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Abstract
We present an occlusion culling algorithm for large and complex scenes where both the viewpoint and objects
can move arbitrarily on-the-fly. Our method uses a regular grid as spatial subdivision of the scene instead of the
hierarchical data structures commonly used for static scenes. Our hypothesis is that this approach can lead to a
faster evaluation of dynamic occluders because the overhead of maintaining the grid data structure is smaller.
We also introduce new techniques of traversal of voxels, object discretization and occlusion computation that
strengthen the benefits of using regular grids in dynamic scenes. We discuss the results of an implementation.
Note:This is the revised version of a paper presented at SIBGRAPI 2002, Fortaleza, Brazil, Oct 2002. The pro-
ceedings were published by IEEE Computer Press.

Categories and Subject Descriptors(according to ACM CCS): I.3.7 [Computer Graphics]: Hidden line/surface re-
moval

1. Introduction

The efficient visualization of large scenes composed by se-
veral millions of polygons is one of the most challeng-
ing problems in today’s computer graphics. Usually, these
scenes aredensely occluded, which means that the fraction
of visible geometry with respect to any viewpoint is only
a fraction of the whole model2. The exhibition of densely
occluded scenes can be accelerated byocclusion cullingal-
gorithms - a class of visibility algorithms that quickly detect
trivially occluded portions of the scene and avoid sending
them to the rendering pipeline.

The efficient visibility determination of scenes composed
by objects of arbitrary motion - the so-called dynamic scenes
- is still an under-explored area in computer graphics3. In
general, occlusion culling algorithms rely on expensive pre-
processing stages in order to build hierarchical data struc-
tures to accelerate the discard of trivially occluded geometry
in runtime, as large parts of the scene can be early classi-
fied as hidden in high levels of the hierarchy. Nevertheless,
the handling of changes of hierarchical relations for multi-
ple dynamic objects may be prohibitively slow to be done
on-the-fly.

Although considerable research effort has been devoted to

the acceleration of updates in hierarchical spatial databases
(see section2), in this work we propose to use a simple
(but fast) regular grid that combines efficient procedures of
grid traversal and occlusion computation for fast evaluation
of dynamic occluders. The visibility algorithm proposed to
work with this data structure is based on previous works of
occlusion culling, mainly on the approaches proposed by
Schaufleret al.12 and Sudarsky and Gotsman14. Our algo-
rithm inherits most benefits from these techniques, such as
the ability tofuseoccluders in object-space and the reduction
in output-sensitive complexity,i.e., the execution time of the
visibility determination is proportional only to the number of
visible objects (see Sudarsky14 for details). However, our al-
gorithm is completelyonline; it does not depend on intensive
preprocessing stages, pre-selection of occluders or precom-
putation of PVSs (Potentially Visible Sets).

We hope that this work will motivate a discussion on ap-
plying regular grids in dynamic scenes. While the benefits
of most hierarchical approaches do not seem to overcome
the cost of handling a large number of dynamic objects, re-
gular grids have the drawback of handling dense and sparse
areas of the scene with the same subdivision, thus being un-
able to cull out large portions of the scene in high levels
of the hierarchy. We have focused on these issues aiming
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at presenting contributions for minimizing such problems
and therefore encouraging the use of regular grids with oc-
clusion culling algorithms. In particular, we exploit a natu-
ral correspondence between regular voxels and pixels of the
frame buffer to: (1) develop a fast procedure of front-to-back
traversal of regular voxels enclosed by the view-frustum; (2)
classify occluded regions of the space by efficiently “raster-
izing” occlusion volumesin the regular grid; (3) optimize
the discretization oftemporal bounding volumesto reduce
the overhead due to handling of hidden dynamic objects14.

The rest of the paper is organized as follows. In the next
section, we discuss the occlusion culling problem and re-
view related work on dynamic scene occlusion culling. In
section3, the basic data structures and the principal steps of
our algorithm are given. Next, we detail our algorithm for 3D
scenes (section4). We discuss the implementation results in
section5 and conclude with suggestions for future work in
section6.

