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By a result of elementary geometry, the sum of lengths of two
sides of a triangle equals at least the length of the third side.
Since the sides of a triangle may represent vectors and hence
complex numbers we have the first inequality stated below. 7]

Z] + 27

2

THEOREM 9.15 (The triangle inequality for complex numbers.) For complex numbers z;
and z; we have

(a) lzy + zal € lzgl + Iz, ) llzyl -1zl | < lz; + 25l

Proof (a) A direct proof can be given using the definition and properties of the modulus but
we will be content with having deduced it from elementary geometry. In fact it is a special
case of a result for n-space (Remark 7.12). We can now infer (b) by the argument z;| =
I(zy + zp) - Zol < lzj + z] + I-25l, for then Iz;l - |25l and similarly Iz5l - 1z;] do not exceed
Izy + z3l, and part (b) follows.

REMARKS 9.16 (1) (Choosing the e in €'%.) The fact that cose + isin@ behaves like a
number raised to a power suggests we call it di® for some real number d, but how should
we choose d? Defining the derivative [f(0) +ig(e)]" = f'(8) + ig”(e) for f, g real, we
obtain (cos6 +ising@)' = -sin® + icos® = i(cose + isind). But for real functions, if d<®
has derivative cdc® then d is uniquely e, the base of 'natural logarithms In(x)". This may be
deduced from the formula (d<®)” = c¢d<® (see a basic calculus text such as Swokowski,
1979). The result is that writing cos8 + isin6 as ei® leads to a nice extension of differential
calculus to complex numbers and to new techniques for solving real differential equations.

Some readers may find the series expansion e* = 1+ x + x2/2! + x3/3! + ... with x = i6
more illuminating for (given that this is valid), by separating out the real and imaginary parts
we obtain ei® = (1 -02/2! +04/4! +...) + i(6-03/3! +085/5! +...), and these series are
the expansions for cos 8 and sin 6.

(2) (Solving equations.) We mentioned at the start of this chapter that polynomial
equations of degree less than five have a formula for their solution. Of course the quadratic
equation ax2 + bx + ¢ =0 has solutions x = (-b + V(b2 - 4ac))/2a, which reduces in the
case x2+2hx +c=0 to x =-h % V(h? - ¢). The formulae for degrees 3,4 are somewhat
more complicated and seem not often to be used, perhaps because Newton's iterative method
is so simple to carry out (Example 13.22). However it is interesting to see these formulae
and know that they exist, and it seems likely that they will be useful from time to time for
equation-solving in computer graphics.

Degree 3. Dividing through by the coefficient of x3 and setting z = x + a/3 (a; being the
new coefficient of x2) we reduce the cubic to the form (a) below, whose solutions are the
cube roots in (b). The six values coincide in pairs.

(@ Z+pz+q = 0, (b) z = [-g2£~/q¥4+p327 1'3.

Degree 4. As before, we eliminate the coefficient of the second highest power, after
dividing through by the leading coefficient, setting now z = x + a3/4. We obtain the form (c)
below, whose solutions are those of the two quadratics shown in (d), where u is any
solution of the cubic equation in (e) (complex cube roots are obtained by using polar forms,
see Section 9.1.2).
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() z'+pz2+qz+r=10, (d) z2+uR2+(Az-B)

Il

0,
0.

() A =+u-p, B=gR2A, and (u2-4r)(u-p)-q?

For more on the practicalities of solving polynomial equations of degree three and higher,
see Schwarze et al (1990), and Pross et al (1988). We take the theory of complex numbers
further for the purpose of Mandelbrot, Julia sets, and others, in Chapter 16.

EXERCISE Solve the cubic equation z*+ 3z + 2 = 0. It may be helpful to EXPress your answer

interms of a = (1+v3)"?and b= (-1 +V2)!3, noting that ab= 1. or By first squaring both sides, prove
the triangle inequality for complex numbers, using especially the properties lzI2 =zz and Re(z) < lzl.

9.2 The Quaternions

In this section we set up the foundations of quaternions as a preparation to their application
to rotations in three dimensions.

9.2.1 Basics of quaternions

A quaternion a may be viewed as the extension of a complex number ag + a;i to an entity
with four components:

a = ay+aji+ayj+ask, (9.14)

where the real numbers aj, a, a3 are written formally as coefficients of the symbols i, j, k.
Quaternions are added, subtracted, multiplied by real numbers and by each other as
algebraic expressions, subject to the following laws of multiplication

ij = k= -ji, & = -1,
ik =i=-kj j = -, (9.15)
ki = j = -ik, k¥ = -1.

Note that the cyclic rotation i — j — k — i transforms each row of (9.15) into another.
We say accordingly that these laws are invariant under rotation of i, j, k (cf. (7.25)). They
can be written more compactly as i? = j2 = k? = ijk = -1, once we have established
that quaternion multiplication is associative: (ab)c = a(bc), in Section 9.2.2.

EXAMPLES 9.17 (1) 2x3j = 6j = 3jx2; multiplication by a real number may be
done in either order.

2) i(2j-1) = 2ij-i = 2k-i, but (2j-1)i = 2ji-i = -2k-i, a different
answer. Thus quaternions do not commute, as is already clear from (9.15). But notice the
steps in the multiplications.

(3)  (+2))? = (i+2j)(i+2j)

ii+2§) + 2ji+2j)

= i2 +2ij + 2ji +4j2

-5, since i% =j2 =-1 and ij = -ji.
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(4) (2i+3)(1+j+k)

2i(1+j+k) + 3(1+j+k)
2i+2k-2j + 3+3j+3k
= 3+2i+j+5k.

EXERCISE Show that a(bc) = (ab)c in case a =i, b= 3j-k, ¢ = 2-5j+6k.

NOTATION 9.18 H is the set of all quaternions and, based on (9.14): we say a has
scalar or real part Sa = a,, vector or pure part Va (or 4) = aji + a,j + a;k, and
conjugate @ = Sa-Va = ap-4 = ap - aji - azj - ask. We call the quaternion a pure or a
vector if it has zero scalar part, i.e. if ag=0.

EXAMPLES 9.19 (1) The quaternion a = 3 +2i-3j+k has real part Sa =3, pure
part 4 =2i-3j+k, and conjugate a = 3-2i+3j-k.

(2)  (a;i +ayj + azk)? = ayi2 + apj? + azk?
+ ajagij + azayji
+ ajazjk + azaszkj
+ azarki + ajazik
= - (a;2 + a2 + a32), Dbye.g. ij=-ji.

(3) aa = (ag+4)(ap-4) = ay® - agh + dag - 44
= ay>- 44
= agt+a,2 +a,>+a%, by (2) above,
= 2.

