Chapter 8

Primitive Processing

WHAT YOU’LL LEARN IN THIS CHAPTER

¢ How to use tessellation to add geometric detail to your scenes

e How to use geometry shaders to process whole primitives and create
geometry on the fly

In the previous chapters, you've read about the OpenGL pipeline and have
been at least briefly introduced to the functions of each of its stages. We've
covered the vertex shader stage in some detail, including how its inputs
are formed and where its outputs go. A vertex shader runs once on each of
the vertices you send OpenGL and produces one set of outputs for each.
The next few stages of the pipeline seem similar to vertex shaders at first,
but can actually be considered primitive processing stages. First, the two
tessellation shader stages and the fixed-function tessellator that they flank
together process patches. Next, the geometry shader processes entire
primitives (points, lines, and triangles) and runs once for each. In this
chapter, we’ll cover both tessellation and geometry shading, and
investigate some of the OpenGL features that they unlock.

283

284

Tessellation

As introduced in the section “Tessellation” in Chapter 3, tessellation is the
process of breaking a large primitive referred to as a patch into many
smaller primitives before rendering them. There are many uses for
tessellation, but the most common application is to add geometric detail
to otherwise lower fidelity meshes. In OpenGL, tessellation is produced
using three distinct stages of the pipeline — the tessellation control shader
(TCS), the fixed-function tessellation engine, and the tessellation
evaluation shader (TES). Logically, these three stages fit between the vertex
shader and the geometry shader stage. When tessellation is active,
incoming vertex data is first processed as normal by the vertex shader and
then passed, in groups, to the tessellation control shader.

The tessellation control shader operates on groups of up to 32 vertices! at
a time, collectively known as a patch. In the context of tessellation, the
input vertices are often referred to as control points. The tessellation control
shader is responsible for generating three things:

e The per-patch inner and outer tessellation factors
e The position and other attributes for each output control point

e DPer-patch user-defined varyings

The tessellation factors are sent on to the fixed-function tessellation
engine, which uses them to determine the way that it will break up the
patch into smaller primitives. Besides the tessellation factors, the output
of a tessellation control shader is a new patch (i.e., a new collection of
vertices) that is passed to the tessellation evaluation shader after the patch
has been tessellated by the tessellation engine. If some of the data is
common to all output vertices (such as the color of the patch), then that
data may be marked as per patch. When the fixed-function tessellator runs,
it generates a new set of vertices spaced across the patch as determined by
the tessellation factors and the tessellation mode, which is determined
using a layout declaration in the tessellation evaluation shader. The only
input to the tessellation evaluation shader generated by OpenGL is a set of
coordinates indicating where in the patch the vertex lies. When the
tessellator is generating triangles, those coordinates are barycentric

1. The minimum number of vertices per patch required to be supported by the OpenGL spec-
ification is 32. However, the upper limit is not fixed and may be determined by retrieving the
value of GL_MAX_PATCH_VERTICES.

Chapter 8: Primitive Processing

coordinates. When the tessellation engine is generating lines or triangles,
those coordinates are simply a pair of normalized values indicating the
relative position of the vertex. This is stored in the gl_TessCoord input
variable. This setup is shown in the schematic of Figure 8.1.

TESSELLATION
ENGINE

gl_TessLevelOuter(]
p1ooDssal |b

gl_TessLevellnner[]

PER-CONTROL
POINT VARIABLES

e ——
e ;

FROM TESSELLATION - TESSELLATION

VERTEX 7~ > CONTROL AV} EVALUATION TO

SHADER ===-———] SHADER SHADER PRIMITIVE
R ASSEMBLY
==m-—] patch PARAMETERS

Figure 8.1: Schematic of OpenGL tessellation

Tessellation Primitive Modes

The tessellation mode is used to determine how OpenGL breaks up
patches into primitives before passing them on to rasterization. This mode
is set using an input layout qualifier in the tessellation evaluation shader
and may be one of quads, triangles, or isolines. This primitive mode
not only controls the form of the primitives produced by the tessellator,
but also the interpretation of the gl_TessCoord input variable in the
tessellation evaluation shader.

Tessellation Using Quads

When the chosen tessellation mode is set to quads, the tessellation engine
will generate a quadrilateral (or quad) and break it up into a set of
triangles. The two elements of the gl_TessLevelInner[] array should be
written by the tessellation control shader and control the level of
tessellation applied to the innermost region within the quad. The first
element sets the tessellation in the horizontal (u) direction, and the
second element sets the tessellation level applied in the vertical (v)
direction. Also, all four elements of the gl_TessLevelOuter[] array
should be written by the tessellation control shader and are used to
determine the level of tessellation applied to the outer edges of the quad.
This is shown in Figure 8.2.

Tessellation

285

0,1 gl_TessLevelOuter[3] 1,1

gl_TessLevellnner[0]

gl_TessLevelOuter[0]
gl_TessLevellnner[1]

[T]4suujPnassal |b
[z]42In0leAaTIssaL |6

gl_TessLevellnner[0]

0,0, gl_TessLevelOuter[1] (1,0)
u

Figure 8.2: Tessellation factors for quad tessellation

When the quad is tessellated, the tessellation engine generates vertices
across a two-dimensional domain normalized within the quad. The value
stored in the gl_TessCoord input variable sent to the tessellation
evaluation shader is then a two-dimensional vector (that is, only the z and
y components of gl_TessCoord are valid) containing the normalized
coordinate of the vertex within the quad. The tessellation evaluation
shader can use these coordinates to generate its outputs from the inputs
passed by the tessellation control shader. An example of quad tessellation
produced by the tessmodes sample application is shown in Figure 8.3.

Figure 8.3: Quad tessellation example

286 Chapter 8: Primitive Processing

In Figure 8.3, the inner tessellation factors in the v and v directions were
set to 9.0 and 7.0, respectively. The outer tessellation factors were set to
3.0 and 5.0 in the w and v directions. This was accomplished using the
very simple tessellation control shader shown in Listing 8.1.
#version 430 core
layout (vertices = 4) out;
void main(void)
if (gl_InvocationID == 0)
{
gl_TessLevelInner[0]
gl_TessLevelInner([1]
gl_TessLevelOuter[0]
gl_TessLevelOuter[1]

gl_TessLevelOuter[2]
gl_TessLevelOuter[3]

(SN CVRT, RUS LN o)
[cloNoNoNoNo)

}

gl_out[gl_InvocationID].gl_Position =
gl_in[gl_InvocationID].gl_Position;

Listing 8.1: Simple quad tessellation control shader example

The result of setting the tessellation factors in this way is visible in

Figure 8.3. If you look closely, you will see that along the horizontal outer
edges there are five divisions and along the vertical ones there are three
divisions. On the interior, you can see that there are 9 divisions along the
horizontal axis and 7 along the vertical.

The tessellation evaluation shader that generated Figure 8.3 is shown in
Listing 8.2. Notice that the tessellation mode is set using the quads input
layout qualifier near the front of the tessellation evaluation shader. The
shader then uses the z and y components of gl_TessCoordinate to
perform its own interpolation of the vertex position. In this case, the
gl_in[] array is four elements long (as specified in the control shader
shown in Listing 8.1).

#version 430 core
layout (quads) in;
void main(void)

// Interpolate along bottom edge using x component of the
// tessellation coordinate
vecd pl = mix(gl_in[@].gl_Position,
gl_in[1].gl_Position,
gl_TessCoord.x);
// Interpolate along top edge using x component of the
// tessellation coordinate
vecd p2 = mix(gl_in[2].gl_Position,

Tessellation

287

288

gl_in[3].gl_Position,

gl_TessCoord.x);
// Now interpolate those two results using the y component
// of tessellation coordinate
gl_Position = mix(pl, p2, gl_TessCoord.y);

Listing 8.2: Simple quad tessellation evaluation shader example

Tessellation Using Triangles

When the tessellation mode is set to triangles (again, using an input layout
qualifier in the tessellation control shader), the tessellation engine produces
a triangle that is then broken into many smaller triangles. Only the first
element of the gl_TessLevelInner[] array is used, and this level is applied
to the entirety of the inner area of the tessellated triangle. The first three
elements of the gl_TessLevelOuter[] array are used to set the tessellation
factors for the three edges of the triangle. This is shown in Figure 8.4.

(1,0,0)

Figure 8.4: Tessellation factors for triangle tessellation

As the tessellation engine generates the vertices corresponding to the
tessellated triangles, each vertex is assigned a three-dimensional
coordinate called a barycentric coordinate. The three components of a
barycentric coordinate can be used to form a weighted sum of three inputs
representing the corners of a triangle and arrive at a value that is linearly
interpolated across that triangle. An example of triangle tessellation is
shown in Figure 8.5.

The tessellation control shader used to generate Figure 8.5 is shown in
Listing 8.3. Notice how similar it is to Listing 8.1 in that all it does is write

Chapter 8: Primitive Processing

Figure 8.5: Triangle tessellation example

constants into the inner and outer tessellation levels and pass through the
control point positions unmodified.

#version 430 core
layout (vertices = 3) out;
void main(void)
if (gl_InvocationID == 0)
{ gl_TessLevelInner[0]
gl_TessLevelOuter[0]

gl_TessLevelOuter([1]
gl_TessLevelOuter[2]

00 00 0o U1

[cloNoNo]

}

gl_out[gl_InvocationID].gl_Position =
gl_in[gl_InvocationID].gl_Position;

Listing 8.3: Simple triangle tessellation control shader example

Listing 8.3 sets the inner tessellation level to 5.0 and all three outer
tessellation levels to 8.0. Again, looking closely at Figure 8.5, you can see
that each of the outer edges of the tessellated triangle has 8 divisions and
the inner edges have 5 divisions. The tessellation evaluation shader that
produced Figure 8.5 is shown in Listing 8.4.

Tessellation

289

#version 430 core
layout (triangles) in;
void main(void)

gl_Position = (gl_TessCoord.x * gl_in[0].gl_Position) +
(gl_TessCoord.y * gl_in[1].gl_Position) +
(gl_TessCoord.z * gl_in[2].gl_Position);
}

Listing 8.4: Simple triangle tessellation evaluation shader example

Again, to produce a position for each vertex generated by the tessellation
engine, we simply calculate a weighted sum of the input vertices. This
time, all three components of gl_TessCoord are used and represent the
relative weights of the three vertices making up the outermost tessellated
triangle. Of course, we're free to do anything we wish with the barycentric
coordinates, the inputs from the tessellation control shader, and any other
data we have access to in the evaluation shader.

Tessellation Using Isolines

Isoline tessellation is a mode of the tessellation engine where, rather than
producing triangles, it produces real line primitives running along lines of
equal v coordinate in the tessellation domain. Each line is broken up into
segments along the u direction. The two outer tessellation factors stored in
the first two components of gl_TessLevelOuter[] are used to specify the
number of lines and the number of segments per line, respectively, and
the inner tessellation factors (g1_TessLevelInner[]) are not used at all.
This is shown in Figure 8.6.

gl_TessLevelOuter[0]

1,*| . :
0,0 gl_TessLevelOuter[1] 1.0

[

Figure 8.6: Tessellation factors for isoline tessellation

290 Chapter 8: Primitive Processing

The tessellation control shader shown in Listing 8.5 simply set both the
outer tessellation levels to 5.0 and doesn’t write to the inner tessellation
levels. The corresponding tessellation evaluation shader is shown in
Listing 8.6.