2. Previous Work

For a comprehensive survey about visibility we suggest
Durand’s thesis4. Visibility culling is specially covered by
Cohen-Oret al.3, Möller and Haines9, and also by Aila and
Miettinen1.

A relatively few of the occlusion culling algorithms in the
literature are devoted to dynamic environments. Although
many visibility techniques can answer whether a dynamic
object is being occluded by some portion of the scene, they
consider as occluders only static objects and cannot ans-
wer whether a dynamic object occludes some part of the
scene5, 12. Nevertheless, in dynamic scenes with objects in
arbitrary motion, any object can be a potential occluder, for
instance, moving right in front of the viewpoint and blocking
its field of view, or simply growing in size.

While we can find efficient dynamic scene occlusion
culling algorithms for indoor architectural scenes8 and 2.5D
urban scenes15, 3D cases remain almost unexplored (a re-
markable exception is thedPVSAPI1). Besides the tech-
nique oftemporal bounding volumes14, we considered meth-
ods that can be further adapted to dynamic scenes, such as
the hierarchical z-buffer6, 7 and thehierarchical occlusion
map17.

The hierarchical z-buffer (HZB) uses a pyramid of z-
buffers and an octree to remove large parts of the scene with
few comparisons. The levels of the pyramid are built by an
iterative process that attributes the farthest z-value of 2x2
arrays of pixels of the current level to a single pixel of the
subsequent level, beginning at the base of the pyramid that
is a standard z-buffer. In runtime, the octree is traversed in
front-to-back, top-down order, and each node is compared
with the pyramid of z-values. If a node is completely oc-
cluded, then its sub-nodes and objects contained in its inte-
rior are discarded. Unfortunately, HZB needs to read back

the contents of the z-buffer – an operation hardly supported
by graphics hardware (a recent exception is the nVidia’sz
occlusion queryfeature available in GeForce3 and subse-
quent chipsets11). Recently, Greene has proposed changes of
the original HZB for feasible hardware implementations6.
In his new approach, the bandwidth traffic of z-values can
be greatly reduced and in some cases it becomes more effi-
cient than using a standard z-buffer with the visible geometry
known in advance.

An alternative to HZB that does not depend on special
graphics hardware is the technique of hierarchical occlusion
maps (HOM), which decomposes the visibility test in a cov-
erage and a depth test. The hierarchical occlusion map is
similar to the HZB pyramid, differing in containing opac-
ity values instead of depth values in each of the level maps.
For each frame, a HOM is built for a large group of occlud-
ers selected from an occluder database. The scene geometry,
previously organized as a hierarchy of bounding boxes, is
tested for coverage against the pyramid. The depth test, im-
plemented as a low-resolution z-buffer in software, is then
performed only for the geometry that covers (both fully and
partially) the discretized occluders in the HOM. An object is
occluded if its projected bounding box covers only opaque
pixels in the HOM and is behind the occluders according to
the depth test.

For dynamic scenes, the hierarchical data structures used
by HZB and HOM are replaced by oriented bounding boxes.
In the HOM technique, the precomputation of an occluder
database is circumvented. Instead, occluders are chosen in
runtime according to the size and distance from the viewer.
The cost to select a good set of occluders in runtime is
reduced by using frame coherence. However, while these
methods work in dynamic scenes more efficiently than a tra-
ditional z-buffer (seee.g., ATI’s Hyper-Z technology10 and
nVidia’s z occlusion culling11), the complexity of the visibil-
ity determination is still at least linear in the number of input
objects. All objects must be tested against the pyramid, even
those that do not contribute any pixel to the final image.

The main problem that arises in handling dynamic scenes
is the difficulty in efficiently updating the hierarchical data
structures that most visibility algorithms use (usually oc-
trees or kD-trees). In addition, if the data structure is up-
dated for each frame and for all dynamic objects, the output-
sensitivity is lost.