NORM AND CONJUGATES Example (3) above shows that we can usefully df:ﬁne the
norm or modulus lal of a quaternion a by analogy with the complex numbers since it has the
crucial property of being positive unless a is zero. Thus we define lal 20 by

la2 = aa = @a = ap’+a,> +ay>+a3%, then (9.16)
lal 2 0 for all quaternions a, and lal=0 < a=0, (9.17A)
If A is a positive number then hal = Alal. (9.17B)

We call a a unit quaternion (cf. unit vectors) if lal = 1. In due course we will derive the
famous and deeper property labl = lallbl, for it has important consequences (see Theorem
9.30). The immediately verifiable properties of conjugates are:

a+b = a+b, ra=2x (eC) (9.18)
a+a = 28a, a-a = 2Va (9.19)
aisreal & a=a aispure & a = -a (9.20)

The expected property of conjugates, ab=2ab, is _more problematical. Indeed it fails to
hold. However the situation is saved by the fact thatab = b a (Theorem 9.24).

PURE QUATERNIONS AS VECTORS Without even a change of netatiqn thf: pure
quaternion aji +asj +azk represents a vector (ay, az, a3) in 3-space, the basis being 1 =
(1,0,0), j=(0,1,0),k = (0,0, 1). The modulus is the same from both viewpoints, lal =
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V(a;? + 2% + a3%), and the calculation in Example 9.19(2) gives the following resul,
which we state as a theorem because of its centrality.

THEOREM 9.20 The square of a pure quaternion u is real. Specifically, u2 = -ll2. In
particular, every unit pure quaternion is a square root of -1.

This is something quite new after complex numbers, where the equation z2 = -1 can have
only two solutions, +i. We are saying that if we extend the permitted range of solutions to
quaternions then every one of the infinitely many points on the unit sphere in 3-space, S2 =
{x e R3: Ixl = 1}, yields such a square root. But does this help? The answer is yes,
because these solutions enable us to represent a rotation about any axis in R3 by a
quaternion. The mechanism is the polar form, introduced in Section 9.2.3 after some
groundwork in 9.2.2, where we relate the three ways now available to combine two vectors:
ab, a.b, axb.

EXAMPLE 9.21 Could there be square roots of -1 which are not pure? We'll clear this up
right now. Leta2=-1 (ae H). Then in the usual notation (ay+4)2 = a2 +2a,4 + 44
= ag® - (a,% + a,> + a3%) + 2a¢é, by Theorem 9.4. Equating this to -1 gives two equations
(i) ag>-(a;? + ay> + a3%) = -1, (ii) 2apd = 0. From the second, either ag=0or4 =0.
But 4 = 0 is impossible by (i) since it would involve ag2 = -1, and the square of a real
number cannot be negative. Therefore ag =0 and a is pure.

EXERCISE Calculate (1-i+2j+5k)2 with the help of Theorem 9.20 on pure quaternions.

9.2.2 Theorems on quaternion multiplication

We can't go much further without showing that one thing the quaternions do share with
complex numbers is associativity.

THEOREM 9.22 Let a, b, ¢ be quaternions. Then
(i) a(b+c) = ab+ac, (b+c)a = ba+ca (bilinearity)
(ii) (ab)c = a(bc) (associativity)

Proof (i) Note that the multiplication law for i,j,k extends to quaternions generally by
bilinearity. Thatis, (i) holds by definition when a,b,c are individual terms of a quaternion,
such as aji. We sketch the verification that (i) holds as expected when a,b,c are general
quaternions. The two parts of (i) are similar. Expanding a(b+¢) we obtain

(ag + a;i + ayj + ask){(bo+cp) + (bi+c1)i + (ba+c)j + (b3+ca)k }

= ag(bo+co) + ag(bi+cy)i + ap(ba+ca)j + ap(ba+ca)k
+ three sets of terms in which ag is replaced respectively by aji, agj, azk

= ap(b, + byi + byj + bsk) + ag(co + c1i + ¢y + c3K)
+ (as above) = ab + ac.

Proof (ii) Expanding (ab)c with the four terms in each quaternion we obtain 4 x 4 x 4 =
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64 terms (pq)r, which we must show equals p(gr). When at least one of p, g, r is real there
is nothing to prove, so we are left with proving that (pg)r = p(gr) when p,q,r run through
the values i,j,k, a total of 3 x 3 x 3 = 27 cases. However the set of rules (9.15) for
multiplying these factors is invariant under rotation of i,j,k so we need verify only the nine
cases shown for readability as a matrix equality below, indexed by the first two factors (the
rows correspond to the first factor and the columns to the second).

(i Gj)i @iK)i ijk
GDi GDi GRi [ = | < -i-l
(ki)i (kji (Kk)i k1 -

The same matrix of answers is obtained if each product is bracketed the
other way. For example, instead of (ji)i we calculate j(ii) = j(-1) = -j, obtaining the same
answer. With these verifications the proof is complete.

EXERCISE Explain via rules (9.15) why the second matrix of Proof (ii) above is skew symmetric
apart from the main diagonal.

INVERSES AND CANCELLATION If ab = 1 we say that a is a left inverse of b and that
b is a right inverse of a. If ab =ba =1 we call b a 2-sided inverse of a, or simply an
inverse of a. Fortunately the formula a/lal2 for the inverse of a complex number works
for the quaternions also, and for the same reason: aa = aa = lal2, sothat a(a/lal®) =

1= (@/la?)a.

Every nonzero quaternion a has a unique inverse al = a/lal? (9.21)
and if =0 isreal then (Aa)!l = \la-l,

Uniqueness of the inverse is a consequence of associativity, for if b,c are both inverses of a
then b =b(ac) = (ba)c = l¢ = ¢. An intriguing question remains. Could there be a left or
aright inverse which is not a full 2-sided inverse? The simple answer is no (cf. the similar
situation for square matrices). In fact every left or right inverse equals a / lal>(denoted a-!).
For example if b is a left inverse, i.e. 1 = ba, then, multiplying on the right by a-!, we
have a-! = (ba)a-! = b(aa'l) =b(1) = b. Similarly for 1 = ab. More generally,
multiplying by a-! gives us:

The cancellation laws for quaternions. Let a #0 (a,b,c € H).
If ab = ac or ba = ca then b = ¢. (9.22)

The quaternions have no divisors of zero. That is, if ab =0
thena=0orb=0. (9.23)

EXERCISE Write down the inverses of k and of 2 - i + k, and check that they work. Verify in
this case the formula (ab)! =bla"!,

THREE WAYS TO MULTIPLY TWO VECTORS We can now combine a pair of vectors
x and y as follows, and the next theorem gives an important relation between these
products.

(1) X.y = X1y1 + X2y2 + X3y3, the scalar product,
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i) k
(2) XXy = 1 X X3 the vector product,
Y1 ¥3 Y3
(3) Xy the quaternion product.

THEOREM 9.23 Let x, y be pure quaternions. Then xy has scalar part -x.y and vector part
xxy, infact

Xy = X,y + Xxy =yx (Sx=Sy=0) (9.24)

Proof Since ji = -ij, kj = -jk, ik = -ki (9.15), we have for xy,
(x1i + x2j + x3K)(y1i + y2j + y3K)
= x1y1i? + x2y2§2 + x3y3k?
+ (ay2-xeyDij + (x2y3 - x3y2)jk + (x3y1 - xpy3)ki.
Notice that the simultaneous cyclic interchange 1,2,3 and i,j,k moves us cyclically round
the last three expressions. The last expression may be written -(x1y3 - x3y1)j and,
applying the multiplication rules (9.15) for i,j,k, we obtain the result -x.y + x x y. For
the second equality in (9.24) we interchange x and y to get yx = -y.x + y x x, whose

conjugate equals xy since y x x =-x x y. Now for two theorems which contain probably
the deepest results of this section.

