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(a) (b)

(c) (d)

Fig. 1. Buckling of fabric under axial forces at ∆t=1.25s: (a) silk; (b) cotton; (c) jeans; and (d) sailcloth.

1. INTRODUCTION

Cloth modeling is of particular interest in several applications, ranging from the enter-
tainment and advertisement purposes to the highly lucrative fashion business. Although a
variety of strategies for the computer support of cloth modeling and animation has been
rapidly evolved since the mid seventies, realistic cloth modeling is still a challenging prob-
lem both for the graphics and for the textile engineering communities. While the textile
scientists look for a mechanical model that relates the dynamics cloth behavior to the mate-
rial parameters, such as the ones produced by the cantilever beam test [ASTM 1987] or the
Kawabata’s Evaluation System [Kawabata 1980], the graphics researchers pursue an effi-
cient numerically robust and stable model for animating clothes on virtual actors in motion.
To our knowledge, the first work that attempts to create an enginnering model taking into
account the graphics tools is owed to Breen et al. [Breen et al. 1994a; 1994b].

Fabrics are complex structures consisting of interwoven threads, which are themselves
made of twisted fibers. The frictional (internal) forces between these fibers give the fabric
a very peculiar physical behavior under applied (external) forces. It strongly resists to the
length/area variations while is being very permissive to bending deformations, which may
lead to a numerical stiff problem. Figure 1 exemplifies the shape that four distinct fabrics
assume under axial forces.

Physically based models are recognized to be the most promising ones for producing
natural appearance to the clothes in motion. They consider that the cloth dynamics are
ruled by the partial differential equilibrium equation at each point r [Terzopoulos et al.
1987]

µ
∂2
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∂t2
+ %

∂r
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δA(r, t)
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+ K(r, t)r(t) = µF(r, t) , (1)

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.



Fabrics as Cosserat Surfaces · 3

where µ is the mass density (mass per unit area), % is the damping density (damping
coefficient or time variation of mass per unit area) that reduces the kinetic energy,F denotes
the total contribution of external forces per unit mass on r at time t, and the term δA(r,t)

δr

corresponds to the internal energy per unit area governing the cloth’s flexible appearance.
The parameter K(r, t) is usually called the cloth’s stiffness. Eq. 1 may further be rewritten
as the basic Newton’s law if we consider the damping force as the external or the internal
force [Provot 1995]

µ
∂2

r

∂t2
= −K(r, t)r(t) + (µF(r, t) − %

∂r

∂t
)

= −(K(r, t)r(t) + %
∂r

∂t
) + µF(r, t). (2)

The stability and efficiency of a cloth simulation system may rely on the solution scheme
for Eq. 1 or Eq. 2. The explicit integration methods reigned in ’90s [Michel Carignan and
Thalmann 1992; Provot 1995; Volino et al. 1995; Eberhardt et al. 1996]. Only at the end of
90s’, Baraff and Witkin demonstrate in [Baraff and Witkin 1998] the superiority of implicit
(backward) numerical integration scheme in comparison to the explicit (forward) ones. This
is because that in an implicit scheme the new velocities ṙ(t + ∆t) are computed in terms of
the force conditions at t + ∆t instead t. For alleviating the time-consuming computation
of a large non-symmetric sparse linear system, Baraff and Witkin also develop a modified
conjugate gradient method. The results are so promising that, since then, a series of works
have been devoted to improve the implicit framework [Desbrun et al. 1999; Kang et al.
2001; Choi and Ko 2002; Bridson et al. 2003].

Due to its typical geometry (high ratio of area to thickness), realistic cloth animation
requires proper handling of its interactions with its environment (collision) as well as with
itself (self-collision). Collision handling involves three extensively investigated issues:
efficient collision detection [Benoit Lafleur and Thalmann 1991; van den Berger 1998;
Bigliani and Eischen 2000; Teschner et al. 2005], cloth’s response [Terzopoulos et al. 1987;
Volino et al. 1995; Eischen et al. 1996; Volino and Magnenat-Thalmann 2000; Bridson et al.
2002; Choi and Ko 2002], and consistent post-collision behavior [Volino et al. 1995; Provot
1997; Baraff et al. 2003; Bridson et al. 2003; Ngoc 2004]. Nevertheless, simply employing
implicit integration method or applying robust collision handling cannot overcome all in-
stability problems [Choi and Ko 2002]. Because of its particular behavior (comparatively
resistant to stretching and shearing – in-plane inextensibility, and permissive to bending –
out-of-plane flexibility) the cloth’s model itself deserves special attention.

There are essentially two approaches for modeling the microstructure of fabrics: the
particle or mass-spring paradigm, in which a fabric is considered as a collection of material
points held together by linear (or possibly nonlinear) structural, shear and flexion springs
for simulating its material mechanics properties [Breen et al. 1992; Breen et al. 1994b;
Provot 1995; Baraff and Witkin 1998; Desbrun et al. 1999; Choi and Ko 2002; Grispun
et al. 2003; Bridson et al. 2003; Ngoc 2004; Ji et al. 2006]; and the continuum mechanics
based technique, in which a fabric is regarded as a continuous media to which the nonlinear
shell theory is applied for analyzing its stretching, shearing, and bending/flexural behav-
ior [Feynman 1986; Terzopoulos et al. 1987; Chen and Govindaraj 1995; Eischen et al.
1996; Wang et al. 1998; Grispun et al. 2003; Hu 2004; Thomaszewiski et al. 2005]. It is
worth remarking that, after spatial and time finite differentiations, the particle and the con-
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tinuum approaches have similar ordinary differential formulations [Desbrun et al. 1999].
They differ essentially in the constitutive equations 1, which are responsible for the internal
force K(r, t)r(t) due to the cloth deformation.

In the particle or mass-spring approach, the internal force is modeled as the resultant of
the tensions of the springs linking a point Pi to all its neighboring points Pj . Whereas in
the continuum mechanics one, the internal force is expressed as a function of the variation
of A(r, t) to the strain measures ε and to the bending measures κ:

K(r, t)r(t) = µ
δA(r, t)

δr(t)
=

∂A(r, t)

∂ε(t)
+

∂A(r, t)

∂κ(t)
, (3)

and the internal energy A(r, t) assumes the following aspect [Terzopoulos et al. 1987]

µA(r, t) = ε(t)
T
C11ε(t) + κ(t)

T
C22κ(t). (4)

The changes of the coefficients of the first fundamental form (Eq. 53) are universally ac-
cepted as strain measures, but it is still polemic the quantities to be used as bending mea-
sures [Mollmann 1981]. Moreover, there is no commonsense about the contribution of the
coupling effects of strain and bending measures to the fabrics internal energyA [Amirbayat
and Hearle 1989; Chen and Govindaraj 1995; Choi and Ko 2002; Bridson et al. 2003].
Section 2 provides an overview of the state-of-art.

The main concern of this paper is the cloth’s bending modeling. Our motivation is
twofold. First, we would like to get a cloth’s model that can reproduce high levels of
visual details without resorting to fictitious damping forces to subdue any oscillations. To
achieve impressive results recent works have to resort to some cumbersome artifacts for
correctly dealing with deformations under pure axial compression, such as damping forces to
attenuate the oscillations caused by the stretching, shearing, and bending motions [Bridson
et al. 2002; Baraff et al. 2003; Grispun et al. 2003], and distinct stretching and compression
models [Choi and Ko 2002]. Instead, with help of the geometrically exact shell model – the
theory of a Cosserat surface [Green et al. 1965], we show in Section 3 how to get around
this difficulty and present a readily implementable solution in Section 5.

Applying the general Cosserat’s shell theory to model fabrics is not a novelty. Simo and
Fox have already published a series of three papers [Simo and Fox 1989a; 1989b; 1989c] to
demonstrate that, despite its awful formulation, a classical shell theory is conducive to an
efficient numerical implementation. The key point for their finding is a new parametrization
that avoids the terms such as the Christoffel symbols and the coefficients of the second
fundamental form. The price that they pay is to adopt relations that do not explicitly
associate shape quantities with the textile mechanics ones. The main contribution of our
work is to demonstrate that it is feasible to implement the classical Cosserat surface without
disregarding the explicit relations between the geometrical and mechanical properties. A
better balance between the model’s usability and its implementational suitability may, thus,
be achieved.

Second, we would like to get a more accurate expression for calculating the surface
normal at the sample points. It is a continuation of our previous efforts in improving the
implementation of a physically based deformation model [Horta and Wu 1995; Ramos and
Wu 1997; Wu and de Melo 2003]. A variety of approximations to normal vectors have

1Relations that describe the connections between two physical quantities. Examples of constitutive equations are
the Hooke’s law, the Ohm’s law, the thermal condutiviy, and the Navier’s equations.
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already been proposed, such as [Meyer et al. 2003; Wu and de Melo 2003; Agam and
Tang 2005]. Because of availability, we depart from the formulation proposed by [Wu and
de Melo 2003], which is based on the Gauss-Weingarten relations between the first and the
second fundamental forms (Eq. 62) and which requires that the points are not planar. Instead
of setting to zero the normal of locally planar points, we further propose to compute those
vectors from Eq. 58. We also average the normals determined in the three directions from
Eq. 62 to cope with surface variations along distinct directions in the vicinity of a point.
In Section 4 we will detail our proposal. Results presented in Section 6 demonstrate that,
with this approximation, the surface regularity tends to be preserved and the deformation
dynamics becomes much more stable.

An explicit integration scheme was employed to implement our proposed model. Spatial
and time discretization details are provided in Section 5. In Section 6 we show results
obtained with our proposal. Qualitative visual comparisons of the simulation results with
real behavior of some cloth are provided. We furnish the parameters that we used for each
simulation to show that the proposed model is, at least, appropriate for direct control on
the fabrics behavior along distinct directions. Running times are also provided to hint our
simulator’s performance. Finally, we conclude this paper by providing in Section 7 some
further work directions.

To be self-contained, we also provide in Appendices A and B, respectively, the notations
of Tensor Calculus and some fundamental concepts of Differential Geometry. Throughout
the paper, with the exception of Section 5, Latin indices will have the range 1, 2, 3 whereas
Greek indices with the range 1, 2 are used for components of space tensor or components
of surface tensor.

2. RELATED WORK

It is a fact that the bending measures are crucial for enhancing the realism in the appearance
of simulated clothes. The questions that researchers have been worked aroud are which
quantities can be used as bending measures and how to appropriately formulate them for
finite difference or finite element implementations. To not be extensive, we will refer in this
section some pioneering works that allow us to illustrate the efforts in the last two decades.

Several authors have used the coefficients of the second fundamental form (Eq. 57) as
bending measures. Expressing these coefficients in terms of the unknown partial derivatives
of the position vector r leads to a form that is not readily solvable by the existing numer-
ical techniques. Physically accurate visual results provided by them have, nevertheless,
motivated several works focusing on a suitable formulation for them.

Assuming that the Christoffel symbols (Γλ
αβ) are negligible and bαβ (the coefficients of

the second fundamental form) are equal to 1 in Eq. 62, Terzopoulos et al. [Terzopoulos
et al. 1987] approximate the normal vectors at time t that appear in Eq 57 to the second
derivatives of the position vector r with respect to the coordinate curves xα and xβ

n(t) ≈
∂2

r(t)

∂xα∂xβ
.

