
A Symmetrical Distributed Architecture for

Multicast-Based Networks

Fabiano de O. Lucchese (candidate), Marco A. A. Henriques (advisor)

Department of Computer Engineering and Automation (DCA)

Faculty of Electrical and Computer Engineering (FEEC)

State University of Campinas (Unicamp)

Caixa Postal 6101, CEP 13083-970 – Campinas, SP, Brasil

{lucchese, marco}@dca.fee.unicamp.br

Abstract – Parallel processing, as defined in the early 70s, accounts for the use of multiple networked processing units working

cooperatively to solve a single computational problem faster than a mono-processed computer. Since then, cluster and grid

computing solutions have emerged, leveraged by the widespread use of network infrastructures such as the Ethernet LANs and

the Internet. In this article the authors present a research proposal on distributed architectures that aim at defining the principles

upon which symmetrical (serverless) systems should be built.

Keywords – parallel processing, distributed architectures, distributed memory, serverless, symmetrical

1. Introduction

A major scientific breakthrough that is often

considered to be the very first step toward the

modeling of modern computer systems was the

formalization of the Turing Machine [1].

Depicted by the English mathematician Alan

Turing in 1936, the Turing Machine consisted of

the apparatus by which a comprehensive set of

simple instructions could be sequentially

executed in order to perform a complex task.

Although nowadays computer systems are

capable of performing computations rather

complex operations at hundreds of thousands of

times per second, the computing model upon

which they are built is still based on the idea of

sequentially executing an ordered set of simple

instructions.

Despite its great success and large-scale

adoption through the past decades, this well

established model has its limitations [2]. The

advances on miniaturization and acceleration of

semiconductor-based digital circuits made

possible the implementation of high-speed and

cost-effective processing units, but led the

computer industry to a dead end. If in one hand

the semiconductor technology brought powerful

computers to everybody’s desk, the physical

limitations imposed by the quantum properties of

the semiconductors refrains the computer

industry from keeping the same pace toward

faster systems [34]. The speed at which digital

systems can work may not significantly exceed

the 3 GHz barrier.

These limitations have long been regarded by

the industry and scientific community as a claim

for alternative computing models and/or

extensions to the Turing model. An extension

that has been successfully explored by the

processors industry and that is a well-known ally

of the scientific research is the use of parallelism

[3][4]. By using multiple Turing-Machine-like

processing units in a coordinated fashion,

computer systems can reach higher degrees of

performance even though they are still based on

the same technological platform. Brand-new

consumer computers have not less than two

processing units (also known as cores when they

are packed on a single chip), and expensive high-

performance systems can have up to hundreds or

thousands of multi-core processors.

Although parallelism has proven to be much

more than a promising paradigm, its large-scale

adoption suffers from the lack of common

knowledge about how to develop applications

that can benefit from parallel architectures. Even

today, when multi-core computers are part of any

company infra-structure, applications developers

aren’t used to think parallel; the

processing/communication relation is often

ignored when building high-demand applications

and, as a consequence, they have to be totally

redesigned by specialized experts to be able to

run efficiently on parallel systems.

A number of approaches have been taken by

the software development industry to ease the

process of creating parallel applications. As an

example, the new Microsoft Visual Studio

framework has a set of tools designed to

automatically parallelize ―for‖ loops and in/out

operations, distributing parts of the same

program to distinct cores [5]. Code automation

and high-level languages are other examples of

ways to encourage parallelism [6]. Cluster

computing and grid computing platforms also

offer a number of tools that provide the means to

work with tightly or loosely coupled networked

computer systems without having to care about

group communications.

In [34][35], the authors identify a set of

parallel applications, techniques and mechanisms

that, according to them, can be regarded as

fundamental parallel computation patterns. These

patterns represent the dominant operations of the

parallel computing world, embracing scientific

computations, such as weather prediction

calculations, car crash simulations, data-base

applications, Monte Carlo simulations and

others. They believe that defining such canonical

set of ―building blocks‖, capable of representing

all kinds of parallel codes at multiple abstraction

levels, as well as a supportive design language

(OPL), might serve as the initial step towards the

development of specially-suited parallel

hardware, novel programming tools/languages

and software libraries that will ultimately help IT

professionals deal with parallelism.