THEOREM 9.24 Quaternion multiplication satisfies ab = ba

Proof With 4 denoting the pure part of quaternion a, we have

ab = (ag +4) (by + b)
= agbg + agh” + byd + 4b”.
Hence ab = agby - 2gb” - by + b” 4, by (9.24),
= (bg-b’) (a5 - &), by inspection,
= b a.

THEOREM 9.25 The norm of a quaternion product is the product of the norms:

labl = lallbl. (9.25)

Proof labl2 = (ab) (ab) by definition of norm,

= (ab)(ba) by Theorem 9.24,

- a(bb)a as H is associative, Theorem 9.22,

= a Ibl’a by definition of norm,

= aa |bl2 as b2 is real,

= lal? Ibl2 by definition of norm,

= (lal Ibl)>

Hence the result, since norms are non-negative.
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EXAMPLE 9.26 The set of all unit quaternions may be viewed as the set of all unit vectors
in 4-space, forming the 3-sphere S* (the '3' refers to the number of independent
coordinates). This set satisfies the axioms for a group, albeit an infinite one. Firstly it is
closed under multiplication for if a, b are unit quaternions then labl = lallbl=1x 1 =1, by
Theorem 9.25. Multiplication is associative by Theorem 9.22. The real number 1 acts as
identity, and every unit quaternion, being nonzero (by (9.17A)) has an inverse, by (9.21),
namely a. Of special interest are finite subgroups related to symmetry groups of polyhedra
(see Table 9.4 above Figure 9.13, and Coxeter, 1974). A subgroup with eight elements is
the quaternion group Q = {*1, H, %j, tk}.

EXERCISE Prove that laxa™!l = x| (a #0).
EXERCISE Calculate (i+3j+k)(2i-j+5k) using (9.24). Check the answer satisfies Ixyl = Ixllyl.

9.2.3  The polar form of a quaternion

COPIES OF C WITHIN H The quaternions of form a, + a;j form a copy of the
complex numbers with j in place of i. Indeed, if we write suggestively I= a;i +a,j +
ask, of unit norm, then by Theorem 9.20 I?=-1, and so

the quaternions A+l (Aureal) form a copy of the complex numbers. (9.26)

In particular the set of such numbers is commutative, though we must stick to the same L
In fact every polynomial in I with real coefficients reduces to the form 2 + ulI because of IZ =
-1. This contrasts with the noncommutativity of the quaternions in general, which we
observed as early as Example 9.17.

POLAR FORM Suppose b = by+b' isa .
quaternion of modulus 1. Then -1 <by<1 and SN0
from Figure 9.8 by = cosé for a unique angle

0 with 0<0<m (8 =cosl(bg), and hence -
Ib'2 = 1- b2 =sin%e. But from sin® > 0 for 0 I

0 <6 <m we may infer that Ib'l = sine. We \

call 6 the argument of b. Now unless b is real

cos 6
we have sin@ # 0, so we may write I =
(1/sin@)b', giving b = cosh + Isine. Hence: Figure 9.8 sin 6 and cos 6 for 0<@ < m.
A non-real unit quaternion has a unique expression in the form
cos® +Ising, 0 € 8 <m, where I2=-1. (9.27)

Notice that, analogously to the case of complex numbers, the conjugate cos8 - Ising equals
cos(-0) + Isin(-0). Also, in the special case b real, we have the same expression as (9.27)
but I is arbitrary because its coefficient sin® is zero. Then b=1, =0 orb=-1,8=T1.
Indeed (9.27) to (9.32) go through as they did in case I=1i.

DEFINITION e® = cose + Isine (I2=-1). 9.28)
CONSEQUENCE el%elP = elot) - el el (9.29)
CONSEQUENCE The inverse of I is its conjugate e1°, (9.30)
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For a general quaternion a of norm r > 0 we have a =rb, with b = (1/r)a of unit norm,
hence the unique polar form

a=rel® = r(cos® + I sing). (9.31)

Given that there is a unique 8 between 0 and 7t we allow 6 to be changed by multiples of 2n
as we do with the complex number polar form, itself a special case of the quaternionic,
since this leaves cos6, siné and hence the quaternion unchanged. Notice that all pure
quaternions have 6 = cos 1(0) = /2, when we insist that 0 €9 <. We emphasise that,
for a fixed quaternion square root I of -1, expressions of the form el®, eIB, elY may be
multiplied in any order, using (9.29). In particular we have De Moivre's Theorem for
quaternions: if 2 =-1and n=0,+1,+2, ..., then

(cos8 + IsinB)" = cos né + I sin no (9.32)
EXAMPLES 9.27 (Some polar forms.) As indicated in Table 9.2 below, we determine I
by dividing the pure part by its norm, then find the angle, using an Argand diagram if
necessary. We emphasise that all pure quaternions can be expressed with 8 = 1t/2.
(1) i=ei®2 j=eim2, k=ekm/2 This gives a simple illustration of the need to keep

I fixed if we are to ensure commutativity, for ei™2 ei®/2 = jj = k, whereas the other order
gives -k. Observe that -k = el®/2 with I=-k, butstill 6 = /2.

(2) The polar form of i+j. Another pure case, so it has 8 =1/2. We may highlight I by

i o
writing i+ = \{2'11% _ 2eIn2 = \pelitim2N2.

TABLE 9.2 To find the polar form of a quaternion a:

(1) Write a as a=agp+ la'l(a'la'l),
(2) Plot (ap . la") in the Argand diagram to find r,0.
or
Calculate r= lal from the components and identify ag/r with
a known cosine (cf. Example 9.28(2)).

Note: it may be noiationally or otherwise convenient to find
1.0 for the conjugate then correct the sign.

3) The polar form of 1 + kV3. Not pure, so we may plot (1,¥3) on an Argand
diagram (i.e. in the xy-plane) and obtain r=2, 6 =7n/3. Thus 1 + kV3 = 2¢kmn/3, By De
Moivre's Theorem (1/2)(1 + kV3) is a cube root of -1 (its cube has angle m).

ik .
(4)  The polar formof V2 +j-k = V2 +12 J—\[z— . The technique of plotting (¥2, V2)

clarifies that r=2, 6 =mn/4,s0 V2 +j-k = 2e(-0)m/4V2  Now De Moivre's Theorem
predicts that (V2 +j- k)3 = 256, which is not exactly obvious on inspection.
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(3) The polar form of l+i+\f'3j+2k. The pure part has
squared norm 1+3+4 =8, so [ = (i+w‘l3j+2k}f2v'2. and
by the Argand diagram r = 3, 6 = cos-1(1/3), a first
example in which 8 is not a rational multiple of 7. Later we
will use this as an example for rotation in 3-space.