Many works have been conducted to adapt octrees for
dynamic scenes. Smithet al. present an algorithm for
maintaining the octree for objects subjected to rigid-body
transformations13. Sudarsky and Gotsman use temporal co-
herence to restrict the change of the octree to the smallest
voxel that encloses both the previous and current positions
of the modified object (called theleast common ancestor
voxel), thus reducing the overhead due to the update of dy-
namic objects14.

In order to reduce the number of updates of the data struc-
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ture, it is possible to associate to each dynamic object a re-
gion of space that completely encloses the object during a
sequence of animation. These bounding volumes can be in-
serted in the spatial database such that the corresponding
dynamic object can be ignored until the visibility culling
algorithm classifies those bounding volumes as potentially
visible. For dynamic objects of arbitrary motion, Sudarsky
and Gotsman calculate bounding volumes for short periods
of time, called temporal bounding volumes (TBVs)14. For
instance, if the maximum velocity of each dynamic object
is known, then given the position of an object in a cer-
tain moment, it is possible to compute a bounding sphere
that surely contains this object until a future time. This fu-
ture time is called the TBV’s expiration date and determines
the validity period of the bounding volume. A hidden dy-
namic object only needs to be considered if its bounding
volume becomes visible or the expiration date is reached.
The output-sensitivity with respect to the number of dynamic
objects is achieved because the spatial database is updated
only when the objects really become potentially visible. Ap-
plications currently using TBVs to handle dynamic objects
include thedPVSAPI1, a commercial visibility culling li-
brary. The dPVS organizes the scene geometry into a kD-
tree that, according to the authors, allows faster updates than
octrees (the first data structure exploited by Sudarsky). The
visibility culling algorithm is based on several optimizations
of the HOM and other techniques, which results in an effi-
cient culling optimization for a broad class of scenes.

3. Overview

The regular grid represents a discretization of the space
where each voxel identifies local features of the scene such
as opacity, occlusion and spanned objects. At each frame,
all voxels that intersect the view-frustum are traversed in a
front-to-back order from the viewer, searching for opaque
voxels that can be used as occluders. According to the ap-
proach introduced by Schaufleret al.12, each occluder can be
extended by the aggregation of opaque and occluded voxels
in the neighborhood of the initial opaque voxel, thus realiz-
ing occluder fusion– the combination of sets of small and
disjoint occluders to build larger and more effective ones.
Only objects fully contained in occluded voxels are consid-
ered hidden. Therefore, the set of objects sent to the render-
ing pipeline is always an overestimate of the visible objects.

For optimization purposes, we have organized the infor-
mation of the regular grid into four matrices.

• Occluder matrix (O), which classifies each voxel as
opaqueor non-opaque. A voxel is opaque if it is totally
contained in a potentially visible object.

• Occlusion matrix(H), that classifies each voxel asoc-
cludedor non-occluded. A voxel is occluded if it is fully
hidden by opaque or occluded voxels with respect to the
viewpoint.

• Identifiers matrix(I), which associates to each voxel a list

viewer

Figure 1: Visualization of the data in a 2D regular grid.

of identifiers (IDs) of potentially visible objects that span
its spatial region in the scene.

• TBVs matrix(T ), that associates to each voxel a list of
IDs of TBVs that span its spatial region in the scene.

Without loss of generality, let us illustrate these matrices
through a 2D scene with 300 dynamic circles (32 poten-
tially visible) which were discretized into a 256x256 regu-
lar grid. Figure1 shows an overlaid view of those four ma-
trices where each point illustrates a voxel. For the sake of
clarity, we also included the point of the viewer, the lim-
its of the field of view (solid lines) and the view direction
(dashed line). Opaque voxels are shown in dark gray and
occluded voxels are drawn in light gray. Note that opaque
voxels are contained in the dark gray circles, which are the
potentially visible objects. The non-emptyI-voxels are also
depicted as dark gray circles, since they are coincident with
the opaque voxels. In addition, they include the boundary
voxels of these circles (in dark). Finally, the non-emptyT -
voxels are shown in black. Each TBV has the shape of an
empty circle.

