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Abstract. We present an object-oriented framework to support the development of collabo-
rative (real-time shared) 3D modeling systems. For data integrity reasons, our research aims
at enabling geographically dispersed end-users to create, to inspect, and to modify interactive
and synchronously the shareable 3D geometric data in different (heterogeneous) computing
environments.

1 Introduction

3D modeling systems play an important role in manufacturing, architecture, engineering analysis and
simulation, science and education. Many of these application areas rely on people working and collab-
orating together, with the 3D information being exchanged on asynchronous mode. The typical way of
communication is sending facsimiles of drawings or transferring files. However, the quality of communi-
cation within a group of end-users may be improved by allowing collaborative and interactive work on a
shared 3D-model over a network [13].

One of the key decisions for implementing a synchronous collaborative 3D application is its underlying
architecture. There are three paradigms: centralized, replicated and hybrid approaches. In the central-
ized architecture there is only one instance of the application in a server and its output is sent to the
display of each client in the way similar to the X-window display protocol. Alternatively, in the replicated
architecture one instance of the application runs on the client’s workspace to process locally replicated
data. For consistency and synchronization reasons, hybrid approaches that take the advantages of these
two paradigms emerged. The commercial product OneSpace [13] provides an infrastructure that allows
heterogeneous CAD systems to exchange the design data in IGES3D and STEP formats over a network
and allows low-powered systems to visualize the shared model data.

We present in this paper another hybrid paradigm for collaborative 3D modeling systems. Our
approach lets the end-users not only inspect but also interact with the geometric model data, regardless
the computing power of their workstation. In this approach the modeling software is centralized in a
server and the end-users interact with a simplified model, renderable on any machine with graphics
capabilities. The problem, however, is to provide an intuitive direct 3D interaction support in each
client’s workspace for benefiting from the modeling and displaying functionalities of the modeling kernel.

Our solution relies on the use of metaphors with simple geometry to convey complex geometric
operations. Such metaphors should be easily displayable by any 3D graphics resources and be capable of
invoking (remote) functionalities at the model’s accuracy for performing desired operations. For visual
feedback purpose, the metaphors should also have capabilities for redrawing by themselves with local
graphics resources, when their attributes are changed. In this case, one may decouple a high-precision
geometric representation from a set of graphics primitives. Only a reliable communication protocol
between them needs to be established for accomplishing every interaction cycle.

The development of such a collaborative 3D modeling system requires distinct technologies, ranging
from data sharing, communication, and coordination control to single-user interactive graphical interfaces
from which an end-user can manipulate the shared 3D information. Hence, the developers of collabora-
tive 3D modelers must be proficient in several knowledge areas, including distribution and concurrency
strategies, shared data management, and 3D computer graphics, in order to make the best use of avail-
able software and hardware resources. It makes the application development a difficult and error-prone
task.



This motivates us to design a framework for supporting the development of a collaborative 3D mod-
eling system with our proposed hybrid architecture — 3dig framework. The 3dig framework is an appli-
cation framework comprising of a set of abstract and concrete classes, which can be specialized and/or
instantiated to be tailored to a particular set of needs for producing a custom collaborative 3D modeling
system. It contains rigid aspects (frozen spots) common to all applications, and variables aspects (hot
spots) tuneable to each application [5, 3, 4].

2 Previous Work

Concerning with groupware system one may distinguish three architectures:

replicated architecture - each end-user interacts with an individual instance of the application. The
application-domain model is fully replicated, such that each application processes input events and
displays the information independently. Only the most fundamental data elements are shared.
When an event is dispatched, the consistency and concurrency mechanisms ensure that all replicas
are atomically updated and the shared data are kept in a consistent state (Figure 1).
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Figure 1: Replicated architecture for collaborative systems

centralized architecture - only one instance of the application executes on a central server and only
the interfaces are distributed. When an event is generated, it is collected and passed to the central
server where it is processed. Any necessary visual feedback in each workspace is also coordinated
by the central server (Figure 2).
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Figure 2: Centralized architecture for collaborative system

hybrid architecture - results from the combination of the both centralized and replicated architectures.



The advantages of the replicated approach are that the network traffic is reduced because commu-
nication does not go through a central mediator, and that the system is more robust with respect to
network and machine failure. As drawbacks we may mention the difficulties for solving the concurrent
(user) requests and for implementing consistency mechanisms to ensure e.g. the robustness on geometric
operations.