EXAMPLES 9.28 (When quaternions give simpler numbers.) (1) In using quaternions we
can sometimes avoid the \ signs required in the complex case. A prime example is the cube
root of 1, w = (1/2)(-1+iV3). By De Moivre's Theorem, any square root of -3 can replace
iV3, and a convenient choice in quaternions is i+j+k, giving w = (1/2)(-1+i+j+k), an
especially simple form which we probably would not guess, starting from the basic
multiplication laws (9.15).

2) We have cosmt/5+isinm/S = (1+V5)/4 +iV(5- V58 as complex tenth root
of unity, but having one square root within another. Using quaternions we can take cos
n/S+1Isinw/5 = (1+V5)/4 +i/2 - j(1 - V5)/4, involving only single level square roots.
More compactly written this is (1/2)(t + i - oj), where (see Table 9.1 in Section 9.1.3) 6,1
are the solutions of x2-x-1=0. Then I = (i-oj)/ V(1 +02).

EXERCISE Find the polar forms of (i) V3+i-j+k and (i) -o + j - Tk [Harder - see (2) above and
use the properties of o,t given in Table 9.1]. Deduce a fourth root of -1 from question (i).

9.3 Quaternions and rotation

In this section we bring out three ways in which quaternion multiplication provides
isometries, the third being the important representation of rotations in 3-space.

9.3.1 Left and right multiplication

This provides a nice application of results on matrices from Chapters 7 and 8. We identify a
quaternion X = Xg + Xii + X2j + x3k with the point/vector (xp, X1, X2, X3) in 4-space R4 and
the standard basis eg, e, e, e3 with respective quaternions 1, i, j, k, where eg =
(1,0,0,0) and so on. Given a quaternion a, the corresponding left multiplication
transformation L, of R* sends x to ax, the right multiplication R, sends x to xa. They are
linear, for example Ly(x+ay) = a(x+oy) = ax+eay = L,(x) + al,(y) (o€ R), and
hence are representable by matrices, where x — xMp and x —» xMg respectively. The
matrix elements may be obtained by a bare-handed approach or by applying the 4-
dimensional version of Theorem 8.5 (which systematises the calculation). Thus the rows of
ML, correspond to 1, i, j, k, and the i row for instance consists of the components of Lg(i)
=ai. Thus we calculate from (9.15)

al = ag+aji+ayj+ak, ai = agi-a;-ak +ayj,
aj = agj+ak-a-asi, ak = agk - a;j +ai - as,

and this gives M, below. For Mg we calculate 1a, ia, ja, ka.
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a a; ay az | aQ a3 a; a3
X -a a a3 -d2 -a a -d H )
Mi@) = e & ol M@ = i s
-d2 -43  ap 4 -d2 43 a4 -3

-az  ax -4 ap J -4z -dp a4 ap

Considering M =M, we find that the components aj are so distributed and signed that the
rows of the matrix are mutually orthogonal, and each has length lal. Equivalently, MMT =
lal2, where I is the identity matrix. Modifying the argument of Remark 8.9 we have IxMI2
= (xM)(xM)T = xMMTxT = xlalIxT = lal2lx[2. Thus L, scales all vectors by a factor lal,
in agreement with lax! = lallx| of Theorem 9.25. Now let a be a unit quaternion, so that L,
is an isometry and M is orthogonal. What else can we say about M, apart from M-! = MT?
Without going into details we define the isometry in R4 to be direct if IMl is 1 and indirect if
itis-1. Is IMI always the same, independently of a?

Calculating IMI directly looks rather formidable, but because the determinant is the product
of the eigenvalues, it can be done simply, on the observation that M is skew-symmetric
apart from the diagonal terms ag_That is, M =agl + S, where ST =-S. It follows from the
eigenvalue equation IM - All = 0 that the eigenvalues of M are those of S increased by ag.
Now MMT =1 gives S2 = (ag2-1)I. This implies that each eigenvalue A of S satisfies 12 =
(ap2-1), for xS =ax = xS2 =2xS =A2x. Thus S has eigenvalues HV(1 - ag2) and
those of M are ag +iV(1 - ag?) (assuming ag? < 1). Since their sum equals the trace 4ag of
M, the + and - signs occur twice each, and IMI = (ag? - i2(1-a92))2 = 1. In case ag? = 1,
we have M = agl, IMI = 1. (Notice that ap? cannot exceed 1. Why?) A similar analysis
holds for M = Mg.

EXERCISE Verify that MR is the matrix given, by determining it in the manner
described.

Now, why should M have the essentially skew-symmetric form we observed? According to
the component formula of Theorem 8.5 we have discovered that, for a e H, and
ep,e,e2,e3 standing for 1.,i,j.k respectively,

-(ae,).eq, if s:&t}

33
ag, if s=t ©.39)

(aeg).e = {

This is interesting because for s # t it is a unified result, not distinguishing between 1 and
any of i, j, k. It must be a consequence of such a result about multiplication of the basis
elements; and here is that result, in particular parts (iii) and (iv).

THEOREM 9.29 Let eg, ey, €, e3 denote 1,i,j.k respectively. Then for r,s,t taking
values 0,1,2,3 we have

(i) el =tep (i) eres = *e;, forsomet,
(i) eser! = -ees! (s#1), (iv) (eres).e; = -(erep.es (s #1).

Proof Everything comes from the multiplication table (9.15), with le; = e; assumed. Parts
(i) and (ii) may be read straight off that table. For example j(-j) = 1 so j-! = -j (inverses are
unique by (9.21)), whereas 1-1 = 1. For (iii), suppose firstly that e = 1. Then e =1, j, or
k so the assertion is ;! = -e;, which is true by (9.15). Similarly for case e; = 1. Ifs,t>1
(s # t) the result is ji = -ij or a cyclic shift of it, hence true by (9.15). Part (iv) : From the
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fact that, as vectors the e; satisfy er.eg = 85 (1 if r=Ss, else 0) we have the following simple
table which establishes (iv).

Condition (ereg).eq (erer).eg
ereg = € ie. e = ees! = -eger! 1 -1
ees = - ie. e = -eesl = egep! -1 1

eeg = teg 0 0

9.3.2 Quaternions and rotation in 3-space

We come now to an important application of quaternions: as an alternative to rotation
matrices. The case seems most clear cut in their use for smoothing animation (Section 9.4).
Here we explore how quaternions work out in representing rotations in 3-space. The first
step is to spot the non-obvious fact that if x is a pure quaternion, alias a point in 3-space,
then so is axa-! for every quaternion a, pure or otherwise. This is not the case for left or
right multiplication, so we do not quite have a correspondence with the similar looking
isometry combination of Theorem 2.12. For example left multiplication by i sends the point
i =(0,1,0,0) to (-1,0,0,0).

