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Abstract

Cloth modeling and animation aiming high realistic vi-
sual effects are very complex processes. It may involve the
formulation of a physically-based model, collision detection
and response techniques, and a time-consuming integration
numerical solver. This is because cloth presents a very pecu-
liar behavior. It bends easily, while hardly stretches. Folds
naturally appear and disappear, yielding diverse wrinkles
and buckles, which are recognized to be fundamental for
realistic simulations. Modeling these phenomena, and yet,
controlling the aspect of folds without resorting to artifi-
cial forces is a field that still needs improvements. In this
paper we analyze the interdependence of the parameters in
the deformable surface model proposed by Melo and pro-
pose a geometry oriented control that is suitable for gener-
ating a large variety of folds and wrinkles.

1. Introduction

Cloth modeling is of particular interest in several appli-
cations, ranging from the entertainment and advertisement
purposes to the highly lucrative fashion business. Although
a variety of strategies for the computer support of cloth
modeling and animation has been rapidly evolved since the
mid seventies, realistic garment deformations while a char-
acter’s body moves is still a challenging problem. This is
because that fabrics are smooth surfaces possessing a com-
plex structure consisting of interwoven threads, which are
themselves made of twisted fibers. The frictional (internal)
forces between these fibers give the fabric a very peculiar
physical behavior. It strongly resists to the length/area vari-
ations while is being very permissive to form wrinkles and
folds.

Some works have been devoted to modeling the cloth
bending behaviors [2, 3, 4, 8, 15]. They are based on the
approach that keeps apart the in-plane and the out-plane de-
formations, such that the total internal energy is expressed

as the sum of the energies accumulated due to these two
deformations. The pitfall of this approach is that the com-
patibility relation between these two deformations are over-
looked, thus may lead to a configuration that does not re-
semble cloth if fictitious damping forces are not added. Ap-
propriate setting of these forces is not an easy task. On the
basis of the theory of a Cosserat surface [7], Melo proposed
a bending model which takes into account this compatibil-
ity condition. One of the features of the proposed bend-
ing model is that its parameters have clear geometric in-
terpretations, making control easier. Instead of the in-plane
and bending energies, his model contains one more term:
the coupling term of the in-plane and bending deforma-
tions [9]. Pinho and Wu presents an implementation of this
model with use of an explicit integration method [10]. Re-
alistic simulations have been achieved. This paper further
discusses one of the remaining problem: how to manipulate
the parameters of this bending model to get pleasing simu-
lation results.

In this paper, we present the results of our investigation
on the calibration of those parameters in order to obtain a
variety of folds and buckling in distinct textile materials un-
der different force conditions, such as the ones presented in
Figure 1. We developed an interactive interface that facili-
tates our experiments. The parameters that we used are fur-
nished to show the correspondence between the provided
numerical values and the pleasing visual effects. The main
conclusion of our study is that the model may deliver con-
vincing visual bending effects by adjusting a relatively few
and geometrically interpretable parameters, namely the re-
sistance to in-plane variations, the resistance to out-plane
deformations, and the easiness to buckling formation.

The rest of the paper is organized as follows. Section 2
describes briefly the bending model proposed by Melo, fo-
cusing mainly on the set of parameters necessary for model-
ing the cloth’s dynamics, and Section 3 shows the interface
we designed to this bending model for investigating the de-
pendence of its parameters. In Section 4 we present a pro-
cedure that we adopted for getting the parameter values to
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Figure 1. Buckling effects on distinct textile materials: (a) satin, (b) cotton, (c) jeans, (d) sailcloth.

simulate the behavior of different cloth materials. Section 5
provides a variety of folds and buckling we have achieved
with this procedure. Concluding remarks and further work
are given in Section 6.

2. Cloth Model

To be self-contained, the deformable surface model pro-
posed by Melo is summarized. The main contribution of his
work is to devise a novel formulation for the internal forces
δA(r,t)

δr that appear in the well-known ordinary differential
equation that governs a surface’s dynamics [14]

µ
∂2r
∂t2

+ %
∂r
∂t

+
δA(r, t)

δr
= µF(r, t) , (1)

where µ is the mass density (mass per unit area), % is
the coefficient of the damping forces and F denotes the to-
tal contribution of external forces per unit mass on each sur-
face point r.