In this document we propose the research

and development of parallel processing

technology focused on one specific class of

parallel architecture: distributed memory

systems. As opposed to shared-memory

architectures, distributed systems are built upon

the aggregation of loosely coupled independent

processing units interconnected by non-

specialized networks, such as common PCs

interconnected by Ethernet.

2. Background

Harnessing the power of general-purpose

processing devices and network infra-structure

and using it to solve large-scale problems is not a

new idea. Academic projects to this end, such as

Linda [7] and PVM [8], exist since the early 80s

and several academic and commercial projects

can be found nowadays.

SETI@home [9] is perhaps the most widely

known distributed system aimed at solving large-

scale problems. With over 760,000 users and

over 1,700,000 hosts actively participating in

July/2009 -- this project showed for the first time

the enormous aggregated computing power

obtainable from the computers connected to

Internet. SETI@home is oriented to execute a

single application that searches for signs of

extraterrestrial intelligence by processing signals

generated by radio telescopes. SETI@home

inspired a general purpose project named BOINC

[10] that has been used to execute other

applications such as Einsten@home, a project

that searches for spinning neutron stars, and

Rosetta@home, a project aimed at determining

three-dimensional shapes of proteins.

Java-based systems, such as ProActive [11]

and HPJava [12], leverage the platform

independence and standard API of Java to

provide simple, unique platforms that can be

executed on most of the existing architectures.

These solutions differ in the application models

they execute and in the attention they pay to key

issues such as scalability and fault tolerance.

This kind of distributed parallel processing

has many advantages over using supercomputing

hardware to solve the same problems. One

obvious advantage is cost, since bundling

together a set of general-purpose processors is

orders of magnitude cheaper than buying a

supercomputer. Furthermore, the processing

power of supercomputers is not easily scalable,

making it a habit for their owners to periodically

change them for newer ones when the size of the

problem outgrows the supercomputer's capacity.

On the other side, a parallel distributed system is

able to increase its power by merely adding new

processing devices.

Of course, parallel distributed systems have

disadvantages as well [13]. Supercomputers have

specially designed hardware and custom libraries

that make process intercommunication much

faster than what can be achieved with a regular

network. High communication speed and low

latency are vital to efficiently solve some

problems and for these cases supercomputers still

have an edge.

However, it has been noted that large-scale

commercial applications, such as those found in

financial services and energy industry, tend to

present a type of parallelism known as data

parallelism [14]. In these cases the application

executes the same algorithm over a large amount

of data, with the processing of each data item

being relatively independent of other data items.

This class of applications is well-suited for a

distributed parallel approach, since it can take

advantage of a large number of relatively

independent processing devices. Commercial

solutions provided by companies such as

DataSynapse [15], Platform Computing [16] and

United Devices [17] are aimed at this class of

applications.

Existing solutions for parallel distributed

systems tend to exhibit asymmetrical

architectures, with elements like "brokers" or

"directors" coordinating the effort of the

"workers", who do the actual processing. This

approach has several drawbacks, such as single

points of failure, which demands the use of

replication and fault-tolerance techniques with

varying complexity. Asymmetry itself increases

the complexity of implementation and

deployment, besides wasting processing power

as many times the "coordinating" computers

cannot participate in the actual processing [18].

Thus, it would be desirable to have a

distributed parallel system oriented to data-

parallel applications with a symmetric

architecture, where all the elements are equal and

there are no single points of failure. Such a

system would be easier to deploy and maintain

and be better prepared to scale to a large number

of nodes.