In the centralized scheme the concurrency and consistency problems are less critical, since the infor-
mation is located in one place. However, the system is vulnerable to the failure of the central server and
this server, together with the network, is overloaded by updates that are not necessarily shared by every
end-user.

Both centralized and replicated architectures can be found in the streaming-based systems (such
as video/audio conference), the collaborative editors and multimedia systems. Examples of products
with centralized architecture are NetMeeting [14], SharedX][7], and XTV [2], and with replicated one are
GroupKit [17] and DistEdit [11]. The replicated approach is preferred when the efficiency is required,
while the centralized one is a usual choice when simplicity is demanding.

With regard to collaborative 3D graphics applications, the replicated architecture is mostly used.
As examples for this mode we may cite the projects Repo-3D [12], DIV [10], IntelligentBox[16] and
TOBACO [18].

To our knowledge, OneSpace [13] is a collaborative CAD system with hybrid architecture. It distin-
guishes two classes of applications: servers and clients. The server includes modeling kernel and holds the
3D geometric product model, whereas the client only needs to have rendering capabilities. The servers
exchange the information among them in neutral CAD data formats, and transmitted its data to a client
in a viewable tessellated format (Figure 3).
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Figure 3: OneSpace: a hybrid architecture.

3 An Object-Oriented 3D Modeling Groupware Framework

The general scenario for interactive and collaborative 3D modelers is a shared workspace where a dis-
persed group of end-users work together on creating and modifying 3D geometrical models.

Because of round-off error propagation, processing of the same sequence of geometric operations on
distinct machines may deliver different results. It may be prohibitive in some modeling applications. On
the other side, each end-user should be able to inspect and analyze the shared 3D model on her/his needs
without affecting other users. For these reasons, we propose a hybrid architecture for collaborative 3D
modeling systems, where two equivalent database are kept: a geometrical and a graphical database. The
geometrical database is common to all end-users, whereas the (viewable) 3D graphics data are replicated
for visualization and manipulation (Figure 4).
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Figure 4: 3dig framework: a hybrid architecture

To support the development and implementation of a collaborative 3D modeling system whose un-
derlying architecture is hybrid, we propose an object-oriented interactive 3D groupware framework, 3dig
framework, which not only provides an efficient inspection and visualization of 3D models on each of
participant workspaces, but also ensures the data consistency at any manipulation as well. The 3dig
framework is comprised of four modules, whose functionalities are provided through an object-oriented
interface (Figure 5):

0 3D-model manager - provides a simple interface to the application-dependent 3D shared models
and several services for control data sharing and concurrent access in order to maintain the data
consistency.

O graphics facilities - consist of 3D graphics functions, including graphics interactions, rendering
and pictorial group metaphors.

0 group manager - holds information about work session, membership policies, and the role of each
member in the group in order to coordinate the teamwork.

0 distributed platform - makes the information available to every group member through a net-
work.
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Figure 5: The components of 3dig framework

Since graphics facilities in any participant machine (client) and the control flow between them and
the 3D-model manager (server) are the central issue of this paper, the former two modules are described



in details in the following sections. For completeness, some functionalities of the latter two modules are
also given.

3.1 The 3D-Model Manager

More natural and precise semantic feedback can only be provided, when the user interface “knows” the
underlying geometric model and benefit from geometric techniques such as intersection, deformation, and
simulation methods associated with sophisticated geometric shapes. Because of a variety of geometric
representations, the concept of the 3D model manager in our framework was one of the challenging issue.
It is of particular interest:

e to distinguish the rigid aspects (frozen spots) of a geometric modeling system from the customizable
ones (hot spots) and

e to establish the mapping between those aspects and the generic functionalities of interfaces with
3D interaction support.

Due the limitations of a raster graphics display, the collection of primitives provided by a 3D geometric
modeler is usually much more specialized than the ones provided by commonly used 3D graphics libraries,
such as OpenGL[15]. In a raster precision we may describe any complex object from a finite number
of points, straight lines, and polygons. A hierarchical data structure comprising of these primitives is,
in the most cases, sufficient for graphics purposes. Hence, it is a frozen spot in our framework. Such
a hierarchical structure can be represented through a structural composite pattern [6] where primitives
and composed primitives may be dealt with uniformly (Figure 6).
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Figure 6: Relationship between geometric and graphics data.