We assume that each object has three main attributes:
an identifier, a maximum velocity and a flag that indicates
whether a TBV is associated with it. When this flag is true,
the object should also provide a TBV expiration date, a TBV
position and a TBV diameter. IDs of TBVs may have the
same value of the IDs of the objects the TBVs belong to.

The dynamic scene occlusion culling algorithm comprises
the following main steps, which are executed for each frame:

• Scene discretization: Update the regular grid for objects
reported in the PVS of the last frame and handle the hid-
den objects according to their TBVs.

• View-frustum traversal: Traverse the voxels of the view-
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frustum in a front-to-back order to detect potentially vi-
sible objects as well as opaque voxels that can be used as
occluders.

• Occluder extension: Extend each occluder found during
the view-frustum traversal to the adjacent opaque and oc-
cluded voxels.

• Occlusion computation: Compute an occlusion volume
for each extended occluder and determine the occluded
voxels.

4. Algorithm

The main bottleneck of a visibility culling algorithm us-
ing regular grids is the high number of voxels that need to
be accessed and updated each frame, since hierarchies are
not available to ignore large subsets of voxels during the
view-frustum traversal. Therefore, when converting the main
steps of the algorithm after Schaufler’s work12 and after Su-
darsky’s technique14 to the regular grid approach, we tried
to accelerate the accesses to voxels using coherence between
consecutive voxels.

4.1. Scene discretization

All objects classified as potentially visible by the PVS of the
last frame are discretized inO and updated inI. The re-
maining objects updateT . In the very first frame, all objects
are handled as if they were potentially visible, once they do
not have TBVs associated and we cannot tell which objects
are hidden.

The discretization of potentially visible objects is per-
formed in object-space by a sequence of intersection tests
between voxels and simplified geometries. The simplified
models are pre-computed bounding spheres or boxes that
represent the original objects and are used for determin-
ing the opaque and spanned regions of the space accord-
ing to anocclusion-preservingprinciple: for the classifica-
tion of opaque voxels, the simplified model should be en-
tirely inside the original geometry and for the classification
of spanned voxels it should fully contains the original ge-
ometry. From our experiments, this strategy seems to be ef-
ficient. Figure2 illustrates the use of cubes as simplified ge-
ometries.

The handling of temporal bounding volumes is based on
the procedure proposed by Sudarsky and Gotsman14. It is
only applied to hidden dynamic objects, according to the fol-
lowing criteria: (1) Objects not contained in the current PVS,
without TBVs, were potentially visible objects in the previ-
ous frame and are becoming hidden in the current one. In
this case, new TBVs are allocated to them andT is updated
accordingly. (2) Objects not contained in the current PVS,
but with TBVs, were hidden in the previous and are hidden
in the current frame. In this case, if TBV validity period is
expired, a new validity period is attributed.

For dynamic objects of arbitrary motion, TBVs can be

(B)

Figure 2: Simplified models for discretization of 3D ob-
jects. Left: original geometry. Center: simplified geometry
for classification of spanned voxels. Right: simplified geom-
etry for classification of opaque voxels.

tightly approximated by spheres. For discretization, the vox-
els that span the spherical TBV should be updated to in-
clude the TBV’s identifier. This procedure involves updating
a large number of voxels ofT , since the number of TBVs
in a typical scene is much larger than the average number of
potentially visible objects. In addition, the discretization of
TBVs may produce uneven frame rates when multiple TBVs
need to be updated in the same frame.