#version 430 core

layout (vertices = 4) out;

void main(void)

{

if (gl_InvocationID == 0)
{
gl_TessLevelOuter[0]
gl_TessLevelOuter[1]

[
(O, 0]

}

gl_out[gl_InvocationID].gl_Position =
gl_in[gl_InvocationID].gl_Position;

Listing 8.5: Simple isoline tessellation control shader example

Notice that Listing 8.6 is virtually identical to Listing 8.2 except that the
input primitive mode is set to isolines.

#version 430 core

layout (isolines) in;

void main(void)

{

// Interpolate along bottom edge using x component of the
// tessellation coordinate
vecd pl = mix(gl_in[0].gl_Position,
gl_in[1].gl_Position,
gl_TessCoord.x);
// Interpolate along top edge using x component of the
// tessellation coordinate
vecd p2 = mix(gl_in[2].gl_Position,
gl_in[3].gl_Position,
gl_TessCoord.x);
// Now interpolate those two results using the y component
// of tessellation coordinate
gl_Position = mix(pl, p2, gl_TessCoord.y);

Listing 8.6: Simple isoline tessellation evaluation shader example

The result of our extremely simple isoline tessellation example is shown in
Figure 8.7.

Figure 8.7 doesn’t really seem all that interesting. It's also difficult to see
that each of the horizontal lines is actually made up of several segments.

Tessellation

291

292

Figure 8.7: Isoline tessellation example

If, however, we change the tessellation evaluation shader to that shown in
Listing 8.7, we can generate the image shown in Figure 8.8.
#version 430 core
layout (isolines) in;
void main(void)
float r = (gl_TessCoord.y + gl_TessCoord.x / gl_TessLevelOuter[0]);

float t = gl_TessCoord.x x 2.0 x 3.14159;
gl_Position = vec4(sin(t) * r, cos(t) * r, 0.5, 1.0);

Listing 8.7: Isoline spirals tessellation evaluation shader

The shader in Listing 8.7 converts the incoming tessellation coordinates
into polar form, with the radius r calculated as smoothly extending from
zero to one, and with the angle t as a scaled version of the x component
of the tessellation coordinate to produce a single revolution on each
isoline. This produces the spiral pattern shown in Figure 8.8, where the
segments of the lines are clearly visible.

Tessellation Point Mode

In addition to being able to render tessellated patches using triangles or
lines, it’s also possible to render the generated vertices as individual

Chapter 8: Primitive Processing

Figure 8.8: Tessellated isoline spirals example

points. This is known as point mode and is enabled using the point_mode
input layout qualifier in the tessellation evaluation shader just like any
other tessellation mode. When you specify that point mode should be
used, the resulting primitives are points. However, this is somewhat
orthogonal to the use of the quads, triangles, or isolines layout
qualifiers. That is, you should specify point_mode in addition to one of the
other layout qualifiers. The quads, triangles, and isolines still control
the generation of gl_TessCoord and the interpretation of the inner and
outer tessellation levels. For example, if the tessellation mode is quads,
then gl_TessCoord is a two-dimensional vector, whereas if the tessellation
mode is triangles, then it is a three-dimensional barycentric coordinate.
Likewise, if the tessellation mode is isolines, only the outer tessellation
levels are used, whereas if it is triangles or quads, the inner tessellation
levels are used as well.

Figure 8.9 shows a version of Figure 8.5 rendered using point mode next to
the original image. To produce the figure on the right, we simply change
the input layout qualifier of Listing 8.4 to read:

layout (triangles, point_mode) in;

As you can see, the layout of the vertices is identical in both sides of
Figure 8.9, but on the right, each vertex has been rendered as a single
point.

Tessellation

293

294

Figure 8.9: Triangle tessellated using point mode

Tessellation Subdivision Modes

The tessellation engine works by generating a triangle or quad primitive
and then subdividing its edges into a number of segments determined by
the inner and outer tessellation factors produced by the tessellation
control shader. It then groups the generated vertices into points, lines, or
triangles and sends them on for further processing. In addition to the type
of primitives generated by the tessellation engine, you have quite a bit of
control about how it subdivides the edges of the generated primitives.

By default, the tessellation engine will subdivide each edge into a number
of equal-sized parts where the number of parts is set by the corresponding
tessellation factor. This is known as equal_spacing mode, and although it
is the default, it can be made explicit by including the following layout
qualifier in your tessellation evaluation shader:

layout (equal_spacing) in;

Equal spacing mode is perhaps the easiest mode to comprehend — simply
set the tessellation factor to the number segments you wish to subdivide
your patch primitive into along each edge, and the tessellation engine
takes care of the rest. Although simple, the equal_spacing mode comes
with a significant disadvantage — as you alter the tessellation factor, it is
always rounded up to the next nearest integer and will produce a visible
jump from one level to the next as the tessellation factor changes. The
two other modes alleviate this problem by allowing the segments to be
non-equal in length. These modes are fractional_even_spacing and
fractional_odd_spacing, and again, you can set these modes by using
input layout qualifiers as follows:

layout (fractional_even_spacing) in;
// or
layout (fractional_odd_spacing) in;

Chapter 8: Primitive Processing

With fractional even spacing, the tessellation factor is rounded to the next
lower even integer and the edge subdivided as if that were the tessellation
factor. With fractional odd spacing, the tessellation factor is rounded
down to the next lower odd number and the edge subdivided as if that
were the tessellation factor. Of course, with either scheme, there is a small
remaining segment that doesn’t have the same length as the other
segments. That last segment is then cut in half, each half having the same
length as the other and is therefore a fractional segment.

Figure 8.10 shows the same triangle tessellated with equal_spacing mode
on the left, fractional_even_spacing mode in the center, and
fractional_odd_spacing mode on the right.

Figure 8.10: Tessellation using different subdivision modes

In all three images shown in Figure 8.10, the inner and outer tessellation
factors have been set to 5.3. In the leftmost image showing equal_spacing
mode, you should be able to see that the number of segments along each
of the outer edges of the triangle is 6 — the next integer after 5.3. In the
center image, which shows fractional_even_spacing spacing, there are 4
equal-sized segments (as 4 is the next lower even integer to 5.3) and then
two additional smaller segments. Finally, in the rightmost image, which
demonstrates fractional_odd_spacing, you can see that there are 5
equal-sized segments (5 being the next lower odd integer to 5.3) and there
are two very skinny segments that make up the rest.

If the tessellation level is animated, either by being explicitly turned up
and down using a uniform, or calculated in the tessellation control shader,
the length of the equal-sized segments and the two filler segments will
change smoothly and dynamically. Whether you choose
fractional_even_spacing or fractional_odd_spacing really depends on
which looks better in your application — there is generally no real
advantage to either. However, unless you need a guarantee that tessellated
edges have equal-sized segments and you can live with popping if the
tessellation level changes, fractional_even_spacing or
fractional_odd_spacing will generally look better in any dynamic
application than equal_spacing.

Tessellation

295

296

Controlling the Winding Order

In Chapter 3, “Following the Pipeline,” we introduced culling and
explained how the winding order of a primitive affects how OpenGL
decides whether to render it. Normally, the winding order of a primitive is
determined by the order in which your application presents vertices to
OpenGL. However, when tessellation is active, OpenGL generates all the
vertices and connectivity information for you. In order to allow you to
control the winding order of the resulting primitives, you can specify
whether you want the vertices to be generated in clockwise or
counterclockwise order. Again, this is specified using an input layout
qualifier in the tessellation evaluation shader. To indicate that you want
clockwise winding order, use the following layout qualifier:

layout (cw) in;

To specify that the winding order of the primitives generated by the
tessellation engine be counterclockwise, include

layout (ccw) in;

The cw and ccw layout qualifiers can be combined with the other input
layout qualifiers specified in the tessellation control shader. By default, the
winding order is counterclockwise, and so you can omit this layout
qualifier if that is what you need. Also, it should be self-evident that
winding order only applies to triangles, and so if your application
generates isolines or points, then the winding order is ignored — your
shader can still include the winding order layout qualifier, but it won't be
used.

Passing Data between Tessellation Shaders

In this section, we have looked at how to set the inner and outer
tessellation levels for the quad, triangle, and point primitive modes.
However, the resulting images in Figures 8.3 through 8.8 aren't
particularly exciting, in part because we haven’t done anything but
compute the positions of the resulting vertices and then just shaded the
resulting primitives solid white. In fact, we have rendered all of these
images using lines by setting the polygon mode to GL_LINE with the
glPolygonMode () function. To produce something a little more interesting,
we’re going to need to pass more data along the pipeline.

Before a tessellation control shader is run, each vertex represents a control
point, and the vertex shader runs once for each input control point and
produces its output as normal. The vertices (or control points) are then
grouped together and passed together to the tessellation control shader.

Chapter 8: Primitive Processing

The tessellation control shader processes this group of control points and
produces a new group of control points that may or may not have the
same number of elements in it as the original group. The tessellation
control shader actually runs once for each control point in the output
group, but each invocation of the tessellation control shader has access to
all of the input control points. For this reason, both the inputs to and
outputs from a tessellation control shader are represented as arrays. The
input arrays are sized by the number of control points in each patch,
which is set by calling

glPatchParameteri(GL_PATCH_VERTICES, n);

Here, n is the number of vertices per patch. By default, the number of
vertices per patch is 3. The size of the input arrays in the tessellation
control shader is set by this parameter, and their contents come from the
vertex shader. The built-in variable gl_in[] is always available and is
declared as an array of the gl_PerVertex structure. This structure is where
the built-in outputs go after you write to them in your vertex shader. All
other outputs from the vertex shader become arrays in the tessellation
control shader as well. In particular, if you use an output block in your
vertex shader, the instance of that block becomes an array of instances in
the tessellation control shader. So, for example

out VS_OUT

{
vec4d foo;
vec3 bar;
int baz

} vs_out;

becomes

in VS_OUT

{
vecs foo;
vec3 bar;
int baz;

} tcs_in[];

in the tessellation evaluation shader.

The output of the tessellation control shader is also an array, but its size is
set by the vertices output layout qualifier at the front of the shader. It

is quite common to set the input and output vertex count to the same
value (as was the case in the samples earlier in this section) and then pass
the input directly to the output from the tessellation control shader.
However, there’s no requirement for this, and the size of the output arrays
in the tessellation control shader is limited by the value of the
GL_MAX_PATCH_VERTICES constant.

Tessellation

297

298

As the outputs of the tessellation control shader are arrays, so the inputs to
the tessellation evaluation shader are also similarly sized arrays. The
tessellation evaluation shader runs once per generated vertex and, like the
tessellation control shader, has access to all of the data for all of the
vertices in the patch.

In addition to the per-vertex data passed from tessellation control shader
to the tessellation evaluation shader in arrays, it’s also possible to pass data
directly between the stages that is constant across an entire patch. To do
this, simply declare the output variable in the tessellation control shader
and the corresponding input in the tessellation evaluation shader using
the patch keyword. In this case the variable does not have to be declared
as an array (although you are welcome to use arrays as patch qualified
variables) as there is only one instance per patch.