The DigGraphics (abstract) superclass holds the default behavior (attributes) and declares the com-
mon interface of its subclasses (methods). The subclasses Point, Line, and Polygon represent leaf prim-
itives and define the graphic attributes and methods for their particular behavior. The DigComposite
subclass is a recursive aggregation of the DigGraphics class, allowing more complex objects to be defined.

To be flexible enough for accommodating distinguishing features of a variety of geometric models, the
geometric data and geometric methods in our framework are hot spots, customizable by the application
developers. They are instances of ApplModel class, which is subclass of DigModel. To ensure a uniform
data handling over the network and to be generic enough for being displayable on any workstation
(Section 3.2), one of the common method to all geometric objects is the conversion algorithm, from its
native data format into our graphics model format. Then, for each ApplModel class is required define an
equivalent ApplGraphics class, which holds graphics data of the geometric object.

For any object, the 3D-model manager keeps both its geometric and graphics representations and
ensures their consistency. Whenever a change is occurred in geometric data, its graphics data are also
updated. While the geometric data and methods reside in a server, the graphics data are replicated for
each end-user workspace where they are rendered (Figure 7). In this way, the speed with which each
client re-renders the graphics objects after any view change depends only on the local computational
power. Nothing needs to be transmitted over the network. If the geometric data are updated in a server,
the changed part must be converted into graphics data format and multicasted from the server to the



clients. In this case, instead of the whole graphics scene or complex native 3D geometric data, only the
modified graphics data are transmitted.
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Figure 7: Distribution of 3D data over network.

The IDigModel interface defines the client software’s user interface. It provides the commands for
accessing the methods of the underlying geometric model. It allows the end-users to make changes on
the 3D-model as it resides in the client’s workspace. As the instances of the subclasses of DigModel are
hot spots of our framework, IDigModel must also be a hot spot. The remote access may be through a
(remote) proxy [6] in the client workspace. We call this proxy the DigModelProxy interface (Figure 8).
It is a local (virtual) representative of the DigModel class, hiding the fact that objects may reside in
another address space, often in another machine.

A broker pattern [1] may be applied for implementing the control of the transparent communication
between a proxy and its real objects. Knowing the the real object location, the requests and their
arguments are collected and encoded by the proxy in a client before being sent to the (real) object in a
server, where the operations are actually accomplished and, if necessary, the graphics data updated.
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Figure 8: The remote proxy structure

Summarizing, the 3D-model manager includes a modeling software to be customized by the appli-
cation developers to produce custom applications and a software to manage a graphics model which
is common to all of custom applications. The set of commands provided by the modeling software is
accessible remotely through the DigModelProxy interface in any client workspace and any change on
the geometric data is communicated from a server to its clients by sending the corresponding updated
graphics data. In this approach changes on the graphics data on a client’s workspace do not affect the
network traffic.



3.2 Graphics Facilities

Under graphics facilities we include a set of 3D graphics functions that support visualization, direct
interactions with the 3D models presented in the canvas, and groupware awareness. There are several
graphics libraries, such as OpenGL [15], that try to accomplish real-time visualization purposes, but
they provide very little support for interaction beyond simple picking and/or selection mechanism. It is
because that “they fall short of exact 3D object representations” [19]. To remedy this deficiency, higher-
level programming toolkits, e.g. Open Inventor, were proposed. The basic idea relies on the integration of
application-dependent models and graphics interface into the same development environment. As already
summarized in Section 2, to move from a single-user to a multi-user platform the replicated architecture
was adopted in several groupwares. Every group member runs their own instance of application in a
process on their own machine and the processes are connected to each other over the network via some
communication mechanisms. In this way the network traffic may be reduced drastically — instead of a
stream of data only operations and arguments are sent over the network.

Hybrid architecture differs from the replicated one. One difference comes from the site of the shared
geometrical and topological information and the graphics data: the former is located in a server and
the latter is replicated for each client. This strategy avoids unnecessary network traffic. Any change
on the graphics data, such as a view change, may be processed locally. Another difference arises from
the fact that there is a dedicated server for running 3D modeling software. It ensures data integrity,
since the geometric processing is independent from the computing environment of any client. However, to
support such application-graphics loosely coupled systems, we should establish a communication protocol
between the servers and the clients in order to provide more natural and precise semantic feedback while
an end-user is interacting.

