
A Methodology for Effectiveness Analysis of Vulnerability

 Scanning Tools

Tania Basso, Regina L. O. Moraes (Co-orientadora), Mario Jino (Orientador)

Departamento de Engenharia de Computação e Automação Industrial (DCA)

Faculdade de Engenharia Elétrica e de Computação (FEEC)

Universidade Estadual de Campinas (Unicamp)

Caixa Postal 6101, CEP 13083-970 – Campinas, SP, Brasil

taniabasso@gmail.com, {regina@ft, jino@dca.fee}.unicamp.br

Abstract – Software systems developed nowadays are highly complex and subject to strict time constraints and are often

deployed with critical software faults. In many cases, software faults are responsible for security vulnerabilities which are

exploited by hackers. Automatic web vulnerability scanners can help to reveal these vulnerabilities. Trustworthiness of the
results these tools provide is important; hence, relevance of the results must be assessed. We analyzed the effect on security

vulnerabilities of Java software faults injected into source code of Web applications. We assessed how these faults affect the

behavior of the vulnerability scanner tool, to validate the results of its application. Software fault injection techniques and attack

trees models were used to support the experiments. The injected software faults influenced the application behavior and,
consequently, the behavior of the scanner tool. A high percentage of uncovered vulnerabilities as well as of false positives points

out the limitations of the tool.

Keywords – Fault injection, Vulnerability Scanner tool, Web Application Security.

1. Introduction

Web applications are extremely popular

nowadays. This type of application is becoming

increasingly exposed as any security

vulnerability can be exploited by hackers.

Automatic vulnerability scanner tools are

often used to assess Web applications with

respect to security vulnerabilities. Reliable

results from vulnerability scanners are essential

and the analysis of the scanners’ effectiveness is

important to guide the selection as well as the use

of these tools. Previous research [1][2] shows

that, in general, Web vulnerability scanners

present a high number of false-positives (i.e.,

vulnerabilities detected by the tool that do not

exist in the application) and low coverage (i.e.,

vulnerabilities that do exist in the application but

were not identified by the tool), highlighting the

limitations of this kind of tool.

Although other potential causes for

vulnerability do exist, the root cause of most

security attacks are vulnerabilities created by

software faults [3][4]. Our proposal is to

investigate the effect that Java software faults

may have on security vulnerabilities and, then,

analyze how they affect the behavior of the

vulnerability scanner tool. The paper describes a

method based on modelling of attack trees to

define how to perform security tests by attacking

the application.

The approach consists of injecting software

faults into small Java applications to check if the

scanner can detect potential vulnerabilities

caused by the injected faults. Creation of

vulnerabilities is confirmed through manual

attacks, guided by the models of attack trees, to

get accurate measures of detection coverage and

false positives rate.

2. Software fault injection

Few works address the relationship between

software faults and security vulnerabilities. A

study by Fonseca and Vieira [5] analyzed

security patches of web applications developed

in PHP. The types of faults that are most likely to

lead to security vulnerabilities are characterized.

The work by Basso et al [4] presents a field

data study on real Java software faults, including

security faults. The field study was based on

security correction patches analysis available in

open source repositories. More than 550 faults

were analyzed and classified, determining the

representativeness of these faults. The authors

also define new operators, specific to this

programming language structure, guiding the

definition of a Java faultload.

The software fault injection technique used

in this paper is the G-SWFIT [6], which is based

on a set of fault injection operators that

reproduce directly in the target executable code

the instruction sequences that represent the most

common types of high-level software faults.

To inject the faults, a use case of the

application was selected. Each fault was injected

in all possible locations of this specific use case,

mailto:taniabasso@gmail.com

one at time, forming different scenarios to be

analyzed.

3. Effectiveness of vulnerability scanner

tools

Web vulnerability scanners are regarded as an

easy way to test applications against

vulnerabilities. Most of these scanners are

commercial tools (e.g., Acunetix [7], IBM

Rational AppScan [8], N-Stalker [9] and HP

WebInspect [10]).

Vieira et al [1] present an experimental

evaluation of security vulnerabilities in publicly

available web services. Four well known

vulnerability scanners have been used to identify

security flaws in web services implementations.

Many differences in vulnerabilities were detected

and a high number of false-positives and low

coverage were observed when different tools

were used to analyze the same application.

Fonseca et al [2] propose a method to

evaluate and benchmark automatic Web

vulnerability scanners using software fault

injection techniques. Three leading commercial

scanning tools were evaluated and the results

have also shown that in general the coverage is

low and the percentage of false positives is very

high. However, these studies were focused on a

specific family of applications: web services and

PHP applications, respectively. Thus, the results

obtained cannot be easily generalized.

Furthermore, they do not present a clear

methodology to validate the vulnerabilities

detected by scanner tools. We investigate the

behavior of scanner tools in the presence of

injected Java faults, show a method using attack

trees to model the possible ways to perform

attacks to specific vulnerabilities, and analyze the

results obtained by the scanner. This is addressed

in the next sections.