THEOREM 9.30 (Rotation about unit axis vector I through angle 26.)
(a) If X is a pure quaternion then so is axa’! for every quaternion a.
(b) The transformation of 3-space T: R? » R? given by

T(x) = axa!, with a=rel®, >0, 2=-1),
is rotation through angle 26 about axis vector 1 based at the origin.
(c) With a = t+ui+vj+wk, lal=1, the matrix for T(x) =xM is

1-2v2-2w?  2tw+2uv 2uw-2tv
Ma) = 2vu-2tw  1.2wZ2.242 2tu+2vw

2tvi2wu  2wv-2tu  1-2u2-2v2

(d) M@?') = M@)! = M(@)T, M(a)M(b) = M(ba) (a,bin H).

REMARKS 9.31 (1) In the matrix (c) we follow the notation of Shoemake (1985),
though it may be convenient to replace the diagonal elements by their equivalents cos 26 +
2u?, cos 26 +2v2, cos 26 + 2w2. The matrix is given in a rather different form in Theorem
8.49. To make the transition from one to the other, we replace 26 here by . However,
we shall derive the present formula in terms of quaternions, for completeness. Either formula
may be preferable, depending on the precise purpose.

(2) Transposing (d) we have M(b)T™(a)T = M(ba)T. These transposes are the matrices
required if we work with the matrix formulation T(x) = MTxT, as is often done. We
emphasise again that if we know the matrices for one formulation then we know them for the
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emphasise again that if we know the matrices for one formulation then we know them for the
other: simply transpose.

Notice that if quaternion multiplication were commutative the map T would be the identity.

EXERCISE Demonstrate the equivalence of the two versions of the rotation matrix, in Theorems
8.49 and 9.30.

Proof of Theorem 9.30 Note first that (a) can be proved by multiplying the appropriate
matrices M (@)Mg(a)T from the previous section to obtain the first row and column all zeros
except for leading entry 1, which shows that this matrix maps a vector of form (0,a,b,c) into
another vector with zero first coordinate, i.e. pure quaternions to pure quaternions. We shall
carry out a coordinate free proof, obtaining a most useful formula which exhibits the
rotation produced. Without loss of generality we may assume that a is a unit quaternion,
since (Aa)x(Aa)-! = axa-! for a nonzero real number A, by (9.21). It will be very helpful
to have the following three results before us for pure quaternions (hence vectors) u, v, w.
(i) uv = -u.v+uxv, (9.24)

(ii) ux(vxw) = (wxv)xu = (w.w)v - (u.v)w  (Theorem 7.35)

(iii)  The product [u,v,w] = u.(v x w) is unchanged if u,v,w shift cyclically, and is
zero if any two are equal ~ (Theorem 7.31).

Suppose the polar form is a =c +Is, where c = cos6, s = sin® for some angle 6, and I°
=-1. In anticipation of (b) let us write T(y) for aya'!.  Then

T(y)

(c+Is)y(c-1Is)
= 2y +sc(ly -yI)-s* Iy,
= cZy +2sc(Ixy)-s2Iyl,

by (9.30) for a’l,

by (i) for Iy, yI.

Iyl = a1
= —(LyI + Ixy 1 by (i) for Iy,
= —IyI - Axy).T + (Ixy)xI, by (i) for (I x y)I
= —(Ly)l + LDy - (Ly) 1, by (ii),

since (Ixy).I =0 by (iii). Finally, LI=1I2 = 1 simplifies the expression to
Iyl = y - 2Lyl (9.34)

Now we substitute (9.34) in the expression so far for T(y), noting that ¢? - 2 = cos26 and
2sc = sin20, to obtain a formula that will be useful again,

T(y) = ycos26+ (Ixy)sin20 + (1-cos20) (Ly) I (9.35)

where y, I are pure and I = -1.  Since I X y is also pure, so is T(y), as we wished to
show.

(b) There are various ways to show that T is rotation through 26 about axis vector L.
We make maximum use of the classification of isometries. T is an isometry because the
definition (8.1) is satisfied as follows
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IT(x)-T(y)l = laxa'-ayal (x, y pure)
= la(x-y)all
lal Ix-y! la!| by Theorem 9.25,
= Ix-yl as la’ll = 1/ial .
Ixy
T(y)
26
y
I 0]

Figure 9.9 Effect of the transformation T(y) = aya'l, with a = el9, L

Let y be a vector perpendicular to I, so that Ly = 0, and from (9.35) we have as illustrated
in Figure 9.9

T(y) = ycos26 + (Ixy) sin2e. (9.36)

This shows that T has the same effect as rotation 26 about axis I, on the plane [T through O
normal to I. By the Classification Theorem 8.42, T is either the rotation claimed or a rotary
reflection in [I. But T(I) = ala! = el®1eT1® = el®e 10 = I 50 T must be the
rotation. Thus the key result is established. (Alternatively, T acts as the rotation on four
non-collinear points: the point with position vector I and any three non-collinear points in
1. Hence result (b) by the earlier Theorem 8.22.)

(c) We are computing the 3 x 3 submatrix M = [myg] of N = Mp(a)Mg(a)T
corresponding to the last three rows and columns, numbered 1,2 ,3, from

myg = (row r of M (a)) . (row s of Mr(a)) (%)

What is more obvious from my = (aera™!).es = f(ap, aj, az, a3), say, is that mpy] el
= f(ap, ap, a3, a;), where 152531 (0 fixed), and that therefore we may obtain the
second and third rows of M from the first (this being found from (*)). For example m;; =
2ajay + 2apa3 implies that mp3 = 2aja3 + 2apa;. Representing the diagonal we have my;
= a;2+ap?-a32-a2 = 2+u2-v2 - w2, which equals 1-2 v2 - 2w2 (the stated
expression ) because of 1=lal2 = 2+ u? + v2 + w2, [The fact that N is orthogonal and
sends vectors (0,a,b,c) to (0,d.e,f) implies that its first row and column have the form
(1,0,0,0), though we do not need this.]

(d) The matrix result M(ab) = M(b)M(a) holds, since (ab)x(ab)! = a(bxb1)a’!
implies that M(b) is applied first. The first statement of (d) now follows from the equalities
M(a1)M(@) = M(aa-l) = M(1) = I (the identity matrix), because a 1-sided inverse is 2-
sided by (7.17).

EXERCISE Prove that y,T(y).I is a right-handed triple in part (b) above, if 0 <28 < 7.
EXERCISE Complete the calculation of M(a) from Mj (a)Mg(a)T.
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REMARKS 9.32 The reader may wish to postpone these comments, logically placed here,
until after seeing the examples that follow. (1) Sometimes in the literature one finds T(x) =
alxa, a=el®  Since a'! = ¢ the result is rotation, still about axis I, but through -26
rather than 26. There may be applications for which this sign reversal perhaps does not
matter, but for computer graphics it seems risky to let in a gratuitous minus sign. Therefore

we stick to T(x) = axal.

(2) We emphasise that in contrast with (i), replacing a by ra for any r # 0 leaves T
unchanged, since (ra)x(ra)! = raxr!a’! = axa’!. This is especially useful if obtaining a
of unit modulus requires division by a square root.

(3)  Again, replacing 6, I by -6, -I leaves the rotation unchanged, since e(-0)(D) = ¢I®,
This is illustrated in Section 8.4.3. On the other hand, replacing a by its conjugate or I by
its negative reverses the turn.