Metaphors play an important role in helping users to understand the actions that they should perform
in order to correctly interact with computer systems. A metaphor may be implemented as a widget,
which encapsulates geometry (pictorial representation) and behavior (constraint) used to control or
display information about application-dependent data. In our project we are particularly interesting in
graphics widgets (for 2D graphics devices in client’s workspace), which (1) improves group awareness,
and (2) permits a virtual 3D cursor acting on the shape or the position of a 3D graphics object exactly
as the user finger would operate a concrete one — hence, a nice visual feedback may be provided while a
user is interacting with the system for inspection or manipulation.

Because the semantics of a metaphor’s geometry and movements depends on the application con-
text, it should be provided by the custom application developers as needed or desired. Moreover, the
relationship between the controlled objects and the metaphor should also be established on the need of
the custom application. Once defined those relationships, the 2D input events are captured and con-
verted into semantic meaningful operations whenever the end-user interacts with a metaphor. Then, the
metaphor requests the correct manager to apply those operations on the associated data and to update
the corresponding graphics data. The Manipulator class implements the metaphor objects (Figure 9).
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Figure 9: Manipulator Class

In our framework three classes of controlled objects are distinguished: geometric, group awareness,
and viewing/lighting objects. For controlling geometric objects the 3D-model manager is invoked by
the metaphors to handle the required operation properly, while the group awareness depends on the
information managed by the group manager (Section 3.3). Finally, the viewing and lighting parameters
are controlled by the graphics facilities resident in each client’s workspace. For the sake of clarity, we
defined three classes of manipulators, RManipulator, and Lmanipulator for manipulating geometric and
viewing/lighting objects , and GAware for giving group awareness, respectively.

RManipulator carries out operations in the 3D-objects by requesting the methods provided through



the DigModelProxy interface. GAware class bridges the graphics entities with the group session informa-
tion, such as the current state and the location of a group member. And LManipulator class invokes the
local graphics software for altering the cameras and lights parameters. For supporting a common view
of a model it is allowed that the viewing/lighting parameters are sent on demand from one client to the

others (Figure 10).
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3.3 Group Manager

A work session is a group of end-users working together on a specific problem. Our framework provides
the DigSession class for managing the group members and their roles in a work session according to
the policies specified in the DigSessionConfig class.

The end-users are classified into three classes: (1) Member, whose elements have only viewing access
right and may manipulate their own viewing and lighting parameters; (2) Collaborator, a subclass
of Member, whose elements have the viewing and manipulating access right; and (3) Chairman, whose
elements coordinate the session and its internal activities (each session has one chairman).

Because of potential conflicts that may arise from simultaneous access of a geometric object by
multiple end-users, concurrency control to avoid/solve resource contention is required. Such a control is
called floor control, once each object has its own floor. When a floor is associated to a member, she/he
becomes the owner of the corresponding object and nobody can access that object until the floor is
released. The floors are instances of the DigFloor class.

For each work session, the chairman establishes:

e integrity criteria - the validity conditions for minimum and maximum number of members in a
session (e.g. one session requires at least two members to be established, otherwise it is released
or suspended). They can be

O hard - the session is released if the integrity criteria are not satisfied.
O soft - the session is suspended if the integrity criteria are not satisfied.

e membership policy - establishes how an end-user join and leave a session. All end-users can
negotiate an invitation to join a session. We have considered three policies

O static - end-user must join a session by previous negotiation and before the work has been
started.

O dynamic and closed - each end-user must be explicitly invited to join the session.

O dynamic and open - end-users can join a session on invitation or by own initiative at any time.

e floor control policy - establishes how an end-user can access a geometric object. The most known
policies are

O request-and-get - allows a requesting member to get the floor immediately, possibly by pre-
empting the current floor-owner.
O request-and-wait - allows the requesting member to get the floor only when it is available.

O no-floor - there is no policy for attending multiple simultaneous requests.