Rendering without a Tessellation Control Shader

The purpose of the tessellation control shader is to perform tasks such as
computing the value of per-patch inputs to the tessellation evaluation
shader and to calculate the values of the inner and outer tessellation levels
that will be used by the fixed-function tessellator. However, in some
simple applications, there are no per-patch inputs to the tessellation
evaluation shader, and the tessellation control shader only writes
constants to the tessellation levels. In this case, it’s actually possible to set
up a program with a tessellation evaluation shader, but without a
tessellation control shader.

When no tessellation control shader is present, the default values of all
inner and outer tessellation levels is 1.0. You can change this by calling
glPatchParameterfv(), whose prototype is

void glPatchParameterfv(GLenum pname,
const GLfloat * values);

If pname is GL_PATCH_DEFAULT_INNER_LEVEL, then values should point to
an array of two floating-point values that will be used as the new default
inner tessellation levels in the absence of a tessellation control shader.
Likewise, if pname is GL_PATCH_DEFAULT_OUTER_LEVEL, then values should
point to an array of four floating-point values that will be used as the new
default outer tessellation levels.

If no tessellation control shader is part of the current pipeline, then the
number of control points that is presented to the tessellation evaluation
shader is the same as the number of control points per patch set by

the glPatchParameteri() when the pname parameter is set to

Chapter 8: Primitive Processing

GL_PATCH_VERTICES. In this case, the input to the tessellation evaluation
shader comes directly from the vertex shader. That is, the input to the
tessellation evaluation shader is an array formed from the outputs of the
vertex shader invocations that generated the patch.

Communication between Shader Invocations

Although the purpose of output variables in tessellation control shaders is
primarily to pass data to the tessellation evaluation shader, they also have
a secondary purpose. That is, to communicate data between control
shader invocations. As you have read, the tessellation control shader runs
a single invocation for each output control point in a patch. Each output
variable in the tessellation control shader is therefore an array, the length
of which is the number of control points in the output patch. Normally,
each tessellation control shader invocation will take responsibility for
writing to one element of this array.

What might not be obvious is that tessellation control shaders can
actually read from their output variables — including those that might be
written by other invocations! Now, the tessellation control shader is
designed in such a way that the invocations can run in parallel. However,
there is no ordering guarantee over how those shaders actually execute
your code. That means that you have no idea if, when you read from
another invocation’s output variable, that that invocation has actually
written data there.

To deal with this, GLSL includes the barrier() function. This is known as
a flow-control barrier, as it enforces relative order to the execution of
multiple shader invocations. The barrier() function really shines when
used in compute shaders — we’ll get to that later. However, it’s available in
a limited form in tessellation control shaders, too, with a number of
restrictions. In particular, in a tessellation control shader, barrier() may
only be called directly from within your main () function, and can’t be
inside any control flow structures (such as if, else, while, or switch).

When you call barrier(), the tessellation control shader invocation will
stop and wait for all the other invocations in the same patch to catch up.
It won’t continue execution until all the other invocations have reached
the same point. This means that if you write to an output variable in a
tessellation control shader and then call barrier(), you can be sure that
all the other invocations have done the same thing by the time barrier()
returns, and therefore it’s safe to go ahead and read from the other
invocations’ output variables.

Tessellation

299

300

Tessellation Example — Terrain Rendering

To demonstrate a potential use for tessellation, we will cover a simple
terrain rendering system based on quadrilateral patches and displacement
mapping. The code for this example is part of the dispmap sample.

A displacement map is a texture that contains the displacement from a
surface at each location. Each patch represents a small region of a
landscape that is tessellated depending on its likely screen-space area.
Each tessellated vertex is moved along the tangent to the surface by the
value stored in the displacement map. This adds geometric detail to the
surface without needing to explicitly store the positions of each tessellated
vertex. Rather, only the displacements from an otherwise flat landscape
are stored in the displacement map and are applied at runtime in the
tessellation evaluation shader. The displacement map (which is also
known as a height map) used in the example is shown in Figure 8.11.

Figure 8.11: Displacement map used in terrain sample

Our first step is to set up a simple vertex shader. As each patch is
effectively a simple quad, we can use constants in the shader to represent
the four vertices rather than setting up vertex arrays for it. The complete

Chapter 8: Primitive Processing

shader is shown in Listing 8.8. The shader uses the instance number
(stored in gl_InstanceID) to calculate an offset for the patch, which is a
one-unit square in the zz plane, centered on the origin. In this
application, we will render a grid of 64 x 64 patches, and so the z and y
offsets for the patch are calculated by taking gl_InstanceID modulo 64
and gl_InstancelID divided by 64. The vertex shader also calculates the
texture coordinates for the patch, which are passed to the tessellation
control shader in vs_out. tc.

#version 430 core
out VS_OUT
{

vec2 tc;
} vs_out;

void main(void)

const vecd vertices[] = vec4[](vec4(-0.5, 0.0, -0.5, 1.0),
vec4(0.5, 0.0, -0.5, 1.0),
vec4(-0.5, 0.0, 0.5, 1.0),
vec4(0.5, 0.0, 0.5, 1.0));
int x = gl_InstancelD & 63;
int y = gl_InstancelD >> 6;
vec2 offs = vec2(x, y);
vs_out.tc = (vertices[gl _VertexID].xz + offs + vec2(0.5)) / 64.0;
gl_Position = vertices[gl_VertexID] + vec4(float(x - 32), 0.0,
float(y - 32), 0.0);

Listing 8.8: Vertex shader for terrain rendering

Next, we come to the tessellation control shader. Again, the complete
shader is shown in Listing 8.9. In this example, the bulk of the rendering
algorithm is implemented in the tessellation control shader, and the
majority of the code is only executed by the first invocation. Once we
have determined that we are the first invocation by checking that
gl_InvocationID is zero, we calculate the tessellation levels for the whole
patch. First, we project the corners of the patch into normalized device
coordinates by multiplying the incoming coordinates by the
model-view-projection matrix and then dividing each of the four points
by their own homogeneous .w component.

Next, we calculate the length of each of the four edges of the patch in
normalized device space after projecting them onto the zy plane by
ignoring their z components. Then, the shader calculates the tessellation
levels of each edge of the patch as a function of its length using a simple
scale and bias. Finally, the inner tessellation factors are simply set to the

Tessellation

301

minimum of the outer tessellation factors calculated from the edge lengths
in the horizontal or vertical directions.

You may also have noticed a piece of code in Listing 8.9 that checks
whether all of the z coordinates of the projected control points are less
than zero and then sets the outer tessellation levels to zero if this happens.
This is an optimization that culls entire patches that are behind? the
viewer.

#version 430 core

layout (vertices = 4) out;
in VS_OUT

{

vec2 tc;
} tcs_in[];

out TCS_OUT

{
vec2 tc;
} tcs_out[];

uniform mat4 mvp;
void main(void)

{
if (gl_InvocationID == 0)
{

vecd pO = mvp * gl_in[0].gl_Position;

vecd pl = mvp * gl_in[1].gl_Position;

vecd p2 = mvp * gl_in[2].gl _Position;

vecd p3 = mvp * gl_in[3].gl_Position;

po /= pO.w;

pl /= pl.w;

p2 /= p2.w;

p3 /= p3.w;

if (p0.z <= 0.0 ||
pl.z <= 0.0 ||
p2.z <= 0.0 ||
p3.z <= 0.0)

{
gl_TessLevelOuter[0] = 0.0;
gl_TessLevelOuter[1l] = 0.0;
gl_TessLevelOuter[2] = 0.0;
gl_TessLevelOuter[3] = 0.0;

}

else

{
float 10 = length(p2.xy - p0.xy) * 16.0 + 1.0;
float 11 = length(p3.xy - p2.xy) * 16.0 + 1.0;
float 12 = length(p3.xy - pl.xy) * 16.0 + 1.0;
float 13 = length(pl.xy - pO.xy) * 16.0 + 1.0;

gl_TessLevelOuter[0] = 10;

2. This optimization is actually not foolproof. If the viewer were at the bottom of a very steep
cliff and looking directly upwards, all four corners of the base patch may be behind the viewer,
whereas the cliff cutting through the patch will extend into the viewer’s field of view.

302 Chapter 8: Primitive Processing

gl_TessLevelOuter[1l] = 11;
gl_TessLevelOuter([2] = 12;
gl_TessLevelOuter[3] = 13;
gl_TessLevelInner[0] = min(11, 13);

gl_TessLevelInner[1] min(l0, 12);

}

gl_out[gl_InvocationID].gl_Position = gl_in[gl_InvocationID].gl _Position;
tcs_out[gl_InvocationID].tc = tcs_in[gl_InvocationID].tc;

Listing 8.9: Tessellation control shader for terrain rendering

Once the tessellation control shader has calculated the tessellation levels
for the patch, it simply copies its input to its output. It does this per
instance and passes the resulting data to the tessellation evaluation shader,
which is shown in Listing 8.10.

#version 430 core
layout (quads, fractional_odd_spacing) in;
uniform sampler2D tex_displacement;

uniform mat4 mvp;
uniform float dmap_depth;

in TCS_OUT
{

vec2 tc;
} tes_in[];

out TES_OUT

vec2 tc;
} tes_out;

void main(void)

{
vec2 tcl = mix(tes_in[0].tc, tes_in[1l].tc, gl_TessCoord.x);
vec2 tc2 = mix(tes_in[2].tc, tes_in[3].tc, gl_TessCoord.x);
vec2 tc = mix(tc2, tcl, gl_TessCoord.y);
vecd pl = mix(gl_in[0].gl_Position,
gl_in[1].gl_Position,
gl_TessCoord.x);
vecd p2 = mix(gl_in[2].gl_Position,
gl_in[3].gl_Position,
gl_TessCoord.x);
vecd p = mix(p2, pl, gl_TessCoord.y);
p.y += texture(tex_displacement, tc).r x dmap_depth;
gl_Position = mvp * p;
tes_out.tc = tc;
}

Listing 8.10: Tessellation evaluation shader for terrain rendering

Tessellation 303

304

The tessellation evaluation shader shown in Listing 8.10 first calculates the
texture coordinate of the generated vertex by linearly interpolating the
texture coordinates passed from the tessellation control shader of

Listing 8.9 (which were in turn generated by the vertex shader of

Listing 8.8). It then applies a similar interpolation to the incoming control
point positions to produce the position of the outgoing vertex. However,
once it’s done that, it uses the texture coordinate that it calculated to
offset the vertex in the y direction before multiplying that result by the
model-view-projection matrix (the same one that was used in the
tessellation control shader). It also passes the computed texture coordinate
on to the fragment shader in tes_out.tc. That fragment shader is shown
in Listing 8.11.

#version 430 core

out vecd color;

layout (binding = 1) uniform sampler2D tex_color;
in TES_OUT

{
vec?2 tc;
} fs_in;

void main(void)

{

color = texture(tex_color, fs_in.tc);
Listing 8.11: Fragment shader for terrain rendering

The fragment shader shown in Listing 8.11 is really pretty simple. All it
does is use the texture coordinate that the tessellation evaluation shader
gave it to look up a color for the fragment. The result of rendering with
this set of shaders is shown in Figure 8.12.