(4)  The unit quaternion a gives a 1/n'th turn if and only if a has order 2n (is a 2n'th root
of unity and nothing less). Reason: rotation 27t/n requires argument 7t/n.

To encourage our faith that quaternions accomplish rotations, we start with several
examples in which the answer is easy to check.

EXAMPLE 9.33 Calculate the effect on the x-axis, of rotation by n/2 about the z-axis,
using quaternions directly. We use T(x) = axa'l. In the usual notation 20 =n/2, I =Kk,
anda = cos /4 +ksin /4 = (1 +Kk)/N2. Since lal =1 wehave a'=a= (1 -k)/N2,
and so

TG = :11—(1+k)i (1-K) ='5(i+k) (i+j) = ]2—(i~ik+j-jk) = j.

z
Therefore T maps the x-axis into the y-axis, vindicating
Remark (1) above. See Figure 9.10 on the right. Also
T(k) = k (no calculation required - why?) and T(j) = -i, y
which confirms by the classification of isometries that
we have the correct rotation, since it is correct on four X /2
noncoplanar points

Figure 9.10

EXAMPLE 9.34 We calculate the matrix for the Example above by the formula of Theorem
9.30(c), witha = (1 +Kk)N2 = t+ui+vj+wk, giving t=1A2 =w, u=v=0.
Hence, in agreement with the rotation formula of (7.26), the matrix is M; below.

0 189 010
M = 1100 ks My = 001

001 100

EXAMPLE 935 We use quaternions to find the matrix for rotation about axis vector
(1,1,1) through a 1/3 turn. For this we have 20 =2n/3, e=n/3, I = (i+j+k)N3, which
gives simply a = (1+i+j+k)/2, t=u=v=w=1/2. By Theorem 9.30(c), the matrix is
M; above. This sends x-axis — y-axis — z-axis cyclically, as we knew it ought. Indeed,
given this, we could write down the matrix straightaway by Theorem 8.5. Notice that a is
a cube root of 1.
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TABLE 9.3 A compendium of quaternions a for rotation T(x) = axa’l

For axis I replace k by I except in case (*)

Rotation 8 axis quaternion a lal
1/2 turn n/2 Z-axis 3 1
1/3 turn /3 z-axis 1 +3k 2
1/4 turn /4 Z-axis 1+k V2
1/5 turn n/5 tj+k (*) T+j-ok 2
1/6 turn ®/6 z-axis Vi+k 2

(*) Refers to a 1/5 turn about OA with A(0,1,-0) a vertex of an icosahedron - the regular solid bounded by
twenty equilateral triangular faces, five at each of the 12 vertices. Here (see Table 9.1) T = (1+V5)/2 =
2cosm/5 and o = (1-V5)/2 are the roots of x2-x-1=0. Hence o4+t =1, ot=-1, o2+12=3, o2 = 2-tand
12 = 2-g. The points (0, + 1, £1) and their cyclic shifts serve as vertices. Sinm/5 cannot be expressed
conveniently in the way cosm/5 can.

9.3.3 Composition of rotations, by quaternions

EXAMPLE 9.36 We find the composition of a 60° rotation about the y-axis follm_ved by a
60° rotation about the x-axis, without using matrices. Reversing order as prescribed, the
appropriate product of quaternions is
V3+i V3+j
2 " 2
hence the result is a rotation of 2 cos-1(3/4) = 839, about an axis vector (\13, V3, 1).

= :}+ “}{(N3 +jV3 +k) = cos 6 + Isine,

EXAMPLE 9.37 We shall A(1,1,1)
combine rotation symmetries,

RoE(1/2)RpA(1/3),

of the regular tetrahedron, shown
in Figure 9.11. This solid is
bounded by four equilateral
triangles, three at each of the 4
vertices. Inspection shows that the
rotation symmetries are as listed
below, with origin O at the centre:

E(0,1,0)
Q)

B(1,-1,-1) C(-1,1,-1)

Figure 9.11 The regular tetrahedron. Its vertices
are (+1, £1, 1) with none or two minus signs.

(1)  a 1/2 turn about each line EF joining the midpoints of opposite edges 3
(2) al/3and a 2/3 turn about OA for each vertex A 8
(3) The identity rotation (do nothing) 1

P

2

The product of any two of these symmetries must be a third. We require the result of a 1/2
turn about OE followed by a 1/3 turn about OA. Using Table 9.3 as an aid, we find that
suitable rotation quaternions are for Rog(1/2): a=j, forRoa(1/3): b = 1+ (V3)0A /IQAI
= 1+i+j+k. By Theorem 9.30(d), a rotation quaternion for Rog(1/2)RpA(1/3)is ba =
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(1+i+j+k)j = -l-i+j+k = -1 - w"B(QBHIQ_BI). From Table 9.3 (note that a and -a give the
same rotation), the resultis a 1/3 turn about OB. Equivalently a 2/3 turn about OG, where
G is the centroid of triangle ADC.

EXERCISE Find RQE(1/2)RQB(1/3) in the tetrahedron of Example 9.37. Check your answer by
its effect on three suitable points besides the origin, or by using matrices.

EXAMPLE 9.38 The cube of Figure z
9.12 contains a symmetrically placed
copy of the tetrahedron ABCD of

Example 9.37, whose symmetries are D K

thus also symmetries of the cube. We \

find the product of the cube rotation \

symmetries indicated: r - y
Roz(1/4) Rou(-1/3). B, 7

C

An appropriate quaternion product is,

by Table 9.3, (1-V3(QH /IQHI) x (1+k) g G ]

= (l-i-j+k)(1+k) = 2(-i+k), givinga B I;‘l : H(1,1,-1)

1/2 turn about OL.
Figure 9.12 The cube, centred at the origin,
with vertices (1, *1, +1), and inscribed
tetrahedron ABCD from Figure 9.11.

For reflections, cf. Example 8.25.

EXERCISE Compute Roy(3/4)Rok(1/3). above. Is this a symmetry of the tetrahedron?

A fund of rotation examples

By rotation about a point A of a polyhedron (solid bounded by plane faces) we will mean
rotation about axis OA, where as always O is the origin. The rotation group of a figure is
the group of all its rotational symmetries. For the cube of Example 9.38, symbolised by
{4,3} because its faces are squares, three at a vertex, the rotation group consists of the
identity and all powers of: a 1/2 turn about the midpoint of each edge, a 1/3 turn about each
vertex, a 1/4 turn about each face centre (centre of face). Total 24. The face centres of a
cube form the vertices of its 'dual’, the octahedron {3,4} with four regular triangular faces
at each vertex. Its symmetries are therefore those of a cube, but with face and vertex
switched in the description.

The icosahedron {3,5} is a solid bounded by twenty regular triangular faces, five at each of
the twelve vertices. Rotation symmetries come from: a 1/2 turn about the mid point of each
edge, a 1/3 turn about each face centre, and a 1/5 turn about each vertex. A total of sixty in
the group. As before we may take the face centres as vertices of a 'dual’, this time the
dodecahedron (5,3}, with regular pentagonal faces, three at a vertex. The five solids
enumerated are called the Platonic solids, and exhaust the possibilities for a regular
polyhedron {p,q} that is convex, meaning that any line segment joining two points in the
solid is also within the solid.