4. Attack trees and security vulnerabilities

Attack trees provide a formal way of addressing

security attacks on software systems [11]. In our

work the attack trees are used to describe the

various ways of attacking a specific type of

security vulnerability. This is important to guide

the security tests to validate the scanner results.

We consider three types of security

vulnerabilities: Cross-Site Scripting (XSS) [12],

SQL Injection [13] and Cross-Site Request

Forgery (CSRF) [14]. They were selected

because they are widely spread and may cause

major damage to the victims.

For each of these three types of vulnerability

an attack tree was created. Figure 1 presents the

attack tree for CSRF vulnerabilities. Due to

space restrictions, the other trees are not

presented, but they can be seen elsewhere [14].

In Figure 1, the first step to perform a CSRF

attack is to have the user logged in the site

because the attack will use the trust in user

authentication. The next step is to analyze the

request from the site that the attack will target in

order to be able to reproduce it. If the site does

not have CSRF countermeasures this step will

lead to the next one because the request will be

considered valid and will take effect on the site.

If the site uses any defensive measure it will be

necessary to analyze the request and take

additional actions.

A known defensive method consists in

appending different tokens to each request, but

Figure 1. CSRF attack tree

this approach can be bypassed if the application

is vulnerable to XSS attacks. The three

remaining leaf nodes show how to overcome

applications that use verification of the HTTP

(Hypertext Transfer Protocol) Referrer attribute,

although this is not a recommended defensive

measure.

5. The experimental study

Two small open source Web applications

developed in Java, App1 and App2, were

selected to carry out the experiment. They are,

respectively, a Customer Relationship Manager

(CRM) and a management system for Distance

Education, developed by the Brazilian federal

government. They use technologies such as

Hibernate and Ajax. We have chosen similar use

cases from both applications to be the target

piece of code of injected faults.

The types of fault to be injected were the

most frequent ones observed by Basso et al. [4].

The security vulnerability scanner was selected

because it is widely used and available. We do

not identify it because commercial licenses do

not allow the publication of tool evaluation

results.

5.1 Injecting faults, executing the scans and

validating the results

The tests start with a “Gold Run”, where the

application is tested once by the scanner tool

without any fault injected. After the “Gold Run”,

one fault is injected. The context of the code

where the fault is injected is analyzed to

understand the effect of this fault in the

applications behavior. Next, the code and the

database are versioned, defining a scenario to be

tested.

The scanner application is run and a

verification of the results is done. If new

vulnerabilities are detected, attacks are

performed in the current scenario using the attack

trees. This aims to verify if the new vulnerability

actually exists or if it is a false positive. Then,

the same attacks are performed in the original

application scenario (without any fault injected)

to verify if the vulnerability was present in the

application before fault injection and was not

identified by the tool (lack of coverage) when the

Gold Run was performed.

The procedure is done for each possible

location in the source code where faults can be

injected in accordance with G-SWFIT technique

(for the selected use case).

6. Results and discussions

For both Web applications, we analyzed,

respectively, 11 and 23 different scenarios. Table

1 shows the total of scenarios that presented new

security vulnerabilities detected by the scanner

due to the fault injection.
Table 1. Applications scenarios and vulnerabilities

 App1 App2

Total scenarios analyzed 11 23

Scenarios with new

vulnerabilities
5 7

% of faults that affected the scan 46% 30%

According to Table 1, about 35% of the

injected software faults affected the scanner

results. The lack of coverage and false positives

rate are shown in Table 2.

In Table 2, the CSRF vulnerability represents

60% of the lack of coverage. In most of the

cases, when scanning the application with fault

injected, a new vulnerability detected by the tool

was, in fact, one that already was present in the

original application, not identified in the “Gold

Run”.
Table 2. Percentage of security vulnerabilities:

lack of coverage and false positives

 XSS
SQL

inject
CSRF Total

Vulnerabilities 2 2 15 19

Lack of

coverage (%)
0% 0% 60% 47%

False positive

(%)
50% 100% 34% 42%

Also in Table 2, the false positives come

from the three types of security vulnerabilities:

XSS, SQL injection and CSRF, representing,

respectively, 50%, 100% and 34% of the

vulnerabilities detected. The false positive

associated to the XSS vulnerabilities is

considered because the scanner tool integrates

outdated version of internet browsers. An attack

successfully executed by the tool, when executed

in the later versions of internet browsers, has no

effect, because these versions implement features

that do not permit the execution of common XSS

attacks.

The SQL injection false positives were

identified through the attacks and the analysis of

the source code. Both applications use the

Hibernate technology, and the way that the

application was coded, i.e., extremely

encapsulated, does not give opportunities to

develop successful attacks.

Most of cases where CSRF false positives

were identified were in error pages. A hacker

performing a CSRF attack to access an error

page can be dangerous if the error page presents

links or buttons which permit to access back the

application (as “back” buttons which bring back

the user to the last page he/she accessed). For

both applications, the error pages do not present

any way of accessing application functionalities

or private information. Hence, we considered

theses cases as false positives because a CSRF

attack when accessing the error pages is useless.