The coefficients are, then, reduced to the second partial derivatives. This approximation
may distort not only the magnitude but also the direction and the sense of bending defor-
mations, since the directions of the second derivatives do not necessary coincide with the
direction of the normal vector. Therefore, unexpected stretching and bending effects might
be yielded [Wu and de Melo 2003]. For diminishing such effects, fictitious damping forces
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have been introduced [Michel Carignan and Thalmann 1992]. Chen and Govindaraj use an
equivalent expression to Eq. 57 for representing bending measures [Chen and Govindaraj
1995]

bαβ(t) =
−1

2
(
∂n(t)

∂xα

∂r(t)

∂xβ
+

∂n(t)

∂xβ

∂r(t)

∂xα
).

It is not explicit in their paper how they get the normal vectors. From their statement that n
is not exactly normal to the surface in the current configuration, we may only infer that they
use the normals of t − ∆t to compose the stiffness matrix K(r, t). Wang et al. enhance
in [Wang et al. 1998] the bending quantities provided by Terzopoulos, but they do not
explain how they determine the normal vectors. Again, from their presentation, we believe
that they adopt the same solution as Chen and Govindaraj.

The computation of the normal vectors from the position vectors of the sample points at
t − ∆t is still not straightforward when only a polygonal approximation of the surface is
given. The most known way for determining the surface normal at each point of a polygonal
mesh is to average the normal vectors of all of its adjacent faces. This coarse estimation may
lead to a physically unrealizable surface and, thus, to unstable numerical behaviors. Wu and
Melo [Wu and de Melo 2003] propose to use Eq. 62 for expressing the normal vectors in
the component term δA(r,t)

δr
of Eq. 1. More stable and visually plausible results have been

achieved when they apply a semi-implicit integration scheme in their implementation. In
this work, we show that even for an explicit integration scheme the approximation paradigm
proposed by Wu and Melo delivers better results. This is, however, still not enough to get
convincing visual effects when a cloth is subjected to compressing forces, such as bucklings
and creases. We conjecture that the root of the problem might be the bending model itself.

Based on the work by Simo and Foxet al. [Simo and Fox 1989a; 1989b; 1989c], Eischen
et al. [Eischen et al. 1996] present a cloth model founded on a Cosserat surface, originally
proposed by the Cosserats in 1909, rediscovered during the 50s for oriented bodies mod-
eling [Ericksen and Truesdell 1958] and, later, for shell modeling [Green et al. 1965]. A
Cosserat surface is a surface embedded in R

3 to which an out-of-plane vector d, called a
director, is assigned to every point. A brief overview of the general theory of an elastic
Cosserat surface is given in Section 3.1. In this work we will show that our proposed cloth’s
model is a special case of Cosserat surfaces, which is considered a “geometrically exact”
shell model.

The objective of Simo and Fox is to provide a computational feasible framework for
a Cosserat surface. For bypassing the coefficients of the second fundamental form in a
finite element implementation, they consider the changes of the position vectors r and the
directors d as two independent unkowns and propose to measure the bending behaviors of
an inextensible one-director Cosserat surface with the following quantities:

Bending strains καβ(t).

καβ(t) = (
∂r(t)

∂xα
·
∂d(t)

∂xβ
−

∂R

∂xα
·

∂D

∂xβ
), (5)

Transverse shear strains γα(t).

γα(t) = (
∂r(t)

∂xα
· d(t) −

∂R

∂xα
·D), (6)

where R and D are, respectively, the position vectors and directors of the reference config-
uration. Figure 2 illustrates the relation of all of these quantities. Nevertheless, they convey
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Parameter space
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Fig. 2. Relations of r and d.

the problem to their model’s user, who must suitably assign the directors for obtaining plau-
sible visual results. Instead, we model the cloth as a special case of Cosserat surfaces, for
which d is along the normal to the surface at each time step. The reference system associ-
ated to r varies, therefore, with the changes of their derivatives at time t. Although this leads
to more complex formulation envolving Chistoffel symbols (responsible for connecting the
local and the global reference systems) and the coefficients of the second fundamental form,
the model is much more tractable from anS application’s standpoint. As already stated, this
is because that it keeps explicitly the relation of the physical (textile) material properties
and the easily interpretable geometrical quantities, as detailed in Section 3.

Breen et al. [Breen et al. 1992] depart completely from the differential geometry paradigm
and propose an angular expression for the bending measures. They observe that a single
thread can bend “out-of-plane” around crossing threads and describe this phenomenon by
modeling the angle formed between each set of three adjacent crossing nodes (or particles)
in a retangular mesh. More accurate control on the bending shape on the basis of the
angle and the radius of curvature is later proposed by Volino et al. [Volino et al. 1995].
Describing the behavior of particles displacements and particles rotations independently of
each other without recognizing that these quantities must be compatible is the main flaw
of this paradigm. To improve the realism, Provot introduces in [Provot 1995] the flexion
springs to implicitly control the angular variations and formulates the constitutive equations
solely in terms of r and its derivatives. Differently from the differential geometry approach,
it is not ensured that the angles can actually reflect the shape of the surface in the vicinity
of r and, therefore, the accuracy of the internal force response. To attenuate unrealistic
residues due to the deviated force directions, Provot also proposes to define damping forces
for dissipating them. The results are so convincing that Baraff and Witkin reformulate
the angular expression in terms of the dihedral angles [Baraff and Witkin 1998]. Detailed
derivation of their expression may be found in [Bridson et al. 2003]. As the previous angular
based algorithms, they still need the fictitious damping forces to attenuate the unrealistic
residual stretching, shearing, and bending forces for avoiding undesired oscillations.

The problem regarding with the residual forces has been carefully analyzed by Choi and
ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.
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Ko [Choi and Ko 2002] who conclude that it stems from the fact that the existing bending
model cannot appropriately deal with the cloth’s behavior under compression. As a solution,
they propose to separately treat the “distension” (type 1 interaction) and the “compression”
(type 2 interaction) cases, and provide a way to compute the bending energy in terms of
the initial arc length, the distances between the particles (which may be smaller than the
initial arc length), and the bending stiffness. In essence, they turn to the point that Chen and
Govindaraj have already emphasized in [Chen and Govindaraj 1995]: the link between the
strain and bending measures are crucial in cloth’s modeling. From the theory of thin shells,
this link may be represented by the product of the (current) strain and (current) bending
measures [Mollmann 1981]. For avoiding complex expression, the initial bending measures
are instead used in [Chen and Govindaraj 1995].

From Eq. 60 one may observe that the mean curvature may be expressed in terms of the
products of stretching and bending quantities. Hence, the mean curvature may also be used
as the coupling quantities. It is, therefore, not surprising that Grinspun et al. achieve very
impressive effects of crease and crumple by simply using the mean curvature as the bending
measure [Grispun et al. 2003]. The main flaw of their algorithm is that, due to their angular
approach, it inherits the residual force problems. In addition, it is not clear in their proposal
how they distinguish for example the bending effects in a sail fabric from the ones in a silk
textile material, without resorting to the Gaussian curvature (Eq. 61). Both fabrics have
the same “creasing” or “buckling” behavior. Nevertheless, in the former, the shape in the
vicinity of each particle tends to be preserved – high resistance to the Gaussian curvature
(Figure 1.(d)), and in the latter, wrinkles are easily formed – low resistance to the Gaussian
curvature (Figure 1.(a)). The theory of a Cosserat surface, on which our work is based,
provides a uniform framework for modeling the both classes of bendings. In this work, we
also present in Section 5 a computational framework for implementing our proposed model.

3. A BENDING MODEL

We present in this section a bending model with emphasis on an intuitive interface and
realistic cloth’s appearance. Two issues should, then, be addressed:

(1) “what you control is what you get” paradigm: the applied forces and the changes in
the surface’s shape should be directly related, and

(2) bending representativeness: a variety of cloth’s bending behaviors should be distin-
guishable and reproduceable.

The first issue suggests us to express the strain and bending measures in terms of the
coefficients of the first and the second forms, as proposed in [Terzopoulos et al. 1987]

εαβ ∝ (aαβ − Aαβ)

καβ ∝ (bαβ − Bαβ),

where aαβ are coefficients of the first fundamental forms and bαβ , the coefficients of the
second form at the current time step. Their respective values of the initial configuration are
Aαβ and Bαβ . Our option is justified by the fact that the first fundamental form (Eq. 53)
provides us direct access to the metric measures of a surface, such as curve length, angles
of tangent vectors and areas, without further reference to the ambient space, whereas the
second fundamental form (Eq. 59) gives us elements to quantitate the shape of surface in
the neighborhood of a point, or how far the surface is from a plane.
ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.
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For the second issue we also meet the solution in Differential Geometry. There are
two important concepts related to the shape of a surface in the vicinity of a point: the
intrinsic and the extrinsic geometries. An instrinsic geometric property is the one that may
be measured without leaving the surface; while an extrinsic one can only be perceived by
an observer located in the ambient space. Examples for intrinsic properties of a surface
are the coefficients of the first fundamental form, the surface’s area, the length of a curve
on the surface, and the Gaussain curvature. For exemplifying extrinsic characteristics we
may mention the coefficients of the second fundamental form and the mean curvature
(Appendix B).

The intrinsic properties of most of inextensible fabrics, such as linen, cotton and jeans,
are almost invariant while they deform. To distinguish the shape states, that are indistin-
guishable by the intrinsic properties such as buckling, we should use an extrinsic quantity.
The mean curvature is an extrinsic measure and Eq. 60 says that it involves the products of
the coefficients of the first and the second fundamental form. It is, consequently, opportune
to add to Eq. 4 one more term to explicitly represent the part of internal energy that corre-
sponds to the change of the area enclosed by a curve C in a vicinity of a point P (Figure 3).
Eq. 4, then, becomes

µA(r, t) =

2
∑

α,β=1

[

Φαβ(t)εαβ(t)εαβ(t) + Ψαβ(t)καβ(t)καβ(t) + Θαβ(t)εαβ(t)καβ(t)
]

.

(7)
The other two terms Φαβ(t)εαβ(t)εαβ(t) and Ψαβ(t)καβ(t)καβ(t) in Eq. 7 correspond, re-
spectively, to the energy that causes the variation of the curve length and the angle θ between
the curves that cover the deforming surface and to the energy that leads to the variations of
the bending radius R along any curve through P on the surface, which might be roughly
related to the Gaussian curvature given in Eq. 61. Figure 4 illustrates visually their contri-
butions to the shape of a deforming silk satin fabric under five pairs of opposite axial forces

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.
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(a) (b)

Fig. 4. The appearence of the silk satin fabric under axial forces (a) without and (b) with coupling term.

with magnitude equal to 10N. Despite lower resistance to curving, observe that, without
the coupling term, the surface tends to preserve its local planarity (Figure 4.(a)). When we
superposed the coupling term, bucklings have been naturally formed (Figure 4.(b)).