3. Proposal

In this document, we propose as the main

challenge a research on infra-structure

technologies that can lead us to the modeling of a

totally distributed and symmetric (serverless)

architecture with no single points of failure,

made up by the aggregation of network-

connected heterogeneous computers. We divide

this goal into 3 sub-goals that are described in

section 3.3. Additionally, we consider that, prior

to dealing with these sub-goals, a number of

considerations should be made regarding the

communication and state representation layers,

described in sections 3.1 and 3.2.

3.1. Communication Issues

This proposal is strongly based on some

form of group communications. In our particular

case, we are aiming at distributed systems built

upon non-specialized and general-purpose

interconnects. Although this research may

produce theoretical results that are agnostic to the

interconnection medium, we have chosen to

adopt the Ethernet as the target network

technology. This is due to the fact that Ethernet

has long been adopted as the de facto standard

for interconnecting networks of workstations

and, within the past 5 years, is becoming the

standard for specialized high-performance

computers according to the TOP 500 annual

supercomputers list [19].

Symmetric and heterogeneous distributed

systems based on Ethernet are commonly

referred to as peer-to-peer computer systems

[20]. A number of group communication

frameworks designed to support peer-to-peer

models have been introduced [21][22], but the

adoption of such frameworks in our proposal

should be based on clearly established criteria.

Having this in mind, the first goal of this thesis is

answering to the following questions:

 Why use group communication?

 Assuming that group communication is

really necessary, which are the

requirements for parallel applications

execution support?

 Which are the influences of the

interconnection technology over the

group communication layer? Is Ethernet

a suitable medium?

 How can a group communication benefit

from the Ethernet structure?

Preliminary evaluations made with Java-

based communication frameworks (ProActive

[11] and JGroups [23]) have shown that the

multicast nature of Ethernet networks is rarely

taken into consideration into their design. We

strongly believe that multicast-based operations,

such as message exchange and file transfers,

could greatly enhance such frameworks, making

them more suitable for Ethernet-based parallel

application executions.

3.2. State Representation Issues

Another challenge would be defining the

distributed state representation of this system

across the participating computers [24]. In this

phase, the questions that we expect to be

answered are:

 What is the best approach to represent

the state of our distributed system? Is it

an object model?

 Which types of entities this model should

provide? Which properties should they

present?

 Which are the qualities of service that

should be guaranteed by this model?

Which levels of performance and fault

tolerance are required?

A number of experiments have already been

conducted with different object models and a set

of entities was designed as a first approach.

However, the resulting model should be

validated and, possibly, extended under the light

of a more formal analysis. We expect the

definition of a few entities with distinguished

communication and persistence properties.

3.3. Higher Level Services

Communication and state representation are

the basic tools upon which higher level

distributed services are built. To support the

execution of parallel applications, we need the

following services:

 Security: a comprehensive set of tools

for user authentication and authorization

across the network, as well as

communication and storage encryption.

 File Staging: making application files

available where they need to be accessed

is a basic requirement of a distributed

system.

 Application Execution Engine: the

execution of a parallel application

involves scheduling tasks across the

participating computers, detecting and

circumventing failures and monitoring

the system as a whole.

These are the sub-goals mentioned in the

introduction of section 3. We believe that the

modeling of a distributed system with the desired

properties can be based on these three services.

4. Chronology

This thesis proposal represents an

opportunity to analyze and extend a series of

important results obtained by several research

groups in the past few years. We want to submit

all important past decisions to the scrutiny of

formal analysis and draw conclusions concerning

their validity and scope. We also expect to

extend these results and propose future

developments that might lead to innovative

distributed services based on the same key

functionality.

Having in mind that a great implementation

effort has already been done, which may speed-

up all field experiments, we envisage the

following chronology for this proposal:

 Communication Issues: from 6 to 9

months (month 1 to month 6-9),

including biographic revision, theoretical

analysis and practical tests.

 State Representation Issues: from 6 to

9 months (month 7-10 to month 12-18),

including biographic revision, theoretical

analysis and practical tests.

 Higher Level Services: from 12 to 18

months (month 13-19 to month 24-36),

including biographic revision, theoretical

analysis and practical tests.