Of course, if we’ve done our job correctly, you shouldn’t be able to tell
that the underlying geometry is tessellated. However, if you look at the
wireframe version of the image shown in Figure 8.13, you can clearly see
the underlying triangular mesh of the landscape. The goals of the program
are that all of the triangles rendered on the screen have roughly similar
screen-space area and that sharp transitions in the level of tessellation are
not visible in the rendered image.

Tessellation Example — Cubic Bézier Patches

In the displacement mapping example, all we did was use a (very large)
texture to drive displacement from a flat surface and then use tessellation

Chapter 8: Primitive Processing

Figure 8.13: Tessellated terrain in wireframe

to increase the number of polygons in the scene. This is a type of brute
force, data driven approach to geometric complexity. In the cubicbezier
example described here, we will use math to drive geometry — we're going

Tessellation 305

to render a cubic Bézier patch. If you look back to Chapter 4, you'll see that
we’ve covered all the number crunching we’ll need here.

A cubic Bézier patch is a type of higher order surface and is defined by a
number of control points® that provide input to a number of interpolation
functions that define the surface’s shape. A Bézier patch has 16 control
points, laid out in a 4 x 4 grid. Very often (including in this example),
they are equally spaced in two dimensions varying only in distance from a
shared plane. However, they don’t have to be. Free-form Bézier patches are
extremely powerful modeling tools, being used natively by many pieces of
modeling and design software. With OpenGL tessellation, it’s possible to
render them directly.

The simplest method of rendering a Bézier patch is to treat the four
control points in each row of the patch as the control points for a single
cubic Bézier curve, just as was described in Chapter 4. Given our 4 x 4 grid
of control points, we have 4 curves, and if we interpolate along each of
them using the same value of ¢, we will end up with 4 new points. We use
these 4 points as the control points for a second cubic Bézier curve.
Interpolating along this second curve using a new value for ¢ gives us a
second point that lies on the patch. The two values of ¢ (let’s call them ¢,
and ¢;) are the domain of the patch and are what is handed to us in the
tessellation evaluation shader in g1_TessCoord.xy.

In this example, we’ll perform tessellation in view space. That means that
in our vertex shader, we'll transform our patch’s control points into view
space by multiplying their coordinates by the model-view matrix — that is
all. This simple vertex shader is shown in Listing 8.12.

#version 430 core

in vec4 position;
uniform mat4 mv_matrix;
void main(void)

gl_Position = mv_matrix x position;

Listing 8.12: Cubic Bézier patch vertex shader

3. It should now be evident why the tessellation control shader is so named.

306 Chapter 8: Primitive Processing

Once our control points are in view space, they are passed to our
tessellation control shader. In a more advanced* algorithm, we could
project the control points into screen space, determine the length of the
curve, and set the tessellation factors appropriately. However, in this
example, we'll settle with a simple fixed tessellation factor. As in previous
examples, we set the tessellation factors only when gl_InvocationID is
zero, but pass all of the other data through once per invocation. The
tessellation control shader is shown in Listing 8.13.

#version 430 core
layout (vertices = 16) out;
void main(void)

if (gl_InvocationID == 0)
{

gl_TessLevelInner[0] = 16.0;
gl_TessLevellnner[l] = 16.0;
gl_TessLevelOuter[0] = 16.0;
gl_TessLevelOuter[1l] = 16.0;
gl_TessLevelOuter[2] = 16.0;
gl_TessLevelOuter[3] = 16.0;

}

gl_out[gl_InvocationID].gl_Position =
gl_in[gl_InvocationID].gl_Position;

Listing 8.13: Cubic Bézier patch tessellation control shader

Next, we come to the tessellation evaluation shader. This is where the
meat of the algorithm lies. The shader in its entirety is shown in
Listing 8.14. You should recognize the cubic_bezier and
quadratic_bezier functions from Chapter 4. The evaluate_patch
function is responsible for evaluating® the vertex’s coordinate given the
input patch coordinates and the vertex’s position within the patch.

#version 430 core
layout (quads, equal_spacing, cw) in;

uniform mat4 mv_matrix;
uniform mat4 proj_matrix;

4. To do this right, we’d need to evaluate the length of the Bézier curve, which involves cal-
culating an integral over a non-closed form... which is hard.

5. You should also now see why the tessellation evaluation shader is so named.

Tessellation

307

out TES_OUT
{

vec3 N;
} tes_out;
vecd quadratic_bezier(vec4 A, vecd4 B, vecd C, float t)
{

vecd D = mix(A, B, t);

vecd E = mix(B, C, t);

return mix(D, E, t);

vec4 cubic_bezier(vec4 A, vec4 B, vecd C, vecd D, float t)

vec4 E = mix(A, B, t);
vecd F = mix(B, C, t);
vecd G = mix(C, D, t);

return quadratic_bezier(E, F, G, t);

}

vecd evaluate_patch(vec2 at)
vecd P[4];
int i;

for (1 =0; 1 < 4; i++)

P[i] = cubic_bezier(gl_in[i + O@].gl_Position,
gl_in[i + 4].gl_Position,
gl_in[i + 8].gl_Position,
gl_in[i + 12].g1l_Position,
at.y);

}

return cubic_bezier(P[0], P[1], P[2], P[3], at.x);
}

const float epsilon = 0.001;

void main(void)

{
vecd pl = evaluate_patch(gl_TessCoord.xy);
vecd p2 = evaluate_patch(gl_TessCoord.xy + vec2(0.0, epsilon));
vecd p3 = evaluate_patch(gl_TessCoord.xy + vec2(epsilon, 0.0));
vec3 vl = normalize(p2.xyz - pl.xyz);
vec3 v2 = normalize(p3.xyz - pl.xyz);
tes_out.N = cross(vl, v2);
gl_Position = proj_matrix * pl;
}

Listing 8.14: Cubic Bézier patch tessellation evaluation shader

In our tessellation evaluation shader, we calculate the surface normal to
the patch by evaluating the patch position at two points very close to the
point under consideration, using the additional points to calculate two

308 Chapter 8: Primitive Processing

vectors that lie on the patch and then taking their cross product. This is
passed to the fragment shader shown in Listing 8.15.

#version 430 core
out vecd color;
in TES_OUT

{

vec3 N;
} fs_in;

void main(void)
vec3 N = normalize(fs_in.N);

vecd4 ¢ = vec4(1.0, -1.0, 0.0, 0.0) *x N.z +
vec4(0.0, 0.0, 0.0, 1.0);

color = clamp(c, vec4(0.0), vec4(1.0));

Listing 8.15: Cubic Bézier patch fragment shader

This fragment shader performs a very simple lighting calculation using the
z component of the surface normal. The result of rendering with this
shader is shown in Figure 8.14.

Figure 8.14: Final rendering of a cubic Bézier patch

Tessellation 309

Because the rendered patch shown in Figure 8.14 is smooth, it is hard to
see the tessellation that has been applied to the shape. The left of

Figure 8.15 shows a wireframe representation of the tessellated patch, and
the right side of Figure 8.15 shows the patch’s control points and the
control cage, which is formed by creating a grid of lines between the
control points.

Figure 8.15: A Bézier patch and its control cage

Geometry Shaders

The geometry shader is unique in contrast to the other shader types in
that it processes a whole primitive (triangle, line, or point) at once and can
actually change the amount of data in the OpenGL pipeline
programmatically. A vertex shader processes one vertex at a time; it
cannot access any other vertex’s information and is strictly one-in,
one-out. That is, it cannot generate new vertices, and it cannot stop the
vertex from being processed further by OpenGL. The tessellation shaders
operate on patches and can set tessellation factors, but have little further
control over how patches are tessellated, and cannot produce disjoint
primitives. Likewise, the fragment shader processes a single fragment at a
time, cannot access any data owned by another fragment, cannot create
new fragments, and can only destroy fragments by discarding them. On
the other hand, a geometry shader has access to all of the vertices in a
primitive (up to six with the primitive modes GL_TRIANGLES_ADJACENCY
and GL_TRIANGLE_STRIP_ADJACENCY), can change the type of a primitive,
and can even create and destroy primitives.

Geometry shaders are an optional part of the OpenGL pipeline. When no
geometry shader is present, the outputs from the vertex or tessellation
evaluation shader are interpolated across the primitive being rendered and
are fed directly to the fragment shader. When a geometry shader is
present, however, the outputs of the vertex or tessellation evaluation

310 Chapter 8: Primitive Processing

shader become the inputs to the geometry shader, and the outputs of the
geometry shader are what are interpolated and fed to the fragment shader.
The geometry shader can further process the output of the vertex or
tessellation evaluation shader, and if it is generating new primitives (this is
called amplification), it can apply different transformations to each
primitive as it creates them.

The Pass-Through Geometry Shader

As explained back in Chapter 3, “Following the Pipeline,” the simplest
geometry shader that allows you to render anything is the pass-through
shader, which is shown in Listing 8.16.
#version 430 core
layout (triangles) in;
layout (triangle_strip) out;
layout (max_vertices = 3) out;
void main(void)
int i;
for (1 =0; i < gl_in.length(); i++)
{

gl_Position = gl_in[i].gl_Position;
EmitVertex();

EndPrimitive();
Listing 8.16: Source code for a simple geometry shader

This is a very simple pass-through geometry shader, which sends its input
to its output without modifying it. It looks similar to a vertex shader, but
there are a few extra differences to cover. Going over the shader a few lines
at a time makes everything clear. The first few lines simply set up the
version number (430) of the shader just like in any other shader. The next
couple of lines are the first geometry shader-specific parts. They are shown
again in Listing 8.17.

#version 430 core
layout (triangles) in;

layout (triangle_strip) out;
layout (max_vertices = 3) out;

Listing 8.17: Geometry shader layout qualifiers

These set the input and output primitive modes using a layout qualifier.
In this particular shader we’re using triangles for the input and

Geometry Shaders

311

312

triangle_strip for the output. Other primitive types, along with the
layout qualifier, are covered later. For the geometry shader’s output, not
only do we specify the primitive type, but the maximum number of
vertices expected to be generated by the shader (through the
max_vertices qualifier). This shader produces individual triangles
(generated as very short triangle strips), so we specified 3 here.

Next is our main() function, which is again similar to what might be seen
in a vertex or fragment shader. The shader contains a loop, and the loop
runs a number of times determined by the length of the built-in array,
gl_in. This is another geometry shader-specific variable. Because the
geometry shader has access to all of the vertices of the input primitive, the
input has to be declared as an array. All of the built-in variables that are
written by the vertex shader (such as gl_Position) are placed into a
structure, and an array of these structures is presented to the geometry
shader in a variable called gl_in.

The length of the gl_in[] array is determined by the input primitive mode,
and because in this particular shader, triangles are the input primitive mode,
the size of gl_in[] is three. The inner loop is given again in Listing 8.18.

for (1 = 0; i < gl_in.length(); i++)

{
gl_Position = gl_in[i].gl_Position;
EmitVertex();

Listing 8.18: Iterating over the elements of gl_in[]

Inside our loop, we're generating vertices by simply copying the elements
of gl_in[] to the geometry shader’s output. A geometry shader’s outputs
are similar to the vertex shader’s outputs. Here, we're writing to
gl_Position, just as we would in a vertex shader. When we’re done
setting up all of the new vertex’s attributes, we call EmitVertex(). This is a
built-in function, specific to geometry shaders that tells the shader that
we're done with our work for this vertex and that it should store all that
information away and prepare to start setting up the next vertex.