Now, two questions must be solved to make our proposal usable. First, how close our
proposed model is to a physically accurate shell model, whose geometrical and physical
quantities can be assumed with sufficient accuracy to be functions of only two independent
variables. In other words, how representative is our model. If we assume that

εαβ =
1

2
(aαβ − Aαβ) (8)

καβ = −(bαβ − Bαβ), (9)

it is interesting to observe the similarities between Eq. 8 and Eq. 12; Eq. 9 and Eq. 13; Eq. 2
and Eq. 18, which is derived on the basis of the Cosserat’s theory. Further, Eq. 7 and Eq. 28,
that represents the energy stored in a “geometrically exact” shell possessing holohedral
isotropy, are almost algebraically identical. Only the component term A∗(κ3α, T ) of the
latter is neglected. Therefore, it is expected that our model is appropriate to reproduce with
realism not only a large range of fabrics but also elastic (Figure 5.(a)) or rigid (very) thin
material (Figure 5.(b)). In the both figures, the thin flat square sheet are hanging at a (top)
corner.

(a) (b)

Fig. 5. Visual effects of (a) melting cheese and (b) metallic plate under the gravity force.

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.
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Second, how the proposed model can be implemented in a computational framework.
The simplicity of Eq 18, Eq. 8 and Eq. 9 does not reveal the complexity of its component
equations. While Eq. 8 requires the first derivatives, Eq. 9 may involve the products of
normal vectors and second derivatives. To make it worser, the internal force is a covariant
differentiation of the contravariant vectorNα with respect to the coordinate curvexα. From
our standpoint, the main task that we undertook is to expand each equation to make it readily
processable by a computer, as we detail in the subsequent sections. A brief introduction to
the basic idea of the theory of a Cosserat surface precedes in Section 3.1.

For the sake of conciseness, we adopt in the remaining of exposition the following notation

a,α =
∂a

∂xα

and the summation convention which consists in omitting the sign
∑

. If in a product a
Greek letter figures twice, once as superscript and once as subscript, summation must be
performed from 1 to 2 with respect to this letter, and if a Latin letter appears, summation
must be carried out from 1 to 3.

3.1 An inextensible normal-director elastic Cosserat Surface

In this section only formulas that we use in our work are transcribed in order to make clear
our real contribution. We refer to the detailed explanation of Green et al. in [Green et al.
1965] as further reading.

PSfrag replacements

a1 = ∂r

∂x1

a2 = ∂r

∂x2

a
1

a
2a3 = n

S(t)

d

x1-curve

x2-curve

Fig. 6. A moving trihedron.

Let S(t) = r(x1, x2, t) be the elastically deformable surface at time t, whose metric and
curvature tensors are denoted by aαβ(t) and bαβ(t), respectively. Particularly, at t = t0
we refer the undeformed surface by S(t0) = R(x1, x2) = r(x1, x2, t0) and its metric and
curvature tensors by Aαβ = aαβ(t0) and Bαβ = bαβ(t0). Also, let x1- and x2-curves be
the coordinate curves lie on S and x3 be along the normal to S(t). The xi are identified
as convected coordinates because any point on S has the same curvilinear coordinates in
the reference state and in the deformed state‘2. Additionally, the first derivatives along the
xα-curves

aα(t) =
∂r

∂xα
(t) (10)

2The coordinate curves of S will not generally be lines of curvature for S.
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Fig. 7. A moving Cosserat surface.

and the unit normal to S(t)

n(t) = a3(t) =
∂r

∂x1 (t) × ∂r

∂x2 (t)

| ∂r

∂x1 (t) × ∂r

∂x2 (t)|
(11)

are linearly independent and build the base vectors of a moving trihedron, of which ∂r

∂x1

and ∂r

∂x2 lie in the tangent plane normal to n. Further, let D be a vector, pointing outwards
the surface and not necessarily along its normal, assigned to every point of S(t0) and d(t)
be its dual at time t (Figure 6).

Let a
i(t) be the reciprocal vector of ai(t), whose relations are given by Eq. 49. The

motion of a Cosserat surface is defined by

r(t) ≡ r(x1, x2, t), d(t) ≡ d(x1, x2, t),

under the restriction that the vector d(t) must satisfy

d(t) = dia
i(t) = dαa

α + d3a
3,

and its components, relative to a
i(t), remain invariant when the motion is only due to the

superposed rigid transformations. Figure 7 illustrates the change of the shape S(t∗) to the
shape S(t∗∗) by moving each point r.

The directors of a Cosserat surface must not necessarily be along the normal vectors,
neither to be unit. When the directors coincide with the (unit) normal vectors at any t, that
is d(t)=a3(t), we call it an inextensible normal-director Cosserat surface. We apply this
surface to model clothes.

For analyzing the continuous deformation that S suffers, the metric tensor (Eq. 54), the
director displacement and its derivatives may be used for defining the kinematic variables
(strains) that are invariant under the rigid transformations. In the case of an inextensi-
ble normal-director Cosserat surface, these derivatives may be expressed in terms of the
coefficients of the first (Eq. 53) and the second fundamental form (Eq. 59):

Membrane strains εαβ. that measure the amount that S stretches or compresses

εαβ =
1

2
(aαβ − Aαβ) =

1

2
(r,α · r,β −R,α · R,β) (12)

Bending strains κβi. that measure the amount that S bends or twists

κβα = (r,β · d,α −Rβ · D,α)) = −(bβα − Bβα)

κβ3 = 0. (13)
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Director or transverse shear strains γi. that measure the rotations and distensions of the
directors. In the case of an inextensible normal-director Cosserat surface, d = D. Thus,

γi = di − Di = 0 (14)

The strains are results of the internal forces due to the action of the proper surface or the
external loading forces. We proceed to characterize the internal forces, or stresses, of S.

Let σ, the area of an inextensible normal-directorCosserat surfaceS at time t, be bounded
by a closed curve C. If we cut S along the curve C and designate one side of S as positive
and the other side as negative, the portion on the positive side exerts a force on the negative
part of S. This force per unit length is transmitted through an incremental length ds of C by
direct contact of the two portions of S. Let the vector ν = ναa

α, lying in the surface and
perpendicular to C, be the exterior normal vector. If for all arbitrary velocity fields v, there
is a three-dimensional force field N = N

i
ai, such that the scalar N · v represents a rate

of work per unit length ds of C, then N is a curve force vector measured per unit length.
Similarly, if M = M

i
ai is a three-dimensional vector field and if, for all arbitrary director

velocity fields w, the scalar M · w represents a rate of work per unit length of C, then M

is a director force vector (momentum) measured per unit length (Figure 8). They may be
expressed in terms of the base vectors ai

N = N i
ai = ναN

α = (ναN iα)ai (15)

M = M i
ai = ναM

α = (ναM iα)ai, (16)

where Nβα, N3α, Mβα and M3α are the surface tensors under transformation of surface
coordinates, and N

α and M
α are curve force vector and director force vector over the

xα-curve, respectively.
Also, let F = F i

ai and L = Li
ai be the force fields per unit mass of S at time t, such

that F · v and L · w represent rate of work per unit area of S for all arbitrary v and w,
respectively.

If µ is the mass density at time t per unit area of S and U is the internal energy per unit
mass, Green et al. show in [Green et al. 1965] that the equation of balance of energy may
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14 · Wu, S. T. and V. F. de Melo and L. P. Monteiro

be expressed as
∫

σ

[

µv · v̇ + µU̇
]

dσ +

∫

σ

[1

2
v · v + U

][

µ̇ + µ
∑

α

(

vα
|α − bα

αv3
)]

dσ

=

∫

σ

µ
[

hsupply + F · v + L̄ · w
]

dσ +

∫

c

[

N · v + M · w − hflux

]

dc, (17)

where hsupply is the heat supply function per unit mass per unit time, hflux is the flux of
heat across c per unit length per unit time and L̄ is the difference of the assigned director
force per unit mass L and the inertia terms due to the director displacement d. From Eq. 17,
with the assumption that the state of S remains unchanged under superposed uniform rigid
body translational velocities, the following conservation equation for the linear momentum
is derived

µv̇ −N
α
|α = µF(r, t), (18)

and for the angular momentum,

m = M
α
|α + µL̄(r, t), (19)

where v̇ = ∂2
r

∂t2
, with v = ∂r

∂t
, and m is the director force vector.

For implementation purpose, it is convenient to write Eq. 18 and Eq. 19 in the tensor
components form. This may be achieved by performing the scalar product of them with a

β

and again with a3

Nβα
|α − bβ

αN3α + µF β = µv̇β (20)

N3α
|α + bαβNβα + µF 3 = µv̇3 (21)

Mβα
|α − bβ

αM3α + µL̄β = mβ (22)

M3α
|α + bαβM3α + µL̄3 = m3 (23)

We use the following expression deduced by Green et al.

N3α = Mαβ
|β + µL̄α (24)

Considering A the Helmholtz free energy function per unit mass, Green et al. also show
the constitutive equations that an inextensible normal-director elastic Cosserat surface, at
constant temperature and entropy, must hold for all time t

N∗αβ = µ
∂A

∂εαβ

M iα = µ
∂A

∂κiα

, (25)

with

N∗αβ = Nαβ + bα
λMβλ, (26)

that is

Nαβ = N∗αβ − bα
λMβλ. (27)

If the surface S is initially homogeneous, free from curve and director forces, and the
deformations undergo at constant temperature and entropy, then an approximation to the
ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.
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internal energy A may be expressed in terms of the geometric properties of the Cosserat
surface, εαβ and καβ, and the parameters that characterize its material properties, Hαβλρ,
Bαβλρ and Cαβλρ

µ0A =
[

Hαβλρεαβελρ + Bαβλρκαβκλρ + Cαβλρεαβκλρ

]

+ A∗(κ3α, T ), (28)

where A∗(κ3α, T ) is the energy that involves the terms κ3α, γi and T , which may be
neglected in most of cases. The first and second terms on the right-hand side of Eq. 28 are
the quadratic forms of the strain and bending measures, respectively, while the third term,
containing products of strain and bending measures, represents a coupling of stretching and
bending effects.

Furthermore, some of the material parameters in Eq. 28 satisfy certain symmetry condi-
tions, if the elastic Cosserat surface possesses holohedral isotropy

Hαβλρ = Hβαλρ = Hαβρλ = Hλραβ

= β1A
αβAλρ + β2(A

αλAβρ + AαρAβλ)

Bαβλρ = Bβαλρ = Bαβρλ = Bλραβ

= β3A
αβAλρ + β4(A

αλAβρ + AαρAβλ)

Cαβλρ = Cβαλρ = Cαβρλ = Cλραβ

= β5A
αβAλρ + β6(A

αλAβρ + AαρAβλ), (29)

where βi are the elasticity constants. This is because that the holohedral isotropic materials
are formed of crystalline substances having all faces symmetric.

3.2 Internal Force N
α
|α

The most important term in Eq. 18 is the covariant differentiation of N
α with respect to xα.