We noted that for scenes where the viewer moves
smoothly in the space, it is sufficient to update only the vox-
els that span the surface of the sphere, thus greatly reduc-
ing the number ofT -voxels changed. The TBVs are still
correctly detected, provided the trajectory of the viewer is
always 8-connected in the regular grid and the validity pe-
riod of the TBVs are chosen in such a way that the radii
of the correponding spheres do not enclose the viewpoint.
Moreover, we can achieve further reductions of accesses of
T -voxels by representing 3D TBVs by only three 2D TBVs
matrices. TBVs are discretized by orthographically project-
ing their geometry onto the coordinate planesXY, XZ and
YZ, then using three 2D TBVs matrices (Txy, Txz andTyz)
coincident with these planes to store the IDs of the projected
TBVs. During the view-frustum traversal, the voxels that
span the TBVs are determined by testing whether the projec-
tions of the current(x,y,z) voxel onto the coordinate planes
have the same TBV ID inTxy, Txz andTyz. An illustration of
this procedure is shown in Figure3. Unfortunately, the TBV
rebuilt from the projections of a sphere is not a (digitized)
sphere, but a solid aggregate of voxels that comprehends the
intersection of three digitized cylinders and includes the re-
dundant interior voxels of the TBV. Further reductions in the
number ofT -voxels can be obtained by representing TBVs
as cube’s faces instead of spheres. The cubical TBVs are dis-
cretized by projecting only the edges of the cube’s faces onto
the coordinate planes. During the view-frustum traversal, we
can now determine which voxels span only the surface of the
TBV by checking whether a projected(x,y,z) voxel has the
same TBV ID inTxy, Txz andTyz and if, for a given ID, this
existence test satisfies(Txy∨Tyz)∧ (Txy∨Txz)∧ (Tyz∨Txz)
for respective coordinates of(x,y), (x,z) and (y,z) in Txy,
Txz andTyz. Figure4 illustrates this approach. This last op-
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Figure 3: Optimized discretization of TBVs. Left: original TBV. Center: projection of the TBV onto three 2D TBVs matrices.
Right: TBV rebuilt from the projections.

(B)

Txy Tyz

Txz

Figure 4: Optimized discretization of cubical TBVs. Left: original TBV. Center: projection of the edges of the cube’s faces onto
three 2D TBVs matrices. Right: surface of the TBV rebuilt from the projections.

timization is remarkable, as we decrease the number of up-
dates in voxels ofT from O(n3) to only O(n) for cubical
TBVs.

4.2. View-Frustum Traversal

The visibility determination is actually done in the view-
frustum traversal. It comprehends the traversal of voxels that
span the view-frustum in order to identify occluders and
potentially visible objects. Both are found as non-occluded
voxels ofH: the former as opaque voxels ofO; the latter as
voxels containing non-empty ID lists ofI or T .

The traversal of view-frustum voxels is performed in a
front-to-back order from the viewer, so the algorithm does
not waste time on handling hidden occluders and can deter-
mine the PVS incrementally in a single traversal.

In order to efficiently compute the distance from the
viewpoint to each voxel and hence perform a front-to-back
traversal, we propose to use the chessboard metric†. Besides
avoiding expensive square root operations demanding by the
Euclidian metric, the chessboard metric induces a fast traver-
sal of regular voxels in axis-aligned directions. Since the
line-of-sight is always inside the view-frustum, it is possible
to discretize it incrementally from the viewpoint using a 3D

† In the chessboard metric, the distance between two points
(x1,y1,z1) and(x2,y2,z2) is given bymax(|x1 − x2|, |y1− y2|, |z1−
z2|).

line-drawing algorithm and, from each voxel that contains
the discretized line-of-sight (calledseed-voxel), traverse the
plane of voxels that have the same chessboard distance to
the voxel containing the viewpoint. For instance, let(x,y,z)
be the position of a seed-voxel given in coordinates rela-
tive to the voxel containing the viewpoint, the initial planes
of traversal are: (1)zy if (|x| > |y|)∧ (|x| > |z|); (2) zx if
(|y| > |x|)∧ (|y| > |z|); (3) xy if (|z| > |x|)∧ (|z| > |y|); (4)
zyandxy if |x| = |z|; (5) zxandyx if |y| = |z|; (6) yzandxz
if |y| = |x|. Figure5 illustrates a chessboard metric traversal
on a xy-plane. Observe that the traversal direction (arrows
in Figure 5) only changes when a voxel with|x| = |y| is
reached and proceeds in a direction perpendicular to the pre-
vious one, until a voxel completely outside the view-frustum
or a seed-voxel (in the case of a 360◦ FOV) is reached. It is
easy to infer that the directions of traversal are changed only
when|x| = |y|, |x| = |z| or |y| = |z|.