Finally, after the loop has finished executing, there’s a call to another
special, geometry shader-only function, EndPrimitive(). EndPrimitive()
tells the shader that we’re done producing vertices for the current primitive
and to move on to the next one. We specified triangle_strip as the output
for our shader, and so if we continue to call EmitVertex() more than three
times, OpenGL continues adding triangles to the triangle strip. If we need
our geometry shader to generate separate, individual triangles or multiple,

Chapter 8: Primitive Processing

unconnected triangle strips (remember, geometry shaders can create new
or amplify geometry), we could call EndPrimitive() between each one

to mark their boundaries. If you don't call EndPrimitive() somewhere in
your shader, the primitive is automatically ended when the shader ends.

Using Geometry Shaders in an Application

Geometry shaders, like the other shader types, are created by calling the
glCreateShader() function and using GL_GEOMETRY_SHADER as the shader
type, as follows:

glCreateShader (GL_GEOMETRY_SHADER) ;

Once the shader has been created, it is used like any other shader object.
You give OpenGL your shader source code by calling glShaderSource(),
compile the shader using the glCompileShader() function, and attach it to
a program object by calling the glAttachShader() function. Then the
program is linked as normal using the glLinkProgram() function. Now
that you have a program object with a geometry shader linked into it,
when you draw geometry using a function like glDrawArrays(), the vertex
shader will run once per vertex, the geometry shader will run once per
primitive (point, line, or triangle), and the fragment will run once per
fragment. The primitives received by a geometry shader must match what
it is expecting based in its own input primitive mode. When tessellation is
not active, the primitive mode you use in your drawing commands must
match the input primitive mode of the geometry shader. For example, if
the geometry shader’s input primitive mode is points, then you may only
use GL_POINTS when you call glbrawArrays(). If the geometry shader’s
input primitive mode is triangles, then you may use GL_TRIANGLES,
GL_TRIANGLE_STRIP, or GL_TRIANGLE_FAN in your glDrawArrays () call.

A complete list of the geometry shader input primitive modes and the
allowed geometry types is given in Table 8.1.

Table 8.1: Allowed Draw Modes for Geometry Shader Input Modes

Geometry Shader Input Mode Allowed Draw Modes

points GL_POINTS

lines GL_LINES, GL_LINE_LOOP,
GL_LINE_STRIP

triangles GL_TRIANGLES, GL_TRIANGLE_FAN,
GL_TRIANGLE_STRIP

lines_adjacency GL_LINES_ADJACENCY

triangles_adjacency GL_TRIANGLES_ADJACENCY

Geometry Shaders

313

314

When tessellation is active, the mode you use in your drawing commands
should always be GL_PATCHES, and OpenGL will convert the patches into
points, lines, or triangles during the tessellation process. In this case, the
input primitive mode of the geometry shader should match the
tessellation primitive mode. The input primitive type is specified in the
body of the geometry shader using a layout qualifier. The general form of
the input layout qualifier is

layout (primitive_type) in;

This specifies that primitive_type is the input primitive type that the
geometry shader is expected to handle, and primitive_type must be one
of the supported primitive modes: points, lines, triangles,
lines_adjacency, or triangles_adjacency. The geometry shader runs
once per primitive. This means that it’ll run once per point for GL_POINTS;
once per line for GL_LINES, GL_LINE_STRIP, and GL_LINE_LOOP; and once
per triangle for GL_TRIANGLES, GL_TRIANGLE_STRIP, and GL_TRIANGLE_FAN.
The inputs to the geometry shader are presented in arrays containing all of
the vertices making up the input primitive. The predefined inputs are
stored in a built-in array called gl_in[], which is an array of structures
defined in Listing 8.19.

in gl_PerVertex

{
vecd gl_Position;
float gl_PointSize;
float gl_ClipDistancel[];
} gl in[];

Listing 8.19: The definition of g1_in[]

The members of this structure are the built-in variables that are written in
the vertex shader: gl_Position, gl_PointSize, and gl_ClipDistance[].
You should recognize this structure from its declaration as an output block
in the vertex shader described earlier in this chapter. These variables
appear as global variables in the vertex shader because the block doesn’t
have an instance name there, but their values end up in the gl_in[] array
of block instances when they appear in the geometry shader. Other
variables written by the vertex shader also become arrays in the geometry
shader. In the case of individual varyings, outputs in the vertex shader are
declared as normal, and the inputs to the geometry shader have a similar
declaration, except that they are arrays. Consider a vertex shader that
defines outputs as

out vec4 color;
out vec3 normal;

Chapter 8: Primitive Processing

The corresponding input to the geometry shader would be

in vec4 color[];
in vec3 normal[];

Notice that both the color and normal varyings have become arrays in the
geometry shader. If you have a large amount of data to pass from the
vertex to the geometry shader, it can be convenient to wrap per-vertex
information passed from the vertex shader to the geometry shader into an
interface block. In this case, your vertex shader will have a definition like
this:

out VertexData

{
vec4 color;
vec3 normal;
} vertex;

And the corresponding input to the geometry shader would look like this:

in VertexData

{

vec4 color;

vec3 normal;

// More per-vertex attributes can be inserted here
} vertex[];

With this declaration, you'll be able to access the per-vertex data in the
geometry shader using vertex[n].color and so on. The length of the
input arrays in the geometry shader depends on the type of primitives that
it will process. For example, points are formed from a single vertex, and so
the arrays will only contain a single element, whereas triangles are formed
from three vertices, and so the arrays will be three elements long. If you're
writing a geometry shader that’s designed specifically to process a
particular primitive type, you can explicitly size your input arrays, which
provides a small amount of additional compile-time error checking.
Otherwise, you can let your arrays be automatically sized by the input
primitive type layout qualifier. A complete mapping of the input primitive
modes and the resulting size of the input arrays is shown in Table 8.2.

Table 8.2: Sizes of Input Arrays to Geometry Shaders

lines_adjacency
triangles_adjacency

Input Primitive Type Size of Input Arrays
points 1
lines 2
triangles 3
4
6

Geometry Shaders

315

316

You also need to specify the primitive type that will be generated by the
geometry shader. Again, this is determined using a layout qualifier, like so:

layout (primitive_type) out;

This is similar to the input primitive type layout qualifier, the only
difference being that you are declaring the output of the shader using the
out keyword. The allowable output primitive types from the geometry
shader are points, line_strip, and triangle_strip. Notice that
geometry shaders only support outputting the strip primitive types (not
counting points—obviously, there is no such thing as a point strip).

There is one final layout qualifier that must be used to configure the
geometry shader. Because a geometry shader is capable of producing a
variable amount of data per vertex, OpenGL must be told how much space
to allocate for all that data by specifying the maximum number of vertices
that the geometry shader is expected to produce. To do this, use the
following layout qualifier:

layout (max_vertices = n) out;

This sets the maximum number of vertices that the geometry shader may
produce to n. Because OpenGL may allocate buffer space to store
intermediate results for each vertex, this should be the smallest number
possible that still allows your application to run correctly. For example, if
you are planning to take points and produce one line at a time, then you
can safely set this to two. This gives the shader hardware the best
opportunity to run fast. If you are going to heavily tessellate the incoming
geometry, you might want to set this to a much higher number, although
this may cost you some performance. The upper limit on the number of
vertices that a geometry shader can produce depends on your OpenGL
implementation. It is guaranteed to be at least 256, but the absolute
maximum can be found by calling glGetIntegerv() with the
GL_MAX_GEOMETRY_OUTPUT_VERTICES parameter.

You can also declare more than one layout qualifier with a single
statement by separating them with a comma, like so:

layout (triangle_strip, max_vertices = n) out;

With these layout qualifiers, a boilerplate #version declaration, and an
empty main() function, you should be able to produce a geometry shader
that compiles and links but does absolutely nothing. In fact, it will discard
any geometry you send it, and nothing will be drawn by your application.
We need to introduce two important functions: EmitVertex() and
EndPrimitive(). If you don't call these, nothing will be drawn.

Chapter 8: Primitive Processing

EmitVertex() tells the geometry shader that you've finished filling in all
of the information for this vertex. Setting up the vertex works much like
the vertex shader. You need to write into the built-in variable
gl_Position. This sets the clip-space coordinates of the vertex that is
produced by the geometry shader, just like in a vertex shader. Any other
attributes that you want to pass from the geometry shader to the fragment
shader can be declared in an interface block or as global variables in the
geometry shader. Whenever you call EmitVertex, the geometry shader
stores the values currently in all of its output variables and uses them to
generate a new vertex. You can call EmitVertex() as many times as you
like in a geometry shader, until you reach the limit you specified in your
max_vertices layout qualifier. Each time, you put new values into your
output variables to generate a new vertex.

An important thing to note about EmitVertex() is that it makes the
values of any of your output variables (such as gl_Position) undefined.
So, for example, if you want to emit a triangle with a single color, you
need to write that color with every one of your vertices; otherwise, you
will end up with undefined results.

EmitPrimitive() indicates that you have finished appending vertices to
the end of the primitive. Don’t forget, geometry shaders only support the
strip primitive types (line_strip and triangle_strip). If your output
primitive type is triangle_strip and you call EmitVertex() more than
three times, the geometry shader will produce multiple triangles in a strip.
Likewise, if your output primitive type is line_strip and you call
EmitVertex() more than twice, you'll get multiple lines. In the geometry
shader, EndPrimitive() refers to the strip. This means that if you want to
draw individual lines or triangles, you have to call EndPrimitive() after
every two or three vertices. You can also draw multiple strips by calling
EmitVertex() many times between multiple calls to EndPrimitive().

One final thing to note about calling EmitVertex() and EndPrimitive()
in the geometry shader is that if you haven’t produced enough vertices to
produce a single primitive (e.g., you're generating triangle_strip outputs
and you call EndPrimitive() after two vertices), nothing is produced for
that primitive, and the vertices you've already produced are simply
thrown away.

Discarding Geometry in the Geometry Shader

The geometry shader in your program runs once per primitive. What you
do with that primitive is entirely up to you. The two functions

Geometry Shaders

317

318

EmitVertex() and EndPrimitive() allow you to programmatically append
new vertices to your triangle or line strip and to start new strips. You can
call them as many times as you want (until you reach the maximum defined
by your implementation). You're also allowed to not call them at all. This
allows you to clip geometry away and discard primitives. If your geometry
shader runs and you never call EmitVertex() for that particular primitive,
nothing will be drawn. To illustrate this, we can implement a custom
backface culling routine that culls geometry as if it were viewed from an
arbitrary point in space. This is implemented in the gsculling example.

First, we set up our shader version and declare our geometry shader to
accept triangles and to produce triangle strips. Backface culling doesn’t
really make a lot of sense for lines or points. We also define a uniform that
will hold our custom viewpoint in world space. This is shown in

Listing 8.20.

#version 330

// Input is triangles, output is triangle strip. Because we’re going
// to do a 1 in 1 out shader producing a single triangle output for
// each one input, max_vertices can be 3 here.

layout (triangles) in;

layout (triangle_strip, max_vertices=3) out;

// Uniform variables that will hold our custom viewpoint and
// model-view matrix

uniform vec3 viewpoint;

uniform mav4 mv_matrix;

Listing 8.20: Configuring the custom culling geometry shader

Now inside our main() function, we need to find the face normal for the
triangle. This is simply the cross products of any two vectors in the plane
of the triangle—we can use the triangle edges for this. Listing 8.21 shows
how this is done.