This term represents the fabric’s internal force at a point P . According to the shell theory,
the variation of the length at a point P along a curve C is due to the internal force

N
α
|α ≡ (Nα

,α + Γα
βαN

β) = (Nα
,α + Γλ

αλN
α)

≡
[

(N iα
ai),α + Γλ

αλN iα
ai

]

, (30)

where

N
α ≡ Nβα

aβ + N3α
a3.

Considering L̄ ≈ 0 in Eq. 24, we have

N3α = Mαβ
|β.

By substituting it in Eq. 30, we get

N
α
|α ≡

[

(Nβα
aβ),α + Γλ

αλNβα
aβ

]

+
[

(Mαβ
|βa3),α + Γλ

αλMαβ
|βa3

]

. (31)

The covariant differentiation Mαλ
|λ may be obtained in terms of Γλ

αλ and Mβα

Mαλ
|λ = (Mαλ),λ + (Γα

λρMρλ + Γλ
λρM

αρ). (32)
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Nβα depends, in its turn, on the terms N ∗βα and Mβα (Eq. 26). These two latter terms
are related with the internal energy A by the constitutive equations given in Eq. 25. In
Section 3.3 we will derive equivalent, but easily implementable, expressions to them.

3.3 Tensor Components N∗βα and Mαβ

One way for deriving component equations to N ∗βα and Mαβ is to use the constitutive
equations given by Eq. 25. This requires, however, the determination of the internal energy
A.

From several experimentations we observe that Eq. 29 may be further simplified without
degrading the visual effects. We might assume that solely tensors with indices ρ = α and
λ = β, or ρ = β and λ = α are non-vanishing terms. Thus,

Φαβ = Φβα = Hαβαβ = Hβαβα

= β1A
ααAββ + 2β2(A

αβ)2

Ψαβ = Ψβα = Bαβαβ = Bβαβα

= β3A
ααAββ + 2β4(A

αβ)2

Θαβ = Θβα = Cαβαβ = Cβαβα

= β5A
ααAββ + 2β6(A

αβ)2. (33)

In addition, we also suppose that cloth is an isotropic material, which implies that

β1 = β2 = ζαβ

β3 = β4 = ξαβ

β5 = β6 = φαβ . (34)

Eq. 33 lends, hence, itself to

Φαβ = Φβα = ζαβ(AααAββ + 2(Aαβ)2)

Ψαβ = Ψβα = ξαβ(AααAββ + 2(Aαβ)2)

Θαβ = Θβα = φαβ(AααAββ + 2(Aαβ)2), (35)

which depend on the reciprocal metric tensors Aαβ of the cloth’s initial configuration and
its strain and bending elasticity coefficients, which are ζαβ and ξαβ , respectively. We call
Φαβ and Ψαβ the material properties. The term φαβ affects prevalently the out-of-plane
behavior; thus, Θαβ is called the buckling factor.

Replacing Eq. 35 in Eq. 25, discarting negligible terms, and after simple partial deriva-
tions, we get N∗αβ and Mαβ in terms of the surface areas, the strain measures, the bending
measures, and the material properties.

N∗αβ = µ
∂A

∂εαβ

=
µ

µ0
(2Φαβεαβ + Θαβκαβ) =

S0

S
(2Φαβεαβ + Θαβκαβ)

Mαβ = µ
∂A

∂κiα

=
µ

µ0
(2Ψαβεαβ + Θαβκαβ) =

S0

S
(2Ψαβεαβ + Θαβκαβ). (36)

Further substituting the first expression of Eq. 36 in Eq. 27 we get the component equation
Nβα of the internal force in terms of the strain and bending measures at time t

Nβα =
S0

S

[

(2Φβαεβα + Θβακβα) − bα
λ(2Ψβλκβλ + Θβλεβλ)

]

(37)
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Fig. 9. Alternative approximation to a normal vector: (a) Eq. 58; (b) finite difference approach; (c) average normal;
(d) Eq. 62.

and an expression component to N 3α

N3α = Mαβ
|β =

S0

S

[

(2Ψαβκβα + Θαβεβα)
]

|β
. (38)

4. AN APPROXIMATION TO NORMAL VECTORS

As already stated in Section 2, in most works the fundamental problem to be solved for
computing more exact bending measures is to derive an expression for computing more exact
normal vectors. In our proposal, besides the first and the second surface derivative, Eq. 31
also requires the surface normal a3. Eq. 11 is the classic formulation of normal vector that
uses the first derivative of the surface equation (Figure 9.(a)). When the surface’s analytical
partial derivatives are not available, they are approximated using finite differences which
only considers two directions (Figure 9.(b)). To capture the surface’s behavior in all the
vicinity of a point on the surface, computer graphics practicioners usually compute the
average of the normal vectors of its adjacent faces, as shows Figure 9.(c). This technique
may deliver exact solution if the curvature tensors vanish (bαβ = 0).

With the purpose of maintaining “linear structure” of the constitutive equations given
by Eq. 31, [Wu and de Melo 2003] derive from Eq. 62 an alternative exact expression to
the normal vectors of the surface for every point where the curvature tensors do not vanish
(bαβ 6= 0)

a3(t) =
1

bαβ(t)

[ ∂2
r

∂xα∂xβ
(t) − Γ1

αβ(t)
∂r

∂x1
(t) − Γ2

αβ(t)
∂r

∂x2
(t)

]

=
1

bαβ(t)

[ ∂2
r

∂xα∂xβ
(t) − Γ1

αβ(t)a1(t) − Γ2
αβ(t)a2(t)

]

. (39)

Since Eq. 39 considers all the vicinity of a pointP , the average of the four normal vectors
determined from it is closer to the exact normal vector than the value we obtain by simply
applying the discrete version of Eq. 58. This is because that the latter takes into account
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only the variations of the position vectors r along two directions. Comparing the vectors we
obtain from Eq. 39 with the average of the normal vectors of the adjacent plane faces of P ,
the latter presents poorer performance for the vertices of higher curvature, because it does
not consider the curvature built by the adjacent faces as the former approach. Moreover,
we also observe that Eq. 39 preserves the compatibility condition expressed by Eq. 67.

Then, our proposal consists in switching between the two methods according to the local
geometry in the vicinity of each point. We define a curvature tensor threshold δ, above
which one formulation is used and below which another one is applied.

a3 =

{

1
4

∑

1
bαβ(t)

[

∂2
r

∂xα∂xβ (t) − Γ1
αβ(t) ∂r

∂x1 (t) − Γ2
αβ(t) ∂r

∂x2 (t)
]

, if bαβ > δ

the average of adjacent faces’ normals, otherwise.

5. IMPLEMENTATION

In this section, as a proof of concept, we describe a finite difference implementation of
our proposed model based on the explicit time integration scheme. Our goal is to evaluate
the impact of this simple integration scheme on the visual results of a geometrically exact
cloth’s model. It is also worth remarking that we use the sign

∑

in all finite difference
expressions to explicitly indicate the number of times that a summation must be carried out,
in order to facilitate their implementations.

To improve the realism in the motion of a deforming surface S = r(x1, x2) under the
force F per unit mass, we may consider the damping phenomenon % that acts against the
motion of S, that is,

µv̇(t) + %v(t) = µF(t) = f(t) (40)

with v = ∂r(x1,x2)
∂t

. For sufficiently small variations, in which the linearity is observed, we
may apply the superposition principle and sum the effects due to Eq. 18 and Eq. 40 to find
the total resultant on the position vetor r at time t

µv̇(t) + %v(t) −N
α
|α(t) = f(t). (41)

A corresponding finite differencing equation may be obtained by choosing spaced points
along t-, x1- and x2-axes.

x1
k = x0 + k∆1, k = 0, 1, · · · , m

x2
l = x0 + l∆2, l = 0, 1, · · · , n

ti = t0 + i∆t, i = 0, 1, · · · , T,

where ∆1 and ∆2 are the grid spacings and ∆t, the time step. We then consider the
deformation r(x1, x2, t) by its values at the discrete points of a grid with mesh size m× n
and at the discrete time point.

From now on,

—we write (k, l, i) for denoting each node r(x1
k , x2

l , t);

—for the spatial backward first-order finite difference of f with respect to xα at time point
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i, we define

D−
1 (f)(k, l, i) =

(f)(k, l, i) − (f)(k − 1, l, i)

∆1
;

D−
2 (f)(k, l, i) =

(f)(k, l, i) − (f)(k, l − 1, i)

∆2
; (42)

—for the spatial forward first-order difference of f with respect to xα at time point i,

D+
1 (f)(k, l, i) =

(f)(k + 1, l, i)− (f)(k, l, i)

∆1
;

D+
2 (f)(k, l, i) =

(f)(k, l + 1, i) − (f)(k, l, i)

∆2
(43)

—for the spatial forward second-order differences of f at time point i,

D+
αα(f)(k, l, i) = D+

α D+
α (f)(k, l, i)

D+
12(f)(k, l, i) = D+

21(f)(k, l, i) = D+
1 D+

2 (f)(k, l, i) (44)

—for the spatial backward second-order differences of f at time point i,

D−
αα(f)(k, l, i) = D−

α D−
α (f)(k, l, i)

D−
12(f)(k, l, i) = D−

21(f)(k, l, i) = D−
1 D−

2 (f)(k, l, i) (45)

—for the spatial central second-order differences of f at time point i,

D∗
αα(f)(k, l, i) = D−

α D+
α (f)(k, l, i)

D−+
12 (f)(k, l, i) = D+−

21 (f)(k, l, i) = D−
1 D+

2 (f)(k, l, i)

D−+
21 (f)(k, l, i) = D+−

12 (f)(k, l, i) = D−
2 D+

1 (f)(k, l, i). (46)

Using these notations and replacing Eqs. 37 and 38 in Eq. 31, the finite difference of the
covariant derivative N

α
|α(k, l, i) at each node (k, l, i) takes the form

−
∑

α

N
α
|α = −

S0

S

2
∑

α,β=1

D−
α

(

(2Φαβεαβ + Θαβκαβ)(k, l, i)aβ(k, l, i)
)

+
S0

S

2
∑

α,β,λ=1

D−
α

(

(bβ
λ(2Ψαλκαλ + Θαλεαλ))(k, l, i)aβ(k, l, i)

)

−
S0

S

2
∑

α,β,λ=1

(Γλ
αλ(2Φαβεαβ + Θαβκαβ))(k, l, i)aβ(k, l, i)

+
S0

S

2
∑

α,β,λ,ρ=1

(Γλ
αλbβ

ρ (2Ψαρκαρ + Θαρεαρ))(k, l, i)aβ(k, l, i)

−
S0

S

2
∑

α,λ=1

D−
α

(

(2Ψαλκαλ + Θαλεαλ)|λ(k, l, i)a3(k, l, i)
)

−
S0

S

2
∑

α,β,λ=1

(Γβ
αβ(2Ψαλκαλ + Θαλεαλ)|λ)(k, l, i)a3(k, l, i). (47)
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Fig. 10. Finite-difference of the derivatives of a point of S: (a) interior points; (b) points on the top and left-hand
side of the boundary; and (c) points on the bottom and right-hand side of the boundary.