We expect to produce one scientific article

for each of the initial subjects (communication

and state representation), and one for each higher

level service.

References

[1] Turing, Alan M (1936), "On Computable

Numbers, With an Application to the

Entscheidungsproblem," Proc. London Math.

Soc. Ser. 2 42, pp. 230-265

[2] AGARWAL, V. et al, Clock rate versus IPC:

the end of the road for conventional

microarchitectures, Special Issue:

Proceedings of the 27th annual international

symposium on Computer architecture (ISCA

'00), Volume 28, Issue 2 (May 2000),

Pages: 248 - 259

[3] TANENBAUM, A. S. et al, Distributed

Operating Systems, Prentice Hall; US ed

edition (September 4, 1994)

[4] KUMAR, R. et al, Interconnections in Multi-

Core Architectures: Understanding

Mechanisms, Overheads and Scaling,

Proceedings of the 32nd annual international

symposium on Computer Architecture, 2005,

Pages: 408 - 419

[5] POWERS, L., Microsoft Visual Studio 2008

Unleashed, Sams; 1 edition (June 9, 2008)

[6] VAN GERMUND, A. J. C., Performance

prediction of parallel processing systems: the

PAMELA methodology, Proceedings of the

7th international conference on

Supercomputing, 1993, Pages: 318 - 327

[7] LELER, W., Linda meets Unix, IEEE

Computer Society, Feb 1990, Volume: 23,

Issue: 2, Pages 43 - 54

[8] GEIST, A. et al, PVM: Parallel Virtual

Machine, The MIT Press, 1994, ISBN-10:

0-262-57108-0

[9] ANDERSON, D. P. et al, SETI@home: an

experiment in public-resource computing,

Communications of the ACM, Volume 45,

Issue 11 (November 2002), Pages: 56 - 61

[10] ANDERSON, D. P. et al, BOINC: A

System for Public-Resource Computing and

Storage, Proceedings of the 5th IEEE/ACM

International Workshop on Grid Computing,

Pages: 4 - 10

[11] ProActive - Parallel, Distributed, Multi-

Core Solutions with Java,

http://proactive.inria.fr/

[12] CARPENTER, B. et al, HPJava: Data

Parallel Extensions to Java, Concurrency

Practice and Experience, 1998

[13] MULLENDER, S., Distributed Systems,

Addison Wesley Publishing Company; 2 Sub

edition (July 1993)

[14] DANIEL HILLIS, W., Data parallel

algorithms, Communications of the ACM,

Volume 29 , Issue 12 (December 1986),

Pages: 1170 - 1183

[15] DataSynapse | Leader in Dynamic

Application Service Management,

http://www.datasynapse.com/

[16] Clusters, Grids, Clouds - Platform

Computing, http://www.platform.com/

[17] United Devices, http://www.ud.com/

[18] BUSCHMANN, F., Pattern-Oriented

Software Architecture Volume 4: A Pattern

Language for Distributed Computing (v. 4),

Wiley (May 8, 2007)

[19] TOP500 Supercomputing Site,

http://www.top500.org/

[20] ORAM, A., Peer-to-Peer : Harnessing

the Power of Disruptive Technologies,

O'Reilly Media, Inc.; 1st edition (March 15,

2001)

[21] RIPEANU, M. Peer-to-Peer Architecture

Case Study: Gnutella Network, pp.0099,

First International Conference on Peer-to-

Peer Computing (P2P'01), 2001

[22] JUNGINGER, M., LEE, Y, The Multi-

Ring Topology — High-Performance Group

Communication in Peer-to-Peer Networks,

pp.49, Second International Conference on

Peer-to-Peer Computing (P2P'02), 2002

[23] JGroups - The JGroups Project,

http://www.jgroups.org/

[24] LIU, J. et al, Distributed state

representation for tracking problems in

sensor networks, Proceedings of the 3rd

international symposium on Information

processing in sensor networks, 2004, Pages:

234 - 242