// Calculate two vectors in the plane of the input triangle
vec3 ab = gl_in[1].gl_Position.xyz - gl_in[0].gl_Position.xyz;
vec3 ac = gl_in[2].gl_Position.xyz - gl_in[0].gl_Position.xyz;
vec3 normal = normalize(cross(ab, ac));

Listing 8.21: Finding a face normal in a geometry shader

Now that we have the normal, we can determine whether it faces toward
or away from our user-defined viewpoint. To do this, we need to transform
the normal into the same coordinate space as the viewpoint, which is

Chapter 8: Primitive Processing

world space. Assuming we have the model-view matrix in a uniform,
simply multiply the normal by this matrix. To be more accurate, we
should multiply the vector by the inverse of the transpose of the
upper-left 3 x 3 submatrix of the model-view matrix. This is known as the
normal matrix, and you're free to implement this and put it in its own
uniform if you like. However, if your model-view matrix only contains
translation, uniform scale (no shear), and rotation, you can use it directly.
Don’t forget, the normal is a three-element vector, and the model-view
matrix is a 4 x 4 matrix. We need to extend the normal to a four-element
vector before we can multiply the two. We can then take the dot product
of the resulting vector with the vector from the viewpoint to any point on
the triangle.

If the sign of the dot product is negative, that means that the normal is
facing away from the viewer and the triangle should be culled. If it is
positive, the triangle’s normal is pointing toward the viewer, and we
should pass the triangle on. The code to transform the face normal,
perform the dot product, and test the sign of the result is shown in
Listing 8.22.

// Calculate the transformed face normal and the view direction vector
vec3 transformed_normal = (vec4(normal, 0.0) * mv_matrix).xyz;
vec3 vt = normalize(gl_in[0].gl_Position.xyz - viewpoint);

// Take the dot product of the normal with the view direction
float d = dot(vt, normal);

// Emit a primitive only if the sign of the dot product is positive
if (d > 0.0)
{
for (int 1 =0; i < 3; i++)
¢ gl_Position = gl_in[i].gl_Position;
EmitVertex();

EndPrimitive();

Listing 8.22: Conditionally emitting geometry in a geometry shader

In Listing 8.22, if the dot product is positive, we copy the input vertices to
the output of the geometry shader and call EmitVertex() for each one. If
the dot product is negative, we simply don’t do anything at all. This
results in the incoming triangle being discarded altogether and nothing
being drawn.

In this particular example, we are generating at most one triangle output
for each triangle input to the geometry shader. Although the output of the

Geometry Shaders

319

320

geometry shader is a triangle strip, our strips only contain a single triangle.
Therefore, there doesn't strictly need to be a call to EndPrimitive(). We
just leave it there for completeness.

Figure 8.16 shows a the result of this shader.

Figure 8.16: Geometry culled from different viewpoints

In Figure 8.16, the virtual viewer has been moved to different positions. As
you can see, different parts of the model have been culled away by the
geometry shader. It’s not expected that this example is particularly useful,
but it does demonstrate the ability for a geometry shader to perform
geometry culling based on application-defined criteria.

Modifying Geometry in the Geometry Shader

The previous example either discarded geometry or passed it through
unmodified. It is also possible to modify vertices as they pass through the
geometry shader to create new, derived shapes. Even though your
geometry shader is passing vertices on one-to-one (i.e., no amplification or
culling is taking place), this still allows you to do things that would
otherwise not be possible with a vertex shader alone. If the input
geometry is in the form of triangle strips or fans, for example, the resulting
geometry will have shared vertices and shared edges. Using the vertex
shader to move shared vertices will move all of the triangles that share
that vertex. It is not possible, then, to separate two triangles that share an
edge in the original geometry using the vertex shader alone. However, this
is trivial using the geometry shader.

Consider a geometry shader that accepts triangles and produces

triangle_strip as output. The input to a geometry shader that accepts
triangles is individual triangles, regardless of whether they originated

Chapter 8: Primitive Processing

from a glDrawArrays() or a glDrawElements () function call, or whether
the primitive type was GL_TRIANGLES, GL_TRIANGLE_STRIP, or
GL_TRIANGLE_FAN. Unless the geometry shader outputs more than three
vertices, the result is independent, unconnected triangles.

In this next example, we “explode” a model by pushing all of the triangles
out along their face normals. It doesn’t matter whether the original model
is drawn with individual triangles or with triangle strips or fans. As with
the previous example, the input is triangles, the output is
triangle_strip, and the maximum number of vertices produced by the
geometry shader is three because we're not amplifying or decimating
geometry. The setup code for this is shown in Listing 8.23.

#version 330

// Input is triangles, output is triangle strip. Because we’re going to do a
// 1 in 1 out shader producing a single triangle output for each one input,
// max_vertices can be 3 here.

layout (triangles) in;

layout (triangle_strip, max_vertices=3) out;

Listing 8.23: Setting up the “explode” geometry shader

To project the triangle outward, we need to calculate the face normal of
each triangle. Again, to do this we can take the cross product of two
vectors in the plane of the triangle—two edges of the triangle. For

this, we can reuse the code from Listing 8.21. Now that we have the
triangle’s face normal, we can project vertices along that normal by an
application-controlled amount. That amount can be stored in a uniform
(we call it explode_factor) and updated by the application. This simple
code is shown in Listing 8.24.

for (int i = 0; 1 < 3; i++)

gl_Position = gl_in[i].gl_Position +
vecd (explode_factor *x normal, 0.0);

Listing 8.24: Pushing a face out along its normal

The result of running this geometry shader on a model is shown in
Figure 8.17. The model has been deconstructed, and the individual
triangles have become visible.

Geometry Shaders

321

322

Figure 8.17: Exploding a model using the geometry shader

Generating Geometry in the Geometry Shader

Just as you are not required to call EmitVertex() or EndPrimitive() at all
if you don’t want to produce any output from the geometry shader, it is
also possible to call EmitVertex() and EndPrimitive() as many times as
you need to produce new geometry. That is, until you reach the maximum
number of output vertices that you declared at the start of your geometry
shader. This functionality can be used for things like making multiple
copies of the input or breaking the input into smaller pieces. This is the
subject of the next example, which is the gstessellate sample in the
book’s accompanying source code. The input to our shader is a
tetrahedron centered around the origin. Each face of the tetrahedron is
made from a single triangle. We tessellate incoming triangles by
producing new vertices halfway along each edge and then moving all of
the resulting vertices so that they are variable distances from the origin.
This transforms our tetrahedron into a spiked shape.

Because the geometry shader operates in object space (remember, the
tetrahedron’s vertices are centered around the origin), we need to do no
coordinate transforms in the vertex shader and, instead, do the transforms
in the geometry shader after we've generated the new vertices. To do this,
we need a simple, pass-through vertex shader. Listing 8.25 shows a simple
pass-through vertex shader.

Chapter 8: Primitive Processing

#version 330
in vec4 position;
void main(void)

gl_Position = position;

Listing 8.25: Pass-through vertex shader

This shader only passes the vertex position to the geometry shader. If you
have other attributes associated with the vertices such as texture
coordinates or normals, you need to pass them through the vertex shader
to the geometry shader as well.

As in the previous example, we accept triangles as input to the geometry
shader and produce a triangle strip. We break the strip after every triangle
so that we can produce separate, independent triangles. In this example,
we produce four output triangles for every input triangle. We need to
declare our maximum output vertex count as 12—four triangles times
three vertices. We also need to declare a uniform matrix to store the
model-view transformation matrix in the geometry shader because we do
that transform after generating vertices. Listing 8.26 shows this code.

#version 430 core

layout (triangles) in;
layout (triangle_strip, max_vertices = 12) out;

// A uniform to store the model-view-projection matrix
uniform mat4 mvp;

Listing 8.26: Setting up the “tessellator” geometry shader

First, let’s copy the incoming vertex coordinates into a local variable.
Then, given the original, incoming vertices, we find the midpoint of each
edge by taking their average. In this case, however, rather than simply
dividing by two, we multiply by a scale factor, which will allow us to alter
the spikiness of the resulting object. Code to do this is shown in

Listing 8.27.

// Copy the incoming vertex positions into some local variables

vec3 a = gl_in[0@].gl_Position.xyz;
vec3 b = gl_in[1].gl_Position.xyz;
vec3 ¢ = gl_in[2].gl_Position.xyz;

Geometry Shaders

323

// Find a scaled version of their midpoints

vec3 d = (a + b) x stretch;
vec3 e = (b + c) * stretch;
vec3 f = (c + a) * stretch;

// Now, scale the original vertices by an inverse of the midpoint
// scale

a x= (2.0 - stretch);

b x= (2.0 - stretch);

c x= (2.0 - stretch);

Listing 8.27: Generating new vertices in a geometry shader

Because we are going to generate several triangles using almost identical
code, we can put that code into a function (shown in Listing 8.28) and call
it from our main tessellation function.

void make_face(vec3 a, vec3 b, vec3 c)
{
vec3 face_normal = normalize(cross(c - a, ¢ - b));
vec4 face_color = vec4(1.0, 0.2, 0.4, 1.0) x (mat3(mvMatrix) * face_normal
gl_Position = mvpMatrix * vec4(a, 1.0);
color = face_color;
EmitVertex();

gl_Position = mvpMatrix * vec4(b, 1.0);
color = face_color;
EmitVertex();

gl_Position = mvpMatrix * vec4(c, 1.0);
color = face_color;
EmitVertex();

EndPrimitive();

Listing 8.28: Emitting a single triangle from a geometry shader

Notice that the make_face function calculates a face color based on the
face’s normal in addition to emitting the positions of its vertices. Now, we
simply call make_face four times from our main function, which is shown
in Listing 8.29.

make_face(a, d, f);
make_face(d, b, e);
make_face(e, c, f);
make_face(d, e, f);

Listing 8.29: Using a function to produce faces in a geometry shader

Figure 8.18 shows the result of our simple geometry shader-based
tessellation program.

324 Chapter 8: Primitive Processing

Figure 8.18: Basic tessellation using the geometry shader

Note that using the geometry shader for heavy tessellation may not
produce the most optimal performance. If something more complex than
that shown in this example is desired, it’s best to use the hardware
tessellation functions of OpenGL. However, if simple amplification of
between two and four output primitives for each input primitive is
desired, the geometry shader is probably the way to go.

Changing the Primitive Type in the Geometry Shader

So far, all of the geometry shader examples we’'ve gone through have taken
triangles as input and produced triangle strips as output. This doesn’t
change the geometry type. However, geometry shaders can input and
output different types of geometry. For example, you can transform points
into triangles or triangles into points. In the normalviewer example,
which we'll describe next, we’re going to change the geometry type from
triangles to lines. For each vertex input to the shader, we take the vertex
normal and represent it as a line. We also take the face normal and
represent that as another line. This allows us to visualize the model’s
normals—both at each vertex and for each face. Note, though, that if you
want to draw the normals on top of the original model, you need to draw
everything twice—once with the geometry shader to visualize the normals
and once without the geometry shader to show the model. You can’t
output a mix of two different primitives from a single geometry shader.