Table 9.4 gives the unit quaternions for each of the three distinct rotation groups, and a
geometrical description of them in terms of permutations of certain subfigures. A
permutation of a list of objects, say denoted by 1,2, .., n, is a reordering of them, and is
called even or odd according as it requires an even or odd number of transpositions (i.e.




206 Chapter 9

Then for example 1,2,3 may be cyclically shifted to 3,1,2 by transposing 2,3 then 1,3, so
is even. The group of all permutations of n objects is called the symmetric group Sy, and its
subgroup of all even permutations is the alternating group Ap,

For further information, see Coxeter (1973) who shows that such a polyhedral
group, the rotation group of a polyhedron, has order twice the number of edges in the
polyhedron's boundary. The reader may know the Euler polyhedron formula V-E+F =2
(cf. Table 9.4), holding for a wide variety of surfaces bounded by polygonal faces. For its
application to Solid modelling in computer graphics, see Baumgart (1974) and Mintyld
(1988). A useful introduction is found in Foley et al (1990).

TABLE 9.4 Rotation groups of the Platonic solids, and associated quaternions
V, E, F denote the number of vertices, edges, and faces

Solid Rotation group V E F Corresponding group of unit
quaternions
Tetrahedron Tetrahedral group. ThegroupAq4 4 6 4 1,1,j, k, I1Hitjtk,
of all even permutations of the and their negatives.
vertices.
Cube Octahedral group. ThegroupS4 8 12 6 The above, & (1+i)/V2,
Octahedron of all permutations of the main 6 12 8 (1+j)/N2, (1tk)/V2,
diagonals of the cube. (i£jyN2, (Gxk)/N2,

(k+i)N2, & negatives.

Icosahedron, Icosahedral group. The group As 12 30 20 The tetrahedral ones, &

Dodecahedron  of all even permuations of five 20 30 12 (fituitvjtwk)/2, with
regular tetrahedra on the tuvw an even permutation
dodecahedron's 5 x 4 vertices. of -100 1.

EXERCISE What group of rotations comes from quaternion group Q = {+1, 4, +j+k}?

Cube

Octahedron

Tetrahedron

Dodecahedron Icosahedron

Figure 9.13 The five Platonic solids

A connection with groups We give now a small amount of information concerning a
wider context. For further reading on quaternions, see Coxeter (1974) and references
therein. Just as the unit pure quaternions can be regarded as the points of the unit 2-sphere
S$2, in 3-space, so can the unit quaternions be viewed as forming the 3-dimensional sphere
in 4-space:

S3 = {(ag a;, 2y a3): eachaisreal, Xa?=1},
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in which the pure quaternion subset S? is the "equatorial” subsphere defined by ag = 0. (In
Section 9.4 we consider how to take a smooth path through a sequence of points on S to
achieve animation 'in-betweening'). But there is more. Since the product of two unit
quaternions is a third, multiplication of quaternions gives S3 the structure of an infinite
group , with identity from the real number 1 (Example 9.26). We have a map

F:S§? — S0(3),

which sends *a to the same matrix M(a)T. And F is a group homomorphism, meaning that
F(ab) = F(a)F(b). This is simply M(ab)T = M(a)TM(b)T. It is described as 2.1 and onto
because every matrix in SO(3) is the image of exactly two members of S3. We have just
introduced the Platonic solids, whose rotation groups G are finite subgroups of SO(3). The
corresponding sets of unit quaternions in Table 9.4 are finite subgroups of S3, namely the
inverse images F-1(G); collectively they are called the binary polyhedral groups 2A4, 254,
2As, of orders 24, 48, 120.

Coordinates on the n-sphere We build up P
from the circle S! to S2 to §3 and similarly

beyond, so that S" is coordinatised by n angles.

For the equatorial circle S1 in S2 we have a typical

point u = (cos¢, sing), 0<¢ <2n. Now take .

basis vectors e, e>, e3, ... each viewed as

belonging to a higher dimensional space as v

required. Then we extend S! to S, adding a
further coordinate on basis vector e3 obtaining the
points of the ordinary sphere §? as v =
usin® + e3cose, (0 <6 <m). In coordinates,

v = (cos¢ siné, sing sind, cos8). The sphere S2 with equator S1.

To coordinatise S? we simply apply the same idea again with new basis vector e4 and angle
say y, where 0 <y <7 (we might have chosen 8y, 82, 83). Then S3 has points

w = vsiny + egcosy = (cos¢ sin® siny, sing siné siny, cosé siny, cosy ).

9.4 Quaternion in-betweening

Background references for this Section are given at the end of the Chapter.

9.4.1 Why in-betweening and why quaternions?

A prime case in which interpolation or 'in-betweening' is required, is that of computer
animation. The aspect we address here is that of animation in 3-space with no change in the
actual shape of a moving object. A series of key frames are established for giving the
position and orientation of an object at certain time intervals, and we wish to generate a
suitable sequence of intermediate states so that the object will appear to the eye to move
smoothly between and past key frames. A key frame may be specified by a 4 by 4 matrix
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as in Section 8.3.3 describing the position and orientation of an object in 3-space, relative to
a chosen origin and three mutually perpendicular coordinate axes. Since we are dealing here
with strictly rigid motion, only direct isometries are allowed, which, according to the
classification of Section 8.5.4 are

Translation,
Rotation, or
Screw,

where a screw consists of rotation combined with translation parallel to the axis.

<0

Roll

(::f§;\,|~‘ Pitch

But why quaternions? We cannot interpolate directly beween transformation matrices
because their entries are partially dependent, for example a 3 x 3 rotation matrix is subject to
six quadratic relations. The traditional set of independent coordinates describing rotation in
three dimensions has been Euler angles, introduced successfully by Euler (1758) to solve
differential equations, and still useful in this regard (see e.g. Miller (1972)). Euler angles
are an extension of the idea of latitude and longitude on the ordinary 2-sphere. They specify
rotation as the composition of three independent rotations about given axes through an
origin, in a given order. A typical system used in aircraft dynamics (Figure 0.14) is to
specify in order:

Figure 9.14 Yaw, pitch and roll for an aircraft.

1. Yaw, or heading, around a vertical axis,
2. Pitch, around a horizontal axis through the wings,
3. Roll, around an axis along the fuselage.

This is not the only system in use. The reader may care to list 12 = 3 x 2 x 2 viable alternate
systems with mutually perpendicular axis in the object. See Hughes (1986). On the other
hand a quaternion represents orientation as a single rotation, enabling a much simpler
approach to interpolation in particular. This is probably the most important gain in using
quaternions. The complications of Euler angles for animation are further discussed in
Shoemake (1985).

REMARK Robotics is another area where in-betweening is required. See for example the
tutorial of Heise and Macdonald (1989).
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9.4.2 Interpolating between two orientations

Clearly there is no problem in applying linear interpolation to the translation parts of
successive placings of an object in space. Here we address the question of a suitable way to
interpolate between two orientations as unit quaternions, that is, as points on the unit sphere
S3 in 4-space.

