greenberg, S., Hayne, S., & Rada, R.De-
signing Groupware for Real-Time Drawing. McGraw
Hill. (1995).

[Group93] Group, O. O. M. Corba event service specifi-
cation - v1.0.http://www.omg.org . (1993).

0.001

0.01

0.1

1

10

0 50 100 150 200

Linux - 10Mb/s
Sun/Creator3D - 10Mb/s

Sun/Mesa - 100Mb/s
Sun/Creator3D - 100Mb/s

limit: 0.1s
limit: 1 s

limit: 10 s

Number of facets

lo
g

(l
a

te
n

cy
in

se
co

n
d

s)

Figure 13. Dragger latency � number of facets

[Group95] Group, O. O. M. The common object request
broker: Architecture and specification - version 2.0.
(1995).

[Hesina99] Hesina, G., Schmalstieg, D., Fuhrmann, A., &
Purgathofer, W. Distributed open inventor: A practical
approach to distributed 3d graphics. InVirtual Reality
Software & Technology ’99 (VRST’99): ACM. (1999).

[Hoffman89] Hoffman, C. The problems of accuracy and
robustness in geometric computation.Computer, 22,
31–42. (1989).

[Knister90] Knister, M. & Prakash, A. Distedit: A dis-
tributed toolkit for supporting multiple group editors.
In Third Conf. Computer-Supported Cooperative Work
(pp. 343–355). (1990).

[Koch94] Koch, H. & Theel, O. An efficent data replica-
tion management architecture exploiting the separation
of policy and mechanism. TR THD-BS-1994-1, Dept.
of Computer Science, THD, Germany. (1994).

[MacIntyre98] MacIntyre, B. & Feiner, S. A distributed
3d graphics library. InSIGGRAPH ’98(pp. 361–370).
(1998).

[Mackrell99] Mackrell Cocreate onespace - a col-
laborative design infrastructure. http://www.
cocreate.com . (1999).

[Mäntylä88] Mäntylä, M. An Introduction to Solid Mod-
eling. USA: Computer Science Press Inc. (1988).

[Mattis93] Mattis, P., Kimball, S., & MacDonald, J. Gtk+:
The GIMP toolkit.http://www.gtk.org . (1993).

[Michelucci99] Michelucci, D. An introduction to the ro-
bustness issue. InSwiss Conference of CAD/CAM(pp.
214–221). Neuchˆatel, Switzerland. (1999).

[Microsoft99] Microsoft, C. The Windows NetMeeting
Zone. http://www.netmeeting-zone.com .
(1999).

[Mortenson85] Mortenson, M. Geometric Modeling.
USA: John Wiley & Sons. (1985).

[Neider93] Neider, J., Davis, T., & Woo, M.OpenGL -
Programming Guide - Release 1. Addison Wesley Co.
(1993).

[Nielsen94] Nielsen, J.Usability Engineering. Morgan
Kaufmann Publishers. (1994).

[Okada98] Okada, Y. & Tanaka, Y. Collaborative environ-
ments of intelligentbox for distributed 3d graphics ap-
plications.The Visual Computer, 14, 140–152. (1998).

[Pree95] Pree, W.Design Patterns for Object-Oriented
Software Development. Addison Wesley/ACM Press.
(1995).

[Preece94] Preece, J., Rogers, Y., Sharp, H., & Benyon,
D. Human-Computer Interaction. Addison-Wesley Pub
Co. (1994).

[Puder00] Puder, A. & R¨omer, K. MICO: An Open
Source CORBA Implementation. Morgan Kaufmann
Pub. (2000).

[Roseman96] Roseman, M. & Greenberg, S. Building
Real Time Groupware with GroupKit - A Groupware

0.001

0.01

0.1

1

10

0 50 100 150 200

Linux - 10Mb/s
Sun/Creator3D - 10Mb/s

Sun/Mesa - 100Mb/s
Sun/Creator3D - 100Mb/s

limit: 0.1s
limit: 1 s

limit: 10 s

Number of facets

lo
g

(l
a

te
n

cy
in

se
co

n
d

s)

Figure 14. Model latency � number of facets

Toolkit. ACM Trans. Computer-Human Interaction,
3(1), 66–106. (1996).

[Segal90] Segal, M. Using tolerances to guarantee valid
polyhedral modeling results.ACM Computer Graphics,
24(4), 105–114. (1990).

[Strom98] Strom, R., Banavar, G., Miller, K., Prakash, A.,
& Ward, M. Concurrency control and view notification
algorithms for collaborative replicated objects.IEEE
Transactions on Computers, 47(4), 458–471. (1998).

[von Lukas00] von Lukas, U. Tobaco - cooperative mod-
eling with corba. http://www.rostock.zgdv.
de/ZGDV/Abteilungen/zr1/Projekte/
TOBACO, ZGDV - Rostok, Germany. (2000).

[Wu99] Wu, S. T. & Malheiros, M. G. A framework for
interactive 3d geometric modelers. (submitted). (1999).

[Yap90] Yap, C. K. Symbolic treatment of geometric de-
generacies.Journal of Symbolic Computation, 10, 349–
370. (1990).

[Zeleznik93] Zeleznik, R. C., Herndon, K. P., Robbins,
D. C., Huang, N., Meyer, T., Parker, N., & Hughes, J. F.
An interactive 3d toolkit for constructing 3d widgets.
In Proceedings of SIGGRAPH’93, volume 27 (4) (pp.
81–84). (1993).