The vectors aβ(k, l, i) and a3(k, l, i) are, in their turn, given by Eq. 10 and Eq. 40,
respectively. To compute them, the first and the second derivatives of r(k, l, i) are required.
These derivatives may be computed by approximate finite difference equations. Whenever
the adjacent vertices of a node r(k, l, i) are well defined, namely r(k+1, l, i), r(k, l+1, i),
r(k − 1, l, i), r(k, l − 1, i), and r(k + 1, l + 1, i) (Figure 10.(a), we approximate the first
derivatives by Eq. 43 and the second ones by Eq. 46.

However, for the nodes on the boundary of the grid, some of required adjacent points
do not exist. On the top side we miss r(k, l − 1, i); on the left-hand side r(k − 1, l, i) are
not defined. As an alternative solution, we use Eq. 44 to evaluate the second derivatives
(Figure 10.(b)). Finally, for the nodes on the right-hand and bottom sides we apply Eqs. 42
and 45 to calculate the necessary derivatives (Figure 10.(c)). In this way, we assure that the
derivatives are computable at any grid node.

Another question that we should solve is how to determine the coefficients bαβ(k, l, i) that
appear in Eq. 40. We consider that the time steps are sufficiently small such that we may ap-
ply the normal vectors of the previous iteration a3(k, l, i−1) =

D
+

1
r(k,l,i−1)×D

+

1
r(k,l,i−1)

|D+

1
r(k,l,i−1)×D

+

1
r(k,l,i−1)|

in Eq. 57 for computing them.
Algorithm 1 outlines a procedure that generates, on the basis of this paradigm, a set of

configurations from the deformable surface’s physical properties, its initial values (position
and velocity), and the simulation parameters. At the end of each iteration, the normal
vectors are updated with use of Eq. 40. Without loss of generality, we assume that ∆1 =
∆2 = ∆. Moreover, for conciseness, we omit, from now, the indices k and l when we refer
to the quantities of all the mn grid nodes.

Observe that instead of explicitly providing the spring’s stiffiness and the oscillation
damping forces, as in the classic mass-spring approach [Provot 1995; Baraff and Witkin
1998; Desbrun et al. 1999; Choi and Ko 2002; Grispun et al. 2003; Bridson et al. 2003;
Ngoc 2004; Ji et al. 2006], our model implicitly represent such quantities as a function of
the material properties, buckling factor, and variations on the coefficients of the first and
the second fundamental forms.

The kernel of Algorithm 1 is the function Next_configuration, which derives the dis-
placements of all points of the i-th configuration on the basis of the geometry of the i−1-th
configuration. Theoretically, our model is more accurate in comparison with most of cloth’s
models that have been published. We conjecture, therefore, that we may apply the simple
explicit integration method to track how the cloth propagates itself forward in time and our
ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.
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Function Deformation(S0: Geometry, mass: double;
ζαβ ,ξαβ ,φαβ :double; damping coefficient: double; V0: Velocity; f : Force; ∆: double;
∆t,T: double; deformedStates[]: Geometry): void

01 Begin
02 Compute the area S0 of the initial configuration;
03 Discretize S0 into a grid with ∆ spacing to get r(0);
04 For each grid node (k, l) do
05 Compute its initial velocity v(k, l)from V ;
06 Compute its normal vector n(k, l) of S0;
07 Compute metric and bending tensors of S0: Aαβ , Aαβ , Bαβ , Bαβ ;
08 Using Eq. 35, compute material properties: Φαβ , Ψαβ , Θαβ ;
09 End for
10 i← 1;
11 While the time point i is less than T do
12 Determine the area S of the configuration i− 1;
13 µ← mass

S
;

14 %←
dampingcoefficient

S
;

15 ratio← S0

S
;

16 For each grid node (k, l) do
17 Compute aαβ(k, l, i− 1) = D+

α r(k, l, i− 1) ·D+
β
r(k, l, i− 1) ;

18 Using Eq. 55, compute aαβ(k, l, i− 1) from aαβ(k, l, i− 1);
19 Compute Γγ

αβ
=

P2
ρ=1 aγρ(k, l, i− 1)(D+

ρ r(k, l, i− 1)D+
αβ

r(k, l, i− 1)) ;
20 Using Eq. 8, compute εαβ(k, l, i− 1) from aαβ(k, l, i− 1) and Aαβ ;

21 Compute bαβ(k, l, i− 1) = D+
α D+

β r(k, l, i− 1) ·
D

+

1
r(k,l,i−1)×D

+

1
r(k,l,i−1)

|D+

1
r(k,l,i−1)×D

+

1
r(k,l,i−1)|

;

22 Using Eq. 65, compute b
β
α(k, l, i− 1) from aαβ(k, l, i− 1) and bαβ(k, l, i− 1);

23 Using Eq. 9, compute καβ(k, l, i− 1) from bαβ(k, l, i− 1) and Bαβ ;
24 End for
25 Next_configuration( r(i− 1), εαβ(i− 1), καβ(i− 1),Φαβ , Ψαβ , Θαβ ,

n, ratio, µ, Γγ
αβ

(i− 1), bαβ(i− 1), ∆, ∆t, %, v, f(i), r(i));
26 deformedStates[i]← r(i);
27 For each grid node (k, l) do
28 v(k, l)← r(k,l,i)−r(k,l,i−1)

∆t
;

29 Update n(k, l) with the average normals computed from Eq. 40;
30 End for
31 Increment i;
32 End while
33 End

Algorithm 1: Deformation.

results should be comparable to the ones delivered by the semi-implicit integration scheme
of the known cloth models. If it is the fact, we may be benefited from the performance of
this method. To underpin our conjecture, we developed an explicit integration scheme for
our model.

The simple Euler integration method presented in [Provot 1995] is applied to each sample
point r(k, l) for predicting its position at time t+∆t. To cast Eq. 41 in the form appropriate
for the Euler integration method, we should put the term v(t) alone on the left-hand side
as follows

µv̇(t) = f(t) − %v(t) + N
α
|α(t).
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and assume that v(t) and N
α
|α(t) are already known, that is, the expression is differenced

as follows:

µ
v(k, l, i) − v(k, l, i − 1)

∆t
= f(k, l, i) − %v(k, l, i − 1) + N

α
|α(k, l, i− 1),

which leads to

v(k, l, i) = v(k, l, i − 1) +
∆t

(

f(k, l, i) − %v(k, l, i − 1) + N
α
|α(k, l, i − 1)

)

µ
.

Considering the differential approximation

v(k, l, i) =
r(k, l, i) − r(k, l, i − 1)

∆t
,

we determine the position vectors r(k, l, i) from the quantities at time step i − 1 from the
expression

r(k, l, i) = r(k, l, i − 1) + ∆t
(

v(k, l, i − 1) +

+
∆t

(

f(k, l, i) − %v(k, l, i − 1) + N
α
|α(k, l, i− 1)

)

µ

)

. (48)

Algorithm 2 codifies the ideas presented.

Function Next_configuration(r(i − 1): Geometry; εαβ , καβ :double;
Φαβ , Ψαβ ,Θαβ :double; n(i − 1):Normal Vector; ratio, µ: double; Γγ

αβ
, bαβ :double;

∆, ∆t, %: double; v(i− 1):Velocity; f(i): Force, r(i): Geometry): void
01 Begin:
02 For each grid node (k, l) do:
03 Using Eq. 47, determine N

α(k, l, i− 1)|α;
04 Using Eq. 48, compute r(k, l, i);
05 End for;
06 End;

Algorithm 2: Explicit Integration.

6. RESULTS

In this section we present some experiments that we carried out to measure experimentally
the time complexity of our implementation. Moreover, we also present some results for
visually demonstrating that our proposed cloth model satisfies both the intuitiveness and
the controllability of the bending behaviors. It is worth emphasizing here that, despite
its theoretical foundation, the main concern of our proposal is to provide realistic visual
effects. Hence, we did not perform any comparison between the simulation numerical
data and the physical data obtained experimentally, such as from the Kawabata Evalua-
tion System [Kawabata 1980]. Morover, we remark that the provided running times are
of the explicit integration scheme and that the simulated objects do not exhibit complex
interactions with its surrounding or with itself, because our implementation cannot handle
collisions yet.
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6.1 Performance

In order to evaluate the performance of the explicit integration scheme for solving our model,
we measure the overall processing times (T ) of the simulations shown in Figures 1, 4, and 5.
All the simulations were run on an AMD Athlon 64 3200+ with 512MB of memory, equipped
with a NVIDIA GeForce FX 5900 with 128 MB. In the simulations presented in Figure 1,
the following parameters are used: damping coefficient = 0.2 kg

m2s
, ∆t = 0.001s, number of

renderable frames = 400, total simulation time=20s. The size of the grid is 60 × 60 (3600
vertices) with ∆ = 0.01 unit. The axial forces |F| = 28.28N are applied at the nodes as
depicts Figure 11.(a). Their duration was calibrated in such a way that the self-collisions
are avoided and they are sufficient for building the bucklings.

PSfrag replacements

F

F

F

F

Fig. 11. Axial forces on a 60 × 60 panel.

In the simulations shown in Figure 5, we fixed the four corners of the panels and let them
stretch under the gravity force. Other parameters are: damping coefficient = 0.2 kg

m2s
and

∆t = 0.001s.

Images Fabric Weight (g/m2) ζαβ ξαβ φαβ duration (s) time (s)/frame
Figure 1(a) silk satin 78 100 0.01 0.1 6 0.265
Figure 1(b) cotton 88 100 0.02 0.1 10 0.265
Figure 1(c) jeans 111 100 0.03 0.1 10 0.265
Figure 1(d) sailcloth 133 100 0.05 0.1 10 0.265

Figure 4 silk satin 78 100 0.01 0.1 10 0.265
Figure 5(a) cheese - 10 0.1 0.01 10 0.265
Figure 5(b) metal - 250 0.3 0.0 10 0.265

Table I. Running timings

Differently from the previsouly reported results [Baraff and Witkin 1998], the timings in
Table I reveal that the time performance of our implementation is quite insensitive to the
range of material properties and buckling factor. Our explanation for this behavior is that
our time step must be very small in order to ensure accurate estimation to bαβ.

We further estimate the time complexity of the explicit integration scheme in function of
the number of grid nodes, by measuring the simulation running times for the four clothes
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Fig. 12. Time × Number of nodes for the cloth in Figure 1.(a) (red), Figure 1.(b) (blue), Figure 1.(c) (green),
and Figure 1.(d) (black).

presented in Figure 1. Preserving the simulation parameters, the material properties, and
the buckling factor, we vary the number of grid nodes (N = mn) from 100 (10 × 10) to
10000 (100 × 100) and collect some time samples. From the interpolated curves Time ×
Number of nodes shown in Figure 12 we may estimate that the complexity might almost
be linear with respect to the number of nodes (O(N)) for all four fabrics.

6.2 Comparisons with Experimental Results

In this section we provide the photos of the experimental results and the images of the finite
difference solutions of our proposed model, both in the equilibrium state, for illustrating the
adequacy of our proposal to cloth modeling – at least visually. We maintain the following
simulation parameters: damping coefficient = 0.2 kg

m2s
, ∆t = 0.001s, number of renderable

frames = 400, and the total simulation time=20s. Table II provides the time necessary to
achieve the state that is presented in each figure. It is worth remarking that we maintain
the values of ζαβ and ξαβ , as far as the fabric is of the same material, and only increase the
parameters φαβ to favor the buckling formation.