Melo models his deformable surface as a particular case
of the general theory of a Cosserat surface. The theory of
a Cosserat surface is exact, complete, and fully consistent
with dynamical and thermodynamical principles of contin-
uum mechanics. It was originally proposed by the Cosser-
ats in 1909, rediscovered during the 50s for oriented bodies
modeling [5] and, later, for shell modeling [7]. A Cosserat
surface is a surface embedded in R3 to whose every point
an out-of-plane vector d, called a director, is assigned.

Applying the general Cosserat’s shell theory to cloth
modeling is not a novelty. Eischen et al. present in [6] a

cloth model founded on a Cosserat surface, after the publi-
cation of a series of three papers by Simo et al, in which they
demonstrate that, despite its awkward formulation, a classi-
cal shell theory is conducive to an efficient numerical im-
plementation [11, 12, 13]. The key point for their finding
is a new parametrization that avoids the terms such as the
Christoffel symbols and the coefficients of the second fun-
damental form. The price that they pay is to adopt relations
that do not explicitly associate shape quantities with the tex-
tile mechanics ones. Melo [9] demonstrates that modeling
the cloth as an inextensible normal-director elastic Cosserat
surface, that is by assuming that the director vector corre-
sponds to unitary normal vector, we may get an algebraic
expression for the internal energy that is familiar to the
graphics community, with explicit relations between the ge-
ometrical and statical quantities.

Throughout this section, Latin indexes will have the
range 1, 2, 3 whereas Greek indexes with the range 1, 2 are
used for components of space tensor or components of sur-
face tensor. We also adopt the summation convention which
consists in omitting the sign

∑
. If in a product a Greek let-

ter figures twice, once as superscript and once as subscript,
summation must be performed from 1 to 2 with respect to
this letter, and if a Latin letter appears, summation must be
carried out from 1 to 3 [1].

We may represent a cloth S(t) = r(x1, x2, t) as an elas-
tically deformable surface at time t. Let x1- and x2-curves
be the coordinate curves lie on S and x3 be along the nor-
mal to S(t). The xi are identified as convected coordinates
because any point on S has the same curvilinear coordi-



nates in the reference state and in the deformed state. The
first derivatives along the xα-curves

aα(t) =
∂r

∂xα
(t) (2)

and the unit normal to S(t)

n(t) = a3(t) =
∂r

∂x1 (t)× ∂r
∂x2 (t)

| ∂r
∂x1 (t)× ∂r

∂x2 (t)| (3)

are linearly independent and build the base vectors of a
moving trihedron, of which ∂r

∂x1 and ∂r
∂x2 lie in the tangent

plane normal to n. It is assumed that the director vector d(t)
of S(t) always follows the variation of the normal vector at
any time t. Hence, it does not suffer any displacements with
respect to the moving trihedron.

The metric and curvature tensors of S(t) are, respec-
tively, given by

aαβ(t) = aαβ(r(x1, x2, t)) =
∂r

∂xα
(t)

∂r
∂xβ

(t) (4)

and

bαβ(t) = bαβ(r(x1, x2, t)) = n(t) · ∂2r(t)
∂xα∂xβ

. (5)

Moreover, the coefficients aαβ of the inverse matrix of the
matrix formed by aαβ are

a11 =
a22

a
, a12 = a21 = −a12

a
, a22 =

a11

a
. (6)

Particularly, at t = t0 we refer the undeformed surface
by S(t0) = R(x1, x2) = r(x1, x2, t0) and its metric and
curvature tensors by Aαβ = aαβ(t0) and Bαβ = bαβ(t0).

With use of the elements of metric and curvature tensors,
two kinematics variables of S are defined:

1. Membrane strains (εαβ)

εαβ =
1
2
(aαβ −Aαβ) (7)

2. Bending strains (κβi)

κβα = −(bβα −Bβα). (8)

An approximation to the internal energy A of S may be
given in terms of these quantities and the parameters that
characterize the surface material properties, Φαβ , Ψαβ and
Θαβ

µ0A =
[
Φαβεαβελρ + Ψαβκαβκλρ + Θαβεαβκλρ

]
.(9)

The first and second terms on the right-hand side of Eq. 9
are the quadratic forms of the stretching and bending mea-
sures, respectively, while the third term, containing prod-
ucts of stretching and bending measures, represents a cou-
pling of stretching and bending effects.

The surface material properties are, in their turn, ex-
pressed in terms of the coefficients Aαβ of the inverse ma-
trix of the matrix built by the metric tensors Aαβ in the ref-
erence state:

Φαβ = Φβα = ζαβ(AααAββ + 2(Aαβ)2)
Ψαβ = Ψβα = ξαβ(AααAββ + 2(Aαβ)2)
Θαβ = Θβα = φαβ(AααAββ + 2(Aαβ)2), (10)

where ζαβ and ξαβ are elasticity coefficients and φαβ is
called the buckling factor.