As we will soon show, any two distinct points
a, b on S3 lie on a unique circle in this sphere,
called the great circle through a, b, divided by
these points into two great arcs (if one is the
shorter we call it the great arc between a, b).
Since the points of this circle may be .
parametrised by angle in the usual way, it is

natural to use spherical linear interpolation

between a and b as indicated in Figure 9.15: if V’

the angle between vectors a, b is @ then the 0

interpolated point q(t) for time t, where 0 <t <  Figure 9.15 Spherical interpolation
1, is given by the vector at angle t6 to a.

q()

along a greatarc a b.

A formula is simple to obtain once we appreciate that a, b are on an honest circle of radius 1
in an ordinary 2-dimensional plane [], which happens to be sitting in 4-space. This works
as follows. The 4-vectors a, b define a unique plane [ through the origin consisting by
definition of all linear combinations of a, b,

IT = {Aa +pub : A, p are arbitrary real numbers}.

Angles in [] are defined by innerproducts of its vectors calculated from their coordinates as
4-vectors. But how do we know this is like the usual x-y plane?

APPROACH 1 By similar arguments to the 3-dimensional case, Theorem 8.55, there
exists a 4 by 4 orthogonal matrix M sending unit vectors a,b to unit vectors a',b" with last
two coordinates zero and with a'.b'=a.b. Also M sends Aa + pb to Aa' + ub'. Thus
geometry in [] is the same as that in

IT = a2, 00) + (b, by, 00): A, p real,

and hence the same as a standard plane X based on 2 coordinates with, say (a'j,a'’,)
defining one axis and a perpendicular vector (c¢'|,c'») the other, as in Figure 9.16.

4

s? (¢, c,y)
M = =
: (b, b))

>
(a,',a)

(ii)

Figure 9.16 (i) Plane [T intersects sphere S3 in a great circle, (i) the plane X.
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APPROACH 2 1 itself contains a unit vector ¢ perpendicular to a, so that a,c define axes
for x,y coordinates in [1. To obtain ¢ we subtract from b its component along a and make
the result into a unit vector. Thus ¢=v /Ivl, where v=Db - (b.a)a. Asacheck, v.a =
b.a - (b.a)a.a = 0, since a.a=1. Using a.a=1=c.c and a.c = 0 we calculate the
inner product in [] ( inherited from R%) as (x;a + x2¢).(y1a + y2€) = X1y1 + X2y2. Thus
[1 is a standard plane.

The great circle C through a, b is by definition the intersection of [ and the sphere
S3, namely the points of [T constituting its unit circle about the origin. We have now
justified Figure 9.15, and laid the foundation for later arguments here and in Section 9.4.4.
The formula quoted in Shoemake (1985) and Heise and Macdonald (1989) may now be
derived simply by an argument in the plane where, if a, b, ¢ are unit vectors at given angles
o, B as shown in Figure 9.17 then c is a linear combination Aa+ub, determined by o, p
alone, and this relation continues to hold if the plane consists of 4-vectors as does [1 above.

LEMMA 9.39 For coplanar unit vectors a, b, ¢, forming nonzero angles a, p as shown in
Figure 9.17, we have c¢ sin(a+B) = asinp + b sin o

Proof We find the linear relationship ¢ = Aa + ub by b c
viewing a, b, ¢ as complex numbers (as we may, by
Approach 2), when a=cei® b=celB, andsoc = a
Acei® + pcelP or, dividing through by ¢ as a complex
number : B

1 = AMcosa - isina) + p(cosp + isinp). 0

Figure 9.17 Coplanar

Equating real and imaginary parts (NB: the real part of the unit vectors (e, B # 0).

left hand side must equal the real part of the right hand side

and similarly for the imaginary parts), we obtain two equations for the unknowns A, p:
Acosa + pcosp = 1, -Asinge + psinp = 0.

To complete the proof it remains to solve these easy equations and to apply the relation

sin(o+p) = sin o.cos B + cos o sin f.

COROLLARY 940 The quaternion obtained by spherical linear interpolation from a to b on
the unit sphere S3 in 4-space, with parametert (0 <t <1), where a.b = cos6, is given
by . .

sin(1-)8 sin t6

= e Rl b ine = 0 0.37
a® sind aor sind (sind # ©0) ( )

Proof We apply Lemma 9.39 with o =6t, f=0-6t
(Figure 9.15 is repeated on the right).

REMARK 941 Concerning the case sin 6 = 0, note that
sind =0 & cosé =%l < b==fa < unit quaternions a,
b give the same rotation (see Remark 9.32(2)).

DIFFERENTIATING VECTORS We formulate the small number of results we need in
terms of plane vectors, the extension to higher dimensions being straightforward. Suppose
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the position vector r(t) = (x(t), y(t)) of a point P varies with a parameter t, possibly time.
With the usual convention of a dot to denote differentiation with respect to t, we define the
derivative of r as r=(xX,y) (we say ris differentiable when x and y exist). Then r is a
tangent to the curve traced out by P since it represents the direction in which r is changing as
t varies. Further, the length Irl represents the rate at which r is changing - how fast P moves
along the curve for a given rate of change of t. The following Lemma will suffice.

LEMMA 942 If vectors u, v, and scalar a(t) are differentiable then
(a) (d/d)u.v = uv +u.v (b) (d/dt)av = av +av

Proof (a) (d/dt) u.v = (d/dt)(ujvy +upvy) = upvp +10pvy +upvy +Uvy = WV + U.v
(on regrouping the terms). The second part is slighter shorter.

The classic example is the unit circle with 1 = r.r, hence 2r.i = 0 and the tangent is at right
angles to the radius, as confirmed by r.i* = (cos t, sin t).(-sin t, cos t) = 0. Now, from
(9.37), with a,b constant, so that 4 =b = 0, we have the derivative of q(t) as

6cos to ocos(1-1)8
- b = # a
sine siné

qv = (sine = 0) (9.38)
EXAMPLE 943 Show that 1q(t)I12= 2 (which is what we would expect).
Solution We have 14012 = q®). q() =

2 ' ~os(1-1)0 s(1-1)0
. (ecosteT BB - Z{GCDSIG]( Bcos(1 -t) ]a.b P (Bcos( t) ]-a.a

sin@ sin® sin@ sind

Setting a.a = b.b =1, a.b =cos 8, expanding cos(6-t8), and collecting terms, we obtain
02[cos?te - cos20 cos2te + sin20 sin2t@]/sin20. The bracketed expression simplifies to sin20 ,
and we are done.

EXERCISE Verify that Iq(t)l = 1 by direct calculation as in Example 9.43.

9.4.3 Bézier curves

Paul Bézier produced his famous
curves in response to a need in the
design of car bodies. References
for these curves and subsequent
developments are given at the end
of the chapter. We focus on cubic
Bézier curves, that is those based
on four knots, or control points,
since these are what we require
here. The case of n control points
is easy to deduce from this.

Figure 9.18 Geometrical construction of Bezier curve with
four knots.