Figure 13.(a) presents the classical draping experiment of a (silk satin) tablecloth S0 =
60 cm × 60 cm over a circular table with radius equal to 18 cm. Figure 13.(b) is the image
of the associated simulation. To reproduce the equivalent visual effect, we fixed all the
nodes in contact with the table and applied the gravitational force on the remaining nodes
that are initially laid horizontally.

Figure 14.(a) presents the same draping experiment with another cloth sample: linen.
Figure 14.(b) is the image of its simulation. As expected, for simulating the behavior of
a more rigid fabric, both the stretching and the bending elasticity constants must be larger
than those used in the former simulation.

Figure 15.(a) presents the draping experiment of a polyester cloth (60 cm × 60 cm)
hanging at two corners. Figure 15.(b) is the image of the associated simulation. Besides the
gravitational force, we applied forces on the nodes (0, 0) and (0, 29) forces that displace
them horizontally towards the node (0, 14) to produce the beautiful round drape.

Table II collects all the simulation parameters we used to generate the results presented
in this section.
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(b) Actual (c) Simulation

Fig. 13. The draping of a satin tablecloth.

(b) Actual (c) Simulation

Fig. 14. The draping of a linen tablecloth.

(b) Actual (c) Simulation

Fig. 15. The draping of a polyester cloth hanging at two corners.

Images Fabric Weight (g/m2) grid nodes ζαβ ξαβ φαβ time (s)/frame
Fig. 13 satin 98 40 × 40 100 0.01 0.1 0.517
Fig. 14 linen 88 40 × 40 100 0.02 0.1 0.517
Fig. 15 polyester 160 30 × 30 0.375 0.00037 0.00025 0.265

Table II. Simulations of realistic behaviors.
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6.3 Realistic Dynamics

To demonstrate the realistic dynamic behavior of our proposed model, we provide in this
section some intermediary images of the simulation output of the set of panels depicted
in Figure 1 and how a panel of distinct material evolutes itself forward in time under the
gravity force.

First of all, we observe distinguishing inertial behaviors of the four fabrics. For the stiffer
materials, such as a sailcloth, we need much more force to overcome its internal frictions
in comparison with the the silk satin fabric (Figure 16.(a) and (e)).

Another dynamic behavior of the most fabrics is their ease in restoring their initial con-
figurations when the external forces are removed. As expected, the time interval that each
fabric requires to restore its initial state is dependent on its mass and internal structure, as
shown in Figure 16.(d) and (h).

We also observed that when the initial configuration is almost restored, the fabrics also
reaches the equilibrium state, that is the reached configuration is preserved in the subsequent
frames as far as no more external forces are applied, as illustrate Figure 16.(d) and (h). No
unrealistic oscillations are noticeable.

A silk satin panel under axial forces

(a) ∆t=2s (b) ∆t=5s (c) ∆t=10s (d) ∆t > 30s
A sailcloth under axial forces

(e) ∆t=2s (f) ∆t=5s (g) ∆t=12s (h) ∆t > 14s
A linen tablecloth’s draping under gravity force

(i) ∆t=1s (j) ∆t=2s (k) ∆t=5s (l) ∆t > 8s
A hanging polyester cloth’s draping under gravity and isolated forces

(m) ∆t=0s (n) ∆t=1s (o) ∆t=2s (p) ∆t > 8s

Fig. 16. Realistic dynamics.

We evaluate whether a surface can achieve an equilibrium configuration when it is always
under external forces. Figure 16(l) presents the final deforming state of a tablecloth and
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Figure 16(p) shows the equilibrium state of a hanging panel also subjected some perpen-
dicular isolated forces. We did not perceive any residual forces that cause the trembling
effects, as in the mass-spring models.

Finally, it is worth observing that in all simulations the variation of the area of the
deformed surface in its final configuration is less than 5% with respect to the original
configuration.

6.4 Intuitiveness and Controllability

Tables I and II provide a summary of the relation between the simulated objects and their
material parameters ζαβ , ξαβ , φαβ . The data in these tables substantiate the intuitiveness
of our model. Both the environment damping factor (in the case, air) and the mass per unit
area are physically exact values. The weight of the materials has been obtained from the
fabrics suppliers.

For simulating materials with high resistance to the metric and bending variations, such
as a metallic plate (Figure 5.(b)), the ζαβ and ξαβ should assume higher values. On the
contrary, for simulating materials with low resistance to stretching and high resistance to
curving, such as a melting cheese (Figure 5.(a)), we should set lower values to ζαβ and
higher values to ξαβ .

To simulate the behavior of distinct fabrics, which consists in high resistance to stretch-
ing, we should set larger values to ζαβ . From the values that we should set to get valid
simulations, it seems that ζαβ are dependent on the weight of the cloth. The heavier it is,
the higher should be the value.

As the fabrics have a peculiar bending property (buckling) under axial loadings, we
should ensure that φαβ are non-zero. From the values we used in all simulations, we are
prone to conclude that, for getting beautiful buckling effects, we should set higher values
to φαβ .

The distinct bending behavior of the fabrics is, neverthless, determined by the parameters
ξαβ . Observe in Tables I and II that we have attributed the same value to the coefficients
ζαβ of a silk satin, polyester, and a cotton, which are lighter materials, and varied their
parameters ξαβ , in order to get different curving effects. We adopted the similar strategy
for controlling the curving behavior of heavier textile materials, such as a jeans and a
sailcloth.

6.5 Complex Simulations

We conclude this section by providing more complex simulations: a hanging curtain (Fig-
ure 17) and a cloth drapping over a seat chair (Figure 18).

In the first case, axial forces (in red arrows) are applied on the points that are supposed
on the curtain rails. These forces are responsible for the regular ondulations along the
horizontal extension. To preserve each wrinkle along the vertical extension, we also applied
the perpendicular forces on the bottom (in red dashed arrow), as shows Figure 17.(a). For
legibility, we remark that the number of drawn nodes in the figure does not represent the
actual number.

In the second case, the blanket is thrown over an imaginary seat. It slides gently into the
center of the seat until the equilibrium is achieved. To overcome the collision problem that
our algorithm cannot handle yet, we just fix the points on the back of the imaginary seat
and apply very weak repulsion forces along the imaginary arms, as illustrates Figure 18.(a).
These points are colored in red in Figure 18.(a). Naturally, the blanket assumes an expected
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(a) (b)

Fig. 17. Curtain.
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Fig. 18. A covered seat chair.

Table III summarizes the simulation parameters.

µS ζαβ ξαβ φαβ # vertices time (s)/frame
Curtain 320 100 0.35 0.1 10,000

Seat 25 100 0.04 0.1 2500 0.975

Table III. Simulation parameters for complex simulations.

7. CONCLUSIONS

The investigation of Eischen et al. [Eischen et al. 1996] led to the conclusion that the
fabric modeling based on the continuum mechanics delivers more faithful numerical results.
Unfortunately, one of the barrier to its application is its complexity, involving terms that are
not convenient for numerical computations. With their work [Simo and Fox 1989a; 1989b;
1989c], Simo and Fox succeed to overcome this barrier, but their solution, consisting in
getting rid of the explicit differential geometrical quantities, does not seem suitable to
the graphics community that has strong appeal for intuitiveness. This paper contributes
with a formulation, also based on the theory of a Cosserat surface, that preserves all the
geometrical quantities. We show that it is possible to approximate the awkward quantities
with a numerically tractable component equations.
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The main feature of our proposed model is its underlying theoretical foundation, allowing
us to interpret correctly each term that appears in it. From the implementational standpoint,
our proposal has equivalent complexity as the existing ones with the advantage that no term
is empirical or fictitious ones. This makes the control on the bending behaviors of a variety
of fabrics much more intuitive. The simulation results confirm this hypothesis.

Computational efficiency is also an important issue. In this work we implement our
proposal with the well-known explicit integration scheme. As already expected, since our
proposed model is much more accurate than the models that we found in the literature, we
obtain a lifelike photorealistic results. From the timings provided in Section 6.1, we may
claim that our proposed model is not only accurate but has good performance as well.

In Section 4 we propose one paradigm to the normal vector estimation, which is based
on the geometrically exact local differential geometry properties. In Section 5, a finite
difference formulation we used in our implementation is given. It seems to do a good job in
practice, but it imposes the restriction on the time step. We conjecture that the alternative
normal and curvature estimation methods, such as the ones proposed in [Meyer et al. 2003;
Agam and Tang 2005], may deliver better performance. This is due to the fact that they use
the current information in their computations. We have not yet pursued this idea in detail.
It is in our plan to compare the knwon methods with our proposal, in terms of the efficiency,
the accuracy, and the visual effects.

One apparent limitation of a continuum mechanics based technique, such as our proposed
model, is that the mesh must be rectangular (vertex valence equal to 4). All of its formu-
lations are based on the derivatives with respect to the two linearly independet curvilinear
coordinates. We, however, believe that with the explicit integration scheme this restriction
is easily got round. This is because that our proposed model depends essentially on accurate
and robust local geometry estimates (normal vectors, first and second derivatives). Sharing
the paradigm adopted by Agam and Tang [Agam and Tang 2005], we may consider that the
vicinity of a point is covered by a set of curves passing through it and only the curves of
the two linearly independent (not necessarily orthogonal) directions are of relevance. This
means that, when a point possesses valence more than four, only four of them should be
used. We will include this pre-processing in our system in the next future to validate this
idea.

The finite difference formulation of our proposed model still suffers from stability prob-
lems. We believe that it is due to the initial and boundary conditions that have not been
appropriately established. As a further work, we plan to improve such conditions or exper-
iment finite element formulation that are used in most works on cloth modeling.

We present in this work only dynamics simulation of simple-shaped surfaces. This is
because that it is easier to highlight the cloth’s response under a specific external force. In
actual fashion and entertainment applications, clothes or garments consist of several sewn
fabric panels [Fontana et al. 2006]. They are used to cloth the virtual actors or avatars. It
is of our interest to integrate in our cloth model the sewing process, and the method that
attaches the deformable fabric pieces to rigid objects and handles their contact with rigid
surfaces.

Collision detection and response are essential for realistic animation of any kind of cloth.
To integrate the well-known collision methods or to devise a new yet suitable one to our
algorithm is one of our priorities.

Finally, to make our model a useful tool for the accurate simulations in the textile and
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apparel applications, it is necessary to establish an appropriate mapping between the material
parameters (Φαβ and Ψαβ) and the fabric properties usually given in terms of mechanical
parameters, such as tensile modulus, shear modulus, bending modulus, Poisson’s ratio,
and the elasticity constant. In addition, the validation of our model with respect to the
experimental data should also be performed.

A. TENSOR CALCULUS

Tensor Calculus is concerned with the behavior of entities under the transition from a given
coordinate system to another system. It is, in fact, a generalization of classical vector
analysis and enables one to express geometrical or physical relationships in a concise
manner, independently of a coordinate system. Differently from the other sections, the
summation must be performed from 1 to n in this appendix.

