
SOAR: Sub-Symbolic Mechanisms
Danilo Fernando Lucentini , Ricardo Gudwin (Supervisor)

Department of Computer Engineering and Industrial Automation (DCA)
School of Electrical and Computer Engineering (FEEC)

State University of Campinas (Unicamp)
P.O. box 6101, 13083-970 – Campinas, SP, Brazil

d032112@dac.unicamp.br and gudwin@dca.fee.unicamp.br

Abstract – This article has the purpose to analyze, using a sub-symbolic approach, one of the major existing
cognitive architectures: SOAR. Each sub-symbolic module of the architecture will be detailed and, moreover, it will
be described what are the benefits that these modules bring to the whole architecture.

Keywords – cognitive architecture, artificial intelligence, SOAR, symbolic, sub-symbolic

1. Introduction

A cognitive architecture is basically a computa-
tional model that aims to describe, as accurately as
possible, the way that human beings resolve prob-
lems and learn new knowledges across different do-
mains and knowledge bases. Cognitive architec-
tures have evolved insofar the cognitive science it-
self has evolved, thus new knowledges and assump-
tions have been incorporated in the different existing
architectures.

Many papers were published in this area
making it very prolific in recent years. Some of
these have tried to make a comparison among the
different architectures [9, 4] saying what one archi-
tecture does and the others do not or which is fastest
in a given scenario and so forth. This type of study
is very important, however just looking this area by
the comparativist perspective misses some funda-
mental aspects of human cogntive process. Ron Sun
paper “Desiderata for cognitive architectures” [11]
describes the issues and requiriments that the devel-
opment of a bio-inspired cognitive architecture pro-
vides. With this biological basement, it is possible
to analyze the architectures in a much wider, real
and improved way. One of these requirements is the
symbolic and sub-symbolic dichotomy that will be
argued in this paper.

Symbols are entities that make reference
to another objects, but not through a temporal-
spatial relationship, but by a convention, a cause-
consequence relation, a law [1]. Symbols can be
handled in order to generate another symbols that
will have new meanings and so on. For example:
the white flag is a symbol that represents the peace,
the red cross is a symbol that represents the hospi-
tals and so on. This approach is based on Charles

Sanders Peirce theory and it is the central pillar of
semiotic science.

On the other hand, sub-symbolic is any pro-
cessing that is not symbolic, that is, do not exist
clearly this symbol-object relationship. As Nilsson
[10] emphasized, the subsymbolic has a “bottom-
up” style and, at the lowest levels, the concept of
symbols is not as appropriate as is the concept of
signal. This approach emphasizes that the main
problem with the symbolic systems is the symbol
grounding problem [3]. As previously mentioned,
in the symbolic point of view, all the symbols are in
some way associated with the object that they repre-
sent, but how this association is made? According to
symbolic approach, this association is made via an
adapter module that gets the input data from sensors
and transforms them into symbols for future manip-
ulation. This is the main problem: it is unclear how
this adapter module works (homunculus problem).
However, it is clear that this adapter module has a
knowledge below the symbolic layer, that is, a sub-
symbolic layer that is acquired through experience
along the time and has a decisive role in intelligent
behaviors.

By the 70’s and 80’s, prevailed in artificial
intelligence the cognitivism (also called GOFAI2).
This approach claims that many aspects of intelli-
gence can be obtained simply by manipulating sym-
bols. Many cognitive architectures arose in this pe-
riod and all were influenced by this symbolic per-
spective. One of the major cognitive architecture
that arose in that period was SOAR1.

SOAR was originally proposed by John
Laird, Allen Newell and Paul Rosembloom [8]

1State, Operator And Result
2Good Old-Fashioned Artificial Intelligence



around 1983. At the beginning, the architecture was
entirely symbolic, however over the years the sub-
symbolic perspective was gradually being incorpo-
rated and this will be the proposal of this paper: to
expose which are the sub-symbolic components of
SOAR and what are the benefits that they bring.

2. Proposal
This analysis will utilize the most recent version
available for SOAR, that is, version is 9.3.1 (June
2011). In 2008, Laird has pointed [5] the struc-
ture of an extended SOAR architecture with sym-
bolic and sub-symbolic modules. Nevertheless, as
Laird said, all of the new modules have been built,
but there is not a single unified system that has all
the components running at once. So, based on the
current SOAR version (9.3.1), the next figure was
remade to ilustrate the modules available.