The derivatives of the internal energy A are

µ
∂A

∂εαβ
= N∗αβ =

µ

µ0
(2Φαβεαβ + Θαβκαβ)

=
S0

S (2Φαβεαβ + Θαβκαβ)

µ
∂A
∂κiα

= Mαβ =
µ

µ0
(2Ψαβεαβ + Θαβκαβ)

=
S0

S (2Ψαβεαβ + Θαβκαβ), (11)

where µ and µ0 are, respectively, the mass density at time t
and t0 per unit area of S .

Once the following equality is valid for the components
Nαβ

Nαβ = N∗αβ − bα
λMβλ, (12)

with bα
λ = aραbλρ relating the membrane and the bending

deformations, if we neglect the forces acting on the director
vectors, we may express the internal forces as the covariant
derivative of the in-plane forces Nα

Nα|α =
δA(r, t)

δr
=

[
(Nβαaβ),α + Γλ

αλNβαaβ

]

+
[
(Mαβ |βa3),α + Γλ

αλMαβ |βa3

]
. (13)

Summarizing, Eq. 1 tells us that the dynamics of a de-
formable surface is governed by its mass µ, the derivatives
of its internal energy, and the external forces. The internal
energy formulation consists of the sum of component ener-
gies weighted by the constants ζαβ , ξαβ and φαβ . Attribut-
ing high values to ζαβ , Pinho and Wu successfully apply
this model in cloth simulations [10].

3. Graphics Interface

In this section we present the graphics interface we de-
signed to the cloth model described in Section 2. We aim at
perceiving the role that each parameter of this model plays
along the simulation and empirically assigning to it a dom-
inant independent rule in such a way that all possible val-
ues combinations could generate the set of all desirable vi-
sual effects
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Figure 2. User interface.

It is worth remarking that to improve the realism in the
motion of a deforming surface S = r(x1, x2, t) under the
force F per unit mass, we should consider its inertial forces
as well as the viscous forces generated by the deforming
surface as it interacts with the fluid of density % that fills the
ambient space. In the implementation presented by Pinho
and Wu, they consider that there are friction forces acting
in a direction parallel to the surface’s trajectory and these
forces are linearly proportional to velocity

FD = %D
∂r
∂t

. (14)

and for simulating the fluid drag, such as the wind drag, they
simply adopt the following equation [14]

FR = %R(n · (u− v(t))n,

where u is the fluid’s velocity. Hence, the kinematics of the
deforming surface is described by

µ
∂2r
∂t2

+%D
∂r
∂t
−%R(n·(u−v(t)))n = µF(t) = f(t). (15)

For sufficiently small variations, in which the linearity is ob-
served, we may apply the superposition principle and sum
the effects due to Eq. 14 and Eq. 15 to find the total resul-
tant on the position vector r at time t

µ
∂2r
∂t2

−Nα
|α(t) = f(t)− %Dv(t) + %R(n · (u− v(t)))n.

(16)
According to the physical interpretation, we make a dis-

tinction of three classes of parameters, which are organized
in two panels containing line edit, label, button, and combo
box widgets (Figure 2):

1. Kinematics parameters are the parameters that charac-
terize the initial state of the deformable surface or that

depend on the ambient space. They are the damping
coefficients due to the friction forces of the ambient
space (%R and %D), the fluid velocity (u), and the ini-
tial velocity of S (V0).

2. Simulation parameters are the parameters necessary
for simulations and numerical solutions. They are the
spatial discretization (∆), the time Step (∆t), the ex-
ternal forces (f ), and the number of Iterations. In the
current implementation, for external forces of form
µg, only the value of g should be provided. Addi-
tional external forces must be defined as further Re-
strictions.

3. Material parameters are the parameters that define the
intrinsic characteristic of the textile. They are mass
density (µ), metric elasticity coefficients (ζαβ), bend-
ing elasticity coefficients (ξαβ), and buckling factor
(φαβ).

In Figure 2.a the elasticity coefficients ζαβ , ξαβ , and
φαβ correspond to zeta, xi, and psi, respectively. mass
denotes the total mass of the simulated object object and
through grid we specify the spatial discretization. Figure 2.b
presents the panel containing line edit widgets for specify-
ing the two damping coefficients (damp R and damp D)
the fluid’s velocity (u), the initial velocity (v), and the ac-
celeration value (g).