Geometry Shaders

325

326

For our geometry shader, in addition to the members of the gl_in
structure, we need the per-vertex normal, and that will have to be passed
through the vertex shader. An updated version of the pass-through vertex
shader from Listing 8.25 is given in Listing 8.30.

#version 330

in vec4 position;
in vec3 normal;

out Vertex

vec3 normal;
} vertex;

void main(void)

{
gl_Position = position;
vertex.normal = normal;

Listing 8.30: A pass-through vertex shader that includes normals

This passes the position attribute straight through to the gl_Position
built-in variable and places the normal into an output block.

The setup code for the geometry shader is shown in Listing 8.31. In this
example, we accept triangles and produce line strips, each of a single line.
Because we output a separate line for each normal we visualize, we
produce two vertices for each vertex consumed, plus two more for the face
normal. Therefore, the maximum number of vertices that we output per
input triangle is eight. To match the Vertex output block that we declared
in the vertex shader, we also need to declare a corresponding input
interface block in the geometry shader. As we’re going to do the
object-space-to-world-space transformation in the geometry shader, we
declare a mat4 uniform called mvp to represent the model-view-projection
matrix. This is necessary so that we can keep the vertex’s position in the
same coordinate system as its normal until we produce the new vertices
representing the line.

#version 330

layout (triangles) in;

layout (line_strip) out;
layout (max_vertices = 8) out;

in Vertex

{
vec3 normal;
} vertex[];

Chapter 8: Primitive Processing

// Uniform to hold the model-view-projection matrix
uniform mat4 mvp;

// Uniform to store the length of the visualized normals
uniform float normal_length;

Listing 8.31: Setting up the “normal visualizer” geometry shader

Each input vertex is transformed into its final position and emitted from
the geometry shader, and then a second vertex is produced by displacing
the input vertex along its normal and transforming that into its final
position as well. This makes the length of all of our normals one but
allows any scaling encoded in our model-view-projection matrix to be
applied to them along with the model. We multiply the normals by the
application-supplied uniform normal_length, allowing them to be scaled
to match the model. Our inner loop is shown in Listing 8.32.

gl_Position = mvp * gl_in[@].gl_Position;
gs_out.normal = gs_in[0].normal;
gs_out.color = gs_in[0].color;
EmitVertex();

gl_Position = mvp * (gl_in[0].gl_Position +
vecd(gs_in[0].normal * normal_length, 0.0));
gs_out.normal = gs_in[0].normal;
gs_out.color = gs_in[0].color;
EmitVertex();
EndPrimitive();

Listing 8.32: Producing lines from normals in the geometry shader

This generates a short line segment at each vertex pointing in the
direction of the normal. Now, we need to produce the face normal. To do
this, we need to pick a suitable place from which to draw the normal, and
we need to calculate the face normal itself in the geometry shader along
which to draw the line.

As in the earlier example given in Listing 8.33, we use a cross product of
two of the triangle’s edges to find the face normal. To pick a starting point
for the line, we choose the centroid of the triangle, which is simply the
average of the coordinates of the input vertices. Listing 8.33 shows the
shader code.

vec3 ab = gl_in[1].gl_Position.xyz - gl_in[0].gl_Position.xyz;
vec3 ac = gl_in[2].gl_Position.xyz - gl_in[0].gl_Position.xyz;
vec3 face_normal = normalize(cross(ab, ac));

vecd tri_centroid = (gl_in[0].gl_Position +

gl_in[1].gl_Position +
gl_in[2].gl_Position) / 3.0;

Geometry Shaders

327

gl_Position = mvp * tri_centroid;
gs_out.normal = gs_in[0].normal;
gs_out.color = gs_in[0].color;
EmitVertex();

gl_Position = mvp * (tri_centroid +
vec4(face_normal * normal_length, 0.0));
gs_out.normal = gs_in[0].normal;
gs_out.color = gs_in[0].color;
EmitVertex();
EndPrimitive();

Listing 8.33: Drawing a face normal in the geometry shader

Now when we render a model, we get the image shown in Figure 8.19.

Figure 8.19: Displaying the normals of a model using a geometry shader

Multiple Streams of Storage

When only a vertex shader is present, there is a simple one-in, one-out
relationship between the vertices coming into the shader and the vertices
stored in the transform feedback buffer. When a geometry shader is
present, each shader invocation may store zero, one, or more vertices into
the bound transform feedback buffers. Not only this, but it’s actually
possible to configure up to four output streams and use the geometry
shader to send its output to whichever one it chooses. This can be used,
for example, to sort geometry or to render some primitives while storing
other geometry in transform feedback buffers. There are a couple of pretty

328 Chapter 8: Primitive Processing

major limitations when multiple output streams are used in a geometry
shader; first, the output primitive mode from the geometry shader for

all streams must be set to points. Second, although it’s possible to
simultaneously render geometry and to store data into transform feedback
buffers, only the first stream may be rendered — the others are for storage
only. If your application fits with these constraints, then this can be a very
powerful feature.

To set up multiple output streams from your geometry shader, use the
stream layout qualifier to select one of four streams. As with most other
output layout qualifiers, the stream qualifier may be applied directly to a
single output or to an output block. It can also be applied directly to the
out keyword without declaring an output variable, in which case it will
affect all further output declarations until another stream layout qualifier
is encountered. For example, consider the following output declarations
in a geometry shader:

out vec4 foo; // "foo" is in stream 0 (the default).
layout (stream=2) out vec4 bar; // "bar" is part of stream 2.
out vec4 baz; // "baz" is back in stream 0.
layout (stream=1) out; // Everything from here on is in stream 1.
out int apple; // "apple" and "orange" are part
out int orange; // of stream 1.
layout (stream=3) out MY_BLOCK // Everything in "MY_BLOCK" is in
stream 3.
{

vec3 purple;

vec3 green;
b

In the geometry shader, when you call EmitVertex(), the vertex will be
recorded into the first output stream (stream 0). Likewise, when you call
EndPrimitive(), it will end the primitive being recorded to stream 0.
However, you can call EmitStreamVertex() and EndStreamPrimitive(),
both of which take an integer argument specifying the stream to send the
output to:

void EmitStreamVertex(int stream);

void EndStreamPrimitive(int stream);

The stream argument must be a compile time constant. If rasterization is
enabled, then any primitives sent to stream 0 will be rasterized.

New Primitive Types Introduced by the Geometry Shader
Four new primitive types were introduced with geometry shaders:

GL_LINES_ADJACENCY, GL_LINE_STRIP_ADJACENCY,

Geometry Shaders

329

330

GL_TRIANGLES_ADJACENCY, and GL_TRIANGLE_STRIP_ADJACENCY. These
primitive types are really only useful when rendering with a geometry
shader active. When the new adjacency primitive types are used, for each
line or triangle passed into the geometry shader, it not only has access to
the vertices defining that primitive, but it also has access to the vertices of
the primitive that is next to the one it’s processing.

When you render using GL_LINES_ADJACENCY, each line segment
consumes four vertices from the enabled attribute arrays. The two center
vertices make up the line; the first and last vertices are considered the
adjacent vertices. The inputs to the geometry shader are therefore
four-element arrays. In fact, because the input and output types of the
geometry shader do not have to be related, GL_LINES_ADJACENCY can be
seen as a way of sending generalized four-vertex primitives to the geometry
shader. The geometry shader is free to transform them into whatever it
pleases. For example, your geometry shader could convert each set of four
vertices into a triangle strip made up of two triangles. This allows you to
render quads using the GL_LINES_ADJACENCY primitive. It should be noted,
though, that if you draw using GL_LINES_ADJACENCY when no geometry
shader is active, regular lines will be drawn using the two innermost
vertices of each set of four vertices. The two outermost vertices will be
discarded, and the vertex shader will not run on them at all.

Using GL_LINE_STRIP_ADJACENCY produces a similar effect. The difference
is that the entire strip is considered to be a primitive, with one additional
vertex on each end. If you send eight vertices to OpenGL using
GL_LINES_ADJACENCY, the geometry shader will run twice, whereas if you
send the same vertices using GL_LINE_STRIP_ADJACENCY, the geometry
shader will run five times. Figure 8.20 should make things clear. The eight
vertices in the top row are sent to OpenGL with the GL_LINES_ADJACENCY
primitive mode. The geometry shader runs twice on four vertices each
time—ABCD and EFGH. In the second row, the same eight vertices are
sent to OpenGL using the GL_LINE_STRIP_ADJACENCY primitive mode.
This time, the geometry shader runs five times—ABCD, BCDE, and so on
until EFGH. In each case, the solid arrows are the lines that would be
rendered if no geometry shader were present.

The GL_TRIANGLES_ADJACENCY primitive mode works similarly to the
GL_LINES_ADJACENCY mode. A triangle is sent to the geometry shader for
each set of six vertices in the enabled attribute arrays. The first, third, and
fifth vertices are considered to make up the real triangle, and the second,
fourth, and sixth vertices are considered to be in between the triangle’s

Chapter 8: Primitive Processing

QO > QOup@e=sr @ @rrch Qumd Qrneh

0o © m—p @ mp ©) i O mp @) e O o

Figure 8.20: Lines produced using lines with adjacency primitives

vertices. This means that the inputs to the geometry shader are
six-element arrays. As before, you can do anything you want to the
vertices using the geometry shader; GL_TRIANGLES_ADJACENCY is a good
way to get arbitrary six-vertex primitives into the geometry shader.
Figure 8.21 shows this.

90{.—\6069/40—\@0

(F (L

Figure 8.21: Triangles produced using GL_TRIANGLES_ADJACENCY

The final, and perhaps most complex (or alternatively the most difficult to
understand), of these primitive types is GL_TRIANGLE_STRIP_ADJACENCY.
This primitive represents a triangle strip with every other vertex (the first,
third, fifth, seventh, ninth, and so on) forming the strip. The vertices in
between are the adjacent vertices. Figure 8.22 demonstrates the principle.
In the figure, the vertices A through P represent 16 vertices sent to
OpenGL. A triangle strip is generated from every other vertex (A, C, E, G, |,
and so on), and the vertices that come between them (B, D, F, H, J, and so
on) are the adjacent vertices.

There are special cases for the triangles that come at the start and end of
the strip, but once the strip is started, the vertices fall into a regular
pattern that is more clearly seen in Figure 8.23.

The rules for the ordering of GL_TRIANGLE_STRIP_ADJACENCY are spelled
out clearly in the OpenGL Specification—in particular, the special cases are
noted there. You are encouraged to read that section of the specification if
you want to work with this primitive type.

Geometry Shaders

331

[FJ o [N

(B) O == O ¢ Y G ©

INININ

Oe==Q ==& P

D) Q (L)

Figure 8.22: Triangles produced using GL_TRIANGLE_STRIP_ADJACENCY

F o (N

0—0 © (KJ ®

A (EJ 0 (W) P

|

D) Q (L)

Figure 8.23: Ordering of vertices for GL_TRIANGLE_STRIP_ADJACENCY

Rendering Quads Using a Geometry Shader

In computer graphics, the word quad is used to describe a quadrilateral — a
shape with four sides. Modern graphics APIs do not support rendering
quads directly, primarily because modern graphics hardware does not
support quads. When a modeling program produces an object made from
quads, it will often include the option to export the geometry data by
converting each quad into a pair of triangles. These are then rendered by
the graphics hardware directly. In some graphics hardware, quads are
supported, but internally the hardware will do this conversion from quads
to pairs of triangles for you.