Any vector T in R
n can be expressed in the components form:

T = T1e1 + T2e2 + T3e3 + · · · + Tnen

where e1 = (1, 0, 0, · · · , 0), e2 = (0, 1, 0, · · · , 0), and en = (0, · · · , 0, 0, 1) are linearly
independent unit basis vectors. The n-tuple notation, T = (T1, T2, T3, · · · , Tn), is also
widely used.

In the tensorial calculus, a still shorter notation is employed – an index notation: Ti, i =
1, 2, 3, · · · , n. This notation emphasizes the components of the vectors and uses a dummy
index i, whose range covers all the components of the vectors. When these components
obey certain transformation laws, they are referred to as tensor systems. The subscripts and
the superscripts are used to distinguish the types of systems. The number of subscripts and
superscripts determines the order of the systems. A system with one index is a first order,
two indices is a second order, etc. A system with no indices is called a scalar.

Consider a set of any n independent vectors {a1, a2, a3, · · · , an}, which are not nec-
essarily orthogonal nor the unit length. We may represent the vector T in terms of these
vectors. For example:

T = T 1
a1 + T 2

a2 + T 3
a3 + · · · + T n

an

The components (T 1, T 2, T 3, · · · , T n) can be determined from the components by taking
appropriate projections and getting n equations with n unknowns. A way to compute these
components is to construct a reciprocal basis {a1, a2, a3, · · · , an} of {a1, a2, a3, · · · , an}.
Two bases are reciprocal if

aia
j = δj

i =

{

1 if i = j
0 if i 6= j

. (49)

This means that the dot product of a
i with ai is unitary and a

i(t) is orthogonal to all the
other base vectors aj(t), j 6= i.

We may representTwith respect to either of these bases. The components (T 1, T 2, T 3, · · · , T n)
of T relative to the basis {a1, a2, a3, · · · , an} are denoted the contravariant components
and the components (T1, T2, T3, · · · , Tn) of T relative to the basis {a1, a2, a3, · · · , an}
are denoted the covariant components. The covariant and contravariant components are
different ways to represent the same vector with respect to a set of basis or reciprocal
basis vectors. Figure 19 ilustrates the decomposition of a vector v in its covariant and
contravariant components.
ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.



Fabrics as Cosserat Surfaces · 31

PSfrag replacements a
1

a
2

a1

a2

v

Fig. 19. A set of reciprocal basis vectors.

Whenever n components T i in a coordinate system (x1, x2, · · · , xn) transform to the n

components T
i

in a coordinate system (x1, x2, · · · , xn) according to:

T
i
=

∂xi

∂xj
T j

we way that it is a contravariant tensor of first order. If the n components Ti in a coor-
dinate system (x1, x2, · · · , xn) transform to the n components T i in a coordinate system
(x1, x2, · · · , xn) according to:

T i =
∂xj

∂xi
Tj

we way that it is a covariant tensor of first order.
The transformation law of the differentials of a contravariant tensor T i with respect to the

coordinate xj does not satisfy the tensorial transformation. Hence, the covariant derivative
is defined. This is a special differential which has some of the properties associated with
the usual concept of a differential, but which is also tensorial. In terms of the basis vectors
and the reciprocal basis vectors, it is given, respectively, by

Ti|j =
∂Ti

∂xj
+ Γk

ijT
k,

T i
|j =

∂T i

∂xj
+ Γi

jkT k, (50)

where Γi
jk is a connection coefficient or a Christoffel symbol. The additional term involving

Γi
jk ensures that the expression is a tensorial one.
Let a system of n2 real numbers Tij be associated with the coordinates (x1, x2, · · · , xn)

and a system of n2 real numbers T ij be associated with the coordinates (x1, x2, · · · , xn).
If these numbers are related by

T ij =
∂xk

∂xi

∂xl

∂xj
Tkl

we say that a covariant tensor of second order.
Let a system of n2 real numbers T ij be associated with the coordinates (x1, x2, · · · , xn)

and a system of n2 real numbers T
ij

be associated with the coordinates (x1, x2, · · · , xn).
If these numbers are related by

T
ij

=
∂xi

∂xk

∂xj

∂xl
T kl

we say that a contravariant tensor of second order.
Let a system of n2 real numbers T i

j be associated with the coordinates (x1, x2, · · · , xn)

and a system of n2 real numbers T
i

j be associated with the coordinates (x1, x2, · · · , xn).
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If these numbers are related by

T
i

j =
∂xl

∂xj

∂xi

∂xk
T k

l

we say that a mixed tensor of second order.
The covariant derivative of the tensors Tij , T ij and T i

j with respect to the coordinate xk

are given by

Tij |k =
∂Tij

∂xk
− (Γl

ikTlj + Γl
jkTil),

T ij

|k =
∂T ij

∂xk
+ (Γi

klT
lj + Γj

klT
il),

T i
j |k

=
∂T i

j

∂xk
+ (Γi

klT
l
j − Γl

jkT i
λ). (51)

The vectors T
i, i = 1, 2, · · · , n, are said contravariant when they obey the law of

contravariance of the contravariant tensors of first order.

B. DIFFERENTIAL GEOMETRY

Let r : Ω → R
3 be a regular surface S [Carmo 1976] given by r(a1, a2) = (x(x1, x2),

y(x1, x2), z(x1, x2)), x1, x2 ∈ Ω (Figure 20). As we have

dr =
∂r

∂x1
dx1 +

∂r

∂x2
dx2, (52)PSfrag replacements

x1

x2

α(t)

x1(t)

x2(t)

S

P

t

n

a1

a2

kn

r(x1(t), x2(t))

Fig. 20. Parametrizations of a surface.

the squared length I(w) of an arc of a parameterized curve α(t) = r(x1(t), x2(t)),
t ∈ (−δ, δ), with P = α(0) = r(x1(0), x2(0)) and w = α′(0), can be expressed by

I(w) = dr · dr ≡ aαβdxαdxβ

≡
[

dxα dxβ
]

[

a11 a12

a21 a22

] [

dxα

dxβ

]

(53)

where

aαβ(r(x1, x2)) = aα · aβ , (54)
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where aλ = ∂r

∂xλ .
The quadratic form, defined by Eq. 53, is the first fundamental form or metric tensor and

their components aαβ , given by Eq.54, are called the metric coefficients. Since the inner
product is symmetric, we have a12 = a21.

With the first fundamental form we can treat metric questions on a regular surface without
further reference to the ambient space R

3 where the surface lies. Therefore, all geometric
properties expressed in terms of the metric coefficients, such as length, area, and angle,
are invariant under isometries and are called intrinsic geometric properties. The geometric
properties that are solely observable by a viewer located in the surrounding space are
extrinsic ones.

The coefficients aαβ of the inverse matrix of the matrix given in Eq. 53 are

a11 =
a22

a
, a12 = a21 = −

a12

a
, a22 =

a11

a
, (55)

where

a = a11a22 − a12a21.

The superscripts and subscripts denote, respectively, contravariant and covariant tensors.
It can be shown that the normal curvature kn of an arbitrary curve α(t) = r(x1(t), x2(t))

on S, passing the point P = α(0) with w = α′(0), can be expressed as

II(w) = kn(w) =
bαβdxαdxβ

aαβdxαdxβ
, (56)

where

bαβ = n ·
∂2

r

∂xα∂xβ
(57)

with

n = a3 =
a1 × a2

‖a1 × a2‖
(58)

corresponding to the normal vector of S at P . The term

bαβdxαdxβ =
[

dxα dxβ
]

[

b11 b12

b21 b22

] [

dxα

dxβ

]

(59)

is called the second fundamental form or curvature tensor and the elements bαβ are the
curvature coefficients. The curvature coefficients are symmetric, that is, b12 = b21.

The directions for which the normal curvatures are the minimum or maximum are called
principal directions. We call the normal curvatures in the principal directions the principal
curvatures, and denote them by k1 and k2. A line of curvature is a curve on the surface
with the property that, at any point of the curve, the tangent is a principal direction of the
surface at that point. Two lines of curvature intersecting at right-angles.

In terms of the principal curvatures, which are not intrinsic, we may define the mean
curvature

H =
k1 + k2

2
=

a11b22 − 2a12b12 + a22b11

2(a11a22 − (a12)2)
(60)

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.



34 · Wu, S. T. and V. F. de Melo and L. P. Monteiro

and the Gaussian curvature

K = k1k2 =
b11b22 − b2

12

(a11a22 − (a12)2)
. (61)

In some sense, Gaussian curvature measures how far a surface is from being Euclidean
plane, since it relates the small radius ε around the point P and their circunference L(C)
(Figure 21.(a)). While Gaussian curvature is related with the ratio between the coverage of
the normal vectors and the area defined by the corresponding points on a unitary sphere, the
mean curvature may be associated to the variation of the area A bounded by a closed curve
C(u(t), v(t)) on S, with respect to the length on the direction n(u(t), v(t)) (Figure 21.(b)).

PSfrag replacements

ε

P

L(C)S
S2

A
A′

β1
β2
βi
C
R

A+ dA
n(u(t), v(t))

PSfrag replacements
ε

P

L(C)
S
S2

A
A′

β1
β2
βi

C

R

A+ dA

n(u(t), v(t))

(a) (b)

Fig. 21. Geometrical interpretation of (a) Gaussian curvature and (b) mean curvature.

A point of a surface is called elliptic, if K > 0, hyperbolic, if K < 0, parabolic, if
K = 0, and planar, if K = 0 and H = 0.

If S is orientable, it is possible to assign to each point a basis given by the vectors a1, a2

and a3. By expressing the derivatives of a1 and a2 in the basis {a1, a2, a3}, we obtain the
Gauss formula

aα,β = Γλ
αβaλ + bαβa3, (62)

where Γλ
αβ are the Christoffel symbols that depend exclusively on the coefficients of the

first fundamental form and their derivatives as follows

Γγ
αβ =

1

2
aγλ

(∂aβλ

∂xα
+

∂aλα

∂xβ
−

∂aαβ

∂xλ

)

= aγλ
(

aα,β · aλ

)

= aα,β · aγ , (63)

with a
γ = aγλ

aλ are the reciprocal basis vectors of the basis {a1, a2, a3}. Hence,
the Christoffel symbols are also intrinsic properties of S and all geometric concepts and
properties expressed in terms of the Christoffel symbols are invariant under isometries.

Since aα,β = aβ,α, the Christoffel symbols are symmetric relative to the lower indices;
that is, Γγ

αβ = Γγ
βα.

Once a3,α = ∂n/∂xα at P lies in the tangent plane TP (S), we may also express them
in terms of the natural basis
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a3,α = −bβ
αaβ , (64)

where

bβ
α = aβλbαλ. (65)

These equations are called Weingarten equations. The mean and the Gaussian curvature
correspond, respectively, to the half of the trace and the determinant of the matrix

[

b1
1 b1

2

b2
1 b2

2

]

The most surprising result is the (Gauss) equation

∂Γ2
12

∂x1
−

∂Γ2
11

∂x2
+ Γ1

12Γ
2
11 + Γ2

12Γ
2
12 − Γ2

11Γ
2
22 − Γ1

11Γ
2
12

= −a11K (66)

which proves the Theorema Egregium

Theorem B.1 Egregium. The Gaussian curvature K of a surface is invariant by local
isometries.