Figure 1. Soar modules in version 9.3.1

So, in the next sections the sub-symbolic
modules will be detailed in order to determine what
are the benefits that they bring to the whole frame-
work. But, before detailing each module, it is nec-
essary a brief overview about the SOAR basic com-
ponents. SOAR is based on two entities: operator
and state.

The state is the current problem representa-
tion and this is constituted by a set of WME’s3. As
the own SOAR manual describes: “Each WME con-
tains a very specific piece of information (...) Sev-
eral WME’s collectively may provide more infor-
mation about the same object” [7]. So, the WME is
an entity that helps to describe an object that is in
SOAR problem-solving context.

3Working Memory Elements

Working memory is the cradle of WME’s.
As said previously, the WME’s discribe the current
state of the problem and it is in working memory
that these entities are linked to each other in order
to create a full context of the problem. The working
memory can be viewed as a theater of operations,
because all modules are linked through the working
memory (as can be viewed in Figure 1).

Operators are modifiers that make changes
in the current state and they are formed by a set of
rules. Each rule has two parts: the precondition and
the result. In the precondition, there are boolean ex-
pressions that compare the current state of the prob-
lem, in the other hand, the result effectively changes
the current state of the problem. So, for the result
can be executed, it is necessary that the precondi-
tion is true.

An operator is generally described by two
rules: one rule proposes the operator given a pre-
condition set, and the another verifies if the operator
is selected to execution and apply the changes in the
current state. This two rules are required, because
not necessarily if an operator has the precondition
that matches with the current state of the problem
it will be executed. SOAR just runs one operator at
a time. This cycle of selecting operators is named
decision cycle.

With such information in the hands, the
SOAR sub-symbolic modules will be detailed in the
next sections.

2.1. Decision Procedure
This decision procedure is divided into three steps.
The first is to determine what are the operators that
are candidates to execute, so SOAR will search what
are the operators that match with the current work-
ing memory state. At the end of this step, there will
be a set of operators that are able to execute.

The second step consists in evaluate the
preferences. Preferences are suggestions or imper-
atives about the current operator, or information
about how suggested operators compare to other op-
erators [7]. SOAR will compare the preferences
among all the selected operators. So, in a simple
way, if there are two operators A and B and the op-
erator A has a higher preference than the operator
B, so the operator A will be selected to execute.

The third and final step consists in evaluate



impasses. If even after the first and second steps,
there are still more than one plausible operator for
execution, an impasse occurs. An impasse is a sub-
state in SOAR where the current objective is to re-
solve the impasse. In this substate, there are lots of
information like the type of the impasse (there are
four types of impasses), what are the operators that
result the impasse and so on. The substate is also re-
solved using rules in something like: “if there is an
impasse between operator A and B, operator A will
have higher preference than operator B”. If the sub-
state is not resolved, another will be generated and
so on until a limit is reached. With this hierarchy
of impasses, it is possible to resolve impasses step
by step, for example: if there is an impasse between
operators A, B and C, first the impasse between A
and B can be resolved and, in sequence, the winner
of the first impasse against C.

2.2. Reinforcement Learning

Inspired in the behaviourist psychology, the idea is
to determine what the best action to be taken in such
a way that for each action executed is provided a re-
inforcement value which can be positive or negative.
So, actions that receive positive reinforcement will
tend to be executed more times.

In SOAR, it is necessary to rewrite the state-
ment “what the best action to be taken” to “what the
best operator to be chosen”. Specific operators must
be declared in the architecture in order to the rein-
forcement learning module can handle them, these
operators are called RL operators. The RL operators
are handled like any other operator in SOAR, sus-
ceptible to impasses and to the decision procedure
mechanism. It is possbile to note a clear distribu-
tion of duties in the architecture: the reinforcement
learning module is responsible to adjust the prefer-
ences of each RL operator and the decision proce-
dure module is responsible to find the best operator
to be executed in a given situation (as described in
section 2.1.).

But, how this adjusting of preferences is
done? It is described in more details in [7]; but, in
short: after an operator has been executed, the agent
must to provide a reward signal to SOAR through a
specific WME in working memory and it is this re-
ward signal that reports if the operator had a good
or bad performance. At the beginning of every de-
cision cycle, SOAR will read this reward signal and

associate it with the last executed operator. Finally,
SOAR will update the preferences of RL operators
using a history of reward signals, so, at the end,
the operators with the best performance will have
a high preference value and hence will tend to exe-
cute more times than operators with low preference
value.