The last column of Table 2 shows the total

percentage of lack of coverage and false

positives. From the 19 vulnerabilities

investigated, 42% are false positives and 47%

were not identified by the scanner tool. It

indicates the limitations of this tool found in this

study.

7. Conclusions

In this paper we present an experimental study

where we analyze the effect of Java software

faults, injected in the source code of Web

applications, on security vulnerabilities. We also

analyze the influence of these faults on the

security vulnerabilities detection by a well

known security vulnerability scanner tool. Fault

injection techniques and attack tree modeling

were used to support the experiments.

Results show that, according to the context

of both the target code applications and the

security vulnerabilities structure considered, the

injected faults did affect the behavior of the

application and, consequently, the behavior of

the scanner tool in detecting new vulnerabilities.

The scanner presented high percentage of lack of

coverage and many false positives, showing its

limitations. Factors that influenced this

percentage are, in addition to the activation of the

faults injected into the source code of the

applications, the use of different development

technologies (such as Hibernate) and some

outdated features of the tool (as the internal

internet browser).

We intend to extend this experiment by

investigating the effect of other types of faults

and the effectiveness of other vulnerability

scanner tools. We also intend to develop a tool to

perform the attacks (based on attack trees)

automatically.

References

[1]M. Vieira, N. Antunes, H. Madeira. "Using

Web Security Scanners to Detect Vulnerabilities

in Web Services”. IEEE/IFIP Intl Conf. on

Dependable Systems and Networks, DSN 2009,

Lisboa, Portugal, June 2009.

[2]J. Fonseca, M. Vieira, H. Madeira. “Testing

and Comparing Web Vulnerability Scanning

Tools for SQL Injection and XSS Attacks”, 13º

IEEE Pacific Rim Dependable Computing

Conference (PRDC 2007), Melbourne, Victoria,

Australia, December 2007.

[3]J. Fonseca, M. Vieira. “Mapping software

faults with web security vulnerability”.

IEEE/IFIP Int. Conf. on Dependable Systems

and Networks, Anchorage, USA, 2008.

[4]T. Basso, R. Moraes, B. P. Sanches, M. Jino.

“An Investigation of Java Faults Operators

Derived from a Field Data Study on Java

Software Faults.” In: Workshop de Testes e

Tolerância a Falhas - WTF2009, João Pessoa,

Brazil, 2009, pp. 1-13.

[5]J. Fonseca, M. Vieira. “Mapping software

faults with web security vulnerability”.

IEEE/IFIP Int. Conf. on Dependable Systems

and Networks, Anchorage, USA, 2008.

[6]J. Durães, H. Madeira. "Emulation of

Software Faults: A Field Data Study and

Practical Approach". IEEE Trans. on Software

Engineering, Nov. 2006, pp.849-867.

[7]Acunetix Web Appication Security. Available

in http://www.acunetix.com, November/2009.

[8]IBM Rational AppScan. Available in

http://www01.ibm.com/software/awdtools/appsc

an/, November/2009.

[9]N-Stalker. Available in

http://www.nstalker.com/, November/2009.

[10]HP WebInspect. Available in

https://h10078.www1.hp.com/cda/hpms/display/

main/hpms_content.jsp?zn=bto&cp=1-11-201-

200%5E9570_4000_100__, November/2009.

[11]B. Schneir. “Attack Trees: Modeling

Security Threats”, Dr. Dobb’s Journal,

December, 1999

[12]CGISecurity.com. “The Cross Site Scripting

FAQ.” Available in

http://www.cgisecurity.com/xss-faq.html,

November/2009.

[13]W. G. Halfond, J. Viegas, A. Orso, “A

classification of SQL injection attacks and

countermeasures”. In Proc.IEEE International

Symposium on Secure Software Engineering,

Arlington, Virginia, March/2006.

[14]R. Auger. “The Cross-Site Request Forgery

(CSRF/XSRF) FAQ”. Available in

http://www.cgisecurity.com/csrf-faq.html,

November/2009.

[15]Research Test Group. Available in

http://www.ceset.unicamp.br/docentes/regina/pro

jeto/, December/2009.

http://www.acunetix.com/
http://www01.ibm.com/software/awdtools/appscan/
http://www01.ibm.com/software/awdtools/appscan/
http://www.nstalker.com/
https://h10078.www1.hp.com/cda/hpms/display/main/hpms_content.jsp?zn=bto&cp=1-11-201-200%5e9570_4000_100__
https://h10078.www1.hp.com/cda/hpms/display/main/hpms_content.jsp?zn=bto&cp=1-11-201-200%5e9570_4000_100__
https://h10078.www1.hp.com/cda/hpms/display/main/hpms_content.jsp?zn=bto&cp=1-11-201-200%5e9570_4000_100__
http://www.ceset.unicamp.br/docentes/regina/projeto/
http://www.ceset.unicamp.br/docentes/regina/projeto/