This theorem says that all geometric properties given in terms of the Gaussian curvature
K are bending invariant, that is, the properties that are unchanged by deformations which
do not involve stretching, shrinking, or tearing. For example, a cylinder and a plane have
the same Gaussian curvature. For distinguishing these two classes of shapes, we should
use other measurements, such as the mean curvature H : the mean curvature of a plane is
zero while that of a cylinder is nonzero. Unlike the Gaussian curvature, the mean curvature
depends on the embedding and is closely related to the first variation of surface area.

When the intrinsic metric properties (distances of points along curvilinear coordinates
or angles of their tangent directions at a point) and the extrinsic geometric properties (the
way that the normal vectors vary along curvilinear coordinates) change, the coefficients of
the first and the second fundamental forms cannot vary independently. They should obey
the Mainardi-Codazzi equations

∂b11

∂a2
−

∂b12

∂a1
= b11Γ

1
12 + b12(Γ

2
12 − Γ1

11) − b22Γ
2
11

∂b12

∂a2
−

∂b22

∂a1
= b11Γ

1
22 + b12(Γ

2
22 − Γ1

12) − b22Γ
2
12

which may be derived from Eq. 62 and the compatibility conditions

∂2
r

∂2x1

∂x2
=

∂2
r

∂x1∂x2

∂x1

∂2
r

∂2x2

∂x1
=

∂2
r

∂x1∂x2

∂x2
(67)

A natural question is whether the converse also holds, that is whether the knowledge
of the first and second fundamental form determines a surface locally. The answer of this
question is due to O. Bonnet.
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Theorem B.2 Fundamental Theorem. If a11, a12, a22 and b11, b12, b22 are given as func-
tions of u and v, sufficiently differentiable, which satisfy the Mainardi-Codazzi equations,
while a11a22−a2

12 6= 0, then there exists a surface which admits as its first and second fun-
damental forms I = a11du2 +2a12dudv+a22dv2 and II = b11du2 +2b12dudv+b22dv2,
respectively. This surface is uniquely determied except for its position is space.

ACKNOWLEDGMENTS

The second and the third authors would like to acknowledge the Brazilian Coordination for
the Improvement of Higher Education Personnel Foundation (CAPES/PICD) for financial
support, respectively, during the period 2000 – 2004 in the context of the doctorate program
at Unicamp, and duraing the period 2004 – 2006 in the context of the master program at
the same institution.

REFERENCES

Agam, G. and Tang, X. 2005. A sampling framework for accurate curvature estimation in discrete surfaces. IEEE
Transactions on Visualization and Computer Graphics 11, 5 (September/October).

Amirbayat, J. and Hearle, J. 1989. The anatomy of buckling of textile fabrics: Drape and conformability. Journal
of the Textile Institute 80, 1, 51–70.

ASTM, Ed. 1987. Annual Book of Standards. Textiles – Yarns, Fabrics, General Test Methods. Vol. 07.01.
Baraff, D. and Witkin, A. 1998. Large steps in cloth simulation. In Proceedings of SIGGRAPH ’98. 43–54.
Baraff, D., Witkin, A., and Kass, M. 2003. Untangling cloth. ACM Transactions on Graphics 22, 3 (July),

862–870.
Benoit Lafleur, N. M. T. and Thalmann, D. 1991. Cloth animation with self-collision detection. In Proceedings

of IFIP Conference on Modeling in Computer Graphics. Springer, 179–187.
Bigliani, R. and Eischen, J. 2000. Cloth Modeling and Animation. A.K. Peters Publishing, Chapter 9: Collision

Detection in Cloth Modeling.
Breen, D. E., House, D. H., and Getto, P. H. 1992. A physically-based particle model of woven cloth. The Visual

Computer 8, 264–277.
Breen, D. E., House, D. H., and Wozny, M. J. 1994a. A particle-based model for simulating the draping behavior

of woven cloth. Textile Research Journal 64, 11, 663–685.
Breen, D. E., House, D. H., and Wozny, M. J. 1994b. Predicting the drape of woven cloth using interacting

particles. Proceedings of the 21st annual conference on Computer graphics and interactive techniques, 365–
372.

Bridson, R., Fedkiw, R., and Anderson, J. 2002. Robust treatment of collisions, contact and friction for cloth
animation. In Proceedings of the 29th annual conference on Computer graphics and interactive techniques.
594–603.

Bridson, R., Marino, S., and Fedkiw, R. 2003. Simulation of clothing with folds and wrinkles. In Eurograph-
ics/SIGGRAPH Symposium on Computer Animation.

Carmo, M. P. 1976. Differential geometry of curves and surfaces, 1st. ed. Prentice Hall Inc., New Jersey.
Chen, B. and Govindaraj, M. 1995. A physically based model of fabric drape using flexible shell theory. Textile

Research Journal 65, 6, 324–330.
Choi, K.-J. and Ko, H.-S. 2002. Stable but responsive cloth. Proceedings of SIGGRAPH 2002, 604–611.
Desbrun, M., Schröder, P., and Barr, A. 1999. Interactive animation of structured deformable objects. In Pro-

ceedings of Graphics Interface. Kingston, Ontario, Canada.
Eberhardt, B., Weber, A., and Strasser, W. 1996. A fast, flexible, particle-system model for cloth draping. IEEE

Computer Graphics and Application 16, 5, 52–59.
Eischen, J., Deng, S., and Clapp, T. 1996. Finite-element modeling and control of flexible fabric parts. IEEE

Computer Graphics and Application 16, 5, 71–S80.
Ericksen, J. and Truesdell, C. 1958. Exact theory of stress and strain in rods and shells. Archive for Rational

Mechanics and Analysis, 295–323.

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.



Fabrics as Cosserat Surfaces · 37

Feynman, C. 1986. Modeling the appearance of cloth. M.S. thesis, Massachusets Institute of Technology,
Massachusets.

Fontana, M., Rizzi, C., and Cugini, U. 2006. A cad-oriented cloth simulation system with stable and efficient
ode solution. Computers & Graphics – An International Journal 30, 3 (June), 391–405.

Green, A. E., Naghdi, P., and Wainwright, W. 1965. A general theory of a cosserat surface. Archive for Rational
Mechanics and Analysis 20, 287–308.

Grispun, E., Hirani, A., Desbrun, M., and Schröder, P. 2003. Discrete shells. Eurographics/SIGGRAPH Sympo-
sium on Computer Animation, 62–67.

Horta, A. A. and Wu, S.-T. 1995. Phisically-based deformation of non-rigid surfaces. Proceedings of VIII
SIBGRAPI, 175–182. (in Portuguese).

Hu, J. 2004. Structure and mechanics of woven fabrics, 1st ed. Woodhead Publishing Limited, England.
Ji, F., Li, R., and Qiu, Y. 2006. Simulate the dynamic draping behavior of woven and knitted fabrics. Journal of

Industrial Textiles 35, 3 (January), 201–215.
Kang, Y.-M., Choi, J.-H., Cho, H.-G., and Lee, D.-H. 2001. An efficient animation of wrinkled cloth with

approximate implicit integration. The Visual Computer 17, 3, 147–157.
Kawabata, S. 1980. The Standardization and Analysis of Hand Evaluation. The Textile Machinery Society of

Japan.
Meyer, M., Desbrun, M., Schröder, P., and Barr, A. H. 2003. Discrete differential-geometry operators for trian-

gulated 2-manifolds. In Visualization and Mathematics III: Geometry, Topology and Numerics, H.-C. Hege
and K. Polthier, Eds. Springer Verlag Heidelberg.

Michel Carignan, Ying Yang, N. M. T. and Thalmann, D. 1992. Dressing animated synthetic actors with complex
deformable clothes. Computer Graphics 26, 2 (July), 99–104.

Mollmann, H. 1981. Introduction to the Theory of Thin Shells. John Wiley & Sons, Inc. ISBN 0471280569.
Ngoc, C. N. 2004. Nonlinear cloth simulation. Tech. rep., Institut National de Recherche en Informatique et en

Automatique.
Provot, X. 1995. Deformation constraints in a mass-spring model to describe rigid cloth behavior. In Proceedings

of Graphics Interface. 147–154.
Provot, X. 1997. Collision and self-collision handling in cloth modeling dedicated to design garments. In

Proceedings of Graphics Interface. 177–189.
Ramos, P. S. C. and Wu, S.-T. 1997. Analyzing a deformable model using differential geometry. In Proceedings

of X SIBGRAPI. IEEE Computer Society.
Simo, J. C. and Fox, D. D. 1989a. On a stress resultant geometrically exact shell model. part i: Formulation and

optimal parameterization. Computer Methods in Applied Mechanics and Engeneering 72, 267–304.
Simo, J. C. and Fox, D. D. 1989b. On a stress resultant geometrically exact shell model. part ii: The linear theory;

computational aspects. Computer Methods in Applied Mechanics and Engeneering 73, 53–92.
Simo, J. C. and Fox, D. D. 1989c. On a stress resultant geometrically exact shell model. part iii: Aspects of the

nonlinear theory. Computer Methods in Applied Mechanics and Engeneering 79, 21–70.
Terzopoulos, D., Platt, J. C., Barr, A. H., and Fleischer, K. 1987. Elastically deformable models. Computer

Graphics 21, 4 (July), 205–214.
Teschner, M., Kimmerle, S., Heidelberger, B., Zachmann, G., Raghupathi, L., Fuhrmann, A., Cani, M.-P., Faure,

F., Magnenat-Thalmann, N., Strasser, W., and Volino, P. 2005. Collision detection for deformable objects.
Computer Graphics Forum.

Thomaszewiski, B., Wacker, M., and Strasser, W. 2005. A consistent bending model for cloth simulation with
corotational subdivision finite elements. Tech. rep., Graphische Interaktive Systeme, Universität Tübinger.
October.

van den Berger, G. 1998. Efficient collision detection of complex deformable models using aabb trees. Tech.
rep., Department of Mathematics and Computer Science, Eindhoven University of Technology.

Volino, P., Courchesne, M., and Thalmann, N. M. 1995. Versatile and efficient techniques for simulating cloth
and other deformable objects. In Proceedings of Siggraph 1995. 137–144.

Volino, P. and Magnenat-Thalmann, N. 2000. Implementing fast cloth simulation with collision response. In
Proceedings of the Conference on Computer Graphics International. 257–268.

Wang, B., Wu, Z., Sun, Q., and Yuen, M. M. 1998. A deformation model of thin flexible surface. In Proceedings of
The Sixth International Conference in Central Europe on Computer Graphics and Visualization’98. 440–447.

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.



38 · Wu, S. T. and V. F. de Melo and L. P. Monteiro

Wu, S.-T. and de Melo, V. F. 2003. An approximation for normal vectors of deformable models. In Proceedings
of SIBGRAPI ’2003. 3–10.

Received March 2005; revised May 2006; accepted Month Year

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.