2.3. Working Memory Activation (WMA)

Each WME in working memory has an activation
value. The basic logic behind this module is: the ac-
tivation decays over time according an equation and
any time that a WME was tested by a production that
fired, the WME activation value will be increased.

SOAR constantly checks each WME acti-
vation in working memory, if one of them has an
activation value below a defined threshold, it can be
removed from working memory.

3. Results
The sub-symbolic modules bring a new perspec-
tive to the architecture. The decision procedure is
the first sub-symbolic mechanism and the core of
SOAR, because it is responsible for the decision cy-
cle and for the handling of impasse. It is impor-
tant to emphasize that an impasse is not result of
a bad elaboration of operators and rules. Quite the
reverse, it is crucial to the architecture. For exam-
ple: if there is an operator “catch a ball” and in the
case that there are two balls in the current working
memory state, two operators “catch a ball” will be
proposed and an impasse will probably arise, but
thanks to impasse it is possible to make a decision
like “catch the closest ball”. Therefore, this is the
power of impasse: decide at running time what is
the best operator.

The reinforcement learning module allows
that an agent becomes an autonomous learning sys-
tem, because this type of learning provides a quick
adaptation in dynamic environments with indepen-
dence of supervision. This kind of adaptation was
not possible with the chunking learning process (the
first SOAR learning module).

As Nuxoll [6] said, the WMA is very use-
full for two scenarios: which stored episode is the
best match for the current situation and to support
forgetting in working memory. The forgetting pro-
cess is crucial, because it privileges things that are



more important from the others and WMA pro-
vides an artificial forgetting process. Furthermore,
the WMA helps to retrieve episodes from Episodic
Memory. There are a large number of episodes
stored in episodic memory and one way of bias-
ing the match to the most relevant scenario is using
working memory activation.

4. Conclusion
This symbolic and sub-symbolic debate is far from
reaching the end. In fact, there are some kinds
of cognitive tasks that can be better resolved us-
ing symbolic representation, while others using sub-
symbolic. As consequence, each approach brings
pros and cons as Eliasmith and Bechtel have de-
tailed [2].

Therefore, the new tendency is to incorpo-
rate symbolic and sub-symbolic mechanisms in cog-
nitive architectures in order to obtain the benefits of
each approach. This incorporation is already present
in the new cognitive architectures and even in the
classic ones (that born in the GOFAI period). So, as
exposed in this paper, this incorporation can bring a
lot of benefits to the architectures in order to resolve
cognitive tasks.

References
[1] R.T. Craig and H. J. Muller. What is a sign

? In: Theorizing communication: readings
across traditions. Thousand Oaks, CA: Sage,
2007.

[2] C. Eliasmith and W. Bechtel. Symbolic versus
subsymbolic computation and representation.
Encyclopedia of Cognitve Science, 2003.

[3] S. Harnad. The symbol grounding problem.
Physica D, 42:335–346, 1990.

[4] T. R. Johnson. A comparison of act-r and soar.
Mind modeling - A cognitive science approach
to reason-ing, learning and discovery, pages
17–38, 1998.

[5] J.E. Laird. Extending the soar cognitive ar-
chitecture. In Artificial General Intelligence
Conference, 2008.

[6] J.E. Laird, A. M. Nuxoll, and M. James. Com-
prehensive working memory activation in soar.
In Sixth International Conference on Cogni-
tive Modeling, 2004.

[7] John E. Laird and Clare B. Congdon. The Soar
User’s Manual Version 9.3.1, 2011.

[8] John E. Laird, Allen Newell, and Paul S.
Rosenbloom. Soar: an architecture for general
intelligence. Artificial Intelligence, 33:1–64,
1987.

[9] Tijmen Joppe Muller, Annerieke Heuvelink,
and Fiemke Both. Implementing a cognitive
model in soar and act-r: A comparison. In
proceedings of Sixth International Workshop
“From Agent Theory to Agent Implementa-
tion”, 2008.

[10] N.J. Nilsson. Artificial Intelligence: A New
Synthesis. Morgan Kaufmann, San Mateo,
CA, 1998.

[11] Ron Sun. Desiderata for cognitive architec-
tures. Philosophical Psychology, 17:341–373,
2004.