During the traversal, if a non-occluded voxel is reached,
all objects contained in its ID list ofI are added to the PVS
of the current frame. Opaque non-occluded voxels are con-
sidered as occluders, therefore should be used to determine
which voxels are being hidden with respect to the viewpoint
(this step consists of the processes of occluder extension and
occlusion computation, detailed in the next sections). Non-
occluded voxels that contain TBVs indicate that these TBVs
were revealed and that the corresponding objects may be vi-
sible. Therefore, these TBVs are removed fromT and di-
ssociated from the respective objects. Moreover, such ob-
jects are immediately discretized inI andO, so the algo-
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Figure 5: View-frustum traversal in a xy-plane.

rithm can further determine whether these objects are really
potentially visible.

The computation of the PVS concludes as the traversal
finishes. Before starting the next frame, each voxel ofO
andH is classified as non-opaque and non-occluded, respec-
tively.

The view-frustum traversal can be terminated earlier if,
during the plane traversal in the directions determined by a
seed-voxel, only occluded voxels are detected. This means
that the remaining voxels of the scene are hidden and the
PVS will surely not be changed at least until the next frame.

4.3. Occluder Extension

The occluder extension is an adaptation of the blocker ex-
tension technique originally suggested by Schaufleret al.for
octrees12. This process tries to aggregate maximally the ad-
jacent opaque or occluded voxels of an initial opaque voxel
in order to increase occlusion effectiveness. This set of ag-
gregated voxels is called anextended occluder.

In Schaufler’s technique, occluders are extended by
searching for opaque or occluded voxels in axis-aligned di-
rections, where the aggregation of voxels subtends a convex
L-shaped occluder. Instead of using this heuristic which is
restricted to convex occluders, we propose a novel strategy
that explores the fact that we are using regular voxels and
a fast occlusion computation without convexity constraints.
The search for adjacent opaque or occluded voxels is re-
stricted to the set of voxels that have the same relative chess-
board distance of the current seed-voxel to the voxel con-
taining the viewpoint. Due to the chessboard metric, this set
of voxels always lies on axis-aligned planes (a maximum of
six planes, which are the sides of a cube formed by these
voxels). Recalling the natural correspondence between reg-
ular voxels and pixels, we consider each of these planes as
bitmap images where opaque and occluded voxels are the
opaque pixels (Figure6). By vectorizing each bitmap, we

build “cap” polygons of the occlusion volumes, which are
polygons (possibly concave and with holes) that represent
the top of the occlusion volumes as seen by the viewer. For
a conservative result, the cap polygons should underestimate
the size of the occlusion volumes in order to guarantee that
only voxels totally inside the occlusion volume are classi-
fied as occluded. Our approach for a conservative rasteriza-
tion simply considers that the center of each voxel is given
in integer coordinates and uses them as vertices of the cap
polygon. The effect we achieve is the same of building a
cap polygon that generates oclusion volumes which are al-
ways inside afrom-regionocclusion volume (i.e., an occlu-
sion volume valid for all possible point-of-views inside the
voxel containing the viewer), thus ensuring a conservative
result.