The focus of this work is to analyze the effects of the ma-
terial parameters in the simulation of textile behavior, more
specifically in the buckling formation. We observe that the
elasticity coefficients and the buckling factor are, indeed,
lists of 4 values. This is because that the model considers
that the deformable surface may have distinguishing behav-
iors in four directions. When α 6= β they act in the diagonal
directions with respect to the base vectors, otherwise their



effects are the off-diagonal ones. The off-diagonal elastic-
ity coefficients may be different in the directions x1 and x2,
which allows us to distinguish isotropic from anisotropic
textile materials. In our experiments, we only considered
isotropic cases, thus the 4 values are identical.

4. Parameter Calibration

Observing Eqs. 11 and 16 we will see that the geomet-
ric shape of a deformable surface can be controlled not only
by the surface mass, the ambient viscosity, and the external
forces, but also by the elasticity parameters and the buck-
ling factor. Due to the diversity of parameters involved, dif-
ferent combinations of those parameters could take us to
the same visual effect. For example, to generate the anima-
tion of an oscillating surface, we can apply sinusoidal forces
to each point of the surface, or we can assign distinct val-
ues of %R and %D to each point, or assign different values
to µ in each point, or we can even define convenient val-
ues for the elasticity parameters. This flexibility increases
the model’s versatility, but, on the other hand, makes it dif-
ficult to be controlled, since these parameters are not or-
thogonal and the influence of some parameter value can be
masked by another’s. In this section we deal with this is-
sue more profoundly.

4.1. Analysis

As far as possible, we choose the parameter values that
are physically valid, such as the external forces and the mass
density. From our exhaustive experiments, we observe that
ζαβ , ξαβ and φαβ possess clear geometrical interpretations.
The term weighted by ζαβ is directly related with the in-
plane deformations, the one weighted by ξαβ has predom-
inant influence on the bending behaviors, and the last term
prevalently controls the way that the surface moves out-of-
plane under in-plane forces.

For illustration, we simulate the distension of a piece of
lycra. Figure 3.a shows the simulation result with ζαβ = 100,
ξαβ = 0.05, and φαβ = 0. If we set ζαβ = ξαβ = φαβ = 0,
the geometry tends to stretch rapidly and becomes a physi-
cally unrealizable surface (Figure 3.b). Maintaining ζαβ and
φαβ , but attributing ξαβ = 0, the piece offers no resistance
to bending and may present developable undulations, such
that the compatibility conditions are satisfied. The result is
presented in Figure 3.c. Finally, if we impose resistance to
stretch and bending and only consider φαβ = 0, the piece
appears firmer and no buckling is noticeable (Figure 3.d).

Theoretically, ζαβ weight the variations of the surface’s
area. It is expected that the higher are their values, the
more resistant are the materials to such variations. Fig-
ure 4 presents the simulations of a melting cheese (ζαβ have
lower values) and a very rigid metallic plate (ζαβ assume

(a) (b)

(c) (d)

Figure 3. Influence of elasticity constants and
buckling factor in the deformation.

low ζαβ high ζαβ

Figure 4. Effects of ζαβ on metric variations.

higher values), under gravity forces. As most cloth is resis-
tant to metric variations, we should choose large values to
the parameters ζαβ in our simulations.

The parameters ξαβ weight the variations of the compo-
nents of the curvature tensors. The higher are their values,
the more resistant is the surface to curving. However, we ob-
served that in a surface with lower resistance to stretching
the differences are almost unperceptive when we vary the
values from ξαβ = 0.001 (Figure 5.a) to ξαβ = 0.1 (Fig-
ure 5.b). An explanation for this behavior is that the metric
deformations are dominant over the bending variations.

In the case of cloth, which has high resistance to met-
ric variations, the effects of the parameters ξαβ are notice-
able. In most of cases, it predominantly affects the hardness
of curving. We observed that the higher the values of ξαβ

are, the harder are the folds that are formed. Figure 6 com-
pares the draping of a tablecloth with the possessing greater
values of ξαβ . The first one resembles satin while the sec-
ond looks like to be made from linen.

The effects of the parameters φαβ are subtle. We may
only distinguish them when we apply forces that are par-
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Figure 5. Effects of ξαβ in conjunction with
ζαβ .