Since a group manager can present multiple work sessions, we defined the abstract class DigSessionFac
that declares an interface for creating each work session. As already explained, a work session is im-
plemented by the concrete class DigSession. Therefore, the group manager calls the operations in
DigSessionFac for building a work session, without being aware of the concrete class it is using.

Figure 11 depicts the main components of the group manager of our framework.
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Figure 11: Group Manager.

3.4 Distributed Platform

The distribution and communication facilities of our framework are conforming CORBA (Common Ob-
ject Request Broker) distributed platform standard [9]. CORBA is an object-oriented infrastructure that
allows objects communications, independent of the specific platform and programming language used to
implement these objects. Indeed, it is a middleware that enables heterogeneous objects to transparently
invoke remote operations and receive replies in a distributed environment (Figure 12).
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Figure 12: Object Request Broker (CORBA)

The implementation of the interfaces for invoking remote commands, such as IDigModel, may benefit
from IDL, also provided by CORBA. From specifications in IDL (Interface Definition Language), the
broker and proxy functionalities are generated automatically for controlling the communication between
a server and a client.

The required multicasting mechanism for updating graphics model whenever the geometric data is
changed may be implemented with the CORBA Event Service [8]. This Service decouples the event
producers and consumers and provides facilities for reliable one-to-many communication through one (or
more) event-channel. In our framework we adopted the push-model configuration with one event-channel
for handling the graphics replication. The graphics model resides in the 3D-model manager is the master
one and the replicated models in the clients are slaves. Whenever a change occurs in the geometric data,
the master graphics model posts the event-data (updated graphics data) into the channel and the slaves
consumes the event-data from this channel (Figure 13).

For transmitting over the network the hierarchical structure of graphics data (Figure 6) is converted
into a flattening structure as shown in Figure 14.
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4 Implementation

We have implemented a subset of the proposed framework facilities. To reduce the implementation effort,
several available technologies were integrated in the framework to provide its rigid aspects. A CORBA
implementation called MICO and OpenGL (Mesa3D) were used to provide distribution and 3D graphics
processing, respectively. A set of manipulators, implemented with help of FaMa, were incorporated to
realize necessary metaphors.

The critical problem we faced in our implementation was the choice of an appropriate window manager
system for each client’s workspace to handle uniformly the events from both the input devices (e.g. mouse
and keyboard) and the CORBA. The Gtk—— toolkit (a C++ wrapper of gtk toolkit) with a special widget
to support OpenGL(Mesa3D) - gtkglarea—— (a C++ wrapper of gtkglarea widget) was our solution.
It multiplexes the incoming events from two sources and put them in two separate queues for correct
processing.

For test the concept of our framework, a custom application has been produced with the 3dig
framework. It is a collaborative triangle modeler. The modeling kernel only provides five methods for
creating and manipulating triangles: create, remove, rotate, scale, and translate. The Trackball
metaphor was chosen for denoting the operation rotate, whereas the Box metaphor is used for conveying
two operations, scale and translate.

Figure 15 shows a screenshot of the application with free clients running on distinguishing machines.
Observe that, although the geometric data (a set of triangles) are shareable, the viewing and lighting
parameters are specified locally on each end-user’s workspace on her /his need. However, when the shared
viewing is demanding in the information exchange a client may send its parameters to its partner over



the network.
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Figure 15: A collaborative triangle modeler.

When an end-user (on the right top) rotates a triangle with the help of the Trackball metaphor,
every client’s graphics data are updated automatically (Figure 16). This example shows a shared viewing,
giving the same viewpoint of scene for both users.
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Figure 16: Automatic updates on every workspace.

5 Concluding Remarks

The object-oriented framework with a hybrid architecture has been designed to provide a high-level
interface for support the development of a custom collaborative 3D modeling system. Its concept is based
on several industry standards including OpenGL for graphics processing and CORBA for communication
and distribution of geometric objects.

The key component in our framework is the Manipulator class which bridges the graphics components
on each client’s workspace with the complex information centralized in servers. Hence, high processing



capability on each client’s machine is less demanding. Only conventional graphics functionalities are
sufficient.

Two issues, however, must be addressed in the further work for evaluating the performance of our
framework with the proposed hybrid architecture: (1) how flexible it is for accommodating any modeling
kernel, and (2) how well the end-users can interact with the modeling kernel over the most used network
connections.
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