4.4. Occlusion Computation

With cap polygons computed, we should generate the oc-
clusion volumes to query the occlusion state of voxels with
respect to the viewer. The occlusion volumes are generated
by simply extending each vertex of the cap polygons along
the focal axis determined by the considered vertex and the
viewpoint. The occlusion volumes thus generated are semi-
infinite polyhedra whose semi-infinite sides are collinear to
the supporting planes of the viewpoint and the edges of
the cap polygons, and the finite sides are the cap polygons.
As the correspondence between pixels and regular voxels
is straightforward (both pixels and voxels are regularly and
uniformly distributed in a grid), we can compute the oc-
cluded voxels by rasterizing the clipped occlusion volumes
in the data structure and setting the rasterized voxels tooc-
cluded. To do so, the occlusion volumes are sliced in regular
cross sections, which are simple polygons, and each poly-
gon is rasterized inH (Figure7). By using this procedure of
occlusion computation, we free the algorithm from explicit
intersection tests between voxels and occlusion volumes. In
addition, a large number of voxels can be quickly classified
as hidden by taking advantage of span and scan-line coher-
ence of the rasterization.

4.5. Adaptation for Static Scenes

Although static objects could merely be considered as dy-
namic objects of null motion, it is possible to handle these
objects more efficiently taking into account that hidden static
objects do not need TBVs at all, and static objects only need
to be discretized once in the structure.

We have introduced a new occluder matrix, thestaticoc-
cluder matrixOs that contains opaque voxels of static ob-
jects only. Each static object is discretized inOs andI in a
preprocessing stage. In runtime, the contents ofOs are trans-
ferred toO before starting the visibility determination for
the current frame (this is required sinceO is re-initialized
at the end of the view-frustum traversal). Finally, we do not
allocate TBVs to static objects found inI.
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Figure 6: Left: subset of voxels with the same chessboard distance to the viewer. Center: splitting the set of voxels in planes of
voxels. Right: a bitmap from a plane of voxels.
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view-
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Figure 7: Left: cap-polygon. Center: occlusion volume from the cap-polygon. Right: rasterized occlusion volume.

5. Implementation and Results

The algorithm and visualizer has been implemented in C++
using OpenGL and tested on a PC with a 1.5 GHz Athlon XP
processor and graphics accelerator using a GeForce2 GTS
chipset. Snapshots are shown in Figure8. The 3D scene used
in the tests was a clustering of spheres of varying size and
arbitrary motion. A different number of objects was used, up
to 5,000 spheres that totalize 6 million of polygons.

Timing tests were only compared with hardware z-
buffering since other implementations of dynamic scene oc-
clusion culling techniques were not freely available or were
not available as open source (e.g, the dPVS API1).

The first test (Figure9) measured the rendering time of
our regular grid visibility culling algorithm (RGVC) against
standard hardware z-buffer (ZB) for an increasing number
of hidden dynamic objects. The results show that the perfor-
mance of our algorithm depends mostly on the number of
potentially visible objects, while z-buffering has an unsur-
prising linear behavior. The overhead of handling TBVs is
also negligible for most applications; frame rates of 100 FPS
were obtained for more than 10,000 moving objects. The in-
crease in the grid resolution from 50x30x50 to 100x60x100
has added less than a millisecond to this time. These results
reflect the optimizations we used to discretize TBVs in the
grid.

The second test (Figure10) measured the rendering time
(in frames per second) of a walkthrough in a scene with
200 dynamic objects and 4,800 static objects. The perfor-
mance was again compared with standard z-buffering (ZB).
Note that the rendering time of z-buffering was constant for
all frames, while the performance of the regular grid ap-
proach was output-sensitive, producing uneven frame rates.
We achieved speed-ups of up to ten times the performance of
hardware z-buffering for the low resolution grid (50x30x50).

We also recorded the number of potentially visible objects
and exact visible objects during the walkthrough in the scene
used for the second test (Figure11). Our algorithm (RGVC)
and view-frustum culling only (VFC) were applied in order
to verify the tightness of approximation of the conservative
set to the exact visible set. We observed that there is a strong
overestimation of potentially visible objects when using the
low-resolution (50x30x50) grid. While increasing the reso-
lution yields tighter results, the efficiency decreases due to
the high number of voxels to be visited, as shown in Figure
10.