(b) low ξαβ (c) high ξαβ

Figure 6. Effects of ξαβ .

allel to the surface. Usually, forces parallel to a surface
yield either distensions or contractions. But, if the surface
has higher resistance to metric variations, such as a cloth,
these metric variations should not occur and, because of the
compatibility condition. The applied energy is, then, trans-
formed into the bending energy. There are still two ways to
bend a surface, which may be controlled by φαβ : in-plane
and out-of-plane, that is upward with respect to the surface.
Figure 7 illustrates visually their contributions to the shape
of a deforming surface. Despite lower resistance to curv-
ing, observe that, with φαβ = 0, the surface tends to pre-
serve its local planarity (Figure 7.a). When we superposed
the coupling term, buckling has been naturally formed (Fig-
ure 7.b).

For numerical comparison purpose, we summarize in Ta-
ble 1 the values of parameters ζαβ , ξαβ , φαβ that we used in
all simulations presented previously. We remark that the re-
lation of these data is compatible with the relation of the
visual effects we achieved: the greater are the values, the
firmer seem the material.

(a) (b)

Figure 7. The appearance of the deforming
surface under axial forces (a) without and (b)
with coupling term.

Images µ (g/m2) ζαβ ξαβ φαβ

Figure 1(a) 78 400 0.01 0.1
Figure 1(b) 88 400 0.02 0.1
Figure 1(c) 111 400 0.04 0.1
Figure 1(d) 133 400 0.1 0.1
Figure 3(a) 80 30 0.01 0.1
Figure 3(b) 80 0 0 0
Figure 3(c) 80 30 0 0.1
Figure 3(d) 80 30 0.01 0
Figure 4(a) 200 30 0.05 0
Figure 4(b) 400 1000 10.0 0
Figure 5(a) 200 30 0.01 0.1
Figure 5(b) 200 30 0.05 0.1
Figure 6(a) 100 400 0.01 0.1
Figure 6(b) 100 400 0.05 0.1
Figure 7(a) 78 400 0.01 0
Figure 7(b) 78 400 0.01 0.1
Figure 8(a) 400 100 0.01 0.1
Figure 8(b) 400 120 0.04 0.1
Figure 9(a) 100 400 0.04 0.01
Figure 9(b) 100 400 0.02 0.01
Figure 9(c) 100 400 0.04 1.0
Figure 9(d) 100 400 0.02 1.0

Table 1. Parameters of simulations.

4.2. Procedure

We propose the following procedure consisting of five
passes to obtain reasonable material parameters for simu-
lating distinct fabrics:

1. A set of forces is defined in analogy to real physical
situations.

2. The mass density of the textile is estimated on the ba-
sis of the technical specifications provided by its sup-
pliers.

3. Considering ξαβ = φαβ = 0, we vary the values of
ζαβ until no stretching is visually perceived. We get an
interval of values, from which we choose ζαβ = 400,
which is valid for the textiles we worked with. Nev-
ertheless, we observed that ζαβ is dependent on the



weight of the cloth. The heavier it is, the higher should
be the value.

4. Fixing ζαβ = 400 and maintaining φαβ = 0, we tested
empirically several values of ξαβ for two samples of
textile, until the simulation results are visually com-
parable with real situations: silk (very soft material)
and sailcloth (very stiff material). From these two ex-
tremes, we estimated the values of ξαβ for other mate-
rials on the basis of intuitive evaluation of its degree of
hardness with respect to silk. Observe in Table 1 that
we have attributed the same value to the coefficients
ζαβ of a and varied their parameters ξαβ , in order to
get different curving effects. We adopted the similar
strategy for controlling the curving behavior of heav-
ier textile materials.

5. Established the values of ζαβ and ξαβ , we determine
the values of φαβ by applying pure compression and
distension forces on each type of textile and compar-
ing the visual effects with the real ones. The greater are
the values, the higher is the height of the buckles.

5. Simulation Examples

In this section, we present some garment simulation ex-
amples and comment a few aspects related to the combina-
tions of parameter values for obtaining pleasing visual ef-
fects of a large range of textile materials.

All the simulations were run on an AMD Athlon 64
3200+ with 512MB of memory, equipped with a NVIDIA
GeForce FX 5900 with 128 MB. In all simulations, the fol-
lowing parameters are used: damping coefficient = 0.2 kg

m2s ,
∆t = 0.001s, number of renderable frames = 400, total sim-
ulation time=20s. The size of the grid is 60 × 60 (3600
vertices) with ∆ = 0.01 unit. The weight of the materi-
als has been obtained from the fabrics suppliers. In all of
our simulations we get good results considering that cloth
is an isotropic material with high resistance to stretching
(ζαβ = 400).