332 Chapter 8: Primitive Processing

In many cases, breaking a quad into a pair of triangles works out just fine
and the visual image isn’t much different than what would have been
rendered had native support for quads been present. However, there are a
large class of cases where breaking a quad into a pair of triangles doesn’t
produce the correct result. Take a look at Figure 8.24.

Figure 8.24: Rendering a quad using a pair of triangles

In Figure 8.24, we have rendered a quad as a pair of triangles. In both
images, the vertices are wound in the same order. There are three black
vertices and one white vertex. In the left image, the split between the
triangles runs vertically through the quad. The topmost and two side
vertices are black and the bottommost vertex is white. The seam between
the two triangles is clearly visible as a bright line. In the right image, the
quad has been split horizontally. This has produced the topmost triangle,
which contains only black vertices and is therefore entirely black, and the
bottommost triangle, which contains one white vertex and two black
ones, therefore displaying a black to white gradient.

The reason for this is that during rasterization and interpolation of the
per-vertex colors presented to the fragment shader, we’re only rendering a
triangle. There are only three vertices’ worth of information available to
us at any given time, and therefore, we can’t take into consideration the
“other” vertex in the quad.

Clearly, neither image is correct, but neither is obviously better than the
other. Also, the two images are radically different. If we rely on our export
tools, or worse a runtime library, to split quads for us, we do not have any
control over which of these two images we'll get. What can we do about
that? Well, the geometry shader is able to accept primitives with the
GL_LINES_ADJACENCY type, and each of these has four vertices — exactly
enough to represent a quad. This means that by using lines with
adjacency, we can get four vertices’ worth of information at least as far as
the geometry shader.

Geometry Shaders

333

334

Next, we need to deal with the rasterizer. Recall, the output of the
geometry shader can only be points, lines, or triangles, and so the best we
can do is to break each quad (represented by a lines_adjacency primitive)
into a pair of triangles. You might think this leaves us in the same spot as
we were before. However, we now have the advantage that we can pass
whatever information we like on to the fragment shader.

To correctly render a quad, we must consider the parameterization of the
domain over which we want to interpolate our colors (or any other
attribute). For triangles, we use barycentric coordinates, which are
three-dimensional coordinates used to weight the three corners of the
triangle. However, for a quad, we can use a two-dimensional
parameterization. Consider the quad shown in Figure 8.25.

(1, 0) (1, 1)

C D
+V
A B
0,0 TR 0, 1)

+U
Figure 8.25: Parameterization of a quad

Domain parameterization of a quad is two-dimensional and can be
represented as a two-dimensional vector. This can be smoothly
interpolated over the quad to find the value of the vector at any point
within it. For each of the quad’s four vertices A, B, C, and D, the values of
the vector will be (0,0), (0,1), (1,0), and (1, 1), respectively. We can
generate these values per vertex in our geometry shader and pass them to
the fragment shader.

To use this vector to retrieve the interpolated values of our other
per-fragment attributes, we make the following observation: The value of

Chapter 8: Primitive Processing

any interpolant will move smoothly between vertex A and B and between
C and D with the z component of the vector. Likewise, a value along the
edge AB will move smoothly to the corresponding value on edge CD.
Thus, given the values of the attributes at the vertices A through D, we
can use the domain parameter to interpolate a value of each attribute at
any point inside the quad.

Thus, our geometry shader simply passes all four of the per-vertex
attributes, unmodified, as flat outputs to the fragment shader, along with
a smoothly varying domain parameter per vertex. The fragment shader
then uses the domain parameter and all four per-vertex attributes to
perform the interpolation directly.

The geometry shader is shown in Listing 8.34, and the fragment shader is
shown in Listing 8.35 — both are taken from the gsquads example.
Finally, the result of rendering the same geometry as shown in Figure 8.24
is shown in Figure 8.26.

#version 430 core

layout (lines_adjacency) in;
layout (triangle_strip, max_vertices = 6) out;

in VS_OUT

{
vec4 color;

} gs_in[4];

out GS_OUT
flat vecd color[4];
vec2 uv;

} gs_out;

void main(void)

{
gl_Position = gl_in[0@].gl_Position;
gs_out.uv = vec2(0.0, 0.0);
EmitVertex();

gl_Position = gl_in[1].gl_Position;
gs_out.uv = vec2(1.0, 0.0);
EmitVertex();

gl_Position = gl_in[2].gl_Position;
gs_out.uv = vec2(1.0, 1.0);

// We're only writing the output color for the last

// vertex here because they’re flat attributes,

// and the last vertex is the provoking vertex by default
gs_out.color[0] gs_in[1].color;

gs_out.color[1] gs_in[0].color;

gs_out.color[2] gs_in[2].color;

gs_out.color[3] gs_in[3].color;

EmitVertex();

Geometry Shaders

335

336

EndPrimitive();

gl_Position = gl_in[0].gl_Position;
gs_out.uv = vec2(0.0, 0.0);
EmitVertex();

gl_Position = gl_in[2].gl_Position;
gs_out.uv = vec2(1.0, 1.0);
EmitVertex();

gl_Position = gl_in[3].gl_Position;
gs_out.uv = vec2(0.0, 1.0);

// Again, only write the output color for the last vertex
gs_out.color[0] gs_in[1].color;

gs_out.color[1] gs_in[0].color;

gs_out.color[2] gs_in[2].color;

gs_out.color[3] gs_in[3].color;

EmitVertex();

EndPrimitive();

Listing 8.34: Geometry shader for rendering quads

#version 430 core

in GS_OUT
{

flat vec4 color[4];
vec2 uv;
} fs_in;

out vec4 color;

void main(void)

{
vecd cl = mix(fs_in.color[0], fs_in.color[1l], fs_in.uv.Xx);
vecd c2 = mix(fs_in.color[2], fs_in.color[3], fs_in.uv.x);

color = mix(cl, c2, fs_in.uv.y);

Listing 8.35: Fragment shader for rendering quads

Multiple Viewport Transformations

You learned in “Viewport Transformation” back in Chapter 3 about the
viewport transformation and how you can specify the rectangle of

the window you’re rendering into by calling glviewport() and
glbepthRange (). Normally, you would set the viewport dimensions to
cover the entire window or screen, depending on whether your
application is running on a desktop or is taking over the whole display.
However, it’s possible to move the viewport around and draw into

Chapter 8: Primitive Processing

Figure 8.26: Quad rendered using a geometry shader

multiple virtual windows within a single larger framebuffer. Furthermore,
OpenGL also allows you to use multiple viewports at the same time. This
feature is known as viewport arrays.

To use a viewport array, we first need to tell OpenGL what the bounds of
the viewports we want to use are. To do this, call glviewportIndexedf() or
glViewportIndexedfv(), whose prototypes are

void glViewportIndexedf(GLuint index,
GLfloat x,
GLfloat vy,
GLfloat w,
GLfloat h);

void glViewportIndexedfv(GLuint index,
const GLfloat * v);

For both glViewportIndexedf() and glViewportIndexedfv(), index is

the index of the viewport you wish to modify. Also notice that the
viewport parameters to the indexed viewport commands are floating-point
values rather than the integers used for glViewport(). OpenGL supports a
minimum® of 16 viewports, and so index can range from O to 15.

6. The actual number of viewports that are supported by OpenGL can be determined by query-
ing the value of GL_MAX_VIEWPORTS.

Geometry Shaders

337

Likewise, each viewport also has its own depth range, which can be
specified by calling glDepthRangeIndexed(), whose prototype is

void glDepthRangeIndexed(GLuint index,
GLdouble n,
GLdouble f);

Again, index may be between 0 and 15. In fact, glViewport() really sets
the extent of all of the viewports to the same range, and glDepthRange()
sets the depth range of all viewports to the same range. If you want to set
more than one or two of the viewports at a time, you might consider using
glViewportArrayv() and glDepthRangeArrayv(), whose prototypes are

void glViewportArrayv(GLuint first,
GLsizei count,
const GLfloat * v);

void glDepthRangeArrayv(GLuint first,
GLsizei count,
const GLdouble * v);

These functions set either the viewport extents or depth range for count
viewports starting with the viewport indexed by first to the

parameters specified in the array v. For glViewportArrayv(), the array
contains a sequence of x, y, width, height values, in that order. For
glbDepthRangeArrayv(), the array contains a sequence of n, f pairs, in that
order.

Once you have specified your viewports, you need to direct geometry into
them. This is done by using a geometry shader. Writing to the built-in
variable gl_ViewportIndex selects the viewport to render into.

Listing 8.36 shows what such a geometry shader might look like.

#version 430 core

layout (triangles, invocations = 4) in;
layout (triangle_strip, max_vertices = 3) out;

layout (std140, binding = 0) uniform transform_block
{

mat4 mvp_matrix([4];

in VS_OUT
{

vec4 color;
} gs-in[];

out GS_OUT

{
vecd4 color;
} gs_out;

338 Chapter 8: Primitive Processing

void main(void)
for (int i = 0; i < gl in.length(); i++)

gs_out.color = gs_in[i].color;

gl_Position = mvp_matrix[gl_InvocationID] =*
gl_in[i].gl_Position;

gl_ViewportIndex = gl_InvocationID;

EmitVertex();

EndPrimitive();

}

Listing 8.36: Rendering to multiple viewports in a geometry shader

When the shader of Listing 8.36 executes, it produces four invocations of
the shader. On each invocation, it sets the value of g1_ViewportIndex to
the value of g1_InvocationID, directing the result of each of the geometry
shader instances to a separate viewport. Also, for each invocation, it uses a
separate model-view-projection matrix, which it retrieves from the
uniform block, transform_block. Of course, a more complex shader could
be constructed, but this is sufficient to demonstrate direction of
transformed geometry into a number of different viewports. We have
implemented this code in the multipleviewport sample, and the result of
running this shader on our simple spinning cube is shown in Figure 8.27.

Figure 8.27: Result of rendering to multiple viewports

Geometry Shaders 339

340

You can clearly see the four copies of the cube rendered by Listing 8.36 in
Figure 8.27. Because each was rendered into its own viewport, it is clipped
separately, and so where the cubes extend past the edges of their respective
viewports, their corners are cut off by OpenGL’s clipping stage.

Summary

In this chapter, you have read about the two tessellation shader stages, the
fixed-function tessellation engine, and the way they interact. You have
also read about geometry shaders and have seen how both the tessellator
and the geometry shader can be used to change the amount of data in the
OpenGL pipeline. You have also seen some of the additional functionality
in OpenGL that can be accessed using tessellation and geometry shaders.
You have seen how, conceptually, tessellation shaders and geometry
shaders process vertices in groups — in the case of tessellation shaders,
those groups forming patches, and in the case of geometry shaders, those
groups forming traditional primitives such as lines and triangles. You've
seen the special adjacency primitive types accessible to geometry shaders.
After the geometry shader ends, primitives are eventually sent to the
rasterizer and then to per-fragment operations, which will be the subject of
the next chapter.

Chapter 8: Primitive Processing