According to results presented so far, there is an evident
trade-off between grid resolution and performance, but also
between grid resolution and tightness of the PVS. In order
to detect the resolution that yields the best performance re-
sults, we measured the rendering time as a function of grid
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Figure 8: Top: visualization of a 3D regular grid with
7,000 objects (resolution of1003 voxels) showing hidden
and opaque voxels. Bottom: scene snapshot as seen from the
viewpoint.

resolution for a fixed viewpoint in the scene of the walk-
through. The results are shown in Figure12. The best com-
promisse was a resolution of approximately 70x70x70 vox-
els. Finally, the test shown in Figure13 measured the tight-
ness of approximation of the conservative set to the exact set
as a function of grid resolution for the same fixed viewpoint
used in the previous test. Unfortunately, the strong overesti-
mation of potentially visible objects remains for the optimal
grid resolution, as the size of the PVS is almost four times
the ideal result (Aila and Miettinen1 argued that satisfactory
conservative sets should have a ratio of less than two times
the exact set). We believe that the overestimation was due
to our choice of using occluder fusion only in object-space,
which is a strategy too dependent on grid resolution. For in-
stance, we observed that the algorithm produces PVSs with
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Figure 9: Rendering time for an increasing number of hid-
den dynamic objects.
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Figure 10: Rendering time for a walkthrough.

several potentially visible objects even if only one object is
enclosing the field of view. However, this is not a limitation
of the regular grid and better results could be obtained by
using image-space occluder fusion.

6. Conclusion and Future Work

We have presented an occlusion culling algorithm for
densely occluded dynamic scenes based on a regular grid
that uses opaque regions of the scene as occluders. Besides
the efficiency of representing potentially visible dynamic ob-
jects and temporal bounding volumes, the benefits of using
regular grids are strengthened by novel methods of view-
frustum traversal and occlusion computation based on raster
mathematics. In addition, the algorithm is output-sensitive:
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Figure 12: Rendering time as a function of grid resolution.

its runtime is proportional to the number of visible objects –
both dynamic and static – and does not depend on the num-
ber of polygons that compose these models. Hence, it can
be used in scenes of finely tessellated geometry and even in
non-polygonal scenes.

An implementation of the algorithm is presented. Accord-
ing to the timing tests, the overhead due to the handling of
hidden dynamic objects is very low for most scenes. For
large and complex scenes, we achieve speed-ups of up to
one order of magnitude compared with standard z-buffering
(though this value greatly depends on the number of po-
tentially visible objects). However, the results are still too
conservative, and the limitation of the algorithm to closed
objects (polyhedra) is not desirable. We believe that these
drawbacks are a result of our choice of using occluder fu-
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Figure 13: Tightness of the conservative set as a function of
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sion in object-space only. Thus, they do not seem to repre-
sent limitations of the regular grid. In fact, other authors1, 16

had already supposed that precise results would be obtained
only when using occluders generated from the aggregation
of occlusion in the frame buffer.

For future work, we suggest to use both object-space and
image-space occluder fusion in order to produce tight con-
servative results and handle arbitrary scenes. These improve-
ments can be done by performing occlusion queries accord-
ing to the coverage of voxels by the frame buffer and also
by using these tests to discretize potentially visible objects
in O instead of using the approach of intersection tests be-
tween voxels and simplified geometries. It is worth noting
that our algorithm satisfies all requirements to be adapted to
image-space methods such as HZB and HOM1.

Another interesting topic for future work includes study-
ing hierarquies of regular grids that can be used to trivially
discard hidden voxels without the requirement of maintain-
ing information in voxels different than those contained in
the lowest level of the hierarchy. This approach seems to be
feasible and could be used to cull-out large portions of the
scene with results similar to those obtained with standard hi-
erarchical spatial databases (octrees and kD-trees). Finally,
we intend to compare the maintenance performance of TBVs
in the regular grid against hierarchical approaches such as
octrees and BSP trees.
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