Our first example involves the formation of buckling in
a bow tie. The physical parameters µ, γ and ~f and the tie
dimensions are set to values based on real world. We can
experience different responses if we vary the values of the
bending elasticity ξαβ . In Figure 8.a we assigned smaller
value to ξαβ and the tie looks like to be silky. When we in-
creased the value of ξαβ , it resembles cotton (Figure 8.b).

Figure 1 also exemplifies the importance of ξαβ in cloth
simulation. It contains the simulation results of a square
piece under compressing forces. In four cases, we used the
same combination of ζαβ = 400, φαβ = 0.1 and only var-
ied the parameters ξαβ . We can see the sensitivity achieved
for ξαβ . When ξαβ = 0.01 the square piece looks like a
piece of satin cloth (Figure 1.a). For ξαβ = 0.02, it behaves
as a piece of cotton textile (Figure 1.b). With ξαβ = 0.04,

(a) (b)

Figure 8. A bow tie: (a) ξαβ = 0.01 and (b)
ξαβ = 0.03.

we get something similar to jeans textile (Figure 1.c). If we
increase ξαβ to 0.1, we get something similar to sailcloth
(Figure 1.d).

Thus, the parameter ζαβ corresponds to the surface met-
ric resistance and as clothes in general do not change area,
we can vary it in the range 100 to 400 for obtain the be-
havior of the most fabrics type. From 100 to 30, we get dif-
ferent degrees of elasticity in the composition of a cloth,
and as the values get longer from this range, more than 400
and less than 30, the surface stop resembles garments. If we
keep ζαβ = 400 and change ξαβ in the interval 0.01 to 1.0
is possible to obtain a big diversity of folds according to the
surface material stiffness .

The parameter ξαβ is related to the surface bending re-
sistance and it controls the smoothness and frequency of
the folds that easily appears in a clothes. The parameter
φαβ couples the metric and bending strains, so the tangen-
tial forces generate perpendicular forces in a natural way,
producing a more realistic visual effect. This last parame-
ter is used in the same range of ξαβ , but instead that, φαβ

is not so perceptible when vary values inside its range, ex-
ception in the situation that we vary from 0 to a positive and
valid value (Figure 7).

Figure 9 illustrates the difference between the parame-
ters ξαβ and φαβ . In the Figure 9(a) we have a flag under
wind force with ξαβ = 0.04 and φαβ = 0.01, and in Fig-
ure 9(b) we only change ξαβ to 0.02. Is possible to note that
in this last figure the flag have bigger frequency and smooth-
ness of the folds. The Figures 9(c) and 9(d) show the sim-
ulations (a) and (b) with φαβ = 0.1. In these last configu-
rations, the flags clearly have more folds due to the tangen-
tial strains have more impact on the out-plane deformations,
forming wrinkles, but this difference is sometimes subtle, as
in draping situations (Figure. 6).

6. Conclusions

We have presented some results of an analysis of the
deformable model summarized in Section 2. Our goal has
been to explore the geometric potential of this model and
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Figure 9. A flag with ζαβ = 400: (a) ξαβ = 0.04
and φαβ = 0.01, (b) ξαβ = 0.02 and φαβ = 0.01,
(c) ξαβ = 0.04 and φαβ = 1.0, and (d)ξαβ = 0.02
and φαβ = 1.0 .

to devise a more intuitive interface for modeling cloth’s re-
sponses.

We distinguished three classes of parameters that are
functionally independent: material, kinematics, and simu-
lation parameters. Since our interest was on the geomet-
ric aspect of the way that a deformable surface bends un-
der external forces, we focused our discussion on the mate-
rial parameters and develop a graphics interface (Section 3)
for direct manipulate them. We showed with the procedure
present in Section 4 that, although the membrane and the
bending variations do not occur independently, we may rep-
resent them as independent terms and think the final effect
as the superposition of effects produced by each term. Only
for simulating a very typical cloth’s behavior, consisting up-
ward buckling under tangential forces, it is demanding to in-
clude the coupling term of the metric and the bending mea-
sures. Moreover, for control the frequency and smoothness
in the folds formation we use a specific parameter, which
is used to set the cloth bending resistance and with sensi-
ble variations inside a valid range it can reproduce several
types of fabrics material.

As a further work, we would like to establish an appro-
priate mapping between the material parameters (Φαβ and
Ψαβ) and the fabric properties usually given in terms of me-
chanical parameters, such as tensile modulus, shear mod-
ulus, bending modulus, Poisson’s ratio, and the elasticity
constant.
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